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The 2013–2016 epidemic of Ebola virus disease was of unprecedented magnitude,

duration and impact. Analysing 1610 Ebola virus genomes, representing over 5% of

known cases, we reconstruct the dispersal, proliferation and decline of Ebola virus

throughout the region. We test the association of geography, climate and demogra-

phy with viral movement among administrative regions, inferring a classic ‘gravity’

model, with intense dispersal between larger and closer populations. Despite attenu-

ation of international dispersal after border closures, cross-border transmission had

already set the seeds for an international epidemic, rendering these measures inef-

fective in curbing the epidemic. We address why the epidemic did not spread into

neighbouring countries, showing they were susceptible to significant outbreaks but

at lower risk of introductions. Finally, we reveal this large epidemic to be a hetero-

geneous and spatially dissociated collection of transmission clusters of varying size,

duration and connectivity. These insights will help inform interventions in future

epidemics.

At least 28,646 cases and 11,323 deaths1 have been attributed to the Makona variant of

Ebola virus (EBOV)2 in the two and a half years it circulated in West Africa. The epidemic

is thought to have begun in December 2013 in Guinea, but was not detected and reported

until March 20143. Initial efforts to control the outbreak in Guinea were considered to be

succeeding4, but in early 2014 the virus crossed international borders into neighbouring

Liberia (first cases diagnosed in late March) and Sierra Leone (first documented case in

late February5, 6, first diagnosed cases in May7). EBOV genomes sequenced from three

patients in Guinea early in the epidemic3 demonstrated that the progenitor of the Makona

variant originated in Middle Africa and arrived in West Africa within the last 15 years7, 8.

Rapid sequencing from the first reported cases in Sierra Leone confirmed that EBOV

had crossed the border from Guinea and were not the result of an independent zoonotic

introduction7. Subsequent studies analysed the genetic makeup of the Makona variant,

focusing on Guinea9–11, Sierra Leone12, 13 or Liberia14, 15, identifying local viral lineages

and transmission patterns within each country.

Although virus sequencing has covered considerable fractions of the epidemic in each

affected country, individual studies focused on either limited geographical areas or time

periods, so that the regional level patterns and drivers of the epidemic across its entire

duration have remained uncertain. Using 1610 genome sequences collected throughout the

epidemic, representing over 5% of recorded Ebola virus disease (EVD) cases (Figure 1),

we reconstruct a detailed phylogenetic history of the movement of EBOV within and

between the three most affected countries. Using a recently developed phylogeographic

approach that integrates covariates of spatial spread16, we test which features of each region

(administrative, economic, climatic, infrastructural and demographic) were important in

shaping the spatial dynamics of EVD. We also examine the effectiveness of international

border closures on controlling virus dissemination. Finally, we investigate why regions

that immediately border the most affected countries did not develop protracted outbreaks

similar to those that ravaged Sierra Leone, Guinea and Liberia.
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Figure 1. Distribution and correlation of EVD cases and EBOV sequences. a) Administrative regions within Guinea (green), Sierra

Leone (blue) and Liberia (red); shading is proportional to the cumulative number of known and suspected EVD cases in each region.

Darkest shades represent 784 cases for Guinea (Macenta Prefecture), 3219 cases for Sierra Leone (Western Area Urban District) and

2925 cases for Liberia (Montserrado County); hatching indicate regions without reported EVD cases. Circle diameters are proportional

to the number of EBOV genomes available from that region over the entire EVD epidemic with the largest representing 152 sequences.

Crosses mark regions for which no sequences are available. Circles and crosses are positioned at population centroids within each

region. b) A plot of number of EBOV genomes sampled against the known and suspected cumulative EVD case numbers. Regions in

Guinea are denoted in green, Sierra Leone in blue and Liberia in red. Spearman correlation coefficient: 0.93.

Origin, ignition and trajectory of the epidemic.

Molecular clock dating indicates that the most recent common ancestor of the epidemic

existed between December 2013 and February 2014 (mean 2014.06, 95% credible in-

terval, CI: 2013.96, 2014.14) and phylogeographic estimation assigns this ancestor to

the Guéckédou Prefecture, Nzérékoré Region, Guinea, with high credibility (Figure 2).

In addition, we find that initial EBOV lineages deriving from this common ancestor cir-

culated among Guéckédou Prefecture and its neighbouring prefectures of Macenta and

Kissidougou until late February 2014 (Figure 2). These results support the epidemiological

evidence that the West African epidemic began in late 2013 in Guéckédou Prefecture3.

The first EBOV introduction from Guinea into another country that resulted in sustained

transmission is estimated to have occurred in early April 2014 (Figure 2), when the virus

spread to Kailahun District of Sierra Leone5, 6. This lineage was first detected in Kailahun

at the end of May 2014, from where it spread across the region (Figures 4 & 3). From

Kailahun EBOV spread extremely rapidly in May 2014 into several counties of Liberia

(Lofa, Montserrado and Margibi)15 and Guinea (Conakry, back into Guéckédou)9, 11. The

virus continued spreading westwards through Sierra Leone, and by July 2014 EBOV was

present in the capital city, Freetown.

By mid-September 2014 Liberia was reporting >500 new EVD cases per week, mostly

driven by a large outbreak in Montserrado County, which encompasses the capital city,

Monrovia. Sierra Leone reported >700 new cases per week by mid-November, with large

outbreaks in Port Loko, Western Urban (Freetown) and Western Rural districts (Freetown

5
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Figure 2. Summary of early epidemic events. a) Temporal phylogeny of earliest sampled EBOV lineages in Guéckédou Prefecture,

Guinea. 95% posterior densities of most recent common ancestor estimates for all lineages (grey) and lineages into Kailahun District,

Sierra Leone (blue) and to Conakry Prefecture, Guinea (green) are shown at the bottom. Posterior probabilities > 0.5 are shown for

lineages with >5 descendent sequences). b) Dispersal events marked by dashed lineages on the phylogeny projected on a map with

directionality indicated by colour intensity (from white to red). Lineages that migrated to Conakry Prefecture and Kailahun District

have led to the vast majority of EVD cases throughout the region.

suburbs). December 2014 brought the first signs that efforts to control the epidemic

in Sierra Leone were effective as EVD incidence began dropping. By March 2015 the

epidemic was largely under control in Liberia and eastern Guinea, although sustained

transmission continued in the border area of western Guinea and western Sierra Leone.

By the following month prevalence had declined such that only a handful of lineages

persisted10, 12 (Figure 4).

The last EBOV genome resulting from a conventionally-acquired infection was collected

and sequenced in October 2015 in Forécariah Prefecture (Guinea)10. After this, only

sporadic cases of EVD were detected: in Montserrado (Liberia) in November 2015,

Tonkolili (Sierra Leone) in January and February 2016, and Nzérékoré (Guinea) in March

2016. All these sporadic cases likely resulted from transmission from EVD survivors with

established persistent infections12, 17, 18.

Factors associated with EBOV dispersal.

To determine the factors that influenced the spread of EBOV among administrative regions

at the district (Sierra Leone), prefecture (Guinea) and county (Liberia) levels we used

a phylogeographic generalized linear model (GLM)16. Of the 25 factors assessed (see

Table 3 for a full list and description) five were included in the model with categorical

support (Table 1). In summary, EBOV tends to disperse between geographically close

regions (great circle distance: Bayes factor (BF) support for inclusion BF>50). Half of all

virus dispersals occurred between locations <72 km apart and only 5% involved movement

over 232 km (Figure 11a). Both origin and destination population sizes are very strongly

(BF>50) positively correlated with viral dissemination, with a stronger effect for origin

6
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Figure 3. Dispersal of virus lineages over time. Virus dispersal between administrative regions estimated under the GLM phylo-

geography model (see Supplementary Methods). The arcs are between population centroids of each region, show directionality from

thin end to thick end and are coloured in a scale denoting time from December 2013 in blue to October 2015 in yellow. Countries are

coloured with Liberia in red, Guinea in green and Sierra Leone in blue.

population size. The positive effect of population sizes combined with the inverse effect of

geographic distance, implies that the epidemic’s spread followed a classic gravity-model

dynamic. Gravity models, widely used in economic and geographic studies and a natural

choice for modelling infectious disease transmission19–21, describe the movement of people

between locations as a function of their population sizes and distance apart. Here we use

viral genomes to provide empirical evidence that such a process drove viral dissemination

during the EVD epidemic.

In addition to geographical distance, we found a significant propensity for virus dispersal

to occur within each country, relative to internationally (Nat/Int effect, BF>50), suggesting

that country borders acted to curb the geographic spread of EBOV. When international

dispersals do take place, they are more intense between administrative regions that are

adjacent at an international border (IntBoSh, BF>50).

We tested whether sharing of any of 17 vernacular languages explains virus spread, as

common languages might reflect cultural links including between non-contiguous or

international regions, but found no evidence that such linguistic links were correlated

with EBOV spread. A variety of other possible predictors of EBOV transmission, such

as aspects of urbanization (economic output, population density, travel times to large

settlements) and climatic effects, were not significantly associated with virus dispersal.

However, these factors may have contributed to the size and longevity of transmission

chains after introduction to a region (see below).
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GN-1

Figure 4. Transmission chains arising from independent international movements. a) EBOV lineages by country (Guinea, green;

Sierra Leone, blue; Liberia, red), tracked until the sampling date of their last known descendants. Circles at the roots of each subtree

denote the country of origin for the introduced lineage. b) Estimates of the change point probability (primary Y-axis) and log coefficient

(mean and credible interval; secondary Y-axis) for the Nat/Int factor. Vertical lines represent dates of border closures by the respective

countries.

Table 1. Summary of phylogenetic generalized linear model results.

Predictor1 Description Coefficient2 95% CI3 Inclusion4 BF5

Nat/Int
National dispersal relative to

international
3.07 2.36, 3.77 1.0 >50

Distances
Great circle distances between the

locations’ population centroids
-0.77 -0.91, -0.63 1.0 >50

OrPop Population size in the origin location 1.36 0.86, 1.84 1.0 >50

DestPop
Population size in the destination

location
0.74 0.43, 1.06 1.0 >50

IntBoSh
Two locations share an

international border
3.39 2.42, 4.33 1.0 >50

originTmpss
Index of temperature seasonality at

origin
-0.47 -0.88, -0.11 0.1 3.79

1Predictors included in the model with Bayes factor >3
2Mean coefficient
395% highest posterior density credible interval (CI)
4Probability that the predictor was included in the model
5Bayes factor (BF)

8



Finally, to investigate the potential of ‘real-time’ viral genome sequencing, we considered

the degree to which the findings could have been obtained at the height of the epidemic,

had sequences been available shortly after samples were taken (see Methods for details).

For the factors associated with EBOV dispersal the results were extremely comparable

with those for the full dataset with the same five factors being strongly supported and

having similar effect sizes (Figure 5).

4 2 0 2 4
coefficient

DestPop

OrPop

Distances

Nat/Int

IntBoSh

dataset up to October 2014
full dataset

Figure 5. Inference of GLM predictors in a ‘real-time’ context. For the data set constructed from EBOV genome sequences

derived from samples taken up until October 2014 (blue), the same 5 spatial EBOV movement predictors were given categorical

support (inclusion probabilities = 1.0) as for the full data set (red). Likewise, the coefficients for these predictors are consistent in their

sign and magnitude.

Factors associated with local EBOV proliferation.

The analysis above identified predominantly geographical and administrative factors that

predict the degree of importation risk, i.e. the likelihood that a viral lineage initiates at

least one infection in a new region. However, the epidemiological consequences of each

introduction — the size and duration of resulting transmission chains — may be affected by

different factors. Thus we investigated which demographic, economic and climatic factors

might predict cumulative case counts1 for each region (Bayesian GLM; see Methods)

and found these were associated with factors related to urbanization (Table 2): primarily

population sizes (PopSize, BF 29.6) and a significant inverse association with travel

times to the nearest settlement with >50,000 inhabitants (tt50K, BF 32.4). These results

confirm the common perception that, in contrast to previous EVD outbreaks, widespread

transmission within urban regions in West Africa was a major contributing factor to the

scale of the epidemic of the Makona variant.
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Table 2. Summary of generalized linear model results with case counts as the response variable.

Predictor1 Description Coefficient2 95% CI3 Inclusion4 BF5

TempSS Temperature seasonality -1.1 -1.6, -0.5 0.83 >50

tt50K
Time to travel to a population

centre of 50,000 people
-0.9 -1.4, -0.4 0.62 32.4

PopSize Population size 0.9 0.3, 1.6 0.60 29.6

Precip Precipitation 0.8 0.2, 1.3 0.18 4.4

tt100K
Time to travel to a population

centre of 0.1 million people
-0.8 -1.7, -0.1 0.16 3.8

1Predictors included in the model with Bayes factor >3
2Mean coefficient
395% highest posterior density credible interval (CI)
4Probability that the predictor was included in the model
5Bayes factor (BF)

As the epidemic in West Africa progressed there were fears that increased rainfall and

humidity might prolong environmental persistence of EBOV particles, increasing the

likelihood of transmission22. Although we found no evidence of an association between

EBOV dispersal and any aspects of local climate, we find that regions with less seasonal

variation in temperature, and more rainfall, tended to have larger EVD outbreaks (TempSS,

BF >50 and Precip, BF 4.4 respectively).

Effect of international travel restrictions on EBOV dispersal

Porous borders between Liberia, Sierra Leone and Guinea may have allowed unimpeded

EBOV spread during the 2013–2016 epidemic23–25. Our results indicate that international

borders were associated with a decreased rate of transmission events compared to national

borders (Figure 6), but that frequent international cross-border transmission events still

occurred. These events were concentrated in Guéckédou Prefecture (Guinea), Kailahun

District (Sierra Leone) and Lofa Country (Liberia) during the early phases of the epidemic

(Figure 7a), and between Forécariah Prefecture (Guinea) and Kambia District (Sierra

Leone) in the later stage (Figure 7b). These later EBOV movements significantly hindered

efforts to interrupt the final chains of transmission in late 2015, with EBOV from such

chains moving back and forth across this border10, 12, 26.

Sierra Leone announced border closures on 11 June 2014, followed by Liberia on 27

July 2014, and Guinea on 9 August 2014, but little information is available about what

these border closures actually entailed. Although we show that the relative contribution of

international spread to overall viral migration was lower after country borders were closed

(mean Nat/Int coefficient increasing from 1.15 to 2.83 between August and September 2014;

80.0% posterior support; (Figure 4b), it is difficult to ascertain whether the border closures

themselves were responsible for the apparent reduction in cross-border transmissions, as

opposed to concomitant control efforts or public information campaigns. However, even if

border closures reduced international traffic, particularly over longer distances and between

larger population centres, by the time Sierra Leone and Liberia closed their borders the

10
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Figure 6. The effect of borders on EBOV migration rates between regions. Posterior densities of the migration rates between

locations that share a geographical border (left) and those that do not (right) for international migrations and national migrations.

Where two regions share a border, national migrations are only marginally more frequent than international migrations showing that

both types of borders are porous to short local movement. Where the two regions are not adjacent, international migrations are much

rarer than national migrations.

epidemic had become firmly established in both countries (Figure 4).
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Figure 7. Summarized epidemic international migration history. All viral movement events between countries (Guinea, green;

Sierra Leone, blue; Liberia, red) are shown split by whether they are between a) geographically distant regions or b) regions that share

the international border. Curved lines indicate median (intermediate colour intensity), and 95% highest posterior density intervals

(lightest and darkest colour intensities) for the number of migrations that are inferred to have taken place between countries.

Why did the epidemic not spread further?

A few EBOV exportations were documented from Guinea by road transport into Mali

and Senegal27, 28 and by air from Liberia to Nigeria and USA29, 30. However, apart from

these limited exceptions, the West African Ebola virus epidemic did not spread into the

neighbouring regions of Côte d’Ivoire, Guinea-Bissau, Mali, and Senegal. By extending

our GLM (the supported predictors and their estimated coefficients) to include these

regions we were able to address whether they were spared EVD cases through good

fortune, or because they were associated with an inherently lower risk of EBOV spread

11



and transmission. We estimated the degree to which these, apparently EVD-free, regions

had the potential to be exposed to viral introductions from affected regions (see Methods).
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Figure 8. Predicted destinations and consequences of viral dispersal. a) Predicted number of EBOV imports into each of 63

regions in Guinea, Sierra Leone and Liberia (including 7 without recorded cases in Guinea) and the surrounding 18 regions of the

neighbouring countries of Guinea-Bissau, Senegal, Mali and Côte d’Ivoire. The expected number of EBOV exports from locations

in the phylogeographic tree and imports to any location were calculated based on the phylogeographic GLM model estimates and

associated predictors that were extended to apparently EVD-free locations (see Methods). b) Predicted EVD cluster sizes from the

generalized linear model fitted to case data.

Overall, the contiguous regions in unaffected neighbouring countries were all predicted to

have low numbers of EBOV introductions (Figures 8a and 9a) based on the phylogeographic

history of the sampled cases. They were not, however, predicted to have particularly low

levels of transmission if an outbreak had been seeded (Figurse 8b and 9b). Thus, it is

likely that some of these regions were at risk of becoming part of the EVD epidemic,

but that their geographical distance from areas of active transmission and the attenuating

effect of international borders prevented this from occurring. The Kati Cercle in Mali

and Tonkpi Region in Côte d’Ivoire are to some extent exceptions to this general result,

being more susceptible to EBOV introductions under the gravity model because of their

large populations (1 million and 950,000, respectively), (Figure 8a) and predicted to have

experienced many cases had EVD become established (Figure 8b).

Metapopulation structure and dynamics of the EVD epidemic

After the initial establishment of transmission in Sierra Leone and Liberia, Guinea experi-

enced repeated reintroductions of viral lineages from disparate transmission chains from

both countries (Figure 4). Our analysis reveals that there were at least 21 (95% CI: 16 -

25) re-introductions into Guinea from April 2014 to February 2015. An early epidemic

lineage was established around the Guinean capital, Conakry, and persisted for the duration

of the epidemic (GN-1 in Figures 2 & 4). However, the continual ‘seeding’ of EBOV

into Guinea without a clear peak in transmission suggests that elsewhere the virus may

have been failing to maintain transmission. There were also numerous introductions into

Sierra Leone over a similar time period (median: 9, 95% CI: 6 - 12) but the resulting

12
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Figure 9. Comparison of predicted and observed numbers of introductions (a) and case numbers (b). Scatter plots on the left

of both panels show inferred introduction numbers (a) or observed case numbers (b), coloured by region as in Figure 4. Adminis-

trative regions not reporting any cases are indicated with empty circles on the scatter plot. Administrative regions in the map on the

right side of both panels are coloured by the residuals (as observed/predicted) of the scatter plot. Regions are coloured grey where

0.5<observed/predicted<2.0 and transition into red or blue colours for overestimation or underestimation, respectively.

transmission chains constituted a tiny proportion of the country’s EVD cases, with the bulk

of transmission resulting from one early introduction (Figure 4a).
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Figure 10. Region specific introduc-

tions, cluster sizes and persistence.

Each row summarises independent intro-

ductions and the sizes (as numbers of se-

quences) of resulting outbreak clusters.

Clusters are coloured by their inferred

region of origin (colours same as Fig-

ure 4). The horizontal lines represent the

persistence of each cluster from the time

of introduction to the last sampled case

(individual tips have persistence 0). The

areas of the circles in the middle of the

lines are proportional to the number of

sequenced cases in the cluster. The ar-

eas of the circles next to the labels on

the left represent the population sizes

of each administrative region. Vertical

lines within each cell indicate the dates

of declared border closures by each of

the three countries: 11 June 2014 in

Sierra Leone (blue), 27 July 2014 in

Liberia (red), and 09 August 2014 in

Guinea (green).
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In all three countries, repeated seeding of administrative regions seems to have been a

large factor in the longevity of the EVD epidemic (Figure 10). As such, regional case

numbers were generally the result of multiple overlapping introduction events followed by

within-region spread and occasional onward transmission to other regions. This suggests

a metapopulation model in which the epidemic’s persistence was driven by introduction

into novel contact networks rather than by mass-action susceptible-infectious-removed

(SIR) dynamics31, 32. We found that, on average, EBOV migrates between administrative

regions at a rate of 0.85 events per lineage per year (95% CI: 0.72, 0.97). Assuming a

serial interval of 15.3 days33, this rate translates to a 3.6% chance (95% CI: 3.0%, 4.1%)

that over the course of a single infection, the transmission chain moved between regions.

Given the key role that virus dispersal played in sustaining the epidemic, the detection and

isolation of these relatively low proportion of mobile cases may have a disproportionate

effect on the control of an EVD epidemic.
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Figure 11. The metapopulation structure of the epidemic. a) Kernel density estimate (KDE) of distance for all inferred EBOV

dispersals events: 50% occur over distances <72 km and <5% occur over distances >232 km. b) KDE of the number of independent

EBOV introductions into each administrative region: 50% have fewer than 4.8 and <5% greater than 21.3. c) KDE of the mean size

of sampled cases resulting from each introduction with at least 2 sampled cases: 50% < 5.3, 95% <32. d) KDE of the persistence of

clusters in days (from time of introduction to time of the last sampled case): 50% < 36 days, 95% < 181 days.
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From our spatial phylogenetic model we conclude that many regions experienced numerous

independent EBOV introductions (Figure 11b). However, these introductions gave rise

to clusters of cases that were generally small (a mean cluster size of 4.3 and only 5%

larger than 17 in our sample; Figure 11c) and of limited duration (a mean persistence

time of 41.3 days with only 5% greater than 181 days; Figure 11d). Here, we define a

‘cluster’ as a group of sequenced cases in a region that derive from a single introduction

event and define ‘persistence’ as the time between the introduction event and the last

sampled case in the cluster. These definitions are conservative regarding sampling intensity

as we expect additional samples would have split clusters apart rather than join them.

Furthermore, introductions that were not detected will be disproportionately smaller, and

so the cluster size estimate will be biased upwards. Segregating these observations by

country (Figure 12a) shows that districts of Sierra Leone had more introductions and

Guinea generally had smaller clusters but persistence was similar between the three

countries. Considering only introductions that occurred before October 2014 to those that

occurred after, the number of introductions per location was comparable whereas those

that occurred early generally resulted in larger and more persistent clusters (Figure 12b).

Thus, with 5.8% sampling, we arrive at a conservative estimate of approximately 75

regional cases per introduction event. Although larger population centres, in particular

capital cities, generally experienced more introductions (Figure 13a), the cluster sizes are

less strongly associated with population size (Figure 13b), further highlighting the role of

virus movement into urban areas as major factor for the high case loads in large population

centres. Frequent cluster extinction, despite a small fraction of individuals being infected,

suggests that individual outbreaks were constrained by the degree of connectedness among

contact networks. Thus, it appears that the West African EVD epidemic was sustained by

frequent seeding that resulted in numerous small local clusters of cases, some of which

went on to seed further local clusters.

Viral genomics as a tool for outbreak response

The 2013–2016 EVD epidemic in West Africa has unfortunately become a costly lesson

in addressing an infectious disease outbreak in the absence of preparedness of both the

exposed population and the international community. Our work demonstrates the value of

pathogen genome sequencing in a public healthcare emergency and the value of timely

pre-publication data sharing to identify the origins of imported disease case clusters, to

track pathogen transmission as the epidemic progresses, and to follow up on individual

cases as the epidemic subsides.

It is inevitable that as sequencing costs decrease, accuracy increases, and sequencing

instruments become more portable, real-time viral surveillance and molecular epidemiology

will be routinely deployed on the front lines of infectious disease outbreaks10, 12, 14, 34–36.

Although we have shown here that the broad pattern of EBOV spatial movement was

discernible from virus genomes derived from samples collected only up until October

2014, there was a notable hiatus in sequencing at this time35 and the genomes in the
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Figure 12. Kernel density estimates for inferred epidemiological statistics (from top to bottom): distance travelled (distance between

population centroids, in kilometres), number of introductions that each location experienced, cluster size (number of sequences col-

lected in a location as a result of a single introduction), cluster persistence (days from the common ancestor of a cluster to its last

descendent, single tips have persistence of 0). Left hand side tracks these statistics for Sierra Leone (blue), Liberia (red) and Guinea

(green), whilst the right hand side compares the statistics for before October 2014 (grey) and after (orange). Points with vertical lines

connected to the x axis indicate the 50% and 95% quantiles of the parameter density estimates. Within Sierra Leone, Liberia and

Guinea, 50% of all migrations occurred over distances of around 100km and persisted for around 25 days. Exceptions were Sierra

Leone which experienced more introductions per location (around 12) than Guinea and Liberia (around 4) and Guinea, where migra-

tions tended to occur over larger distances due to the size of the country and whose cluster sizes following introductions tended to be

lower (3 sequences versus Liberia and Sierra Leone with 5 sequences each). Between the first (grey) and second (orange) years of the

epidemic there were considerable reductions in cluster persistence, cluster sizes and distances travelled by viruses, whilst dispersal

intensity remained largely the same.

present data set from that time were sequenced retrospectively from archived material.

The West African EVD epidemic has demonstrated that a steady sequencing pace34–36,

local sequencing capacity10, 12, 14 and rapid dissemination of data7 are key ingredients in

generating actionable sequence data from an infectious disease outbreak. However, as

viral genome sequencing is scaled up and approaches the time-scale of viral evolution, the

analysis techniques will increasingly represent the bottleneck for timely communication of

information for outbreak response.

The analysis of the comprehensive EBOV genome set collected during the 2013–2016 EVD

epidemic, including the findings presented here and in other studies7, 9, 11–15, 37, 38 provides a

framework for predicting the behaviour of future disease outbreaks caused by EBOV, other
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Figure 13. Relationship of cluster size, introductions and persistence to population size. a) The mean number of introductions

into each location against (log) population sizes. The Western Area (in Sierra Leone) received the most introductions, whilst Conakry

(in Guinea) and Montserrado (in Liberia) were closer to the average. The association between population sizes and number of intro-

ductions was not very strong (R2 = 0.28, pearson correlation = 0.54, Spearman correlation = 0.57). b) The mean cluster size for each

location plotted against (log) population sizes. The association here is weaker (R2 = 0.11, pearson correlation = 0.35, Spearman

correlation = 0.57). c) The mean persistence times (per cluster, in days) against population sizes. A similarly weak association is

observed (R2 = 0.12, pearson correlation = 0.37, Spearman correlation = 0.36). All computations based on a sample of 10,000 trees

from the posterior distribution.

filoviruses, and perhaps other human pathogens. However, many open questions remain

about the biology of EBOV. As sustained human-to-human transmission waned, West

Africa experienced several instances of recrudescent transmission, often in regions that

had not seen cases for many months as a result of persistent sub-clinical infections17, 18, 39.

Although, in hindsight, such sequelae were not entirely unexpected40, the magnitude of the

2013–2016 epidemic has put the region at ongoing risk of sporadic EVD re-emergence.

Similarly, the nature of the reservoir of EBOV, and its geographic distribution, remain as

fundamental gaps in our knowledge. Resolving these questions is critical to predicting the

risk of zoonotic transmission and hence of future EVD outbreaks.

Methods

Sequence data. We compiled a data set of 1,610 publicly available full Ebola virus

(EBOV) genomes sampled between 17 March 2014 and 24 October 2015 (see https:

//github/ebov/space-time/data/ for full list and metadata). The number of

sequences and the proportion of cases sequenced varies with country; our data set contains

209 sequences from Liberia (3.8% of known and suspected cases), 982 from Sierra Leone

(8.0%) and 368 from Guinea (9.2%) (Supplementary Table 1). Most (N=1,100) genomes

are of high quality, with ambiguous sites and gaps comprising less than 1% of total

alignment length, followed by sequences with between 1% and 2% of sites comprised of

ambiguous bases or gaps (N=266), 98 sequences with 2-5%, 120 sequences with 5-10%

and 26 sequences with more than 10% of sites that are ambiguous or are gaps. Sequences

known to be associated with sexual transmission or latent infections were excluded, as

these viruses often exhibit anomalous molecular clock signals17, 18. Sequences were aligned

using MAFFT41 and edited manually. The alignment was partitioned into coding regions
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and non-coding intergenic regions with a final alignment length of 18,992 nucleotides

(available from https://github/ebov/space-time/data/).

Masking putative ADAR edited sites. As noticed by Tong et al.38, Park et al.13 and

other studies, some EBOV isolates contain clusters of T-to-C mutations within relatively

short stretches of the genome. Interferon-inducible adenosine deaminases acting on RNA

(ADAR) are known to induce adenosine to inosine hypermutations in double-stranded

RNA42. ADARs have been suggested to act on RNAs from numerous groups of viruses43.

When negative sense single stranded RNA virus genomes are edited by ADARs, A-to-

G hypermutations seem to preferentially occur on the negative strand, which results in

U/T-to-C mutations on the positive strand44–46. Multiple T-to-C mutations are introduced

simultaneously via ADAR-mediated RNA editing which would interfere with molecular

clock estimates and, by extension, the tree topology. We thus designate four or more

T-to-C mutations within 300 nucleotides of each other as a putative hypermutation tract,

whenever there is evidence that all T-to-C mutations within such stretches were introduced

at the same time, i.e. every T-to-C mutation in a stretch occurred on a single branch. We

detect a total of 15 hypermutation patterns with up to 13 T-to-C mutations within 35 to

145 nucleotides. Of these patterns, 11 are unique to a single genome and 4 are shared

across multiple isolates, suggesting that occasionally viruses survive hypermutation are

transmitted47. Putative tracts of T-to-C hypermutation almost exclusively occur within

non-coding intergenic regions, where their effects on viral fitness are presumably minimal.

In each case we mask out these sites as ambiguous nucleotides but leave the first T-to-

C mutation unmasked to provide phylogenetic information on the relatedness of these

sequences.

Phylogenetic inference. Molecular evolution was modelled according to a HKY+Γ4
48, 49

substitution model independently across four partitions (codon positions 1, 2, 3 and

non-coding intergenic regions). Site-specific rates were scaled by relative rates in the

four partitions. Evolutionary rates were allowed to vary across the tree according to a

relaxed molecular clock that draws branch-specific rates from a log-normal distribution50.

A non-parametric coalescent ‘Skygrid’ model was used to act as a prior density across

trees51. The overall evolutionary rate was given an uninformative continuous-time Markov

chain (CTMC) reference prior52, while the rate multipliers for each partition were given

an uninformative uniform prior over their bounds. All other priors used to infer the

phylogenetic tree were left at their default values. BEAST XML files are available from

https://github/ebov/space-time/data/. We ran an additional analysis with

a subset of data (787 sequences collected up to November 2014 — the peak of case

numbers in Sierra Leone) to test the robustness of inference if they had been performed

mid-epidemic.

Geographic history reconstruction. The level of administrative regions within each

country was chosen so that population sizes between regions are comparable. For each

country the appropriate administrative regions were: prefecture for Guinea (administrative
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subdivision level 2), county for Liberia (level 1) and district for Sierra Leone (level 2). We

refer to them as regions (63 in total but only 56 are recorded to have had EVD cases) and

each sequence, where available, was assigned the region where the patient was recorded

to have been infected as a discrete trait. When the region within a country was unknown

(N=223), we inferred the sequence location as a latent variable with equal prior probability

over all available regions within that country. Most of the sequences with unknown regional

origins were from Sierra Leone (N=151), followed by Liberia (N=69) and Guinea (N=3).

In the absence of any geographic information (N=2) we inferred both the country and the

region of a sequence.

We deploy an asymmetric continuous-time Markov chain (CTMC)53, 54 matrix to infer

instantaneous transitions between regions. For 56 regions with recorded EVD cases, a total

of 3080 independent transition rates would be challenging to infer from one realisation

of the process, even when reduced to a sparse migration matrix using stochastic search

variable selection (SSVS)53.

Thus, to infer the spatial phylogenetic diffusion history between the K = 56 locations, we

adopt a sparse generalized linear model (GLM) formulation of continuous-time Markov

chain (CTMC) diffusion16. This model parameterizes the instantaneous movement rate

Λij from location i to location j as a log-linear function of P potential predictors Xij =

(xij1, . . . , xijP )
′

with unknown coefficients β = (β1, . . . , βP )
′

and diagonal matrix δ with

entries (δ1, . . . , δP ). These latter unknown indicators δp ∈ {0, 1} determine predictor p’s

inclusion in or exclusion from the model. We generalize this formulation here to include

two-way random effects that allow for location origin- and destination-specific variability.

Our two-way random effects GLM becomes

log Λij = X
′

ijδβ + ǫi + ǫj,

ǫk ∼ Normal(0, σ2) for k = 1, . . . , K, and

σ2 ∼ Inverse-Gamma(0.001, 0.001),

(1)

where ǫ = (ǫ1, . . . , ǫK) are the location-specific effects. These random effects account

for unexplained variability in the diffusion process that may otherwise lead to spurious

inclusion of predictors.

We follow16 in specifying that a priori all βp are independent and normally distributed

with mean 0 and a relatively large variance of 4 and in assigning independent Bernoulli

prior probability distributions on δp.

Let q be the inclusion probability and w be the probability of no predictors being included.

Then, using the distribution function of a binomial random variable q = 1− w1/P , where

P is the number of predictors, as before. We use a small success probability on each

predictor’s inclusion that reflects a 50% prior probability (w) on no predictors being

included.
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In our main analysis, we consider 25 individual predictors that can be classified as geo-

graphic, administrative, demographic, cultural and climatic covariates of spatial spread

(Table 3). Where measures are region-specific (rather than pairwise region measures),

we specify both an origin and destination predictor. We also tested for sampling bias

by including an additional origin and destination predictor based on the residuals for the

regression of sample size against case count (cfr. Figure 1b), but these predictors did not

receive any support (data not shown).

Table 3. Predictors included in the time-homogenous GLM.

Predictor type Abbreviation Predictor description

Geographic Distances Great circle distances between the

locations’ population centroids, log-

transformed, standardized

Administrative Nat/Int The relative preference of transition-

ing between locations in the same

country over transitioning between

locations in two different countries

Administrative IntBoSh The relative preference of transition-

ing between location pairs that are in

different countries and share a border

Administrative NatBoSh The relative preference of transition-

ing between location pairs that are in

the same country and share a border

Administrative LibGinAsym Between Liberia-Guinea asymmetry

Administrative LibSLeAsym Between Liberia-Sierra Leone asym-

metry

Administrative GinSLeAsym Between Guinea-Sierra Leone asym-

metry

Demographic OrPop Origin population size, log-

transformed, standardized

Demographic DestPop Destination population size, log-

transformed, standardized

Demographic OrPopDens Origin population density, log-

transformed, standardized

Demographic DestPopDens Destination population density, log-

transformed, standardized

Demographic orTT100k Estimated mean travel time in min-

utes to reach the nearest major set-

tlement of at least 100,000 people at

origin, log-transformed, standardized
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Demographic destinationTT100k estimated mean travel time in min-

utes to reach the nearest major set-

tlement of at least 100,000 people

at destination, log-transformed, stan-

dardized

Demographic OrGrEcon Origin Gridded economic output, log-

transformed, standardized

Demographic DestGrEcon Destination Gridded economic out-

put, log-transformed, standardized

Cultural IntLangShared The relative preference of transition-

ing between location pairs that are in

different countries and share at least

one of 17 vernacular languages

Cultural NatLangShared The relative preference of transition-

ing between location pairs that are in

the same country and share at least

one of 17 vernacular languages

Climatic OrTemp Temperature annual mean at origin,

log-transformed, standardized

Climatic DestTemp Temperature annual mean at destina-

tion, log-transformed, standardized

Climatic OrTempSS Index of temperature seasonality at

origin, log-transformed, standardized

Climatic DestTempSS Index of temperature seasonality at

destination, log-transformed, stan-

dardized

Climatic OrPrecip Precipitation annual mean at origin,

log-transformed, standardized

Climatic DestPrecip Precipitation annual mean at destina-

tion, log-transformed, standardized

Climatic OrPrecipSS Index of precipitation seasonality at

origin, log-transformed, standardized

Climatic DestPrecipSS Index of precipitation seasonality at

destination, log-transformed, stan-

dardized

To draw posterior inference, we follow16 in integrating β and δ, and further employ

a random-walk Metropolis transition kernel on ǫ and sample σ2 directly from its full

conditional distribution using Gibbs sampling.

To obtain a joint posterior estimate from this joint genetic and phylogeographic model, an
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MCMC chain was run in BEAST 1.8.455 for 100 million states, sampling every 10 000

states. The first 1000 samples in each chain were removed as burnin, and the remaining 9

000 samples used to estimate a maximum clade credibility tree and to estimate posterior

densities for individual parameters. A second independent run of 100 million states was

performed to check convergence of the first.

To consider the feasibility of ‘real-time’ inference from virus genome data from the height

of the EVD epidemic we took only those sequences derived from samples taken up until

the end of October 2014 (N = 787). We undertook the same joint phylogenetic and spatial

GLM analysis as for the full data set including the same set of 25 predictors. We ran this

analysis for 200 million states, sampling every 20,000 states and removing the first 10% of

samples.

To obtain realisations of the phylogenetic CTMC process, including both transitions

(Markov jumps) between states and waiting times (Markov rewards) within states, we

employ posterior inference of the complete Markov jump history through time16, 56. In

addition to transitions ‘within’ the phylogeny, we also estimate the expected number of

transitions ‘from’ origin location i in the phylogeographic tree to arbitrary ‘destination’

location j as follows:

ζij = τiµΛijπi/c (2)

where τi is the waiting time (or Markov reward) in ‘origin’ state i throughout the phylogeny,

µ is the overall rate scalar of the location transition process, πi is the equilibrium frequency

of ‘origin’ state i, and c is the normalising constant applied to the CTMC rate matrices in

BEAST. To obtain the expected number of transitions to a particular destination location

from any phylogeographic location (integrating over all possible locations across the

phylogeny), we sum over all 56 origin locations included in the analysis. We note that the

destination location can also be a location that was not included in the analysis because we

only need to consider destination j in the instantaneous movement rates Λij; since the log

of these rates are parameterized as a log linear function of the predictors, we can obtain

these rates through the coefficient estimates from the analysis and the predictors extended

to include these additional locations. Specifically, we use this to predict introductions

in regions in Guinea, for which no cases were reported (n = 7) and for regions in

neighbouring countries along the borders with Guinea or Liberia that remained disease free

(n = 18). To obtain such estimates under different predictors or predictor combinations, we

perform a specific analysis under the GLM model including only the relevant predictors or

predictor combinations without the two-way random effects. For computational expedience,

we performed these analyses, as well as the time-inhomogeneous analyses below, by

conditioning on a set of 1,000 trees from the posterior distribution of the main phylogenetic

analysis16. We summarize mean posterior estimates for the transition expectations based

on the samples obtained by our MCMC analysis; we note that also the value of c is

sample-specific.
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Time-dependent spatial diffusion. To consider time-inhomogeneity in the spatial dif-

fusion process, we start by borrowing epoch modelling concepts from Bielejec et al.

(2014)57. The epoch GLM parameterizes the instantaneous movement rate Λijt from

state i to state j within epoch t as a log-linear function of P epoch-specific predictors

Xijt = (xijt1, . . . , xijtP )
′

with constant-through-time, unknown coefficients β. We gen-

eralize this model to incorporate time-varying contribution of the predictors through

time-varying coefficients β(t) using a series of change-point processes. Specifically, the

time-varying epoch GLM models

log Λijt = X
′

ijtβ(t)

β(t) = [I− φ(t)]β
B
+ [φ(t)]β

A
,

(3)

where β
B
= (βB1, . . . , βBP )

′

are the unknown coefficients before the change-points, β
A
=

(βA1, . . . , βAP )
′

are the unknown coefficients after the change-points, diagonal matrix φ(t)
has entries (1t>t1(t), . . . , 1t>tP (t)), 1(·)(t) is the indicator function and T = (t1, . . . , tP )
are the unknown change-point times. In this general form, the contribution of predictor

p before its change-point time tp is βBp and its contribution after is βAp for p = 1, . . . , P .

Fixing tp to be less than the time of the first epoch or greater than the time of the last epoch

results in a time-invariant coefficient for that predictor.

Similar to the constant-through-time GLM, we specify that a priori all βBp and βAp are

independent and normally distributed with mean 0 and a relatively large variance of 4.

Under the prior, each tp is equally likely to lie before any epoch.

We employ random-walk Metropolis transition kernels on β
B
, β

A
and T .

In a first epoch GLM analysis, we keep the five predictors that are convincingly supported

by the time-homogeneous analysis included in the model and estimate an independent

change-point tp for their associated effect sizes: distance (tdis), within country effect (twco),

shared international border (tsib) and origin and destination population size (tpopo and tpopd)

change-points. To quantify the evidence in favour of each change-point, we calculate

Bayes factor support based on the prior and posterior odds that tp is less than the time of

the first epoch or greater than the time of the last epoch. Because we find only very strong

support for a change-point in the within country effect, we subsequently estimate the effect

sizes before and after twco, keeping the remaining four predictors homogeneous through

time.

Within-location generalized linear models. Ebola virus disease (EVD) case numbers are

reported by the WHO for every country division (region) at the appropriate administrative

level, split by epidemiological week. For every region and for each epidemiological week

four numbers are reported: new cases in the patient and situation report databases as

well as whether the new cases are confirmed or probable. At the height of the epidemic

many cases went unconfirmed, even though they were likely to have been genuine EVD.

As such, we treat probable EVD cases in WHO reports as confirmed and combine them
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with lab-confirmed EVD case numbers. Following this we take the higher combined

case number of situation report and patient databases. The latest situation report in our

data goes up to the epidemiological week spanning 8 to 14 February 2016, with all

case numbers being downloaded on 22 February 2016. There are apparent discrepancies

between cumulative case numbers reported for each country over the entire epidemic and

case numbers reported per administrative division over time, such that our estimate for

the final size of the epidemic, based on case numbers over time reported by the WHO, is

on the order of 22 000 confirmed and suspected cases of EVD compared to the official

estimate of around 28 000 cases across the entire epidemic . This likely arose because

case numbers are easier to track at the country level, but become more difficult to narrow

down to administrative subdivision level, especially over time (only 86% of the genome

sequence have known location of infection).

We studied the association between disease case counts using generalized linear models

in a very similar fashion to the framework presented above. A list of the location-level

predictors we used for these analyses can be found in Table 3. We also employed SSVS as

described above, in order to compute Bayes factors (BF) for each predictor. In keeping

with the genetic GLM analyses, we also set the prior inclusion probabilities such that there

was a 50% probability of no predictors being included.

Yi ∼ NegBin(pi, r)

pi =
r

(r + λi)

log(λi) = α + β1δ1xi1 + . . .+ βP δPxiP

where r is the over-dispersion parameter, δi are the indicators as before. Prior distributions

on model parameters for these analyses were the same as those used for the genetic analyses

whenever possible. We then employed this model to predict how many cases the locations

which reported zero EVD cases would have gathered, that is, the potential size of the

epidemic in each location.

Computational details. To fit the models described above we took advantage of the rou-

tines already built in BEAST (https://github.com/beast-dev/beast-mcmc)

but in a non-phylogenetic setting. Once again, posterior distributions for the parameters

were explored using Markov chain Monte Carlo (MCMC). We ran each chain for 50 million

iterations and discarded at least 10% of the samples as burn-in. Convergence was checked

by visual inspection of the chains and checking that all parameters had effective sample

sizes (ESS) greater than 200. We ran multiple chains to ensure results were consistent. To

make predictions, we used 50,000 Monte Carlo samples from the posterior distribution of

coefficients and the overdispersion parameter (r) to simulate case counts for all locations

with zero recorded EVD cases.
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Data availability. All collated data, genetic sequence alignments, phylogenetic trees,

analysis scripts, and analysis output are available at https://github.com/ebov/

space-time) and http://dx.doi.org/10.7488/ds/1711. Individual virus

genetic sequences are published in earlier works and are available from NCBI Genbank.
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