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INTRODUCTION

Large marine aggregates, known as ‘marine snow’,
are ubiquitous components of aquatic ecosystems
(Simon et al. 2002). Mucilage aggregates are consid-
ered to be an exacerbated and evolving stage of the
marine snow (Herndl & Peduzzi 1988, Giani et al. 1992,
Herndl et al. 1992, Fogg 1995). The frequency of
appearance of massive mucilaginous aggregates is
increasing in the oceans worldwide, particularly in the

Mediterranean Sea (Gotsis-Skretas 1995, Innamorati
1995), sectors of the Pacific Ocean (Steinberg et al.
1997) and the North Sea (Riebesell 1992), and, in
recent years, along US coasts (such as in California;
Alldredge et al. 2002).

There is a converging opinion that the synergic
effects of biological and physico-chemical factors
might contribute as causative agents to the formation
and persistence of marine mucilage. However, it has
been hypothesized that different causes are directly
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responsible for the development of this phenomenon.
Among these, recent studies have identified (1) altered
inorganic nutrient supply and stoichiometric N:P ratios
with consequent physiological stress of microalgae
(Degobbis et al. 1999), (2) enhanced production of
algal exudates associated to changes in grazing pres-
sure (Pajdak-Stós et al. 2001), (3) malfunctioning of the
microbial loop (Herndl et al. 1992, Danovaro et al.
2005) and (4) viral infection of bacterioplankton fol-
lowed by cell lysis and release of DOM (Azam 1997).

The hypothesis based on the malfunctioning of the
microbial loop suggests the presence of an uncoupling
between organic matter degradation and its utilization.
This could lead to the massive accumulation of poly-
saccharides and dissolved compounds in the water
column and, then, to their coalescence (a prerequisite
for mucilage formation; Azam et al. 1999).

The hypothesis based on viral shunt is not necessar-
ily alternative to the former, as the cell lysis due to viral
infection contributes to the release of intracellular dis-
solved organic compounds in the surrounding waters
(Peduzzi & Weinbauer 1993, Weinbauer & Peduzzi
1995, Weinbauer et al. 1995, Baldi et al. 1997, Shibata
et al. 1997). At the same time, it has also been hypoth-
esized that viral infection, by releasing bioavailable
DOM, could contribute to sustaining prokaryote
growth, and consequently to accelerating mucilage
degradation (Bratbak et al. 1990).

Stachowitsch et al. (1990) and Precali et al. (2005)
identified and described different types of mucilage
aggregate: macroflocs, stringers, cobwebs, ribbons,
clouds, big creamy surface layers, gelatinous surface
layers and false bottoms. These authors also related
differences in shape, size (from a few millimeters to
several meters), position and persistence in the water
column, and effects on the benthos to different stages
of the mucilage life span. Moreover, there is evidence
that different marine aggregates display differences in
their biochemical composition and microbial abun-
dance and activities (Azam & Long 2001, Kiørboe 2001,
Del Negro et al. 2005).

In the present study, we tested the hypothesis that
the different types of mucilage aggregates are charac-
terized by significant differences in their biochemical
composition and degradation rates as a result of
changes in the virus–prokaryote relationships, and
that such changes are related to the changes occurring
in the mucilage during its life span. We addressed 4
main questions: Are there differences in degradation
rates in different types of aggregates? And, if so, are
these differences related to their different biochemical
composition? Do the virus–prokaryote interactions
change in different types of aggregates? How do
viruses and prokaryote activities influence the dynam-
ics of mucilage aggregates?

MATERIALS AND METHODS

Study site, sampling and sample processing. Mu-
cilage aggregates were collected during summer 2000,
2002 and 2003 at 9 different stations in the Adriatic Sea
(Table 1). Aggregates were spotted by an underwater
video camera mounted on a remotely operated vehicle.
For each mucilage type, sub-samples from 3 separate
aggregates were collected by SCUBA divers using 50 to
1500 ml sterile polyester syringes at depths ranging from
0 to 20 m. Ambient seawater samples were synoptically
collected using 10 l Niskin bottles deployed at the same
depth at which aggregates were sampled.

Mucilage aggregates were visually classified
according to their morphology (Stachowitsch et al.
1990, Precali et al. 2005) into 8 different stages:
macroflocs, stringers, stringers/cobwebs, cobwebs, rib-
bons, clouds, creamy surface layer and false bottom
(Table 1). In addition, we also analyzed ‘false bottom
aggregates’ from sediments characterized by anoxic
conditions (‘anoxic false bottom’). Once on board,
mucilage samples were centrifuged at 3000 rpm
(1200 × g for 15 min at in situ temperature).

For the biochemical analyses, aliquots of the pellets
were immediately frozen at –20°C. For prokaryote and
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Type of aggregate Latitude (N) Longitude (E) Size (m) and shape

Macroflocs 44° 40’ 12° 94’ 0.01–0.05 m, subspherical
Stringers 43° 90’ 13° 44’ 0.01–0.25 m, elongated, comet-shaped
Stringers/cobwebs 44° 33’ 14° 08’ Elongated, web-like aggregates
Cobwebs 44° 72’ 13° 80’ 10s of meters, web-like aggregates
Ribbons 43° 90’ 13° 44’ 0.1–1 m, elongated
Clouds 43° 80’ 13° 28’ 0.5–4 m, elongated, subspherical
False bottom 44° 43’ 13° 04’ Dense layer of stringers and macroflocs at pycnocline
Anoxic false bottom 43° 34’ 13° 34’ Anoxic dense layer at pycnocline
Creamy surface layer 43° 80’ 13° 28’ Stringers formed, creamy layer floating at or below surface

Table 1. Location of the sampling stations and main characteristics of mucilaginous aggregates (sizes and shapes according 
to Stachowitsch et al. 1990 and Precali et al. 2005) collected in the Adriatic Sea
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viral counts, additional aliquots of the pellet were
diluted (1:10) with 0.02 µm filtered (virus-free) ambient
seawater, incubated with pyrophosphate (0.01 M) for
15 min (Epstein & Rossel 1995) and sonicated 3 times
(Branson Sonifier 2200; 60 W for 1 min). After addi-
tional dilution (up to 500 times) with virus-free sea-
water, sub-samples were filtered onto a 0.02 µm pore-
size filter (Anodisc; diameter, 25 mm; Al2O3), stained
with 20 µl of SYBR Green I (15 min) and stored at
–20°C until analysis (within 2 wk). Ambient seawater
subsamples (100 µl) were filtered and processed as
described above.

For the analysis of extracellular enzymatic activities
and prokaryote C production, aliquots of ambient sea-
water and of the pellets (previously diluted up to 400
times with 0.02 µm pre-filtered seawater) were imme-
diately processed on board as described below.

Biochemical composition of aggregates. Photosyn-
thetic pigments (chlorophyll a [chl a] and phaeopig-
ments) were analyzed fluorometrically according to
Lorenzen & Jeffrey (1980) after extraction of 1.0 ml pel-
let of each aggregate with 90% acetone (24 h in the
dark at 4°C). Chloroplastic pigment equivalents were
defined as the sum of chl a and phaeopigments (Fabi-
ano & Pusceddu 1998).

Total protein concentration of mucilage was deter-
mined according to Hartree (1972), modified by Rice
(1982) and expressed as bovine serum albumin equiv-
alents. Total carbohydrates were analyzed according
to Dubois et al. (1956), Gerchacov & Hatcher (1972)
and expressed as glucose equivalents. Total lipids
were extracted from the mucilage by direct elution
with chloroform-methanol (1:1 v/v) according to Bligh
& Dyer (1959), then determined according to Marsh &
Weinstein (1966) and expressed as tripalmitine equiv-
alents.

For each biochemical assay, blanks were obtained us-
ing pre-combusted mucilage samples (450°C for 4 h) and
concentrations were normalized to mucilage volume.

Carbohydrate, protein, and lipid concentrations
were converted into carbon equivalents using the con-
version factors 0.40, 0.49, and 0.75 mg C mg–1, respec-
tively, obtained from the elemental analysis of the
standard utilized (Fichez 1991). The sum of protein,
carbohydrate and lipid carbon equivalents were
reported as biopolymeric organic carbon (Pusceddu et
al. 2003).

Viral and prokaryote abundance. Prokaryote and
viral counts were carried out as described by Noble &
Fuhrman (1998), using epifluorescence microscopy
(Zeiss Axioplan; magnification, ×1000) and examining
10 to 20 microscope fields and at least 400 prokaryote
cells and virus-like particles for each filter.

Prokaryote biovolume (as maximal length and
width) was estimated using a micrometer ocular

assigning prokaryote cells to different size classes
(Palumbo et al. 1984), and was converted into carbon
content assuming 310 fg C µm–3 (Fry 1988).

Extracellular enzymatic activities. Extracellular
enzymatic activities (aminopeptidase, β-glucosidase
and alkaline phosphatase) in aggregates and ambient
seawater were determined by cleavage of artificial
fluorogenic substrates (L-leucine-4-methylcoumarinyl-
7-amide, Leu-MCA; 4-methylumbelliferone-β-D-glu-
copyranoside, Glu-MUF; and 4-MUF-P-phosphate,
MUF-P, respectively; SIGMA) at saturating concentra-
tions (Hoppe 1993). Saturating concentrations of artifi-
cial substrate analogs, evaluated from saturation
curves obtained separately for ambient seawater and
all types of aggregates (data not shown), were 200 µM
for Glu-MUF and Leu-MCA and 50 µM for MUF-P.
Measurements of enzymatic activities were carried out
on a final volume of 5 ml by adding artificial fluoro-
genic substrates.

Blanks for mucilage samples and ambient seawater
were obtained from previously autoclaved samples
and from 0.02 µm filtered seawater. Incubations were
performed in the dark at in situ temperature for 1 h
(enzymatic activities increased linearly with time up to
3 h). After incubation, supernatants obtained from
mucilage samples previously centrifuged (3000 rpm
[1200 × g], 5 min) and ambient seawater were analyzed
fluorometrically (at 380 nm excitation, 440 nm emission
for Leu-MCA and 365 nm excitation, 455 nm emission
for Glu-MUF and MUF-P) using a Shimadzu RS-1501
fluorometer. Fluorescence was converted into nmol of
hydrolyzed substrate using calibration curves obtained
from standard solutions of 7-amino-4-methylcoumarin
for Leu-MCA and of 4-methylumbelliferone for both
Glu-MUF and MUF-P. The amount of hydrolyzed sub-
strates was normalized to the incubation time and the
volume of pellet or ambient seawater. Activities are
hence reported as nmol of substrate released ml–1 h–1.
Aminopeptidase and β-glucosidase activities were
converted into equivalents of C mobilized assuming
that 1 nmol of substrate hydrolyzed enzymatically cor-
responds to 72 ng of mobilized C (Crost 1991).

As all incubations were made using saturating con-
centrations of fluorogenic substrates, the measured
activities represented the potential rather than the
actual rates.

Prokaryote carbon production. Prokaryotic C pro-
duction (PCP) was determined by 3H-leucine incorpo-
ration according to Smith & Azam (1992). Triplicate
sub-samples of diluted pellets and ambient seawater
(1.7 ml), and 2 blanks for each item (added with 100%
trichloroacetic acid, TCA), were incubated with 3H-
leucine (final concentration, 20 nM) at in situ tempera-
ture for 1 h in the dark. The concentration of 20 nM
was selected on the basis of saturation curves obtained
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separately for ambient seawater and all types of aggre-
gates. The same 3H-leucine concentration was utilized
previously (Del Negro et al. 2005), thus allowing a
proper comparison with literature data. After incuba-
tion, all samples were added with 100% trichloroacetic
acid (TCA; final concentration, 5%) and processed as
described by Smith & Azam (1992), before scintillation
counting. The following equation was used for calcu-
lating PCP:

PCP  =  LI × 131.2 × (% Leu) – 1 × (C/protein) × ID

where LI is the leucine incorporation rate (mol ml–1 h–1),
131.2 is the molecular weight of leucine, % Leu is the
fraction of leucine in protein (0.073), C/protein is the
ratio of cellular carbon to protein (0.86), and ID is the
isotope dilution assuming a value of 2 (Kirchman 1993).

Prokaryote efficiency in using the mobilized C
source was estimated as the ratio of prokaryote C pro-
duction to C potentially mobilized enzymatically.

For each microbiological variable, the enrichment
factor (EF) was calculated as the ratio between concen-
tration or abundance in mucilage aggregates and con-
centration or abundance in the surrounding seawater.

Statistical analyses. Differences between mucilage
aggregates in terms of biochemical composition and
microbial variables were assessed by means of 1-way
analysis of variance (ANOVA). In order to highlight
significant differences among group average, a post-
hoc Tukey’s comparison test for homogeneous groups
was performed when significant differences were
observed. Multidimensional scaling (MDS) analyses
were also performed on all biochemical variables ana-
lyzed (proteins, lipids, carbohydrates, chlorophyll and
phaeopigment concentrations) and microbial parame-
ters (viral and prokaryote abundance, prokaryote bio-
mass, carbon production, β-glucosidase, aminopepti-
dase and alkaline phosphatase activities) to ordinate
mucilage types. The significance of identified clusters
was tested using ANOSIM, whereas variables respon-
sible for clustering were determined by means of SIM-
PER. All multivariate analyses were carried out with
PRIMER 5.0.

RESULTS

Concentrations of proteins, carbohydrates, lipids,
chl a and phaeopigments, viral abundance, prokaryote
abundance, biomass and C production, and extracellu-
lar enzymatic activities are reported in Table 2. Signif-
icant differences among the aggregate types were
observed for all variables (ANOVA, p < 0.001 for all).
The outputs of the post-hoc Tukey’s comparison test for
homogeneous groups for the whole set of variables are
reported in Table 2.

Biochemical composition

In all aggregates, carbohydrates represented the
dominant biochemical fraction (on average 70% of
biopolymeric C), followed by proteins (18%) and lipids
(12%). Different biochemical compounds displayed
different patterns among aggregates.

Anoxic false bottom contained 1.5-fold higher pro-
tein concentrations than creamy surface layer, which
in turn displayed significantly higher concentrations
than ribbons, clouds, stringers and false bottom fol-
lowed by all other aggregates. Creamy surface layer
and false bottom contained ca. 2-fold higher carbohy-
drate concentrations than ribbons and clouds, which in
turn displayed significantly higher carbohydrate con-
centration than all other aggregates. Lipid concentra-
tions up to ca. 1.5- to 2-fold higher were found in
creamy surface layers and stringers than in macroflocs,
false bottom and anoxic false bottom, which showed
higher lipids then all other aggregates. Cobweb-like
mucilage showed the highest chl a and phaeopigment
concentrations. In all types of aggregate, phaeo-
pigments were much higher than chl a concentrations
(chl a:phaeopigment ratio ranging from 0.4 to 0.5).

Protein contribution to biopolymeric C ranged from 8
to 46% and was significantly highest in anoxic false
bottom aggregates than in the other aggregates
(Tukey’s test, p < 0.05). The carbohydrate fraction
(range 45 to 87% of biopolymeric C) was significantly
higher in false bottom, creamy surface layer, clouds
and ribbons than in the other aggregates (Tukey’s test,
p < 0.05). Lipid contribution to biopolymeric C ranged
from 2% in clouds to 23% in macroflocs and was sig-
nificantly higher in macroflocs and stringers than cob-
webs and stringers/cobwebs, which in turn displayed
higher values than in the other aggregates (Tukey’s
test, p < 0.05).

Prokaryote abundance, biomass and production and
viral abundance

Significantly higher prokaryote abundance and bio-
mass values were measured in clouds and false bottom
aggregates, whereas higher values of PCP were found
in ribbons (Table 2). Viral abundance was ca. 2 times
higher in clouds than in false bottom and ribbons,
which in turn hosted higher viral abundance than
anoxic false bottom (Table 2). Virus:prokaryote ratios
(VPR) ranged from 3.7 to 26.9 in macroflocs and clouds,
respectively. Clouds and ribbons displayed signifi-
cantly higher VPR than false bottom (26.9, 24.9 and
18.1, respectively). VPR in false bottom was signifi-
cantly higher (ca. 2 to 5 times) than in all other aggre-
gates (Tukey’s test, p < 0.05).

18



Bongiorni et al.: Viruses and prokaryotes in marine mucilage

Extracellular enzymatic activities

The highest β-glucosidase activ-
ity was found in false bottom
aggregates, in which values were
3.6 and 6 times higher than in
clouds and ribbons, respectively
(Table 2). The highest aminopepti-
dase and alkaline phosphatase
activities were found in clouds
(Table 2).

Comparison between aggregates
and the surrounding seawater

EFs are reported in Table 2.
Prokaryote and viral abundance in
mucilages were, on average, 2 to 4
orders of magnitude higher than in
the ambient seawater. The EFs of
prokaryote and viral abundance
significantly differed among muci-
lage types (ANOVA, p < 0.05 for all
variables). In clouds and false bot-
tom aggregates, prokaryote abun-
dance and biomass were ca. 500
times higher than those in the
ambient seawater and their EFs
were significantly higher than in
all other aggregates. Clouds hosted
viral abundances hundreds of
times higher than the ambient sea-
water. EFs of viral abundance in
clouds were significantly higher
than in false bottom, which in turn
displayed higher EF than in rib-
bons and all other aggregates. The
highest EFs of β-glucosidase activi-
ties and PCP were found in rib-
bons, clouds and false bottom. The
EFs of aminopeptidase and alka-
line phosphatase activities in rib-
bons and clouds were significantly
higher than in all other aggregates.

DISCUSSION

Formation, life span and dia-
genesis of mucilage aggregates are
supposed to be associated with
changes in several microbial pro-
cesses (e.g. substrate hydrolysis,
prokaryote uptake and biomass
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production, substrate release). For instance, Azam et
al. (1999) hypothesized that the formation of mucilage
aggregates is initiated by the accumulation of DOM
derived from the uncoupling between the intensive
microbial degradation of aggregates and their limited
utilization by heterotrophic prokaryotes. Studies on
natural and experimentally produced aggregates have
shown that prokaryote growth decreased from early
colonized to aged aggregates, suggesting that PCP
and degradation rates might depend upon the age of
the aggregates (Alldredge & Gotschalk 1990, Müller-
Niklas et al. 1994, Unanue et al. 1998, Grossart & Ploug
2000, 2001, Grossart et al. 2003). Recently, Del Negro
et al. (2005) found higher prokaryote abundance, C
production and enzymatic activities in early forming
aggregates (cobwebs and ribbons) than in aged
mucilage (clouds).

In the present study, we provide evidence that
mucilage aggregates characterized by different shapes
and putative age, based on the classification provided
by Stachowitsch et al. (1990) and Precali et al. (2005),
are characterized by evident dissimilarities in terms of
organic matter quantity and biochemical composition,
prokaryote abundance and production as well as of
organic substrates degradation rates.

The MDS ordination carried out including only the
biochemical variables of mucilage types allowed 2
major clusters to be identified (ANOSIM, p < 0.01,
Fig. 1A): (1) macroflocs, stringers, cobwebs and
stringers/cobwebs; (2) false bottom, clouds, ribbons
and creamy surface layer. This analysis also revealed
that anoxic aggregates did not group within the 2
identified clusters. The types of mucilage clustering
together for their biochemical composition represent
different stages of the mucilage life span (Stachowitsch
et al. 1990, Precali et al. 2005), with those included in
Cluster 1 being putatively younger than those in
Cluster 2. The carbohydrate and protein fractions
increased from younger (Cluster 1) to aged (Cluster 2)
aggregates, while the lipid fraction barely decreased
with the mucilage ageing (Fig. 1B).

The carbohydrate fraction of aggregates increased
in aged aggregates much faster than the protein pool,
thus generating a shift in the overall biochemical
composition, (e.g. from 65% of biopolymeric C in
macroflocs to 80% in false bottom mucilage and
creamy surface layers, Table 2). These results are
consistent with the increase in the values of C:N ratios
observed in aged aggregates by other authors
(Müller-Niklas et al. 1994, Giani et al. 2005). Only the
anoxic aggregates that likely represented an exacer-
bated stage of the aged false bottom mucilage did not
follow such a pattern, being characterized by the co-
dominance of proteins and carbohydrates (45% of
biopolymeric C each, Fig. 1B). Shifts in the biochemi-

cal composition of the different mucilage types were
partially coupled with changes in the microbiological
variables.

Prokaryote and viral abundance as well as values of
PCP and enzymatic activities in aggregates varied
within the range reported by Herndl (1988) and Del
Negro et al. (2005) in the Adriatic Sea, and were com-
parable also with values reported from highly produc-
tive coastal benthic systems (Manini et al. 2003, Mei &
Danovaro 2004).

Multivariate analysis based on microbial variables
(prokaryote abundance and biomass, viral abundance,
PCP and extracellular enzymatic activities) allowed the
different mucilage types to be pooled into 3 main
clusters (Fig. 2): (1) macroflocs, stringers, stingers/
cobwebs and cobwebs; (2) ribbons, clouds and false
bottom mucilages; and (3) anoxic false bottom and
creamy surface layers (ANOSIM, p < 0.01). This
clustering provides evidence of a clear shift in the
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microbial processes during mucilage life span. Three
mucilage ageing steps could be identified: (1) a young
stage, characterized by low prokaryote and viral abun-
dance and values of PCP and enzymatic activities; (2) a
mature stage, characterized by highest values of all
microbial parameters and by the highest EFs than in
the other aggregates; (3) an aged stage, in which
microbial variables tend to decrease to values similar
to young-stage aggregates.

These 3 mucilage clusters were also characterized by
significant differences in the fraction of enzymatically
degraded C incorporated into prokaryote biomass,
with values in the mature stage significantly lower
than in the young and aged stage (Fig. 3A; ANOVA,
p < 0.05; Tukey’s test, p < 0.05). This indicates that both
young and aged stages of aggregates are character-
ized by a less pronounced imbalance between C
degradation and incorporation into prokaryote bio-
mass than the mature stage.

Previous studies hypothesized that the imbalance
between C degradation and assimilation into prokary-
ote biomass, leading to the accumulation of DOC,
could be a pre-requisite for mucilage development
(Fonda-Umani et al. 2007). Our results suggest that
such an imbalance, which also occurs within mature
mucilage, might provide a potential self-maintaining
mechanism for expanding mucilage lifespan.

An uncoupling between C degradation and incorpo-
ration into prokaryote biomass has been recently
reported to occur also in the Antarctic sea ice during
the spring bloom of sympagic algae (Guglielmo et al.
2000) and has been ascribed to different potential

causes, such as the production of bacteriostatic com-
pounds produced by microalgae (Raymond et al. 1994)
or viral infection and high mortality of prokaryotes
(Guglielmo et al. 2000).

In the present study, viral abundance co-varied with
prokaryote abundance (Spearman, r = 0.95, n = 27, p <
0.01), and reached the highest values in mature
mucilage. In addition, the VPR, representing a gross
proxy of the probability of virus–host contact (Wom-
mack & Colwell 2000 and literature therein), was high-
est in mature mucilage (Fig. 3B; ANOVA, p < 0.01;
Tukey’s test, p < 0.05). Although further studies are
needed for estimating the importance of virus-induced
prokaryote mortality in mucilage, these results support
the hypothesis that viruses can influence mucilage for-
mation and persistence (Peduzzi & Weinbauer 1993,
Weinbauer & Peduzzi 1995, Weinbauer et al. 1995,
Baldi et al. 1997, Shibata et al. 1997).

Mucilage, once settled on the sea bottom, can pro-
mote the creation of hypoxic and/or anoxic conditions,
which in turn affect benthic and epibenthic (including
bentho-nekton species) organisms, and harm fisheries
with important socioeconomic implications (Volterra et
al. 1992, Danovaro et al. 2005).

The results presented here represent a further step
towards the comprehension of the factors influencing
mucilage life span in marine environments. However,
further studies are needed to fully elucidate factors
and environmental conditions which can promote a
shorter life span and a faster dissolution of the
mucilage, thus reducing its effect on coastal
environments.
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