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Abstract 

The capabilities of the exponential version of the Phan-Thien-Tanner (PTT) model and the Giesekus model to 

predict stress fields for the viscoelastic flow of a low density polyethylene melt around a confined cylinder are 

investigated. Computations are based on a newly developed version of the discontinuous Galerkin method. This 

method gives convergent results up to a Deborah number of 2.5 for the falling sphere in a tube benchmark problem. 

Moreover, the specific implicit-explicit implementation allows the efficient resolution of problems with multiple 

relaxation times which are mandatory for polymer melts. Experimentally, stress fields are related to birefringence 

distributions by means of the stress optical rule. Three different fits, of equal quality, to available viscometric shear 

data are used: two for the PTT model and one for the Giesekus model. Comparison of computed and measured 

fringes reveals that neither of the models is capable of describing the full birefringence pattern sufficiently well. In 

particular it appears difficult to predict both the birefringent tail at the wake of the cylinder that is dominated by 

elongational effects and the fringe pattern between cylinder and the walls where a combined shear-elongational flow 

is present. © 1997 Elsevier Science B.V. 

Keywords: Discontinuous Galerkin model; LDPE melts; PTT model; Viscoelastic flow 

1. Introduction 

This is a continued effort to investigate the performance of existing constitutive models in 

predicting multidimensional complex flows. Baaijens et al. [1] investigated the flow of polymer 

solution around a confined cylinder. Here, the same base flow is used to investigate the 

viscoelastic flow of a low density polyethylene (LDPE) melt. 

* Corresponding author. 
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To date, rheological characterization of viscoelastic fluids has been primarily based on 

viscometric shear flows. Extensional flow measurements of polymer solutions are difficult to 

perform [2], in many cases yield inconsistent results when changing the measurement method [3], 
and need a careful interpretation because the flow usually is not uniform. Elongational flow 

measurement of polymer melts has only just become available and is limited to low strain rates 

(of order 1 s-1). Even if both shear and extensional data are available, this may still be 

insufficient for a full rheological characterization because complex flows involve combined shear 
and elongational deformation. 

For polymer solutions, it is possible to measure stresses pointwise with the rheo-optical 

analyser (ROA) of Fuller and Mikkelsen [4] and velocities using laser Doppler anemometry 

(LDA); see [1]. Stress measurement is based on flow-induced birefringence employing the 
empirical linear stress optical rule. Using ROA, it is fairly straightforward to measure shear 

stresses and the first normal stress difference independently in planar flows. For the polymer 

melt studied in this work, flow-induced birefringence is measured fieldwise by means of crossed 
polarizers, and is correlated with a norm of the shear stress and first normal stress difference 

only (compare for example Aldhouse et al. [5], Han and Drexler [6-8], Isayev and Upadyay [9], 
Kajiwara et al. [10], Kiriakidis et al. [11], Maders et al. [12], White and Baird [13], Ahmed et al. 

[14,15] and Beraudo [16]). LDA velocity measurements are not performed in this work. 

In the literature, attention has mainly been devoted to contraction flows. However, the 
presence of a corner singularity still poses major difficulties for most numerical methods, while, 
in particular for high contraction ratios, two-dimensionality of the upstream part of the 

geometry proves difficult to achieve experimentally at elevated flow rates. This is because of 
pressure and throughput limitations. To overcome these obstacles, the flow around a cylinder 

has been proposed as one of the benchmark problems; see [17]. 

From a numerical point of view, the efficient resolution of viscoelastic flows with multiple 
relaxation times is a major challenge. The majority of numerical methods used to handle 
multiple relaxation times are based on streamline integration coupled with a Picard iteration 

scheme (see Dupont and Crochet [18], Luo and Mitsoulis [19] and Hulsen and van der Zanden 
[20]), while Baaijens [21] used an operator splitting method. Other methods, such as the 

elastic-viscous stress split method introduced by Rajagopalan et al. [22], use a continuous 
interpolation of the extra stress tensor leading to a unmanageably large number of unknowns in 
the case of multiple relaxation times. Here, a modification of the discontinuous Galerkin (DG) 

method, first introduced by Fortin and Fortin [23], is applied. The stability of this formulation 
is significantly enhanced by introducing the modified elastic viscous stress split method proposed 
by Gu6nette and Fortin [24]. The current DG method allows the use of a bilinear stress 

interpolation on a quadratic velocity element, thereby greatly improving the efficiency compared 
with the quadratic stress interpolation applied by Baaijens et al. [25]. Accuracy and stability of 
this enhanced DG method are demonstrated for the falling sphere in a tube benchmark problem 
employing the upper convected Maxwell (UCM) model. Furthermore, by using the implicit-ex- 
plicit implementation proposed previously by Baaijens [26] all extra stress variables can be 
eliminated on the element level, yielding a cost-effective method: computing cost is approxi- 
mately linearly proportional to the number of relaxation times. 

The predictive capabilities of two constitutive models are investigated: the exponential version 
of the Phan-Thien-Tanner (PTT) model and the Giesekus model. All material parameters are 
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fitted on steady shear data only. Primarily a four-mode fit is used, while comparison with a 
one-mode and an eight-mode fit is also performed. Furthermore, the sensitivity of the predicted 
fringe patterns with respect to the non-linear parameters in the constitutive models is investi- 
gated. 

The outline of this paper is as follows. First, the mathematical formulation of the problem is 
presented together with the definition of the constitutive models. Thereafter, the enhancement of 
the DG method is introduced and the performance of this enhancement for the falling sphere in 
a tube benchmark problem is explored. Next, the rheological characterization of the LDPE melt 
is presented together with the experimental set-up. Finally, a comparison between predicted and 
computed isochromatic fringes is made, from which conclusions are drawn. 

2. Problem definition 

Consider the inertia-less, isothermal, incompressible flow governed by 

v.(-pl + ~) = o, (1) 

V-u = 0, (2) 

where p denotes the pressure, • the extra stress tensor, u the velocity field and V the gradient 
operator. 

In this work multimode constitutive models are applied for the extra stress tensor ~, giving 

N 

= 2~/sO+ Y'. Ti, (3) 
i = l  

where r/s denotes the viscosity of a purely viscous contribution, D the rate of deformation tensor 
(D = ½(Vu + (Vu)a), and ~ the contribution of the ith relaxation time. The constitutive models 
used are of the differential type and have the following generic form 

/~i ~ i  "7!- ~t"" Ti = 2r/iO, (4) 
[] 

with ~,i and ?]i the ith relaxation time and viscosity respectively, while the objective derivative 
is defined by 

= ~ + u - V ~  - ( / .  - ~ D ) .  • - ~-  (/ .  - ~ O )  T, ( 5 )  

where L = Vu. For the tensor Y two alternatives are investigated: one yields the exponential PTT 
model commonly used for polymer melts, i.e. 

Y= e x p [ ~  tr(~)] I, (6) 

and the other gives the Giesekus model: 

~2 
Y =  I + T ~" (7) 
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The UCM model is recovered by selecting ~ = 0 and Y= I. 

Along the input boundary fully developed flow is assumed and both the velocities and extra 
stresses are prescribed. 

3. Stabilized discontinuous Galerkin method 

One of the key problems in mixed stress-velocity-pressure formulations is the selection of the 

discretization spaces for these variables with respect to each other. To have compatibility 

between velocities and stresses, Marchal and Crochet [27] introduced an n × n-bilinear subdivi- 

sion of the extra stress variable in combination with a biquadratic interpolation of the velocity. 

To circumvent this costly subdivision, Gu6nette and Fortin [24] recently proposed a new mixed 

formulation for computing viscoelastic flows by introducing an L2 projection of the rate of 

deformation tensor in combination with a stabilizing term in the discrete momentum equation. 

Effectively this approach can be viewed as a modification of the elastic viscous stress splitting 

scheme proposed by Rajagopalan et al. [22]. Gu6nette and Fortin [24] showed that this allowed 

for a continuous bilinear interpolation of the extra stress and rate of deformation tensor when 

using a biquadratic velocity field. 

In this work, the same methodology is investigated but with discontinuous interpolations of 

the extra stress tensor, as used in the DG method (see Fortin and Fortin [23] and Baaijens 

[26-28]). 

Define L~r as 

~ = 2 [ u ' V r - ( L -  - 4D) ~ -  ~'(L T -  ~D)]+ Y'~. (8) 

Application of the DG method in combination with an L2 projection of the rate of deformation 

tensor, as introduced by Gu6nette and Fortin [24], and the use of the implicit-explicit time 

discretization proposed by Baaijens [26], gives the following. 

Problem 1 (DG-SE).  Given lri = ~i(t = tn), find (~:i, u , p ,  D)  at t = tn + At such that for all 

admissible ($i, v, q, e )  

(Si, ~i-Tin ) Ne~ fF At  + ~ -- 2riD. - $~:u "n2(vi - rext'~'n " dF = 0, i = 1, 2, 3,..., (9) 

- + ( v . v , p ) = O ,  (lO) 
i = I  

(e, D. - / ~ 1  = O, (11) 

(q, V .u) = 0. (12) 

In this, ( . , - )  denotes the appropriate inner product on the domain fL F~ is the inflow 
boundary of element D e, n the unit outward normal to F e, ~r °xt the stress tensor of the 

neighbouring, upwind, element, /2 ,= D(u), Dv = D(v) ,  and finally 0 a yet to be specified 

auxiliary viscosity. 

Notice that the discrete rate of deformation tensor/~ is only used as a stabilization factor in 
the discrete equilibrium Eq. (10). It is not introduced in the stress Eq. (9). This formulation is 
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a direct generalization of the method proposed by Gu6nette and Fortin [24]. An alternative to 
the above is to replace Du in Eq. (9) by the discrete approximation 1~. However, numerical 
experiments revealed negligible effects of this replacement. A third option is to perform a n  L 2 

projection of the velocity gradient tensor L, yielding/2. In analogy with the EVSS-G formulation 

introduced by Szady et al. [29] this discrete /~ may also be inserted in the weak form of the 

constitutive equation, notably in the definition of the operator 5°~:, while Du may be replaced by 

½(/2 + fr).  Again, numerical experiments revealed no improvement over the D G - S E  formulation 

described above. 
The resulting set of non-linear equations is solved using a one-step Newton iteration scheme: 

only one Newton-iteration is performed at each time step. Because of the explicit approximation 
of I "ext the extra stresses can be eliminated on the element level. This makes this procedure rather 

attractive for multimode computations, because in the resulting set of linearized equations only 

velocity and pressure appear as unknowns; see [26] for details. 

3.1. Stokes f low 

In this section, the performance of the D G - S E  formulation for Stokes flow conditions is 
investigated numerically. Stokes flow is recovered by choosing only a single relaxation time with 
2 = 0. Gu6nette and Fortin [24] have shown that a continuous bilinear interpolation of D and 

~, in combination with a biquadratic interpolation of u, gives stable results. Here the effect of 
choosing a biquadratic velocity field and several discontinuous and continuous interpolations of 

/~ and v is investigated. In all cases the pressure is interpolated discontinuously with a linear 

function. To access the stability, the radial velocity field for the flow through an axisymmetric 
4:1 contraction is compared for several interpolations and choices of the auxiliary viscosity 17. 

The elements that have been tested are defined as follows. Let fY denote the domain of 
element e and Pk(~ e) and Qk(f~ e) the kth-order interpolation polynomial on a triangular or 

quadrilateral element e respectively. Further, ()a denotes a discontinuous discretization over the 

element interfaces. In a more generalized sense, P~ represents linear,/'2 quadratic etc. discretiza- 
tion, while a Qk discretization contains no higher-order terms than strictly implied by the order 

k. The base discretization for the velocity-pressure is ( u , p ) ~  Q2P~. The extra stress tensor is 

interpolated constant (Qo~), bilinear (Q1 a) or biquadratic (Qd), in all cases discontinuously from 
element to element. Equal-order interpolation of the discrete rate of deformation tensor /~ is 

chosen. In the case of the bilinear interpolation, both a continuous and a discontinuous 
interpolation of D are investigated. Thus the elements that have been tested are (t, u, p, O) 
(QaoQzPalQoa), d d d d d d (Q1QzP,Q,) ,  (QzQ2P1Q2), and(Q'~QzPa~Q2). 

The base mesh is shown in Fig. 1. On the inflow boundary a fully developed velocity profile 

is prescribed, while at the outflow boundary the radial velocity is suppressed. 

The auxiliary viscosity 0 is chosen as v7 = fly/. In addition to the cases fl = 0 and fl = 1, a 
sensitivity analysis with respect to the choice of fl is made. 

For fl = 0, Fig. 2 shows contours of the radial velocity. Fig. 2(a)-(c) correspond to a 
constant, bilinear and biquadratic interpolation respectively of the extra stress tensor. In all 
parts of the figure the same eight contour levels between the minimum and maximum value are 
depicted. For the constant stress elements (Fig. 2(a)) a nearly singular coefficient matrix is 
obtained and, consequently, the velocity field exhibits tremendous oscillations. For the bilinear 
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stress element (Fig. 2(b)) the radial velocity field exhibits small oscillations, reflecting a near 

compatibility between stress and velocity interpolation. The biquadratic element of Fig. 2(c) 
displays a good compatibility as no oscillations are visible. 

For fl = 1, Fig. 3(a)-(c) shows the same results as in Fig. 2, while Fig. 3(d) shows the results 
for the case where the discrete rate of deformation /~ is the interpolated with a continuous 

bilinear polynomial. Now, all interpolations tested exhibit smooth radial velocity profiles that 

are in good agreement with each other. The oscillations of the bilinear element have vanished, 

while, remarkably, the constant stress element also produces smooth results. The latter is 
interesting, in view of the results of Baaijens [26], for handling singularities in the flow domain. 

Finally, the effect of varying the adjustable parameter /? is investigated for the element 

(~, u,p, D)---,(QdQzP~QO. Fig. 4 shows for fl = 0.01, 0.1, 10 and I00 the radial velocity profile 
as before for the bilinear stress element of the D G - S E  formulation. For fl = 0.01 some small 

oscillations may be observed, while smooth results are obtained for all other values. This 
demonstrates the robustness of the stabilization procedure which is relatively insensitive to the 

choice of fl in the Stokes flow case. 

3.2. Viscoelastic flow 

From the elements tested in the previous section, the constant and bilinear stress elements 
appear to be the most attractive for viscoelastic flow calculations. Based on the results of 

Baaijens [28], the constant stress element is expected to give stable results up to high values of 
the Deborah number, but yields an algorithm of order h only. The linear stress element, on the 
contrary, yields an algorithm of order h 2 with respect to the stresses, but may be less stable than 

the constant stress element as it does not satisfy the monotonicity requirements set forth in [26]. 

Compared with higher-order interpolations, the bilinear stress element is much more economic 

J 

l 

J 
Fig. I. Mesh used for axi-symmetric 4:1 contraction problem. 
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iA~A~ I 

(c) 

(a) 

@ 
~ L  

(b) 

Fig. 2. Radial velocity field for various stress interpolations for fl = 0: (a) Qoa; (b) Qd; (c) Qd. 

while being sufficiently accurate. In fact, the bilinear stress element produced more stable results 

than the biquadratic element. 

To test the performance of the proposed numerical scheme for viscoelastic flow analysis, the 

falling sphere in a tube benchmark problem is investigated. 

The sphere is located at the centre-line of the tube, as depicted in Fig. 5. The tube wall moves 

parallel to the centre-line with a velocity V in the positive z-direction. The ratio Bc/R of the 

cylinder radius Rc and the sphere radius R is 2. The Deborah number is defined as 

2V 
De = - - .  (13) 

R 

The drag F0 on a sphere falling in an unbounded newtonian medium is given by 

Fo = 6zcr/R V. (14) 

It is customary to compare the so-called drag correction factor given by 

F ( D e )  
K ( D e )  - - - ,  (15) 

Fo 
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where F is the drag on the cylinder for the viscoelastic case as a function of the Deborah 

number. 

For the analysis of the falling sphere benchmark problem four meshes are used. Meshes 

M1-M3 have an upstream length of 12R and a downstream length of 18R. Mesh M4 also has 

an upstream length of 12R, but a downstream length of 30R. The section of the meshes near the 

sphere is depicted in Fig. 6, and in Table 1 some data concerning the meshes are given. Mesh 

refinement is only uniform from mesh M1 to M2 and MY 

Two situations are reported on in detail here: the case fl = 0, giving the so-called D G - E  

formulation presented previously in [26], and the case f l =  1 giving the D G - S E  method 

proposed here. For fl = 0, the best results are obtained with the biquadratic stress element: 

(~, u,p)~ (QdQzpd). For fl = 1 numerical experiments showed that the most stable results are 

obtained by using a bilinear discontinuous interpolation of the extra stress tensor and a bilinear, 

but continuous, interpolation of the discrete rate of deformation tensor/~ hence (~, u, p, D) 

(Q~Q2P~QO. Results of other interpolation schemes will be discussed later. 

Table 2 and Fig. 7 compare the computed drag correction factors of both the D G - S E  and the 

D G - E  methods with the results of Lunsmann et al. [30] and Fan and Crochet [31]. Fan and 

Crochet [31] obtained convergence up to a Deborah number of 2 using a high-order spectral 

(a) (b) 

(c) (d) 

Fig. 3. Radial velocity field for various stress interpolations for fl = I: (a) Qod; (b) Q~; (c) Q~; (d) (3,/~):(Q~, QI). 
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(a) (b) 

(c) 

/ ,\ 

(d) 

Fig.  4. Rad i a l  veloci ty  field for  va r ious  stress in te rpo la t ions  for  (a) fl = 0.01, (b) fl = 0.1, (c) fl = 10 and  (d) fl = 100. 

finite element method based on the EVSS formulation, while Arigo et al. [32] obtained 

convergence up to De = 2.2 using a quadratic element and the EVSS method. However, the 

upswing in the drag correction curve of Arigo et al. [32] is not found here. For De < 2, the time 

step was set to 0.1 V/De R and the Deborah number is increased by 0.1, while for De > 2 both 

the time step and the increment in Deborah number were decreased by a factor of 2. 

The computations demonstrate convergence with mesh refinement and are in good agreement 

with the results from the literature (concerning the dimensionless drag coefficient). Beyond a 

Deborah number of about 2.2, the results for meshes M3 and M4 deviate by about 0.1% and 

hence full convergence with mesh refinement has not been achieved yet. Clearly, stabilizing the 

DG method is a significant improvement. 

To access the characteristics of the solution, Fig. 8 shows contour lines of the four extra stress 

components Trr, Tz--, Tr~ and T~ at De = 2.4 for mesh M4. Stresses have been made dimensionless 

with ~lV/R. For all stress components,  a smooth spatial distribution is found with steep 

gradients near the sphere surface. The v:: component  develops a long tail that extends about 10 

radii downstream. 

The impact of the stabilization of the DG method can be seen in Fig. 9. At De = 0.8 and mesh 

M4, this figure shows the Tr_- component  along the sphere surface and the axial velocity along the 
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centre-line in the wake of the cylinder. In the top two plots, the standard DG method is used 

with the (Q°2Q2pd) element. The velocity profile is smooth, but significant oscillations in the 

stress field are observed. In the middle two plots, a bilinear stress element (Q'~Q2Pdl) is used for 

the DG method. Now, the stress field is smooth, but oscillations in the velocity field are 
observed. This is consistent with the results for the Stokes flow. In the bottom two plots, the 

stabilized DG method is used: now both velocities and stresses are smooth. In this case the 
(~, u, p, D) ~ (QdQ2pdQI) element is applied. Notice that convergence of the results with respect 

to the drag correction factor does not necessarily imply that a smooth stress field is obtained: the 
drag correction factor for the D G - E  formulation at De = 0.8 is in good agreement with results 

of Lunsmann et al. [30] and Fan and Crochet [31]. Therefore, to benchmark results, it is more 

appropriate to use stresses along the sphere surface and the axial symmetry line than the drag 

correction factor. 

Although the choice fl = 1, or equivalently setting the auxiliary viscosity ~ equal to the 
viscosity r/, is optimal for Stokes flow, it need not be the most appropriate choice for viscoelastic 

calculations. The apparent viscosity 

I1 11 2, I IDII=(D:D) '/2, (16) 
iiDii, 

may exceed r/ by several orders of magnitude which suggests that the optimal choice of the 

auxiliary viscosity r7 needs further investigation. 

V 

' ] "  ??t 1' 1' 1'1' 

V 

t 
I 

I 

II I 

r t  

Fig. 5. Falling sphere in a tube benchmark problem. 
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Fig. 6. Meshes used for the analysis of the falling sphere test, from left to right: M1, M2, M3, M4. 

4. Experimental aspects 

4.1. Flow loop 

The flow cell, Fig. 10, is fed with the LDPE melt by a corotational twin screw extruder 

(Werner and Pfleiderer ZSK25). During all experiments, the melt temperature was controlled at 

190°C. 

The flow cell is made of steel (100 MnCrW4) and four changeable windows in the lateral 

walls, two on each side, that are made of Schott BK7 glass (Schott Glass) and have radius 50 

mm and thickness 15 mm. The height of the channel is 5 mm and the depth in the neutral 

direction is 40 mm, giving an aspect ratio of 1:8. This ratio is assumed to be sufficiently large 

to create a nominally two-dimensional flow and small enough to yield relatively high Deborah 

numbers given the maximum flow rate achievable with the current extruder and the minimal 

diameter of the cylinder. The length of the channel in the mean flow direction is 320 mm. 
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Table 1 

Characteristics of the meshes used for analysis of the falling sphere problem 

Mesh Number of elements Number of nodes Number of degrees of freedom 

D G - S E  D G - E  

M1 359 1541 4318 3082 

M2 733 3081 8586 6162 

M3 1436 5953 16529 11906 

M4 2256 9295 25766 18590 

The cylinder is composed of tungsten with radius R = 1.25 mm and is placed in blind holes 
in two opposite windows. To avoid damage due to contact between the cylinder and the glass, 
Teflon was placed between the rounded ends of the cylinder and glass. In the case when the 
cylinder is placed asymmetrically between the parallel plates, the cylinder is positioned 0.3R 
towards the upper wall. For the symmetrically placed cylinder the flow domain is schematically 
drawn in Fig. 11. 

The flow cell is heated with eight heating elements (Hasco Z110, 400 W) that are located in 
pairs directly under and above the slit and near the entrance and exit of the flow cell. These 
elements are controlled by a four-channel temperature control unit (Hasco Z1295/5) that is 
located between two elements in the walls of the flow cell. Isothermal flow conditions are 
assumed throughout. 

Table 2 

Drag correction factor as a function of the Deborah number comparing D G - E  method and D G - S E  method using 

meshes M1-M4 with the results of Lunsmann et al. [30] and Fan and Crochet [31] 

De Lunsmann et al. Fan and Crochet D G - E  D G - S E  

M1 M2 M3 M4 M1 M2 M3 M4 

0.0 5.947 5.948 5.947 5.947 5.947 5.948 5.947 5.947 5.947 

0.2 5.658 5.660 5.660 5.662 5.663 5.660 5.660 5.660 5.660 

0.4 5.185 5.187 5.187 5.186 5.187 5.186 5.186 5.186 5.186 

0.6 4.788 4.802 4.802 4.798 4.798 4.801 4.801 4.801 4.801 

0.8 4.524 4.530 4.530 4.522 4.522 4.529 4.528 4.528 4.528 

1.0 4.336 4.339 4.346 4.343 4.334 4.335 4.345 4.342 4.341 4.341 

1.1 4.274 4.268 4.277 4.274 4.272 4.272 

1.2 4.212 4.223 4.218 4.216 4.216 

1.4 4.133 4.146 4.138 4.135 4.134 

1.6 4.089 4.080 4.103 4.089 4.085 4.084 

1.8 4.064 4.058 4.057 

2.0 4.042 4.056 4.049 4.048 

2.2 4.061 4.052 4.049 

2.4 4.065 4.061 

2.5 4.075 4.070 

2.6 4.087 

2.7 4.104 
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Fig. 7. Drag correction factor K as function of the Deborah number D G - S E  method: mesh M4. 

4.2. Birefr&gence measuremen t s  

Fieldwise measurement of birefringence is a classical method for studying birefringence 

distributions in solids [33], polymer melts and highly birefringent solutions [34]. The stress 

optical rule enables the interpretation of birefringence data in terms of stresses. Fuller [35] 

describes numerous systems for birefringence measurements. Details may also be found in the 

book of Azzam and Bashara [36]. 

In principle, both the extinction angle and the retardance can be measured in a two-step 

procedure, from which the shear stress rxy and the first normal stress difference N1 can be 

obtained. In this work, birefringence An is measured only and can be related to stresses by 

An = C(4rzy + N~) m, (17) 

with C the stress optical coefficient. In the experiments monochromatic light is used yielding 

isochromatic lines on a singly coloured background. These isochromatic lines correspond to the 

stress state according to 

(4r2y+ N2)1/2 k2o 
-dC' k- -  1 ,2 ,3  ..... (18) 

with 2o the wavelength of the light, d the width of the channel and C the stress optical 

coefficient. 

The optical elements used in the experiments are listed in Table 3. All elements are mounted 

in line on an optical rail (Melles Griot 07ORN009). The fringe patterns are observed through a 

microscope (Olympus SZ4045TR) with a 1.6710 magnification. 
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5. Rheological characterization 

The LDPE melt is a commercial grade Stamylan LD 2008XC43 (DSM), for which some 

characteristics are listed in Table 4. Tas [37] has performed an extensive rheological characteri- 

zation in simple shear flow and in both uniaxial and biaxial extensional flow. Four non-linear 

viscoelastic constitutive equations were fitted (Leonov, Wagner, PTT and Giesekus) with eight 

relaxation times. The result was that both the Giesekus and the PTT models fitted the data fairly 

well. Only the relaxation of the first normal stress difference after cessation of  steady shear flow 

distinguished between these two models, of  which the PTT model agreed the closest with the 

experimental data. It appeared necessary to introduce the parameter ~ in the PTT model to 

obtain optimal agreement with data in simple shear flow and elongational flow simultaneously. 

In this work, both a four-mode and an eight-mode fit are applied. The Maxwell parameters 

{2i, ~i} are given in Table 5. The non-linear parameters are fitted to steady shear data. For the 

PTT model, two sets have been obtained, one with ~ = 0 and one with a non-zero ( parameter, 

a) (o) min: - l .02 (x) max:87.1 

I 

(b) (o) min: ls .47 (x) max: 168 

Fig. 8. Computed contour plots of discontinuous extra stress components for a falling sphere in a tube (UCM) model, 
De = 2.4, mesh M4, numerical method, DG-SE: (a) rrr (b) rz=; (c) ~r~ (d) %~o. 
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Fig.  9. Falling sphere in a tube (UCM model, D e  = 0.8, m e s h  M4):  left, discontinuous zrz on surface of  the sphere 

(from upstream to downstream); right, velocity on centre-line downstream; top, D G - E  method; middle, D G - E  

method using bilinear discretization for extra stress; bottom, D G - S E  method. 

giving a combination of the lower and upper convected derivative (Table 6). For the Giesekus 

model, ~ = 0. Fig. 12 demonstrates the quality of  the fit of  the complex moduli, while Fig. 13 

shows the fit of  the viscosity and first normal stress difference together with the predicted 

elongational viscosities. In this case only the four-mode models are shown. Remarkably, both 

PTT parameter sets exhibit a nearly equally good fit to the data. Model predictions of  the 

elongational viscosity differ significantly. 

The stress optical coefficient was determined in fully developed flow by comparing birefrin- 

gence measurements with computed shear stresses. By application of  Eq. (18) the stress optical 

coefficient was determined to be 1.3 x 10  9 Pa-~.  
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6. Results 

6.1. Flow around a symmetrical ly  confined cylinder 

Experiments are carried out  at a temperature  of  190°C. The average velocity is denoted by V, 

and the Deborah  number  is defined as 

ZV 
De R ' (19) 

with 

Fig. 10. Photograph of the flow cell. 
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Fig. 11. Flow domain of the symmetrically placed cylinder. 

E i  N= l•i /~i 

2- , ( 2 0 )  

N 
~ i  = 1 qi 

which is a viscosity-weighted average Maxwell relaxation time. Unless specified otherwise, the 

four-mode fit is applied. In the analysis the (~, u, p, D ) ~  (Q~Q2P~Q~) element is used, while the 

auxiliary viscosity r7 is set to 

N 

= ~ q;. (21) 
i=1 

Two mean  velocities are investigated: 8.06 × 10-  3 m s - ~ and 14.9 x 10 - 3 m s - ~, resulting in 

Deborah  numbers  of  4.4 and 8.1 respectively. Fig. 14 depicts the mesh near the cylinder. The 

mesh has an upst ream length of  15R, a downst ream length of  20R and contains 1130 elements. 

In Fig. 15 (De = 4.4) and Fig. 16 (De = 8.1) a compar ison is made  between experimental  and 

computed  isochromatic lines. 

De = 4.4. At first sight all three computa t ions  agree reasonably well with the experimental 

isochromatic  pattern. The Giesekus model  appears to give the best prediction of the birefringent 

Table 3 

List of elements used in the polariscope 

Device Manufacturer Part number 

Polarizer Meadowlark optics DPM1.5HN38 s 

2/4 plate Meadowlark optics NQM1.5546 

Interference filter, 546 nm Spindler and Hoyer 37.1105 

Mercury lamp Philips 

Table 4 

Characteristics of low density polyethylene used 

Melt index (ISO 113 (A/4)) M,, M w M: p (kg m -3) (ISO 1183 (A)) T c (°C) 

8 1.3 x 104 1.55 × 105 7.8 × 105 9.2 x 102 98.6 

Mn, number-averaged molecular weight; Mw, weight-average molecular weight; M:, z-averaged molecular weight; p, 

density; To, crystallization temperature. 
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Table  5 

Maxwell  pa ramete r  values for four-mode and  e ight-mode fits low density polyethylene for  melt  a t  T =  190°C 

Four -mode  fit E igh t -mode  fit 

r/, (Pa s) 2 i (s) r/S (Pa s) qi (Pa s) 2i (s) r/s (Pa s) 

8.50 x 10 ° 3.16 x 10 -5  

1.37 × 102 1.00 × 10 -3 

6 .60x 102 3 .16x  10 -2 

1.65 × 103 1.00 x 10 ° 

0.0 9.28 x 10 ° 4.28 x 10 -5 0.0 

1.90 x 101 2.07 × 10 -4  

7.21 × 101 1.30 × 10 -3  

2.20 x 102 9.00 × 10 -3 
5.07 x 102 5.69 x 10 -2  

8.25 × 102 3.50 x 10 -1 

5.84 x 102 1.82 × 10 ° 

1.23 × 102 9.94 x 10 ° 

Table 6 

Paramete r  values for non- l inear  viscoelastic const i tut ive models  for low densi ty polyethylene melt  a t  T =  190°C 

Model  ct ~: e 

PTT set 1 - -  0.1 0.1 

PTT  set 2 - -  0.0 0.2 

Giesekus 0.25 - -  

10 s 

10 4 

~_..10 2 

10 o 

10 "2 
10 .2 

- -  Maxwel l ,  n -8  _ ~  
Maxwel l ,  n=4 

10  0 10  2 10 

o~ (s "' ) 

Fig. 12. Rheological  da ta  for L D P E  melt  at  T =  190°C: complex modulus  with fitted Maxwell  models.  
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Fig. 13. Material functions for LDPE at 190°C in steady simple shear flow ((a) viscosity r/(~); (b) first normal stress 

difference N~(~)) together with fitted models and (c) predictions in the steady planar elongational flow ( - - ,  PTT 

model with ~: = 0.0 and e = 0.2; , PTT model with ( = 0.1 and • = 0.1; - - - ,  Giesekus model; ..., UCM 

model). 

tail at the wake of the cylinder. The PTT set 2 (~ = 0, e = 0.2) performs the poorest while PTT 

set 1 ((  = 0. l, e = 0. l) is intermediate between these two. Fig. 17 shows the predicted first normal 

stress difference N] along the centre-line. These results are consistent with the differences in the 

elongational behaviour of the three parameter sets. The maximum elongational rate along the 

downstream centre-line is approximately l0 s - ] .  Furthermore, it can be seen that, unlike the 

Fig. 14. Part of  finite element method mesh for the symmetric confined cylinder used for the analysis of  LDPE melt 

flow. 
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Fig. 15. Experimental and computed ( isochromatic patterns at De -- 4.4 for the symmetrically confined cylinder 
in a plane channel of LDPE melt at 190°C (flow from left to right). From top to bottom: PTT model with ¢ = 0.1 
and e= 0.1; PTT model with ¢ = 0.0 and e--0.2; Giesekus model with ~ = 0.25. 

Giesekus  model ,  bo th  P T T  pa rame te r  sets predic t  a vert ical  slope o f  the fr inge lines at the 

centre-l ine,  which is no t  observed  in the exper iment .  Th e  n u m b e r  o f  fringe lines be tween the 

cyl inder  and  the walls is over -pred ic ted  by  all models .  P a r a m e t e r  set 1 for  the P T T  mode l  
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Fig. 16. Exper imental  and  computed  ( ) i sochromatic  pat terns  at De = 8.1 for the symmetrically confined cylinder 

in a plane channel  of  L D P E  melt at  190°C (flow from left to right). F r o m  top to bot tom:  PTT  model  with ~: = 0.1 

and  e = 0.1; PTT  model  with ~ = 0.0 and  e = 0.2; Giesekus model  with ~ = 0.25. 
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Fig. 17. Computed first normal stress difference along the centre-line at De = 4.4 for symmetrically confined cylinder 

in a plane channel of LDPE melt at 190°C. 

performs best in this respect. The computed maximum wall shear rate is 83 s-1,  which is 

unfortunately outside the measurement range of the steady shear data; see Fig. 13. 

The isochromatic lines near the surface of  the cylinder could not be resolved in the experiment 

as they are in the shade of the cylinder. 

De = 8.1. At a Deborah number of  8.1 similar behaviour is observed to that for De = 4.4. The 

maximum shear rate at the boundary opposite to the cylinder is approximately 150 s -  1. The top 

of the photograph is not clear owing to reflection in the wall of  the flow cell. 

6.2. Asymmetrically confined cylinder 

In this case, the cylinder is moved 0.3R towards the upper wall. Part of  the mesh is given in 

Fig. 18; it extends 10R upstream and 15R downstream and has 2024 elements. 

I1 
J 

m 

Fig. 18. Part of finite element mesh for the asymmetric confined cylinder used for the analysis of LDPE melt flow. 
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Fig. 19. Experimental and computed ( ) isochromatic patterns at De = 4.6 for the asymmetrically placed cylinder 

in a plane channel of LDPE melt at 190°C (flow from left to right). From top to bottom: PTT model with ~ = 0.1 

and e =  0.1; PTT model with ~ = 0.0 and e =  0.2; Giesekus model with ~ = 0.25. 
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Fig. 20. Experimental and computed ( ) isochromatic patterns at De = 8.9 for the asymmetrically placed cylinder 

in a plane channel of LDPE melt at 190°C (flow from left to right). From top to bottom: PTT model with ~ = 0.1 

and e =  0.1; PTT model with ( =  0.0 and ~= 0.2. 

Again two mean velocities were used in the experiments and computations 8.53 x 10 - 3 m s - 1 

and 16.4 × 10 -3 m s - l ,  resulting in Deborah numbers of  respectively 4.6 and 8.9. In Fig. 19 

(De = 4.6) and Fig. 20 (De = 8.9) a comparison is made between the experimental and computed 

isochromatic lines. 

De = 4. 6. A good agreement is found between the isochromatic lines of  the experiment and the 

computations using PTT set 1 ((  = 0.1, ~ = 0.1) and Giesekus. As in the symmetric case the PTT 

set 2 ( (  = 0, e = 0.2) computat ion fails to predict the tail in the wake of  the cylinder. Problems 

with observing lines near the cylinder are the same as reported with the symmetric flow. 

De = 8.9. For this case the computat ion using the Giesekus model failed owing to divergence 

of  the iteration process, while for parameter  sets 1 and 2 the same conclusions can be drawn as 

for the lower Deborah number,  although the agreement is less good. 

6.3. Parameter variation 

To investigate the influence of  the material parameters in the constitutive models, a parameter  

variation has been performed. All these computations were done using the symmetrical 
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geometry and the low mean velocity (U = 8.06 x 10-3 m s-~). First, the non-linear parameters 

~', e and e are varied using the four-mode fit. 

In Fig. 21 the results of the computation of the isochromatic lines using the PTT model are 

depicted. The non-linear parameters are varied from (~ = 0.0, e = 0.2) via (~ = 0.05, e = 0.15) 

and (~ = 0.1, e -- 0.01) to (4 -- 0.15, ~. -- 0.05). These parameter sets have been chosen such that 

steady shear data are still predicted correctly. Yet, significant differences in the predicted steady 

planar elongational flow properties are observed (see Fig. 22). 

Increasing the parameter ~ and decreasing the parameter e has a positive effect on the 

prediction of the tail in the wake of the cylinder, which is a consequence of the increased 

elongational viscosity seen in Fig. 22. If ~ is chosen too large, it has a negative effect on the 

smoothness of the predicted stress distribution. This is also reflected in the failure to achieve 

convergence with ~' = 0.2 and e = 0.0. 

In Fig. 23 the results of the computation of the isochromatic lines using the Giesekus model 

are shown. The parameter ~ is varied from 0.15 via 0.25 to 0.35. Again, these parameters have 

their influence on steady planar elongational flow predictions (Fig. 24) and, consequently, on the 

predictions of the tail as well. The influence on the steady shear behaviour is relatively small but 

larger than the changes observed for the PTT model. The number of fringe lines between the 

cylinder and the walls, and in the wake of the cylinder, tends to increase with decreasing e. 

~ -  

r - -  

Fig. 21. Computed  isochromatic patterns at De = 4.4 for the cylinder placed symmetrically in a plane channel of  

L D P E  melt at 190°C (flow from left to right). F rom top to bottom: PTT-a model with ~ = 0.0 and e = 0.2, ~ = 0.05 

and e = 0 . 1 5 ,  ~' =0 .1  and E--0.1,  ~ =0 .15  and E =0.05.  
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Fig. 22. Predictions using PTT model  (four-mode) in steady planar elongational flow for L D P E  at 190°C: - -  

~:=0.0  and e = 0 . 2 ;  , ( = 0 . 0 5  and e=0 .15 ;  - - - ,  ( = 0 . 1  and e = 0 . 1 ;  ..., ~:=0.15 and e=0 .05 .  

Finally, the influence of  the number  of  relaxation times is investigated. The computat ions 

were performed using the PTT model with ~ = 0.1 and e = 0.1. A one-mode, a four-mode and 

an eight-mode fit are used. In case of  the one-mode fit 17 = 1.6 x 103 Pa s, 2 = 0.15 s, while a 

non-zero newtonian contribution is used: q~ = 0.4 x 103 Pa s. The result of  the computations of  

the isochromatic lines is presented in Fig. 25. The one-mode computat ion gives an isochromatic 

pattern that looks similar to the pattern using the four-mode fit, but many details are lost. 

/ -  . . . . . . .  /" ) / / / J ~ r - i ~ ~ - "  " \  . . . . . . . . . .  

- - .  - _ _ ~ . : ~ .  - ~ _ _ ~ : ~ - - -  . - . . . . . . . . . . .  

Fig. 23. Computed isochromatic patterns at De = 4.4 for the cylinder placed symmetrically in a plane channel of  

L D P E  melt at 190°C (flow from left to right). F rom top to bottom: Giesekus model  with ~ = 0.15, ~ = 0.25, • = 0.35. 
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Generally speaking, adding more modes improves details. See for instance the position of the 

island above the cylinder. The difference between the four-mode and eight-mode result is small; 

only little details change. In particular, the isochromatic lines near the wall tend to become 

smoother. In Fig. 26 the velocity in the flow direction along the centre-line is given. Here, 

differences between all three computations are small. 

Selection of the distribution and number of the relaxation times depends on the flow regime 

analysed. To each relaxation time 2i, a Deborah number may be associated: Dei = 2i V/R. If this 

Deborah number is sufficiently small, this particular mode may generally effectively be modelled 

as a purely viscous contribution. Furthermore, in the computations the number of relaxation 

times may be increased until no significant change in the solution is noticed. 

7. Conclusions 

In this study, the planar flow of an LDPE melt at 190°C past a cylinder, placed between two 

parallel plates, has been investigated to test the performance of two constitutive models: the 

exponential version of the PTT model and the Giesekus model. Evaluation is based on the 

comparison of measured and computed isochromatic fringes. For the symmetrically confined 

cylinder the Deborah numbers studied are 4.4 and 8.1, while for the asymmetrically placed 

cylinder the Deborah numbers used are 4.6 and 8.9. The main conclusions can be summarized 

as follows. 

7.1. Numerical method 

An enhancement of the DG method is proposed, based on the results of  Gu6nette and Fortin 

[24]. The new method is labelled D G - S E ,  to emphasize the enhanced stability (S) of  the method 
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j -  
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o 
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1 . . . . . . .  

0 2 l O  "~ 

, , ,  ~ . . . . . . .  L 
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e l0ngat i0na l  rats [ I  Is] 

Fig. 24. Predictions using the Giesekus model (four-mode) in steady planar elongational flow for LDPE at 190°C: 

- - ,  c ~ = 0 . 1 5 ;  , ~ = 0 . 2 5 ,  - - - ,  c ~ =  0 . 3 5 .  
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Fig. 25. Computed isochromatic patterns at De = 4.4 for the cylinder placed asymmetrically in a plane channel of  

L D P E  melt at 190°C (flow from left to right). F rom top to bot tom PTT model with ~ = 0.1 and e =  0.1: one-mode 

fit, four-mode fit, eight-mode fit. 
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Fig. 26. Velocity along the centre-line using PTT model (set 1) with the one-, four- and eight-mode Maxwell  fits. 



F.P.T. Baaijens et a l . / J .  Non-Newtonian Fluid Mech. 68 (1997) 173-203 201 

and the explicit (E) approximation of certain terms in the integrand involving neighbouring 

elements. This explicit approximation was first introduced elsewhere [26] and allows the efficient 
resolution of problems with multiple relaxation times, because the majority of the degrees of 

freedom (extra stresses) can be eliminated on the element level. Consequently, the computing 

time is approximately linearly proportional to the number of relaxation times. The enhanced 

stability is manifested in the increased value of the Deborah number (2.7) at which convergence 

is obtained for the falling sphere in a tube benchmark problem using a UCM fluid. The best 

performance, in this respect, is achieved with the bilinear stress element with a bilinear 
continuous approximation of the rate of strain tensor: (~, u, p, D) ~ (QdQzP~QO. Further work 

is needed to find the optimal choice of the auxiliary viscosity 0- 

7.2. Experimental results 

Based on viscometric shear flow data only, no distinction can be made between the three 
different sets for the non-linear parameters (~, e, ~) of the PTT and the Giesekus model. All fits 

show an equally good fit of the available data [q(~), NI(~)]. For instance for the PTT model the 
shear properties are relatively insensitive to variations in ~ and e. This in contrast with the 

(planar) elongational viscosity. Consequently, the prediction of the birefringence profiles in the 
wake of the cylinder, which is dominated by elongational properties, is sensitive to the choice of 

these non-linear parameters. Neither of the models proved to be able to predict the full 
birefringence distribution correctly. PTT set 2 (~ = 0, e = 0.1) provides the poorest prediction: it 
predicts far too few fringe lines in the wake of the cylinder. The Giesekus model seems to 

capture the birefringent tail best, but experimental resolution of this tail is limited, as fringes are 
packed closely. The PTT set 1 (~ = 0.1, e=  0.1) appears to give the best overall prediction. In 
particular the shape and number of fringes between the wall and the cylinder is predicted better 

than with the Giesekus model. This is best illustrated at the higher Deobrah number and for the 
asymmetrically placed cylinder. 

Both the PTT and the Giesekus model have difficulty in predicting the combined shear-elon- 

gational flow between the cylinder and the walls. This suggests that, even if elongational 
properties are available, this would still be insufficient to characterize fully the material. 

Moreover, constitutive models like the PTT and the Giesekus model may prove inadequate to 
predict complex flows, and more refined models appear to be necessary. 

If material parameters cannot be fully identified by viscometric shear and elongational data 
only, complex flow data should be included in the characterization procedure. This can be 
achieved by comparing numerical and experimental results to optimize material parameters. An 
example of such a procedure may be found in [38]. 

Compared with similar work on polymer solutions [1], the current study has some limitations: 
velocities have not been measured yet and the fringe patterns are only semiquantitative, 
compared with pointwise birefringence measurements using, for instance, the ROA developed by 
Fuller and Mikkelsen [4]. The mean velocity used for polymer solutions is an order of magnitude 
higher than for polymer melts, allowing the application of existing LDA technology. For 
polymer melts particle tracking velocimetry appears to be a more versatile approach and is 
currently under construction. 
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