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Viscoelastic properties and efficient 
acoustic damping in confined 
polymer nano-layers at GHz 
frequencies
Mike Hettich1, Karl Jacob1, Oliver Ristow1, Martin Schubert1, Axel Bruchhausen1,2, 

Vitalyi Gusev3 & Thomas Dekorsy1,4

We investigate the viscoelastic properties of confined molecular nano-layers by time resolved 
optical pump-probe measurements. Access to the elastic properties is provided by the damping time 

of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a 
strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An 

analytical model including the viscoelastic properties of the molecular layer allows us to obtain the 

longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments 
and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous 
than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic 
absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both 

increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic 

absorption are proportional to the square root of frequency and the propagation of compressional/

dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the 
propagation of shear waves in viscous liquids and thermal waves in solids.

�e viscoelastic behavior of ultrathin polymers especially under 1-d con�nement plays an important role in 
their glass transition dynamics1. Due to strong interface contributions and con�nement e�ects, capped polymer 
layers (interfaces at both sides) and supported ones (deposited onto a solid substrate) exhibit considerable devi-
ations from the bulk behaviour2–5. Yet, the structural dynamics of ultrathin polymer �lms still pose many open  
questions1. In addition, a better understanding of the mechanical and thermal transport properties of these �lms 
is crucial for advances in nanotechnology especially for phonon engineering.

�e transport and damping of heat and acoustic waves across metal-molecule interfaces is also important for 
applications of thin �lm and nanoparticle-polymer/molecule hybrid systems in fundamental research, nano-
technology, and medicine, for example in photoacoustic imaging and cancer treatment. Here, molecules are 
o�en used in combination with metallic nanoparticles to mark and address speci�c cell types6. Furthermore, the 
in�uence of surface adhesion7, interface sti�ness between nanoparticles8, and of the phononic properties of the 
material constituents9 have been shown to be of considerable importance for heat and acoustic phonon transport. 
All of these properties are also intimately related to the mechanical and thus viscoelastic properties of ultrathin 
polymer layers and can therefore be utilized in the design of acoustic and thermal nanodevices.

In this work we study the viscoelastic properties of ultrathin polymer layers by investigation of their in�uence 
on the coherent acoustic phonon transport in strati�ed systems. �is also allows us to obtain information about 
the acoustic sound velocity and the damping of acoustic waves inside the polymer layer which is of special inter-
est for phonon engineering. �e molecular layers are con�ned between a gold �lm and a silicon substrate which 
alters the acoustic interface resistance. When the gold �lm is excited by an ultrashort laser pulse it starts coherent 
oscillations with a damping time determined by a pump-probe experiment. �e observed change in the acoustic 
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damping time with the molecular layer thickness is modelled analytically including the viscoelastic properties of 
the molecular layer.

�e mechanical properties at GHz frequencies of these layers are di�cult to address with other methods, espe-
cially in the con�ned geometry with thin (< 15 nm) layers studied in this work. We choose aminopropyltrichlo-
rosilane (APTES) as the organic interface layer due to its wide use in nanotechnology as adhesion promoter10,11. 
�is type of molecule allows to grow �lms down to monolayer thickness via self-assembly and the amino group 
of the molecule hinders gold di�usion into the molecular layer.

�e structure of the sample is shown in Fig. 1(a). Molecule layers with varying thicknesses are con�ned 
between a silicon substrate and a gold capping layer. A native SiO2 layer is present at the silicon surface.

In order to investigate the coherent acoustic phonon dynamics in these systems we employ time resolved 
optical pump-probe spectroscopy. An optical pulse excites the coherent dynamics in the sample, which are sub-
sequently probed by measuring the re�ectivity of a second, weaker and time delayed optical pulse. �is yields the 
time resolved optical response of the sample including the temporal evolution of the excited coherent longitudinal 
(compression/dilatation) phonons. Details of the experimental setup are given in the Methods section.

A typical result of a pump-probe experiment is shown in Fig. 1(b). At zero time delay the pump- and probe 
pulse coincide on the sample. �e immediate sharp drop of the signal is caused by the ultrafast heating of the 
electrons and the accompanying change in the optical properties of the gold �lm. �e electrons thermalize via 
electron-electron and electron-phonon interaction where the latter causes an impulsive heating of the gold �lm 
and thus excites a coherent vibrational mode in the gold �lm by the thermoelastic process.

�e acoustic mode of the system gives rise to a periodic modulation of the transient re�ectivity due to a 
change in optical properties caused by the strain in the sample and the resulting photoelastic response. �ese 
oscillations are well visible in the inset in Fig. 1(b). In order to obtain the damping time of the oscillation we �rst 
remove the electronic background and subsequently perform a least squares �t with the function:

π φ π φ∆ = + + + + .
τ τ− −R R y A f t e A f t e/ sin (2 ) sin (2 ) (1)

t t
0 1 1 1

/
2 2 2

/1 2

�e �rst oscillatory part describes the damped coherent thickness oscillation of the gold �lm with the frequency 
f1 ≈  vAu/(2D), where the longitudinal sound velocity and the gold �lm thickness are denoted by vAu and D, respec-
tively. �e second oscillatory component, usually barely visible, stems from the time resolved Brillouin scatter-
ing in the silicon substrate caused by the interference between light re�ected of the sample interfaces and the 
propagating acoustic pulses. Finally, y0 accounts for a static o�set. �e extracted mode with the superimposed 
�t is presented in Fig. 1(c). As will be discussed later on, the mode frequency f1 is only slightly in�uenced by the 
molecular layer.

Results and Discussion
We measured the extracted damping time τ1 (see eqn. 1) of the fundamental gold �lm thickness mode for molec-
ular layer thicknesses ranging from 1.8 to 13.8 nm, i.e., spanning nearly one order in thickness variation. �e 
expected thickness12, i.e., given by the length of the molecule, would be 0.7 nm for an ideal APTES monolayer. �e 
discrepancy to the thinnest layers obtained experimentally (1.8 nm) is attributed to the uncertainty in the APTES 

Figure 1. (a) Sample sketch (b) time domain signal showing a sharp drop at zero time delay due to heated 
electrons and the subsequent relaxation dynamics including the periodic modulation of the signal due to 
coherent acoustic phonons (c) coherent acoustic phonons a�er background removal with superimposed �t 
(eqn. 1) as solid red line.
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layer thickness measurement which is discussed in detail in the Methods section. �e investigated frequency 
range, given by the thickness of the gold �lm, covers 50 to around 120 GHz.

�e extracted damping times are presented in Fig. 2 as a function of the mode frequency and the respective 
APTES layer thickness is indicated by the color-coding. Also shown are the theoretical results as full and dashed 
lines which will be discussed later on. Immediately visible is a striking dependence of the obtained damping times 
on the thickness of the molecular layer, which acts as a barrier for the coherent phonons on their way from the 
gold �lm generator to the substrate.

For thicker molecular layers an increase in the mode damping time by almost a factor of three is observed at 
50 GHz. �e frequency dependence shows a similar behaviour as previously published results13. �ese results are 
plotted as grey squares for comparison. We also observe that the damping times approach the expected damp-
ing times of the Au/SiO2/Si layer system shown as solid line with circles, when the thickness of the molecular 
nano-layer is approaching zero. Despite beeing usually neglected, this suggests to include the native silicon oxide 
layer in future extensions of the here presented model.

�e data around 50 GHz are shown in a di�erent representation in Fig. 3. Here, the damping time is plotted 
versus the APTES thickness. �e frequency dependence is omitted here for clarity and the green �lled cone shows 
the theoretical results discussed later on. �e damping times follow a nearly linear trend until APTES layer thick-
nesses of 8–9 nm. For thicker APTES layers the damping times seem to saturate. Unfortunately, our preparation 
method does not allow for thicker APTES layer thicknesses to investigate this regime further.

�e strong modi�cation of the acoustic mode damping time allows us to access the viscoelastic properties of 
the molecular layer by calculation of the mechanic eigenmodes of the layered system and their respective damp-
ing times. �e model takes into account a two layer system attached to a semi-in�nite substrate and the viscoelas-
tic properties are included by means of the standard viscoelastic solid model14 for the polymer layer. �is model 

Figure 2. Acoustic mode damping times as a function of mode frequency. �e respective APTES layer 
thickness is indicated by the color coding. Solid lines present the results of the viscoelastic modelling. Grey 
squares depict reproduced results from Hettich et al.13 for comparison. �e black dashed line shows the analytic 
results for a single gold layer on silicon and the dark blue line with circles depicts the calculated damping times 
for an Au/SiO2/Si layer system.

Figure 3. Damping time of thickness mode as a function of the APTES thickness. �e data range from 
48–55 GHz, the explicit frequency dependence is omitted here for better visibility. �e green cone shows the 
results of the viscoelastic simulation also in the range between 48–55 GHz.
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includes three parameters that describe the viscoelastic behaviour of the molecular layer: the elastic modulus L0 
for low frequencies, the elastic modulus L∞ for in�nitely high frequencies, and the intrinsic relaxation time τ. 
We obtain a readily usable analytic expression assuming that the gold mode frequency is only slightly in�uenced 
by the molecular layer. �is assumption is corroborated by measurements on patterned APTES layer systems15 
where we observed negligible frequency shi�s with or without APTES layer between the gold �lm and the sub-
strate. �e details regarding the theoretical calculations are given in the �eory section.

We use the APTES thickness dependence of the data centered around 50 GHz (Fig. 3) to �nd the best agree-
ment between our model and the experimental data. Due to a strong correlation between L0 and τ we choose L0 
to be in reasonable agreement with results reported in literature on solution deposited APTES layers where layers 
down to 110 nm thickness were studied16. �e found viscoelastic parameters are given in Table 1 and those used 
in the calculations are given in Table 2. A good agreement between the theoretical results shown in Fig. 2 (solid 
lines) and Fig. 3 (green cone) as well as for the gold mode frequency dependence and for the APTES thickness 
dependence is achieved.

An important �nding is the fact that the simulation does not require an explicit thickness dependence of the 
three parameters, i.e., one parameter set is su�cient to reproduce the experimental results in the range from 1.8 
and around 9 nm. �ere are too few measurements for thicker layers where the damping times seem to saturate 
in order to include them into the data �tting. �e extension to thicker layers is an important task for future work.

We also show the frequency dependence of the storage L′  and the loss modulus L′ ′  of the polymer layer in 
the investigated frequency range obtained by the viscoelastic model in Fig. 4(a). �is allows us to calculate (see 
�eory section) the frequency dependent sound velocity vAPTES and the acoustic absorption coe�cient α in the 
polymer layer. �ese are shown in Fig. 4(b,c), respectively. �e blue lines show the results obtained by the calcu-
lation performed with the data in (a) while the red lines show the results of an approximation to the used model 
that emphasises the underlying physics and will be discussed in the following.

Our approach yields acoustic sound velocities at 50 GHz which are similar to those found in the works of 
Morath et al.17 and Akimov et al.18. However, we �nd an increased acoustic absorption coe�cient in the polymer 
layer compared to their observations. Taking into account that the polymer layer shows a mainly viscous behav-
iour, i.e., L′ /L′ ′  ≈  0.1, the frequency dependent sound velocity as well as the absorption coe�cient are in a good 
approximation proportional to f1/2 (see �eory section) as depicted in (b) and (c). �e o�set in absolute values is 
on the order of 5% as expected by the L′ /L′ ′  ratio but the frequency dependence exhibits an excellent agreement 
with our �ndings. �e real and imaginary parts of the acoustic wavenumber are nearly equal.

This is an interesting result as it implicates that the observed acoustic propagation in the investigated 
nano-layers is characteristic to di�usion-type waves, such as transverse acoustic waves in viscous liquids or ther-
mal waves in solids19. �is �nding is in contrast to results obtained on much thicker polymer �lms in a similar 
frequency range where a linear17,18 or square dependence17 is observed.

In addition, this �nding also gives a possible explanation for the saturation e�ect observed for the damping 
times of thicker polymer layers. �e estimated penetration depth λ =  1/α of the acoustic wave in the polymer 
layer is around 15 nm which is close to our experimental observation. �us, if the polymer layer thickness exceeds 
15 nm the acoustic wave is not in�uenced any more by the substrate because it is attenuated before reaching the 
substrate. Our data shows that this regime begins around 9 nm. �us, strong attenuation of the di�usion-type 
acoustic waves in the molecular nano-layers studied here can provide complete isolation of the �lms from the 
substrates by molecular layers of 15 nm thickness.

It is tentative to attribute the mentioned di�erences in the sound absorption laws to the structural di�erence of 
the self-assembled APTES layers, studied by us, from the completely disordered glasses and polymers studied by 
Morat17 and Akimov18. However, the nanoscale origin/mechanism of the revealed acoustic absorption de�nitely 
requires deep theoretical study which is beyond the scope of the current report.

Theory
We provide in this section the theoretical framework that allows to model the frequency as well as the APTES 
thickness dependence of the fundamental gold �lm thickness mode. A mechanic continuum theory, where 
the viscoelastic properties of the molecule layer are taken into account, provides the acoustic eigenmodes 
of the three layer system with their respective damping times. The use of continuum mechanic model is 

L0 (GPa) L
∞

 (GPa) τ (ps)

0.48 300 70

Table 1.  Parameters of the viscoelastic simulation for the APTES layer.

Material Sound velocity vl (ms−1) Density ρ (kg m−3)

Gold 324025 1920025

Silicon 843017 234017

SiO2 585026 217026

APTES — 1000

Table 2.  Sound velocities and densities used for the viscoelastic simulation. �e frequency dependent sound 
velocity of the APTES layer is given by the viscoelastic simulation (Fig. 4(b)).
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justi�ed by experimental results corroborating the validity of such models down to few nanometer dimension of 
nano-objects20. We include the viscoelastic properties by the standard model14 and neglect in this description the 
native SiO2-layer covering the silicon substrate. �e sample geometry with the used de�nitions is shown in Fig. 5 
where the thicknesses of layer 1 and layer 2 are denoted by D and h respectively. �e layer densities are given by ρi, 
the sound velocities by vi and the wave numbers by ki =  ω/vi where ω =  ω′  +  iω′ ′  are the complex eigenfrequencies 
of the layer system. �e real part ω′  describes the eigenmode frequencies while the imaginary part ω′ ′  accounts 
for the damping of the mode.

�e acoustic eigenmodes and the respective damping time of the three layer system are then given by

Figure 4. Frequency dependence of (a) the storage modulus and loss modulus, (b) the sound velocity in the 
APTES layer, and (c) the acoustic absorption coe�cient in the APTES layer.

Figure 5. Schematic of the layer system and respective de�nitions for the theoretical modelling. 
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�e coe�cient R23 is the re�ection coe�cient for the acoustic wave incident from the molecular nano-layer, (2), 
on the semi-in�nite substrate, (3), while the coe�cient R21 is the re�ection coe�cient for the acoustic wave inci-
dent from the nano-layer on the �lm, (1), of �nite thickness, i.e., it accounts for the waves travelling inside the 
�lm and returning into the molecular nano-layer. Note, that the re�ection coe�cients introduced in Equation 2 
are de�ned for the mechanical displacement in the acoustic wave. Assuming perfect interface bonding, which is a 
reasonable assumption due to the strong interface coupling by the molecules, these are given by
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with the acoustic impedances Zi =  ρivi of the respective layers and Zij =  Zi/Zj. �e eigenfrequencies of the layer 
system and respective damping times can only be obtained numerically by solving
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However, an analytic solution for the special case when the eigenfrequency of the layer system is only weakly 
in�uenced by the molecular layer is presented in the following. For this special case the complex frequency can 
be written as

ω ω ω ω= + ∆ ′ + ∆ ′′i , (6)Au

where ∆ ω′  is a small deviation from the layer eigenfrequencies ωAu of a single layer system. �e eigenfrequency 
shi� ∆ ω′  and damping rate ∆ ω′ ′  can then be calculated from:

ω ω∆ ′ ≈ AIm( ) and (7)Au

ω ω∆ ′′ ≈ .ARe( ) (8)Au

In order to account for viscoelastic properties of the molecular layer a complex elastic modulus L =  L′  +  iL′ ′  is 
introduced for layer 2. �us the acoustic impedance can be written as
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�e standard model14 for the viscoelastic solid yields for the real and imaginary part of the longitudinal modulus L:
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where L′  is referred to as storage modulus and L′ ′  as loss modulus. �e moduli L0 and L∞ describe the elastic modu-
lus of the system for slowly and fast varying stress respectively, while τ describes the characteristic relaxation time 
of the system. �us the model has three free parameters L0, L∞ and τ that yield the viscoeleastic properties of the 
molecular layer. �e model yields results close to the analytic expression when no con�ned layer is present, i.e., 
just a gold �lm on a silicon substrate. �is is evident by the dashed line in Fig. 2, which shows the analytic results 
and is almost identical to the theoretical results we obtain for zero APTES layer thickness.

In the following we present some approximations and estimates to the discussed theory which result from the 
obtained viscoelastic parameters.

Estimates. The analyzed data yields L∞ ≈  300 GPa and L0 ≈  0.5 GPa, thus the ratio L∞/L0 ≈  600 and 

′′ > ′L L
15

2
 in the investigated frequency range allows us to estimate

′ ≈L L and (15)0

ωτ″ ≈ .L L ( ) (16)0

Consequently, we obtain for the sound velocity v2 =  vAPTES in the polymer layer
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From this follows for the wave number k2 and the acoustic absorption coe�cient α
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It is worth pointing out that we obtain a f 1/2 proportionality of the sound velocity and the acoustic absorption 
coe�cient in the APTES layer, which indicates a di�usion-type behavior of the compressional/dilatational acous-
tic waves in the studied molecular nano-layers.

Conclusions
In conclusion, we have investigated the viscoelastic properties of ultrathin con�ned polymer layers (APTES) by 
coherent acoustic phonon spectroscopy. �in polymer �lms in the range between 1.8 to 13.8 nm, i.e., for a thickness 
varying nearly one order of magnitude, are studied at GHz frequencies. We observe no distinct thickness depend-
ence of the viscoelastic properties of the layer below 9 nm but observe �rst indications of a change in these properties 
for thicker layers. �e obtained frequency dependent sound velocity between 2390–3730 m/s is in reasonable agree-
ment with earlier measurements in thicker layers. However, we �nd a higher acoustic absorption coe�cient in the 
polymer that follows a f1/2 dependency. �is is in contrast to reported �ndings of linear17,18 or quadratic17 depend-
encies. Our results indicate that the propagation of longitudinal acoustic waves at GHz frequencies in our molecular 
nano-layers resembles those of di�usion-type waves exhibiting nearly equal real and imaginary parts of the wav-
enumber. �e strong acoustic absorption and the newly observed acoustic properties of the investigated ultrathin 
polymer layers considerably expand the possibilities of their use in the acoustic and thermal design of nanodevices.

Methods
Sample Preparation and Characterization. Sample Preparation. All molecular layers are prepared on 
(100) oriented silicon wafers with a thickness of 500 µ m. �e wafer is cut into pieces of 0.5 mm ×  1 mm size. In 
order to protect the surface, the wafer is coated with a PMMA layer prior to the cutting. Several cleaning steps 
are conducted before the molecules are assembled. First, sonication in acetone is used to remove the protective 
PMMA layer and dirt particles. Subsequently the RCA (Radio Corporation of America)21 cleaning method is 
applied to remove organic and anorganic debris. �e cleaning steps are listed below in more detail:

1. 30 min ultrasonication in acetone
2. 10 min RCA cleaning in a solution of 5 H2O:1 H2O2:1 NH4OH at 150 °C
3. 10 min sonication in ultrapure water
4. 30 min in a solution of 6 H2O:1 H2O2:1 HCL at 150 °C
5. 10 min sonication in ultrapure water.
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A�er these steps the samples are dried with argon gas and are then transferred into an oxygen plasma cleaner 
to remove possible organic residues. �e samples are then treated with argon gas again and are transferred into a 
chamber with nitrogen atmosphere where they are immersed in the molecule solution consisting of 12 µ L APTES 
(purchased from Sigma Aldrich) and 50 mL toluene. �e immersion time can be varied to allow for a rough 
APTES thickness adjustment and ranges here from 1 h to 160 h. Rinsing with pure toluene and a further sonica-
tion process lasting 5 in chloroform a�er removing the sample from the nitrogen atmosphere eradicates residual 
non-bonded molecules. As a �nal step, a snowjet method22 is used to get rid of possible residual molecule con-
glomerates from the surface.

Characterization and Selection of Measurement Positions. �e index of refraction for APTES is very similar to 
that of native SiO2. �erefore, we measured the native SiO2 thickness on test samples which are cleaned in the 
same batch and use this value for the determination of the APTES layer thickness by ellipsometry. AFM measure-
ments reveal that our molecular layers exhibit uniform thicknesses on a 2 micron scale with thickness variations 
on larger scales. �is allows us to measure several molecular layer thicknesses on the same samples which is a 
major advantage as this rules out di�erences in sample preparation (which is known to be very sensitive) as origin 
of the observed e�ects. Additional friction force measurements show an overall coverage of the silicon wafer by 
the APTES layer in the limits of our resolution.

Special care was taken to identify molecular layer regions with uniform thicknesses by ellipsometry. Each 
sample was characterized at 36 positions. At each of these locations 5 measurements were taken and the areas 
which showed the most homogeneous thickness distribution in the respective area were chosen for further 
measurements.

Asynchronous Optical sampling. Our method of choice to conduct femtosecond time-resolved experi-
ments is asynchronous optical sampling (ASOPS)23. �is is a modi�ed pump-probe method where the time delay 
between the pump and the probe pulse is realized by a locked frequency o�set ∆ f =  5 kHz between the two used 
800 MHz Ti:sapphire oscillators. Time resolutions of sub-50 fs have been demonstrated for this kind of system24. 
�e results reported here are however limited to about 300 fs time resolution due to optical pulse dispersion in 
some of the optical components in our setup. �e optical spotsizes have a FWHM of about 2 micron which allows 
us to selectively address regions of homogeneous molecular layer thickness on the samples. �e experiments are 
conducted with pump and probe wavelengths of 790 nm and 820 nm, respectively, and allows to suppress residual 
pump light by color �ltering.
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