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A number of shear-flow phenomena can be explained qualitatively if turbulence 

is regarded as a continuous viscoelastic medium with respect to its action on a 

mean field. Conditions are sought under which the analogy is quantitative, and 
it is found that the turbulence must be fine-grained and the mean field weak. For 

geometrical convenience the turbulence is assumed to be nearly homogeneous 

and isotropic so that body forces are required to maintain it. The turbulence is 
found to respond initially to an arbitrary deformation as an elastic medium, in 

which Reynolds stress is linearly proportional to strain. Three processes that 

cause the resulting Reynolds stress to relax are distinguished: viscous diffusion, 

body-force agitation and non-linear scrambling. It is argued that, regardless of 
which process dominates, Reynolds stress evolves in a continuously changing 

mean field according to a viscoelastic constitutive law, relating stress to deforma- 

tion history by means of a scalar memory function. The argument is carried 

through analytically for weak turbulence, in which non-linear scrambling is 

negligible, and the memory function is computed in terms of the wave-number- 

frequency spectrum of the background turbulence. In the course of the analysis, 

a new type of Reynolds stress arises related to the passage of the turbulence 

through its sustaining environment of body forces. It is found that the mean field 

must be surprisingly weak for this ‘translation stress ’ to be negligible. Applica- 

tions of the viscoelasticity theory of turbulent shear flow are discussed in which 

body forces and therefore translation stress are absent. 

1. Introduction 

One can hardly watch a body of turbulent fluid, a wake behind a ship for 

example, without imagining that the chaotic and apparently fine-grained eddies, 

like crystals of a metal or molecules of a gas, are elements of a state of nature, and 

that the body as a whole is made of turbulence and possesses mechanical pro- 

perties intrinsic to its turbulent composition. Reynolds (1894) probably had some 

such description in mind when he defined turbulent stress by analogy with 

molecular momentum transport, but subsequent research has shown that there 

can be no comprehensive theory of Reynolds stress analogous to the kinetic 
theory of molecular viscosity. A gas is dominated at  the atomic level by thermal 
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chaos and is only weakly perturbed by macroscopic forces. In  the language of 

statistical mechanics, a gas is in contact with a ‘thermal bath ’, an inexhaustible 

source of chaos that prevents macroscopic perturbations from accumulating. 

Turbulence, on the contrary, is maintained usually by a mean field rather than 

by random body forces, which would simulate a thermal bath. The turbulence 

must be strongly coupled to the mean field that drives it and cannot acquire 

intrinsic mechanical properties. In  modern treatments of turbulent shear flow, 

the Reynolds stress appears as a purely formal consequence of ensemble- 

averaging the advection term in the Navier-Stokes equation. 

The intensity of the coupling between mean and turbulent flow can be 

represented by two dimensionless quantities: 

€ = E/L, 

the ratio of an eddy size I to a mean-field scale L, and 

CI. = A8, 

the product of a mean rate of deformation A and a turbulent relaxation time 8. 
If E - 1, then, at  any point, average turbulent properties depend on the whole 

mean flow rather than on local conditions alone. If a N 1, then the mean flow has 

a strong effect on the shape of the eddies. Casual observation often suggests that 

€,a < 1, in which case one could reasonably regard turbulence as a medium 

having intrinsic mechanical properties, in particular, a constitutive law relating 

Reynolds stress to deformation history. Careful measurements, however, always 

show that €,a - 1 for values of A and L related to the mean field driving the 

turbulence. 

In  spite of the fundamental difficulty that 8, a N 1, some intrinsic mechanical 

attributes of turbulence have been recognized. The Prandtl mixing-length theory 

is based on the fact that turbulence, in a steady mean flow, diffuses momentum 

and offers viscous resistance to shear. The rapid-distortion theory of Taylor 

(1935), on the other hand, implies that the initial response of turbulence to a 

sudden deformation is elastic, not viscous (Taylor dealt only with irrotational 

deformation, but the conclusion is general, cf. 0 3). The Prandtl and Taylor results 

are consistent under the assumption that turbulence responds elastically to  a 

deformation imposed within a time much less than a turbulent stress-relaxation 

time 8, but offers viscous resistance if the time scale of the mean field is long 

compared with 8. Clauser (1956) used the concept of relaxation time to justify 
the two-layer model of the boundary layer: the wall layer relaxes quickly and 

achieves local equilibrium, but a packet of eddies convected through the outer 

layer retains information about the state of deformation far upstream of its 

current location. Viscous response, elastic response, and a stress-relaxation time 

to determine which takes place in any particular instance are the attributes of 

a viscoelastic fluid. 
It has become apparent in the last decade that a viscoelastic constitutive law 

for turbulence might explain a number of seemingly unrelated phenomena. A 

mean cross-sectional flow develops when a turbulent fluid passes down a non- 

circular pipe. Rivlin (1957) noted that such a secondary flow implies the existence 
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of normal Reynolds stresses similar to the stresses that would develop if the fluid 

were non-turbulent but also non-Newtonian. Liepmann (1961) proposed that a 

non-Newtonian constitutive law for turbulence might be found that would 

account for the large-eddy structure and self-excited oscillations of turbulent 

boundary layers. Townsend (1966) studied the instability of the bounding 

surfaces of free turbulent regions-jets and wakes-under the alternate assump- 

tions that turbulence behaves as a viscous medium and as an elastic medium. 

The purpose of this paper is to unite these various ideas, so far as possible, into 

a viscoelasticity theory of turbulent shear flow. The theory improves upon the 
speculations of Rivlin and Liepmann by incorporating analytical results for the 

initial elastic response of turbulence. It is necessary to assume that B ,  01 < 1 in 

order to obtain a viscoelastic constitutive law from the equations of motion, so 

the mean field inducing the Reynolds stress cannot be regarded as the source 

of the turbulence. The fine-grained turbulence could be maintained against 

molecular dissipation in various ways : by a small-scale mean field, in which case 

the turbulence would be highly anisotropic prior to its interaction with a super- 

imposed large-scale mean field; by a flux of random vorticity from boundaries, in 

which case the turbulence would be inhomogeneous; by random body forces, a 

theoretically appealing, if physically unrealistic, source of turbulence. The third 

alternative is adopted here for the sake of geometrical simplicity, and the body 

forces are assumed to be statistically homogeneous and isotropic in space x and 

stationary in time t .  In  the absence of a mean field, the fine-grained turbulent 

medium is homogeneous, isotropic and stationary. The body forces themselves 

introduce a peculiar complication (translation stress), but the alternative sources 

of turbulence obscure with purely geometrical complications the fundamental 

processes of Reynolds-stress generation and relaxation. The flow is also as- 

sumed to be incompressible, although the results can be generalized easily for 

weakly compressible turbulence. The theory was developed originally to account 

for the damping of aerodynamic sound by the turbulence that generates it (Crow 

1967a). Eddies of Mach number M emit sound of wavelength L N M-Y, so 
e N M < 1 for low Mach number eddies. As an aerodynamically generated sound 

wave propagates outward from its parent eddy toward the boundary of a 

turbulent region, it decays as though it were propagating through a continuous 

viscoelastic medium. Such a situation might be realized in the interior of a star, 

where the turbulence actually would be driven by a random body force, namely 

buoyancy. The mathematical arguments set forth here have been reviewed else- 

where (Crow 1967 b)  in connexion with Burgers’ one-dimensional model of 

turbulence. 
In  practice, random body forces seldom drive turbulence embedded in an 

incompressible shear flow. The source of turbulence ordinarily is either a small- 
scale mean field or a flux of random vorticity from an intensely turbulent region 

near a solid boundary. Both sources operate in a boundary layer (Townsend 1956, 

p. 235). The highly sheared mean field in the wall layer generates turbulence, 

which then diffuses outward under its own induction to form the outer layer. It 
is reasonable to hope that a turbulent boundary layer reacts viscoelastically to 
a secondary large-scale deformation, in other words, that the Reynolds stress 
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increment induced by a large-scale deformation is related to the deformation by 

a viscoelastic constitutive law, generalized if necessary for an anisotropic turbu- 

lent medium. A viscoelastic constitutive law might be used to compute the 

Reynolds stress increment induced in a wind-driven boundary layer by an under- 
lying ocean wave. Such stress increments may have a substantial effect on the 

rate of growth of ocean waves (Miles 1967). With respect to its effect on the 

boundary-layer profile, the turbulence cannot behave strictly as a viscoelastic 
fluid. But with respect to a long ocean wave underneath, the turbulent boundary 

layer as a whole might behave as a viscoelastic slab being driven over the wave 

crests. Turbulence in the water might also respond viscoelastically to the passage 

of the wave. 

It is interesting to  contrast the viscoelastic behaviour of turbulence in the 

limits a -+ 0 and e+ 0 with the results obtained by Pearson (1959) for the limits 

a -+ and t: + 0. Pearson showed that the kinetic energy density of turbulence 

grows without limit under an intense sustained strain, even in the presence of 
viscosity. In  Pearson's limit a -+ 00, the mean field dominates the eddy structure, 

and the turbulence is able to break loose from viscous decay, which is the only 

relaxation process that Pearson retains. In  the opposite limit a+ 0 studied here, 

structural changes in the turbulence subside before they can couple with the mean 

field to create a Pearson divergence. 

2. Equations of motion 

The velocity field can be resolved into an average U (the large-scale mean 

field) and a turbulent fluctuation u. The kinematic pressure P + p  and body force 

F + f can be resolved similarly. The fluctuations and the averages both vary in 

space and time. Because of the separation of length scales implied by the condi- 

tion 6 = Z/L < 1, the averages can be taken over an ensemble of flows, or over 

volumes V satisfying Z3 < T' < L3 in a particular flow. The equivalence of the two 

kinds of average permits the fine-grained turbulence to be treated as a continuous 

substance undergoing a particular motion U. Brackets in the following equations 

denote ensemble or spatial averages. 

Define a mean rate-of-deformation tensor 

A,, = au,/ax, 
and a Reynolds stress 7ii = +TSii - (u,u~>, 

where T is the turbulent energy density (u2)/2 in the absence of a mean field and 
is constant in space and time. The assumption that a! 4 1 implies that 7ij < T, 
since the mean field, which is the exclusive source of anisotropy, can have only a 

small effect on the turbulence. Define I)/l)t as a total time derivative convected 

-=-+u.--. in the mean field only: ~a a 
~t at 3 axj 

Then the mean momentum and continuity equations are 

DU, ap arii -+- = --+VV~U,+F,, 
Dt ax, axj 

Ai, = 0, 
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where v is the kinematic viscosity. The fluctuation equations are 

8Ui 

axi 
- = 0. 

It is convenient to assume that the random field f is solenoidal so that V . f = 0. 

In  any case, f = V x Iz, + Vq5, and the potential q5 can be absorbed in the pressure. 

Doing so at this stage eliminates some manipulation with projection operators in 

$0 7-9. The fluctuation pressure can be written 

P = PT+PA, 

where 

and I 
According to (2.2) and (2.3), the sum p T + p A  preserves the incompressibility 

condition (2.4). pT is the component of pressure due to convective acceleration 

of turbulence in its own field, and pa is the component due to interaction between 

mean and turbulent fields. 
An equation for the Reynolds stress is obtained by multiplying (2.3) by uj, 

forming a new equation by transposing i andj, summing the results, and taking 

an average: 

+ (triple-interaction) + (viscous) + (body-force). (2.6) 

The term involving p a  has been isolated; a similar term involving p T  is included 

implicitly as EL triple-interaction term. The first two terms on the right of (2.6) 

represent stress generation by vortex stretching, as is made apparent in $3. 

The next term represents action of the mean field on an existing stress pattern, 

and the last three terms, which have been written symbolically, represent stress 

relaxation by non-linear scrambling, by viscous diffusion, and by body-force 

agitation respectively. They do not involve the mean flow explicitly, and they 

must sum to zero in the absence of a mean field, once the turbulence has attained 

equilibrium. 

3. Initial elastic response 

Suppose that prior to time zero the mean field is zero and the turbulence is 

resting in statistical equilibrium. The Reynolds stress T~~ is zero, and the last 

three terms in (2.6) sum to zero. At time zero, body impulses instantaneously 

generate a mean field. No random impulses are applied, so the turbulent velocity 

field u suffers no impulsive change. The only fluctuation quantity that changes 
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instantaneously is pa ,  which, according to the last of (2.5), jumps from zero to 

a value 

where r is the magnitude of r, and the integration extends over all space. The 

solution for p A  is valid only if the integral converges, but it must converge with 

probability one for a reasonable ensemble of flows. Immediately after the mean 

field is applied, therefore, 

where Bjn(r) = (uj(X)un(X+ r>>. 

Rjn is independent of X, since it is the correlation tensor of u evaluated at  time 

zero, when the turbulence is homogeneous. After a short time Dt, a stress 

has been generated. Equation (3.1) can be used to evaluate the pressure- 

interaction term in (3.2). The interaction pressurepA couples D T ~ ~ ( X )  to the whole 

field A,,(x + r) so that, in general, the Reynolds stress is a complicated non-local 
functional of the deformation field. 

Let us now introduce the assumption that e = l/L < 1. L is a distance over 

which Aij(x) changes significantly, and l is a length such that Rii(r) is small for 

r > 1. Then A,, can be taken outside the integral in (3 .1) :  

which is a linear function of the local value of the deformation rate. It is con- 

venient to express Ri, in terms of its spectrum tensor Qjn: 

Bj,(r) = Q i n ( ~ )  eiK.rdK. s 
After an elementary integration over r, 

an expression for the pressure-interaction term in (3.2) valid for homogeneous 

and fine-grained but otherwise arbitrary turbulence. Since the turbulent back- 
ground is supposed to be isotropic as well, the spectrum tensor has the form 

(3 .4)  

where E ( K )  is normalized so that its integral from K = 0 to 00 equals the total 
energy density T (Batchelor 1953, p. 49). The reIations 

(3.5) 

-L $ n,nj d~ = isij, 

ni ni n, n,dl = &Sii Sm, + Sf, Sin + Sin dim) 

471 
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can be used in (3.3) to integrate products of the unit vector n = K/K over all solid 

angles fz. For fine-grained, isotropic turbulence, 

Since the mean field is incompressible, the term involving A,, is zero. Equations 

(3.2) and (3.6) imply that a net stress increment 

D ' T ~ ~  = &T(A,, +A,,) Dt (3.7) 

has been generated by time Dt, the same stress that would have been generated 

in an elastic, isotropic medium having a shear modulus AT. 
Some parts of the preceding argument depend on the assumption that the 

turbulence is three-dimensional. The argument can be recast for two-dimensional 

flow, and the result is that the analogue of (3.7) in two dimensions is identically 

zero. The difference arises because the vortex stretching mechanism is absent in 

two dimensions. In  three dimensions, Reynolds stress is generated by systematic- 

ally stretching random vorticity. 

Suppose that a single column vortex stands vertically between two horizontal 

plates whose diameters exceed the core-diameter of the vortex. The fluid between 

the plates has density p, the vortex is assumed to be cylindrically symmetric, and 

the circulation around the vortex outside its core is I?. If the plates are pulled 

farther apart, then the pressure drops inside the core of the stretched vortex, but 

not in the surrounding potential flow. The pressure drop tends to suck the plates 

back together. It is easy to show that if the separation between the plates 

increases by a fraction A Dt, then the suction force increases by an amount 

Of = pr2A Dt/8n-, regardless of how the vorticity is distributed in the core. Df is 

independent of the sign of I' and is proportional to the strain A Dt. The vortex 

therefore behaves like a Hookeys-law spring. It is satisfying, if not quantitatively 

useful, to visualize turbulence as a tangle of vortex springs. When the turbulence 

is merely rotated (A,, +Aj, = 0, A ,  - A j ,  + 0) ,  no tension is generated, but when 

the turbulence is strained (A,  + A,, + 0) ,  then the vortex springs aligned with 

a principal axis of positive strain stretch, those aligned with a principal axis 

of negative strain slacken, and the net effect is that the deformation is resisted 

as though the tangle were a continuous elastic medium. 

4. Stress relaxation 

Suppose now that the mean field is decelerated to zero a t  time Dt. The only 

terms left on the right-hand side of (2.6) are the last three, whose sum has acquired 
a small value by time Dt due to the systematic deformation A,, Dt of the eddies. 

As time passes, the Reynolds stress decays under the influence of the three 

relaxation processes which the terms represent. At high Reynolds numbers, for 

example, the stress relaxes as the turbulent field scrambles partially aligned 

vortex springs (tendency toward isotropy). It is not possible t o  treat non-linear 

scrambling analytically, but it is possible to assert that if the stress continues to 
depend linearly on the strain imposed between times 0 and Dt, then 
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That statement follows from the isotropy of the background turbulence : since 

there is no inherent preferred direction, the principal axes of stress continue to 

be aligned with the principal axes of strain. %R(t) is some dimensionless scalar. 

According to equation (3.7), “t(0) = 1. If the turbulence was stable to begin with, 

then the stress must eventually relax back to zero, so YX(o0) = 0. If the turbulence 

is stable under the action of a steady but very weak mean field, then the integral 

relaxation time 

e = /: m ( t )  at (4.2) 

must be finite. Here the turbulence is assumed to be stable in that sense. 
Equation (4.1) is valid for some !JJl(t) whenever the turbulence is isotropic 

and c < 1.  Let us now assume further that a = A8 < 1 for a typical component 

A of a continuously changing deformation field A,(x, t) .  Then the mean field has 

only a small effect on the turbulence, and it is reasonable to assume that the mean 

field does not interfere with the processes that cause stress to relax, in other words, 

that %Jl(t) is independent of Aij .  Stress increments like (4.1) can therefore be 

summed for a continuously changing mean field to establish a constitutive law 

for incompressible, isotropic turbulence: 

Equation (4.3) relates the stress sustained by a packet of turbulence (a volume V 
such that P < V < L3) to its strain history. ‘Ds’ means that the integration 

follows the packet through the mean field. Since a < 1, the convected integral 

can be replaced with an integral a t  a fixed point in space, except in cases where 

the turbulence is subjected to a uniform translation as well as a weak deformation. 

Equation (4.3) is the constitutive law of a linear viscoelastic material. m(t) is 

a memory function for Reynolds stress and is supposed to depend solely on the 

nature of the background turbulence. In  so far as (4.3) is correct, a shear-flow 

problem reduces to predicting %V(t) in terms of properties of the random forces f. 

Because (4.3) is linear in the deformation field, it cannot account for the normal 

Reynolds stresses observed in turbulent flow through non-circular pipes (Rivlin 

1957). The normal Reynolds stresses depend on O(a) non-linearities, which have 

been neglected under the assumption that a < 1. There is, however, an easy way 

to generalize (4.3) so that it includes one O(a)  non-linearity, namely the action, 

represented by the third term in (2.6), of the mean field on an existing stress 

pattern. Instead of (4.3), try a constitutive law of the form 

t 

7 i j  = $ T I  m(t - 8 )  flirn(t, 8 )  f l j &  8 )  [A,&) + A,,(s)l Ds. (4.4) 
- w  

A total time derivative of (4.4) reproduces the first two terms on the right-hand 

side of (2.6) to 0(1 )  [equation (3.4) may not be valid to O(a)]  if only 

Sij(s,s) = Sij, all s, (4.5) 

and reproduces the third term as well if 

DX (t  s )  

Dt 
-ii, = -A&) Skj(t,  8) .  
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If the deformation rate A J t )  encountered by a packet of turbulence is given, 

then (4.6) can be solved in conjunction with (4.5) as an initial-value problem. 
It must be emphasized that (4.4) may not be quantitatively correct to O(a).  It 
takes no account of changes in the pressure-interaction tensor (3.6) caused by 

O(a) departures of the spectrum tensor ajrn from its isotropic form (3.4), and no 

account of any O(a) interference between mean deformation and stress relaxa- 

tion. As a non-linear viscoelastic constitutive law, however, (4.4) does give rise 

to normal stresses of a kind qualitatively consistent with those observed in 

turbulent shear flows (cf. $ 5 ) .  

5. Implications of a viscoelastic constitutive law 

A viscoelastic constitutive law admits the possibility of purely elastic or purely 

viscous behaviour, depending on the size of a typical frequency, I2 say, of the 

deformation that a packet of turbulence experiences as it is convected through 

the mean field. Equation (4.3) approaches an elastic limit as I28-+co and a viscous 

limit as Q8-t 0. 

Suppose first that d8 B 1, a situation compatible with the condition A8 4 1 

only if the turbulence undergoes very low amplitude, high-pitched oscillations. 

A passing water wave might impress such oscillations on the atmospheric 
boundary layer above the water or on the oceanic turbulence underneath. 

Choose co-ordinates moving with any over-all translation of the turbulence so 

that a packet of turbulence makes a small, oscillatory excursion D about its 

original position. ThenAij = a2Di/axjat, and the integral in (4.3) can be evaluated 

at  points fixed in space. It is easy to show that 

where G, is a turbulent shear modulus: 

G, = A T .  

The proof depends on the fact that Fln(t), in the limit BB-tco, drops very slowly 

from its value 'im(0) = 1 compared with the rapid and self-cancelling oscillations 

of D. One way of carrying out the proof is to  define %2(t - s) as zero for negative 

values of its argument, extend the upper limit of the integral in (4.3) to co, apply 

the Fourier convolution theorem, and observe that the Fourier transform of D 
overlaps with only the tail of the Fourier transform of 'im; the tail depends on the 

jump of %R(t - s) from 0 to 1 across t - s = 0, not on the subsequent relaxation 

profile. Equation (5.1) is the constitutive law of an incompressible, elastic 
medium. If molecular viscosity is neglected, then the equations of motion (2.1) 

and ( 2 . 2 )  take the forms 
a2D 
__ - GeV2D +- V P  = F, 
at2 

V.D = 0, 

so the turbulence can support transverse shear waves propagating at a speed 

c = (Ge)*. Moffatt (1965) has already called attention to that fact. 
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Consider next the opposite case a0 < 1. YJt(t-s) drops to zero in (4.3) before 

the deformation rate Aij(s) has time to depart from its value a t  s = t ,  so 

~ i j  = ve(Aij + Aji), 

ve = &TB. 

(5 .2)  

where ve is an eddy viscosity [cf. equation (4.2)]: 

Turbulence passing through nearly relaxed states behaves as an incompressible 

Newtonian fluid, provided that a < 1, with an eddy viscosity v, proportional to 

the integral relaxation time 19. Viscous behaviour is a natural consequence of a 

relaxation process, Water, for example, ordinarily is considered to be a viscous 

A uid, but it is composed of loosly defined crystals held together by the same forces 

that bind crystals of ice. Water crystals and ice crystals both accept stress 

elastically. The difference is that stressed ice crystals are locked rigidly in place, 

whereas water crystals are knocked around and broken up quickly by thermal 

agitation. Ice has a very long relaxation time and is elastic; water forgets quickly 

and is viscous. 

Suppose that A0 and a0 are comparable, are fairly small, but are not negligible. 
Equation (4.4), in so far as it is valid, describes the resulting non-Newtonian 

contributions to the Reynolds stress. The integral can be evaluated to any 

desired order in a by expanding Amn(s) and Sim(t, s )  as Taylor series in powers 

of (t  - s). To order a2, 

where Tjms is an operator, 

(5.3) T i j  = Ve %jmn{Amn + Anm), 

Timn = S,jmSjn - kO(SimAj, + SjnA,j,+ Si,Sj,[D/Dt]), 

involving the dimensionless constant 

The assumption that k is finite imposes a stronger restriction on the stability of 

the turbulence than does (4.2). As anexample of the use of (5.3), consider a steady, 

parallel shear flow in which the only non-zero component of Aij (x)  is A12(x2). 

According to (5.3), the shear stress T~~ = T~~ = veA12, as inNewtonian turbulence, 

but the normal stress rI1 = - 2v,k19Af2; all other components of stress are zero. 

Those results happen to be exact consequences of (4.4), true to all orders in a. 
The mean-square longitudinal fluctuation (u:) therefore grows with A;2, and the 

mean-square transverse fluctuations (uf) and (u:) retain their equilibrium 
values. The conclusion is qualitatively consistent with observations of the high- 

shear region of boundary layers, where longitudinal fluctuations greatly exceed 

transverse fluctuations (Townsend 1956, p. 254). 

6 Linear relaxation in weak turbulence 

The analysis of 0 3 establishes the value of the memory function %(t) at one 

time only, namely YJt(0) = 1. The subsequent behaviour of %(t)  depends on the 
three relaxation terms written symbolically in (2.6), the most significant of which, 
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the triple-interaction term, is related to the mathematically intractable process 

of vortex scrambling. Relaxation by viscous diffusion and by body-force agita- 

tion are tractable, however, and m ( t )  can be computed in the unlikely circum- 

stance that those linear relaxation processes are dominant. It is instructive to 

check the assumptions underlying (4.3) by performing the computation. 

The triple-interaction, viscous-diffusion, and body-force terms in (2.6) are of 

orders u3/l, vu2/12 and u f ,  respectively. Relaxation by non-linear scrambling is 

therefore negligible if either u < v/l  or u2 < v, which of course are the same condi- 

tions that permit the non-linear advection terms to be dropped from the fluctua- 

tion momentum equation (2.3). Since the non-linear advection terms are 

negligible, the body force f must balance either viscous damping, in which case 
f N vu/P, or acceleration, in which case f N wu, where w is a typical frequency of 

the turbulent motion. The conditions for non-linear scrambling to be negligible 

are therefore u < v/1 or u < wl. The former corresponds to heavily damped turbu- 

lence and the latter to turbulence driven a t  a very high frequency, much higher 
than the frequency uI1 associated with non-linear advection. The two inequalities 

represent two possible types of weak turbulence. 

Suppose that equations (2.3)-(2.5) have been linearized with respect to terms 

quadratic in u. Let us single for study the packet of turbulence that was centred 

at  x = 0 in the distant past. By time t the packet is centred at  some new location 

x = D(t). It is convenient to transform the linearized equations to a co-ordinate 

system g = x-D(t) 

fixed to the centre of the packet and moving without rotation. In  the vicinity of 

the packet, the mean velocity U can be expanded as a Taylor series in g :  

where dD,(t)/dt is the velocity a t  the centre of the packet, A,,(t) is the local 

deformation rate, and etc., are higher-order rates of distortion. If e < 1, the 

turbulence feels a uniform strain rate A,(t), higher-order interactions with 

Bijk(t), etc., being inconsequential. Under the assumption that e < 1, the 

linearized momentum equation in moving co-ordinates is 

where u is now a function of g and t, and the Laplacian involves derivatives with 

respect to 5. The linearized version of (2.5), 

maintains incompressibility if the body forces are solenoidal. Equations (6.1) 

and (6.2) are mutually consistent approximations of (2.3) and (2.5). They can 

be derived more rigorously, in the limit e+O, as the zeroth-order terms in 

co-ordinate expansions of the linearized versions of equations (2.3) and (2.5) 

(cf. Crow 1967b). Notice that no assumption has been made so far about the 

size of a. 
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The dependence of f on x = g + D  has been retained in (6.1), because the 

statistical properties of f are most naturally referred to a fixed co-ordinate 

system. If the random forces were to drift with the mean field (that is, if the mean 

field were to induce a statistically significant dispersion relation between the 

frequency and wave-number of the space-time spectrum off), then the force field 

itself would have a memory, and the constitutive law for Reynolds stress would 

reflect that complication. In  some situations the forces would be convected: 

f might be a buoyant force due to random heating in the fluid, for example. The 

analysis can be modified easily for such cases. 
Whenever stress relaxation by non-linear scrambling is negligible, (6.1) and 

(6.2) can be used to find the Reynolds stress analytically. The stress can depend 

only on Aij(t)  and Di(t) under the present assumptions. In  so far as the Reynolds 

stress depends on Di(t), the viscoelasticity model (4.3) is inadequate. 

7. Fourier analysis of the linearized problem 

The velocity and body-force fields can be written in the form 

U(g, t )  = 

f(x, t )  = 

V(K,  t )  e i K V g d K ,  

g ( K ,  t )  eiUexdu, 

s 
s 

where the integrations are carried out over all wave-numbers u. The Fourier 

space transforms V(K, t )  and g ( K ,  t )  are to be understood as generalized functions, 

representing inverse transforms like 

evaluated over arbitrarily large volumes V .  The Fourier transformation of (6.1) 

with respect to 5 is 

essentially a wave equation in K, t space, with characteristic curves defined by 

d ~ $ / d t  = -Ant j ( t )~ ,%.  The pressure equation (6.2) has been used to eliminate the 

Fourier transform of p ,  so (7.1) automatically preserves the Fourier-transformed 

incompressibility condition K ~ V ~  = 0. To show this, one need only form the scalar 

product of (7.1) and K ~ ,  use the identity 

and remember that A,i = 0 for an incompressible mean field and K i g i  = 0 for 

solenoidal body forces. 

If Aij and Di are zero, then (7.1) can most easily be solved by transforming it 
again with respect to time. The resulting equation involves the space-time 

Fourier transform h ( K ,  w )  of f(x, t ) ,  where 

f(x, t )  = d~ dwh(ic, w )  ei(u-x+wo. s s  
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Since f is homogeneous and stationary, its correlation tensor 

Qij = ( f i ( x , t ) f j ( x + r , t + ~ ) )  

must be a function of r and s only, and it must also be true that 

13 

C?ij(r, 8) = &ji (  - ri - s)- 

But Qii(r, s)  = d~ 1 d ~ ’  d.1 dw’(hi(~‘ ,  w ’ )   hi(^, 0)) 

x e x p { i ( K + ~ ’ ) . x i - i ( W + w ’ ) t + i ( ~ . r + W s ) } .  
It follows that 

where ~ ( K + K ’ )  is a three-dimensional delta function, ~ ( w + w ’ )  is a one- 

dimensional delta function, and r i j (K,  w )  is a wave-number-frequency spectrum 

tensor satisfying 

I f f  is solenoidal and Qcj(r ,  s) is isotropic for all time separations s, then 

(hi(K’, W’)hj(K, W ) )  = r i j ( K ,  W )  6 ( K  + K’) 6 ( W  + W ’ ) ,  ( 7 4  

(7.3) rji( - K, - W )  = r i j ( K ,  W ) .  

by analogy with (3.4). The quantity K is the positive magnitude of K. The 

frequency w may take on either sign, but the symmetry condition (7.3) implies 

that 

The spectrum function G has been normalized so that 

G(K, - W )  = G(K,  w ) .  (7.5) 

The condition that &(r, s) is isotropic for every value of the time delay s is more 

restrictive in principle than the classical isotropy condition that no direction of a 

random field is distinguished at a particular time. Isotropy of &(r, s) follows if 

no direction can be distinguished given the whole history of the random field f ;  if, 

at each frequency, no wave-number direction is preferred. I f f  were not isotropic 

in this more restrictive sense, then the force field would have a statistically dis- 

cernible drift velocity. Elongated contours of r i j (K,  w )  would distinguish a 

preferred frequency W(K) for each wave-number K, and eddy formations 
characterized by that wave-number would tend to drift at  a velocity dw/dKi. 

If A, and Di are zero, then the Fourier time transform of equation (7.1) is 

(if3 f YK’) Wi = hi, 

where W(K,W)  is the time transform of v ( K , ~ ) ,  in other words, the space-time 

transform of the velocity u(x, t) .  According to (7.2) and (7.4), 

(Wi(K‘, W ’ )  Wj(K, W ) )  = (Dij(K, W )  6 ( K  + K’) 6 ( W  + W ‘ ) ,  (7.6) 

for a wave-number-frequency spectrum tensor 

where G(K,w)  = [ ( v K ~ ) ~ + w ~ ] E ( K , w ) .  
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Equation (7.5) implies that 

E ( K ,  - W )  = E ( K , W ) .  (7.9) 

Thus a force field whose spectrum is given by (7.8) maintains weak turbulence 
with a spectrum E ( K ,  w ) ,  and the turbulence is isotropic at all frequencies. The 

spectrum function E(K,  w )  is normalized so that 

T being the turbulent energy density. 

8. Translation stress 

Equation (7.1) simplifies to 

if the turbulence is convected without deformation through its environment of 

body forces. The solution is 

vi(x, t )  = exp {ix. D(t - s )  - w 2 s )  g i ( K ,  t - s )  ds 
!Om 

for arbitrary initial conditions in the distant past. Thus 

ui(5, t )  = dx  dw dshi(~,~)exp{i~.[D(t-s)+~]+iw(t-s)-v~2s}, s s s: 
where the Fourier time transform h ( K , W )  of g(x,t) has been introduced. Ac- 

cording to equations (7.2), (7.4), and the symmetry condition ( 7 4 ,  

where 

and 

for an arbitrary vector a. The integral in the definition of Pij is carried out over 

the unit sphere, and n is the unit vector normal to the sphere. It is easy to show 
that 

and, in particular, pij(0) = Sij /3 .  

In  the absence of a mean field of deformation, ( u i u j )  depends on the displace- 

ment history of the turbulence. To the extent that (u iu j )  departs from its 

equilibrium value 2T13,~/3, a Reynolds stress develops that a viscoelasticity model 
cannot explain. Suppose, for example, that dD/dt = D06(t), so the turbulence is 
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abruptly displaced a vector distance Do through its environment of body forces. 

Equations (7.8) and (8.1) imply that 

rij = 4/om/r E ( ~ , w ) e - ~ ~ ~ ~ ( c o s w t - e - ~ " ~ ~ )  [ S i , / 3 - P i j ( ~ D o ) ] d ~ d w  (8.2) 

after t = 0. If the co-ordinates are chosen so that the translation occurs along the 

q-axis, then Do = Doel, and 

0 

Sij/3 - pij(.D0) = 

where 
sin ( K D ~ )  cos ( K D ~ )  - 

WOl2 ' 
Pl1 = 

1 sin(KDo) 
P 2 2  = P33 = 2 [ (KDo) -all] 

The stress tensor given by (8.2) appears as a system of purely normal stresses in 

co-ordinates aligned with the flow and is therefore fundamentally unlike a shear 

stress. It is zero immediately after t = 0, as it must be according to the argument 
of $ 3  that stress responds instantaneously only to strain, and it tends to zero as 

t -+ 03. It is fully isotropic and is independent of Do if Do/k B 1, since P i j ( ~ D O )  then 

undergoes high-pitched, self-cancelling oscillations during the integration over K .  

It attains a maximum value of order T(Do/l)2 if Doll < 1. If the field f were not 

isotropic at all frequencies, then (8.1) would contain an additional term anti- 

symmetric in KAD, and the stress due to a small, abrupt displacement would grow 

linearly with Do/Z. 
Displacement alone, therefore, induces a delayed-action 'translation stress ' 

depending in a highly non-linear fashion on displacement history. Translation 

stress arises because a moving packet of turbulence sees a non-isotropic field of 

body forces. The forces appear to have a statistically discernible drift velocity 

that distinguishes the axis of translation. The eddies distort accordingly and 

sustain a Reynolds stress. For relatively slow displacements, the translation 

stress is of order T (  U q l ) 2 ,  U78 being the distance travelled during a relaxation 
time. Since U is typically of order AL, 

(translation stress) N ( ~ / E ) ~ T .  (8.3) 

If the turbulence is convected abruptly over many correlation lengths I ,  then the 
correlation (u . f) maintaining the turbulence in energy-equilibrium suddenly is 

broken, and the turbulence decays until (u . f) builds up enough to exceed the 

rate of energy dissipation. That is the meaning of the isotropic limit of (8.2) for 

Do/l --f 00. A viscoelasticity model is appropriate, in the presence of body forces, 

only when strain organizes the eddies more effectively than translation. That 

happens (provided f is isotropic) when the mean field is sufficiently weak, since 

translation stress then depends quadratically on the rate of displacement, but 

shear stress depends linearly on the rate of strain. 
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9. Shear stress 

It is now necessary to deal with equation (7.1) for a small but otherwise general 

deformation rate Aij(t). In  certain special cases involving time-independent Aij, 

it  is possible to treat (7.1) as a wave equation in K, t space and solve it analytically 

by the method of characteristics [cf. Crow (1967 b) and Moffatt (1965), where an 

approach equivalent to the method of characteristics is used to deal with the 

case A,, 4 01. In  general, however, the complicated geometry of the charac- 

teristic curves excludes the possibility of a closed-form solution. But none is 

needed. If the exact solution for Reynolds stress were known, it would have to 

be linearized on Aij anyway to resemble a viscoelastic constitutive law. It is 
sufficient to write v as a perturbation series, 

v=vO+vA+ ..., 
comprising terms of successively higher order in a. In  particular, vA N O(avo). 
The terms satisfy a hierarchy of equations obtained from (7. I )  : 

and so on, where qjmn denotes the operator 

The Reynolds stress likewise can be expressed as a series: 

'ij = - (u$%; + u:uff) + . . . , 
where u0 and uA are the inverse transforms of vo and vA. The first term in the 

series (9.2) leads to alinear constitutive law of the form (4.3). Higher-order terms 

presumably correspond to non-Newtonian effects partially represented in (4.4). 

Let us ignore those terms and, in order to isolate the effect of shear, assume that 

D changes very slowly. A slowly changing phase K . D is dynamically irrelevant, 

so vo is the Fourier space transform of a field uo of turbulence in equilibrium. The 

statistical relationship between u0 and f was discussed in 8 7. Since uA depends 

on the interaction between Aii and u0 [cf. equation (9.1)] but does not depend 

explicitly on f, no further mention of the body forces need be made. The Reynolds 
stress given by (9.1) and (9.2) depends only on the deformation history of the 

turbulence and on its equilibrium structure. 
The solution of (9.1) is 

w$(K, t )  = e-vx2SAm,(t - s )  S ~ & ~ ~ { W ' ~ ? ( K ,  t - s)}ds c 
for arbitrary conditions in the distant past. Thus 

u$({, t )  = d K  dw ds exp { - w 2 s  + iw( t  - s) + i ~ .  {I s s /om 
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where vo has been expressed in terms of its Fourier time transform wo. Integra- 

tion by parts over wave-number space yields 

u t ( g , t )  = d K  dw dsexp{-VK2s+iw(t-s)+iK.~}~,,(t-s)Kij,,~~(K,~), s s 1: 
where Kiimn is the algebraic multiplier 

(9.3) 

By definition, 

u;(g, t )  = du’ dw’wjO(u’, w ’ )  exp {id. g + iw’t}. s s  
Therefore 

x (1  + v ~ ~ s ) e - ~ ~ ~ ~ c o s w s [ A ~ ~ ( t - s ) + A ~ ~ ( t - ~ ) ] ,  (9.4) 

according to the incompressibility condition ( 2 . 2 ) ,  the geometrical relations ( 3 4 ,  

the homogeneity and isotropy conditions (7.6) and (7.7), and the symmetry 
condition (7.9). The symmetry condition plays a central role. If the spectrum 

tensor Q i j ( ~ ,  w )  were not isotropic at  each frequency w ,  then (9.4) would contain 

an additional term, linear in g, representing translation stress generated in the 

outer regions of the packet, whose centre, by assumption, is moving only slowly. 

If a preferred direction could be distinguished by watching the equilibrium 

turbulence over a period of time, then the effects of translation and shear would 

be inseparable. 
Equations (9.2) and (9.4) yield a constitutive law of the form 

W 

r i j  =  AT^ m(s) [Aij ( t  - s)  + Aji( t  - s ) ]  as, 

which is equivalent to (4.3), since the analysis has been carried out in co-ordinates 

moving with the packet of turbulence. The memory function is determined 

explicitly in terms of the wave-number-frequency spectrum of the background 

turbulence: 

0 

The integral relaxation time 0 is found by integrating m(s) over s: 

The integrand of (9.5) contains the factor ( 1  + YK%) exp ( - VK?S),  representing 
stress relaxation by viscous diffusion, and the factor cos wa, representing relaxa- 

tion by random agitation from the body forces. If the contribution of molecular 
diffusion is small, then 

2 Fluid Mech. 33 
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for an equilibrium field u. In  that case, " l ( s )  is just the Eulerian time correlation 

of u, a result that makes qualitative sense even for strong turbulence. 

These results show that shear stress does indeed evolve according to a linear 

viscoelastic constitutive law, provided that the turbulence is weak, that e and a 
are small, and that the turbulent packet in question translates slowly enough 

through its sustaining environment of body forces. 'Slowly enough ' means that 

translation stress is locally much smaller than shear stress. But 

(shear stress) N aT. (9.7) 

Judged from the order-of-magnitude estimates (8.3) and (9.7), translation stress 

is negligible compared with shear stress everywhere in the flow (rather than 

merely at  isolated points where dD/dt happens to be especially small) only if the 

mean field is so weak that a Q e2, 

10. Concluding remarks 

The results of $ 9  show that weak turbulence maintained by body forces can 

behave viscoelastically, but only under three conditions. First, the turbulence 

must be fine-grained, e < 1, so that second- and higher-order derivatives of the 

mean field can be disregarded in equations (6.1) and (6.2). Second, the rate of 

deformation must be small, a < 1, so that equation (7.1) can be solved 

by perturbation methods and higher-order terms in the series (9.2) for 
Reynolds stress can be neglected. Third, the mean field must be sufficiently 

weak that the effect of translation on the eddy structure is negligible, since 
otherwise translation stress dominates shear stress. The third condition is 

satisfied everywhere in the flow only if a < e2, a severe inequality that 
overrides the second condition. The viscoelastic constitutive law (4.3) was 

originally derived by combining a general result for the initial elastic response of 
turbulence with qualitative arguments about the subsequent relaxation of 

Reynolds stress, arguments independent of the actual relaxation mechanisms. 

The arguments appeared to be justified if only €,a: < 1. The work of @6-9 

casts those arguments into quantitative form, for turbulence so weak that only 

the linear relaxation processes of molecular diffusion and body-force agitation 

need be considered, and shows that the arguments are fully justified only if 

e Q 1 and a Q €2. The surprisingly severe restriction on a is necessary to eliminate 

translation stress, a delayed-action non-linear response that could not have been 

anticipated from the initial elastic response of turbulence. It is reasonable to 
assume that the restrictions e < 1, a: Q e2 apply also to the viscoelastic behaviour 

of strong turbulence whenever the presence of body forces must be taken 

seriously. In  a mean field of vanishing strength, the Reynolds stress would evolve 

according to the constitutive law (4.3), with a memory function " l ( t )  depending 

primarily on relaxation by non-linear scrambling. In  practice, however, a rarely 

would be much less than e2, and the effect of forcing the turbulence through a field 

of body forces wouId dominate the effect of straining it. 

What saves (4.3) from being an academic curiosity is that it may provide 
a reasonably accurate description of a body of turbulence that is not quite 

homogeneous and isotropic, but is driven by means more realistic than body 
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forces, by a flux of random vorkicity &om the vicinity of a solid boundary, for 

example. Translation stress is strictly an artifact of body forces, not an intrinsic 

non-linearity of the kind represented in (4.4). If the body forces can be eliminated, 
then the condition a < e2 can be relaxed back to a < 1, or perhaps even to a 5 1 

with the aid of a non-linear viscoelastic constitutive law of the type (4.4). 

Nowhere in the course of the analysis of shear stress in $9 did the body forces 
appear explicitly. Equation (9.1) is valid if ,a < 1 and equation (9.3) follows 

directly from it regardless of what is assumed about the background field uo. 
Body forces intervene betweed (9.3) and (9.4) only in the sense that they 

guarantee a rigorously homogeneous and isotropic u0. If u0 can be supposed 

sufficiently homogeneous and isotropic on other grounds, then (9.4) follows any- 

way [more correctly, the analogue of (9.4) for streng turbulence follows anyway, 

since there are no other grounds than body forces for assuming weak turbulence 

to be homogeneous and isotropic; only in strong turbulence can random vorticity 

propagate by self-induction away from a boundary]. 
Equation (3.7), which gives the initial response of turbulence of any strength 

to an arbitary small deformation, and (9.5), which describes the relaxation of 

Reynolds stress in weak turbulence, are the main quantitative results derived in 

this paper. It remains to consider whether the memory function W(t) can be 

predicted for strong turbulence. An expression analogous to (9.5) is needed, 

relating W ( t )  to some relatively simple properties of the background turbulence. 

The expression might have to incorporate more complicated statistical pro- 
perties than the wave-number-frequency spectrum E(K,  w ) ,  but it may be that 

turbulence attains equilibrium states determined more-or-less uniquely by the 

spectrum, in which case some non-linear functional of E ( K ,  w )  alone would appear 

in the analogue of (9.5). Some of the quasi-analytical theories of decaying 

homogeneous turbulence probably could be modified to predict W(t) in stationary 

turbulence. The memory function W(t )  appears to be closely related to 
Kraichnan's impulse response function, for example. Predicting W ( t )  should be 

just as difficult as predicting the energy content of freely decaying turbulence, 

however, so for the time being W(t) is best regarded as a scalar memory function 
to be found by a suitable relaxation test on the basis of (4.1). The major con- 

ceptual advantage of a viscoelasticity theory of turbulent shear flow is that it 

enables us to separate the aspect of Reyfiolds stress evolution that can be treated 
analytically, initial elastic response, from the aspect that as yet cannot, return 

to isotropy under non-linear scrambIing. 
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