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Abstract. A general analysis is given of the propagation of surface waves over a
half-space of homogeneous isotropic linearly-viscoelastic material. Particular emphasis
is placed on the properties of the particle paths. The detailed examination of particular
models shows that (in contrast with elastic materials) (i) more than one surface wave
may be possible; (ii) the waves may be either direct or retrograde at the surface; (iii) the
motion may change sense at many or no levels below the surface; (iv) the wave speed
may be greater than the body-wave speeds.

1. Introduction. It is known [1, 2] that a Rayleigh wave may always propagate over
the surface of a semi-infinite, isotropic, homogeneous, linearly-elastic body if the strain-
energy density of the material is positive definite. Moreover, as had been conjectured
by Rayleigh [1], only one root of the secular equation corresponds to a displacement
field that is admissible in the sense that it decays exponentially with distance from the
surface [3]. Similar results have been proved for anisotropic elastic materials [4, 5, 6].
Thus for elastic materials there is one, and only one, possible Rayleigh wave. The analysis
presented here will show that the situation is very different for viscoelastic materials.

Plane waves in viscoelastic materials have been discussed by many authors, including
Hunter [7], Lockett [8] and Hayes and Rivlin [9, 10, 11], The propagation of Rayleigh
waves has been examined by Bland [12] and Caloi (as reported in [13]). Caloi was con-
cerned with the perturbation to the elastic solution caused by the presence of small
viscous damping in Voigt solids. Bland derived the secular equation for Rayleigh waves
using the correspondence principle. He then raised the question of the number of admis-
sible roots of the secular equation with the comment [12, p. 75]: "It has not yet been
shown that for any viscoelastic material there is one and only one such root." We show
below that in many cases (including that considered by Caloi) there are two admissible
surface waves.

In Sees. 2 and 3 we introduce the basic equations governing the motion of a Rayleigh
wave propagating over the surface of a semi-infinite, homogeneous, isotropic, linearly-
viscoelastic body. The cubic secular equation determining the wave's slowness component
along the surface is derived in the usual way. The coefficients of this equation depend
on the frequency-dependent complex Lam6 moduli X, /x of the material. Hence the slow-
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ness is complex, in general, indicating attenuation with distance. In Sec. 4 we show that
the paths followed by particles in the wave are generally ellipses, and that the orientation
of the axes of the ellipse varies with depth, but tends to a constant orientation at great
depth. Particular attention is paid to the sense in which the ellipse is described, whether
retrograde or direct, and it is shown that this sense can change at only a finite number
of levels below the surface.

In Sec. 5 we consider the first of two particular models. It is assumed that the real
parts \+, n '' of the Lame moduli are equal and that by comparison with them the imagin-
ary parts X~ n~ are very small. This corresponds to the addition of small viscous damping
to one of the cases for elastic bodies treated by Rayleigh [1], The equations are linearized
in terms of a small parameter characterizing the ratio of viscous to elastic effects. It is
found that the nature of the admissible solutions depends on the ratio of the imaginary
parts For all values of this ratio there is a surface wave whose characteristics
are close to those for the corresponding elastic body. We call this the "quasi-elastic
wave". Its speed is less than that of either the P or S body-waves in the material. For
a certain range of \~/n" there is also present a second solution, which we call a "visco-
elastic wave" whose speed is intermediate between the P and S wave speeds. For another
different range of A~/m~ there is also a viscoelastic surface wave whose speed is greater
than the P or S wave speeds. This may be significant in the analysis of arrival times in
seismic data.

The characteristics of viscoelastic and quasi-elastic waves are quite different. The
quasi-elastic wave is retrograde at the top surface and the sense of the motion changes
once from retrograde to direct at a given level below the top surface. The elliptic particle
paths have their major axes vertical, and the motion decays rapidly with depth. In
contrast, the viscoelastic waves are direct at the top surface and there may be many
changes in the sense of the motion, or none at all, depending on the ratio A~/m~- For
one range of values of this ratio, the major axis of the elliptical particle paths oscillates
back and forth between two limiting orientations with increasing distance from the
surface. These limiting orientations slowly move towards one another to give a constant
asymptotic orientation at great depth. Whenever the major axis takes on one of the
limiting orientations the sense of the motion changes. But for the other range of \~/n~
for which a viscoelastic wave is possible, the orientation of the major axis of the ellipse
is essentially constant, inclined at 30° to the surface, and the sense of the motion never
changes. In both cases, the rate of decay with depth of the viscoelastic wave is far less
than that of the quasi-elastic wave.

These analytic results are confirmed and supplemented by detailed numerical
computations. The resulting graphs and tables show the striking contrast between the
behaviors of the two types of wave.

The second model, discussed in Sec. 6, is that of an incompressible material, also
considered in detail by Rayleigh [1], In this case we make no assumption about the
size of the viscous damping, and we find that the number of possible solutions depends
on the ratio For one range of values only one wave is possible, but outside this
range there are two waves. One of these waves is retrograde at the top surface and the
other direct. An example is quoted that shows that this may sometimes be the only
essential difference between the two waves, apart from their speeds; in all other respects,
e.g. rate of decay with depth, attenuation, number of changes of sense, they are remark-
ably similar.
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Finally, in Sec. 7 we indicate that for wide ranges of the moduli it is possible to have
more than one wave. So our detailed results would seem to be typical. We intend to
pursue this matter in a further study. In general X and n depend on the frequency of
the wave. Thus the number and nature of the Rayleigh-wave solutions for a given
material will generally depend on the frequency.

It should be remarked that the analysis here will apply equally well to the linearized
equations governing the behavior close to the undeformed state of a Rivlin-Ericksen
material [14] or a material with memory [15].

2. Basic equations. In a homogeneous linearly-viscoelastic material the stress
crij at time t, referred to rectangular Cartesian coordinates xt , is given by

(r,,-(0 = ciikmekm(t) + J fiikm(t ~ r)ekm(r) dr. (2.1)

Here ekm(r) is the infinitesimal strain at time r, defined in terms of the displacement
Wi(r) by

2ekm(r) = uk,m(r) + um.k{r), (2.2)

where k, denotes d/dxk . cijkm are material constants and fakm(t — r) are material
functions of t — r. ciikm and jiikm satisfy the symmetry relations

Ciikm Ci ikm Ciimk ; fijkm fjikm fijmk ' (^'^)

In the usual complex notation, a damped, elliptically-polarized sinusoidal wave train
with real angular frequency o has the displacement

Mi(r) = Ui exp iio(svxv — r), (2.4)

where s, is the constant complex slowness vector and [/, is the constant complex ampli-
tude vector. From (2.1) and (2.2) we find

au{t) = iubiikmUksm exp iw(svxp — t), (2.5)

where

= ciikm + / fnkmit ~ t) exp iu(t - r) dr. (2.6)
J — CO

In an isotropic material bijkm has the form

biikm = n(&ik Sjm + $,k Sim) + X Skm Sfj , (2.7)

where X and n are complex functions of oj. In order that the energy dissipated over a cycle
be non-negative it is necessary that1

n~ < 0, 3X~ + 2n~ < 0. (2.8)
The real parts X+, ^ of the complex moduli represent the elastic-like behavior of the
material and are assumed to satisfy

/ > 0, 3X+ + 2m+ > 0. (2.9)

1 Throughout the paper superscripts + and — will be used to denote the real and imaginary parts
respectively of complex numbers or vectors.
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In the special case of the Voigt model [12] for a viscoelastic material

X = —ojX', — —to//, (2.10)

where X', yu' are material constants. If n+ = X+ = 0, the Voigt material is a Newtonian
fluid.

For a purely elastic material \~ = p.~ = 0.
In the absence of body forces the equations of motion are

= p(d2u</dt2), (2.11)

where p is the density of the material. Substitution into (2.11) of (2.4), (2.5) and (2.7)
yields an equation relating U( and s, . One solution is the transverse mode,

yuSpSp = P, Uvsv = 0, (2.12)

and the other is the longitudinal mode,

(X + 2/i)SpSp = p, Ui = f/s, , (2.13)
for some scalar U.

3. Rayleigh waves. We consider the propagation of waves of period ir/u over the
free surface x3 = 0 of a half-space of viscoelastic material occupying the region x3 < 0.
The wave will be a combination of two displacements of the form (2.4), one corresponding
to each of two modes (2.12) and (2.13). Thus the displacement will have the form

Ui = UtlK1 exp iw(sp(N)x„ — t), (3.1)
iV=l

where C/,U), s,U) satisfy (2.12) and Uii2), s/2' satisfy (2.13). At the free surface we have

c.3 = 0, on x3 = 0. (3.2)

Since the material is isotropic, we can assume without loss in generality that the
motion is confined to the plane x2 — 0. The boundary conditions (3.2) then require the
slowness component Si to be the same for each mode. Thus in (3.1)

S,U) = s,<2) = s, (say). (3.3)

Then, from (2.12) and (2.13),

[S3(1,r = (p/m) - s,2, u3m = -U^sjs^,

[S3<2>]' = (p/[X + 2m]) - Sl2, U3W = UfW"/*, ,

and both s2 and U2 are zero for both modes. Substituting (3.4), (2.5) and (2.7) into (3.2)
we find that

U^' 2s3 s3 (p/M) - 2s,2
(3.5)Ur 2s? - (p/M) 2Sl2

Thus s, must satisfy the secular equation

— 4s3<1)s3<2) = st2(2 — p/iis2)2. (3.6)

We write

c = p/fjis,2. (3.7)



VISCOELASTIC RAYLEIGH WAVES 39

Then on squaring both sides of (3.6) and using (3.4) we find a cubic for c, ignoring the
root c = 0:

c3 - 8c2 + (24 - 16m/[X + 2m])c - 16(1 - M/[X + 2M]) = 0. (3.8)

This equation determines the value of c and hence Si . But not all solutions of (3.8)
are admissible. Spurious solutions have been introduced through squaring (3.5). Also
we require that the solution decay with distance from the surface, so that it is a true
surface wave. We further require that the wave propagates along the top surface in the
positive a^-direction and that its amplitude does not grow as it propagates. Thus a root
c of (3.8) is admissible if corresponding to it

(i) Sj+ > 0, sr > 0,
(ii) s3U)- < 0, s3<2>" < 0, (3.9)

(iii) the secular equation (3.6) is satisfied.

For the elastic case, Hayes and Rivlin [3] have shown that there is only ever one admis-
sible root.

Using (3.4) and (3.5), the real part of the displacement (3.1) may now be written in
the form

u* = [Ai + (x3) cos oj(si+Xi — t) — A ~(x:i) sin a)(si+.r1 — <)] exp — «Si~.Ti , (3.10)

where (putting Ui(1> = 1, without loss in generality)

A, = exp iws3l)x3 + (2/(c - 2)) exp ius3wx3 , ^

A3 = — (si/s3U))[exp io)S3vx3 + ((c - 2)/2) exp z'ws3<2>z3].

By (2.5) and (2.7) the corresponding real part of the stress aif is given by

<t,,+ = [Bi;+(.t3) cos o)(si+.t1 — t) — B,j~(x3) sin ^(s/xi — t)] exp — , (3.12)

where, using (3.8), the non-zero components of Bti are

Bu = 2/ntosJexp iws3l)x3 — |1 + c + c4/8(l — c)(c — 2)j exp t«s3(2)a;3],

Bi3 = B3l = Mta)(C (1)2^' [exp (iias3(1)iff,) — exp («'wS3<2)^3)], (3.13)
S3

B33 — — 2^1'cos^exp (ius3ux 3) — exp (tos3<2>a-3)].

4. Particle paths. The displacement (3.10) represents the superposition of two
infinite trains of elliptically polarized waves, both travelling with the phase speed l/si +
over the top surface. Thus every point in the half-space will move in a plane elliptical
orbit with period 2ir/oo. At a given point xt , the elliptical orbit is found from (3.10) to be

(A3-Ul+ + Ai~u3+y- + (A3+Ui+ - 4,+m3+)2

= {A!+A3~ — A3+Ai~)2 exp ( — 2oiSiXi). (4.1)

Moreover, the ellipse is described in a retrograde (direct) sense if

(A,A3)~ = ASAf - ASA,' > 0, (< 0). (4.2)
Of course, if (A^A3)~ = 0 the ellipse degenerates into a straight line, as can be seen
from (4.1).



40 P. K. CURRIE, M. A. HAYES AND P. M. O'LEARY

For an elastic material it is known that Rayleigh waves are always retrograde at
the top surface, but that they change from retrograde to direct at a certain level below
the surface. In this section we shall investigate corresponding results for viscoelastic
materials.

At the top surface, the condition (4.2) for the wave to be retrograde (direct) may be
simplified using (3.11) to give

(4.3)y^>i < °- (> °>-
Substitution from (3.6) gives a second equivalent condition

< 0, (> 0). (4.4)t
s3<2>

_s,(2 - c)

But, by (3.9), s3<JV,~ < 0, N = 1, 2. Hence

- y?^Tw2 -c)r+ki^T[s'<2 -c)|* ■= °- (4 5>

(4.6)

But, from (3.6),

+ r it i- = 0
Lsj(2 - c)J Lsi(2 - c)J Lsi(2 - c)J Lsi(2 - c)J

From (4.3)-(4.6) it now follows that the wave is retrograde (direct) at the surface if

[s1 (2 - c)]+ > 0, (< 0). (4.7)

In addition, since n+ > 0, n~ < 0 by (2.8) and (2.9), we find from (3.7) that

c+(Sl+2 - sr2) - 2c~s1+s,~ > 0, (4.8)

2c+s,+sr + c"(s,+2 - sr2) > o. (4.9)

By eliminating Si between (4.7)-(4.9) we obtain the following sets of sufficient conditions:
the wave is retrograde if either

c~ > 0, 0 < c+ < 2,
or (4.10)

c~ < 0, 0 < c+ < 2, [(02 + (c+)2](4 - c+) < 4c+;

the wave is direct if either

e >0, c+ > 2, [(c")2 + (c+)2](4 - c+) < 4c+,

or (4.11)

c" < 0, (c-)2 + (c+)2 > 4.

For values of c not covered by (4.10) or (4.11) appeal must be made to (4.7) to determine
the nature of the wave. In addition, no wave at all is possible if

c" >0, c+ < 0. (4.12)

We consider now the change in the form of the particle paths with distance from the
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surface. The angle © made by one of the axes of the ellipse (4.1) with the xj-axis is given
by

tan 9(5) 2(At~Ar + A3M,+) _ A.i, + A,A3tan ZU — + 2 . , . -n2 , . +,2 , , —\ 2 — . 7 A X ' v*.ioJ
(Ai ) -f- (^ii ) (^4.3 ) (-^3 ) AiAi A3A3

The ellipse degernerates into a straight line whenever

(A1A3)~ = At+A3- - A3+Ar = 0, (4.14)

and when this occurs 0 is given by

tan© = A.'/Ar = A,*/A1*. (4.15)

Since (/lu4:j)~ is continuous, when the particle paths change from retrograde to direct,
or vice-versa, the ellipse must be degenerate, by (4.2). Using (3.11) and (4.14), the ellipse
is degenerate when

(c+ — 2) coshco(s3(1) — s3(2)) x3

I I 2) , t "] _ f (J) (2)\ +_1_ | _ I \ cog _ Sg -)

[v]'{
4

c~ sinh o)(s3a) — s32))~x3

+  ^ — - l] sin u(s3(1) - s3<2,)+^| = 0. (4.16)

This equation has at most a finite number of roots for x3 , since the hyperbolic terms will
eventually dominate as i3 -> — °°. Thus, the motion changes from retrograde to direct,
or vice-versa, at most a finite number of times. In an elastic material it is known that there
is only one such change. In Sec. 5 we shall show that viscoelastic Rayleigh waves may
have many such changes.

Returning now to (4.13), we consider the behavior of 0 at great distances from the
surface. Define m by

m = sj/s3(1) if s3(1)- > s3w~,

= -S3w/Sl if s3u>- < s3(2>-. (4.17)

Equivalently, by (3.6),

m = — 4s3<2>/s,(c — 2)2 if s3(I,~ > s3<2)~,

= (c - 2)V4s3(U if s3(1>- < S3<2,~. (4-18)

Substituting for At and ^43 from (3.11) in (4.13) and taking the limit as x3 —> —
we find immediately that

nrs m + mtan 20 —> —zr r • (4.19)mm — 1

We conclude that in all cases the angle 0 tends to a limiting value, i.e. that the ellipse
tends to a constant orientation at great distance from the surface.

The sense of the motion at large distance from the surface is also determined by m.
The motion is direct (retrograde) if m~ > 0 (< 0).
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5. Small viscous terms. We now examine in detail a particular viscoelastic material
for which X+ = n* and X~ and /u~ are small compared with yu+. We take

X = m+(1 — M = M+(l — ie^)j (5.1)

where e > 0 is small. From (2.8)

b > 0, 3a + 2b > 0. (5.2)

For this model there is essentially only one parameter, a/b, which determines the nature
of the solutions. We shall show that for certain ranges of this parameter more than one
surface wave is possible.

The elastic case with X = n is discussed by Rayleigh [1], We linearize the equations
about this state, ignoring terms of order t2 in comparison with terms of order e. The
roots of the cubic (3.8) are found to be

c, = 4 + 2 ie(a — b),

c2 = 2 + (2/VS) - ie(a - b)(3V3 + 5)/3 V'.i, (5.3)
c3 = 2 - (2/V§) - it(a - b)(3 a/3 - 5)/3 V3.

Root Ci . For this root the value of S! satisfying (3.9) is found from (3.7) to be

Si = (p/4/u+) 17~ {1 + it(3b — a)/4}, (5.4)

and this is admissible if 3b > a. Corresponding to this, from (3.4), we have

S.,(" = ±{3p/4M+},/2{l + ie(a + 56)/12}, 5)

s3(2) = ±jp/12M+!1/2{l + u(17a - 11 Z>)/12}.

But by (3.9), s3(1)~ < 0, s3<2>_ < 0. Thus the signs chosen in (5.5) for s3 lI) ands3<2) depend
on the signs of (a + 5b) and (17a — lib). Hence we find

s3("/si = ~sgn (56 + a) V3 {1 + it(a — b)/ 3j, ^ ^

s3(2)/si = sgn (11^ — 17a){1 + 5it(a — 6)/3}/v/3.

The boundary conditions (3.6) are now satisfied if (lib — 17a)(5b + a) > 0. Together
with (5.2) and the condition 3b > a found above, this implies that root c, corresponds
to a Rayleigh wave if

-2/3 < a/b < 11/17 = 0.65. (5.7)
By (4.11), the particles on the top surface move in an elliptical direct path.

Root c2 . In the same way as for root ct we find

Sl = {P/M+( 2 + 2M)|1/2{1 + ie[(V3 + 5/3)a

+ (V3 + 1/3)6]/4(a/3 + 1)},
s3(1,/si = sgn ([9 + 5v'3]a - [39 + 23 V3]b)

■ jl - te(a - b)(l + "\/3)/3}(1 + 2/a/3),/2, (5.8)

s3<2)Ai = sgn ([11 + 7\/3]a — [5 + 13 V73]b)

.jl _ ie(a _ b)(9 + 5V3)/6
1/2
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The secular equation (3.6) is satisfied if the signs chosen in (5.8) are opposite. This gives
the following condition for c2 to be an admissible root:

l.w , < 2 < 39 + 23V3 _ 4 4|j (5 9)
11 + 7 a/3 b 9 + 5 V 3

By (4.11) the wave is elliptical direct at the top surface.
Root c3 ; quasi-elastic wave. For a purely elastic material this is the only acceptable

root and always corresponds to an admissible Rayliegh wave [1]. Not surprisingly, the
same is true for small viscous terms, and we call this wave the "quasi-elastic wave".
As above, we find

«, = |p/m+(2 - 2/\/3))'/2(l + u[(V3 - 5/3)a
+ (V3 - 1/3)61/4(^3 - 1)},

«3l,7«, = -{(2/a/3) - 1 V/2\i - t{a - b)(V3 - l)/6j, (5.10)
S3(2,/Si = -{(2/a/3) + 1 }I/2{* + e(o - b)(9 - 5\/3)/6}/\/3.

The secular equation (3.6) is always satisfied. As in the purely elastic case, the wave is
always retrograde at the surface.

Thus for this particular model, if 0.65 < a/b < 1.19 or 4.46 < a/b only one wave, the
quasi-elastic wave, is possible. Otherwise two Rayleigh waves are possible, one of them
always being the quasi-elastic wave. We call the second wave the "viscoelastic wave".
This second wave is possible even for infinitesimal viscous damping, provided a/b lies
in the appropriate range.

Numerical results have been computed for the two cases

ea = 0.02, eb = 0.04, (5.11)
and

eo = 0.06, eb = 0.04. (5.12)

Taking the corresponding values of X and n given by (5.1) and normalizing by putting
p = n+, we solved Eq. (3.8) on a Honeywell H316 computer using the Cardan formula
[16]. For each of the roots, Si2 and (s3111)2 were calculated from (3.7) and (3.4) and
and s3(1) taken to satisfy (3.9). s3l2) was then calculated from (3.6). The root was con-
sidered admissible if the resulting value for s3<2> satisfied (3.9). In agreement with the
analytic results given above, for case (5.11) the admissible roots and slownesses are

= 4.0032 - 0.0397*", s, = 0.499 + 0.012«,

s3(1) = -0.866 - 0.016?, s3<2) = 0.289 - 0.002t;

c3 = 0.8453 + 0.0008*', s, = 1.087 + 0.021*',

s3(1) = 0.007 - 0.428*', s3<2) = 0.019 - 0.921*.

For the case (5.12), the admissible roots and slownesses are

c2 = 3.1547 - 0.0392*', s, = 0.563 + 0.015*',

s3<" = -0.826 - 0.014*', s3(2) = 0.128 - 0.004*';

c3 = 0.8453 - 0.0007*', st = 1.087 + 0.022*,
s3(1> = 0.010 - 0.427*', s3<2) = 0.018 - 0.921*.

(5.13)

(5.14)

(5.15)

(5.16)
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Having established the existence of two Rayleigh waves under certain conditions,
we now discuss their characteristics in more detail. We consider each of the roots in turn.
Distance from the surface is measured in terms of x3/A, where A is the wavelength of
the wave along the top surface given by

A = 2tt/s1V (5.17)

Quasi-elastic root c3. Using (3.11), (5.3) and (5.10) it is found that close to the surface
(i.e. for |ec3/A| « 1) the values of At and A3 corresponding to c3 are given (up to terms
of order t) by

A, = exp {(2/V3 - l)1/22«3/A| - V3 exp {(2/V3 + l)l/2 27ra-3/( V3 A)}, lg)

A3 = —i exp {(2/V3 - l)~1/2[exp {(2/V3 - l)1/22«3/A)

- (l/VS) exp {(2/V3 + 1)'/2 2wx3/V3 A}].

A i is zero once, at x3 = 0.19A, and at this level the motion changes from the retrograde
motion at the surface to direct motion. This is the only change in the sense of the motion.

Ai is real and A3 imaginary, with \A3\ > |A!| . By (4.13), 0 = 0. Thus near the sur-
face, the axes of the ellipse are always aligned with the coordinate axes, the major axis
along the x3-axis. This same orientation of the ellipse persists as x3 —> - by (4.19)
and (5.10). The numerical calculations for cases (5.11) and (5.12) confirm that, to order «,
the major axis of the ellipse is aligned with the x3-axis for all values of x3 (see Fig. 5).

In Fig. 1 the maximum amplitudes of the displacements and stresses corresponding
to (5.14) are plotted as functions of distance from the surface. The displacements and
stresses are normalized respectively by the values of \u3\ and \<ju\ at the top surface.

Fig. 1. Amplitudes of the displacements and stresses corresponding to the quasi-elastic wave (5.14)
for a material with small viscous damping.
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Thus in terms of the solutions (3.10) and (3.12) the graphs give

kfe)l [Ajl k.,-fe)| \B{j\ ,r 1Q-j
|«,(0)| |A,(0)| ' |<rn(0)| |B„|

The amplitude of u3 grows to 1.05 times its surface value in the first 0.075A and then
decays monotonically, being 0.19 times its surface value at a depth of one wavelength.
Mi drops rapidly to almost zero at 0.19A. Below about 0.5A, the displacements and
stresses both decay monotonically.

These graphs are very close to those found for a purely elastic material with Poisson's
ratio 1/4 [17]. Thus in all respects, the behavior of the wave corresponding to the quasi-
elastic root c3 is little different from that of the elastic Rayleigh wave.

Viscoelastic root Ci . For |«x3/A| « 1, A , and A3 are found from (3.11), (5.3) and (5.6)
(up to order «):

A i = \/3 A 3 = exp {— i y/Z 27ra-3/A( + exp {i2irx3/(\/3 A)}. (5.20)

It follows from (4.14) and (4.15) that to this order of accuracy the ellipse is always
degenerate near the surface, making an angle of 30° with the Zi-axis. Moreover, the same
orientation is found from (4.17) and (5.6) as x3 —* - co. The detailed numerical calcula-
tions for case (5.13) show that there are indeed only slight deviations of the axis of the
ellipse from the 30° orientation. However, the ellipse is never degenerate. Thus the
particle paths are not retrograde at any level, there being no change from the direct
motion at the surface.

The displacements and stresses corresponding to (5.15) are plotted for the case (5.13)
in Figs. 2 and 3. Both displacements oscillate with the same periodicity, the peaks

Fig. 2. Amplitudes of the displacements corresponding to the viscoelastic wave (5.13) for a material
with small viscous damping.
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0.2 0.6 as

Fig. 3. Amplitudes of the stresses corresponding to the viscoelastic wave (5.13) for a material with
small viscous damping.

diminishing slowly. The behavior of the stresses is similar, with au out of phase with
o-33 and <r13 . The graphs show that for the viscoelastic roots the decay of the distrubance
with distance from the surface, being governed by s3~ which is 0(e), is far slower than
for the quasi-elastic root for which s3~ is 0(1).

Viscoelastic root c2 . The most interesting behavior of the particle paths is exhibited
for this root. Assuming a/b satisfies (5.9), the values of A, and A:, for lea's/A| « 1 are
found (up to order e) from (3.11), (5.3) and (5.8):

A, = exp {-t(l + 2/ V3)1/2 2-kx3/X\

+ a/3 exp {»[(2 - V3)/3V3]'/2 2ttx3/A), ^
A3 = (1 + 2/ v/3)~l/2[exp { — z(l + 2/V3)l/2 2irxjA]

+ (l/V'3) exp {*[(2 - \/3)/3V'3]'/22m-3/A}].

By (4.14) the ellipse is degenerate when

J= ~Y> /J"' = (1 + 2/\/3),/2 + {(2 - V3)/3V3\W2, (5.22)

where n is any non-negative integer. At these points the corresponding value of © is
found from (4.15) to be (—1)"0O , where

0ffl = tan"1 {3 + 2 V3p1/2 = 21°27'. (5.23)

From (4.13) it is now found that

or> r,n 1^3 + 2 cos (2irj3//3A)\ . .tan 20 = tan 20o< 7 7 8/, ■ (5.24)
12 + V3 cos (2wxa/^A)J
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14

0 3 To L5 ZX> 2.5
Fig. 4. Amplitudes of the displacements for the direct wave (6.10) for an incompressible material.

Atxs/A = —18(2 n + l)/4,
= {(\/3 + 2)/V3}'/2(2/V3)(-l)n. (5.25)

We can see from (5.24) that the axis of the ellipse oscillates back and forth between
± @o as we move away from the surface x3 = 0. The extreme values ± @0 are taken on at
periodic values of x3 , and at these levels the ellipse is degenerate and the sense of the
motion changes. These same levels correspond to maxima and minima of \A, | and |43| ,
as is seen from (5.21) and (5.22). Using (5.25) to determine the sense of the motion at
intermediate values of x3 , we conclude that when 0 = — 0O the motion changes from
retrograde to direct and |^4i| , |/13| have minima; when 0 = 0O the change is from direct
to retrograde and | A11 , \A3\ have maxima.

This approximate analysis predicts degeneracy at x3 = 0, on putting n = 0 in (5.22).
We know from above that the motion is in fact direct at the surface. Exact calculation
shows that the motion changes just below the surface. Moreover, the analysis holds only
near the surface; the general treatment of Sec. 4 shows there are only a finite number
of points at which the ellipse is degenerate, and that 0 tends to a constant orientation
at great depth, found to be 12°47' from (4.19) and (5.8). Nevertheless, numerical calcula-
tions for the case (5.15) show that there are about 60 changes from retrograde to direct
or vice-versa within a distance of 17 wavelengths of the surface and still more below this
level. The position of these changes is predicted accurately by (5.22) for n > 1. But the
limiting values of 0 are approximately ± 0O only for n = 0, 1, 2. It is found numerically
that the limiting values of 0 move steadily closer together with depth, the bottom limit
changing faster than the top, to coalesce at the asymptotic orientation 12°47' found
above. The values of the limiting orientations down to 5 wavelengths are given in Table 1.
In Figs. 6 and 7 the behavior of the ellipses is shown diagramatically.

The behavior of the displacements and stresses for this root is similar to that for
root c i .
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Table 1. Levels at which the sense of the motion changes (DR—direct to retrograde, RD—retrograde
to direct) and the corresponding orientation angle 0, corresponding to case (5.15).

— x3/A 0° Sense —x3/\ 0° Sense

.009 21.45 DR 2.65 -6.55 RD

.295 -19.20 RD 2.96 19.79 DR

.598 21.10 DR 3.24 -4.50 RD

.884 -15.17 RD 3.55 19.48 DR
1.19 20.76 DR 3.83 -2.71 RD
1.47 -11.83 RD 4.14 19.17 DR
1.78 20.43 DR 4.42 -1.17 RD
2.06 -8.97 RD 4.73 18.87 DR
2.37 20.10 DR 5.01 0.18 RD

h/A
o. ""//A 17777777

.19

•3

I. 0
Fig. 5. Variation of the elliptic particle paths with depth corresponding to the quasi-elastic wave

(5.14) for a material with small viscous damping.
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Fig. 6. Variation near the surface of the elliptic particle paths with depth corresponding to the visco-
elastic wave (5.15) for a material with small viscous damping.

We note one final difference between the surface waves corresponding to the three
roots Ci , c2 and c3 . Let VP , Fs be the longitudinal and transverse body wave speeds in
the material. Then, neglecting terms of order t, VP — (3^+/p)1/2, F,s- = (/x+/p)1/2. Denote
by F, , V2 and F3 the speeds along the top surface of the surface waves corresponding
to the roots Ci , c2 and c3 . Then, by (5.4), (5.8) and (5.10),

Va <VS <V2 <VP < F, . (5.26)
Thus both viscoelastic waves are faster than the transverse S-wave, and one is faster
than the longitudinal P-wave. As expected, the quasi-elastic wave is slower than both
body waves.

6. Incompressible material. The second case we consider in detail is that of an
incompressible material. There is no restriction on the magnitude of the viscous terms.
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Fig. 7. Variation over five wavelengths of the elliptic particle paths with depth corresponding to the

viscoelast.ic wave (5.15) for a material with small viscous damping.

The constitutive equation (2.1) must be amended to allow for an arbitrary hydrostatic
pressure. However, the equations governing the Rayleigh wave (3.4)-(3.8) are found to
be correct if the limit X —■» is taken. In this case c satisfies the real equation

c3 - 8c2 + 24c - 16 = 0. (6.1)

The roots of this cubic are [1]

c, = 3.5437 + 2.2303z,

c2 = 3.5437 - 2.2303?', (6.2)

c3 = 0.9126.

Root Ci . It is easily shown that root Ci is never admissible. From (3.4), with X —> ,
and (3.9) we have

s3(2> = — isi . (6.3)
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Thus from (3.6) we have

s3(" = -ist(2 - Cl)V4 = 5,(1.7215 + 0.04780- (0.4)

Since s,+, s,~ are positive, s3(1)~ > 0, contradicting (3.9).
Root c2 . From (3.4),

s3ll) = ±8,(1.7215 - 0.047St), s3<2> = -is, . (6.5)

The boundary conditions are satisfied identically provided the negative sign is chosen
for s3(1). The condition that s3(1)~ < 0 then gives

1.7215s," - 0.0478s,+ > 0. (0.0)

But from (3.7)

  Si  2(fi c2 M c2 ) Cfi 7")
s,- s,+ (m+c2~ + m"c2+)

Combining (0.0) and (0.7), we find that this root is admissible if

M~/V < -0.159- (0.8)
The motion of the top surface is direct, by (4.11).

Root c3. This root is the only admissible one for a purely elastic material [1], We find

s3(,) = —0.2956*s, , s3<2> = -is, , (0.9)

and the boundary conditions (3.6) are always satisfied. By (4.10) the motion of the
top surface is retrograde.

Thus for the incompressible material two Rayleigh waves are possible if m~/m+ <
— 0.159 and one of the waves is retrograde, the other direct, at the top surface. If
m~/m+ > —0.159, only one wave is possible and this is retrograde. These results apply
for any values of ^+, ^ not necessarily close to the elastic case. Indeed, as n+ —» 0 for
the Voigt model (2.10) the material behaves like a Newtonian fluid.

When the material is neither "close" to an elastic solid nor a Newtonian fluid both
waves have similar characteristics regarding their decay along the top surface or with
depth. For example, if n+ = — 2/u~ then corresponding to root c2 we get

«, = j P/M+ }"72 j0.403 + 0.227?'}, (0.10)

s3(" = —{p/V}1/2 {0.840 + 0.129*},

while for root c3 we get

s, = {p/n+\1/2j0.904 + 0.227*}, (6 n)

s3(,) = {p/n+}1/2{0.067 - 0.285*}.

The essential difference between these two waves lies in the fact that (0.10) is direct
and (6.11) retrograde at the surface. The elliptical particle paths of both waves become
degenerate at only one value of x3 . For the root c2 with the values (6.10) the motion
changes from direct to retrograde at 0.13 wavelengths from the surface. For c3 with
values (6.11) the change from retrograde to direct occurs at 0.14 wavelengths. Once
again (5.26) holds (ignoring F,> and F,), the speed of transverse £-body waves being
1.09 (m+/p)i/2.
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Table 2. Ratios of the complex moduli and number (n) of admissible roots.

X+/M+ .5 .5 .5 .5 .2 .2 .2 2
-X-/M+ .05 .05 .6 .6 .2 .2 2.4 2.4

04 .15 .25 .15 .08 .24 .8 2.0
n 2 12 112 2 1

The variation with depth of the displacements corresponding to (6.10) are shown in
Fig. 4. The behavior is midway between the sinusoidal variation of Fig. 2 and the almost
monotonic decay of Fig. 1.

7. Conclusions. We have demonstrated the existence of two Rayleigh waves for
certain ranges of the moduli in two explicit cases. In Table 2 we show other typical
values of the ratios A+/V+> ̂ /V\ m~/m+ and the corresponding number of admissible
roots. This was determined numerically, using the method described in Sec. 5. This
table indicates that the results we have obtained above are typical. We intend to in-
vestigate further this general question of the number of admissible roots. We note that
Chadwick and Windle [18] found two thermoelastic Rayleigh waves in certain cases.

Our principal conclusions are that Rayleigh waves on isotropic viscoelastic materials
differ from such waves on elastic materials in the following ways:

(i) more than one wave may be possible, whereas in the elastic case there is only
ever one wave;

(ii) waves may be either retrograde or direct at the top surface, whereas elastic
Rayleigh waves are always retrograde;

(iii) the motion may change sense from retrograde to direct, or vice-versa, at many
or no levels below the surface, rather than just once as in the elastic case;

(iv) a viscoelastic Rayleigh wave may propagate with a speed greater than either
the P or S body-waves, whereas in the elastic case the speed is always less than that
of P and iS waves.

These properties have been demonstrated explicitly for two models. For the case of
small viscous terms, the two admissible waves could be classified as a quasi-elastic wave
(always present) and a viscoelastic wave (present for certain values of the moduli).
Because of the slow decay of its disturbance with depth, the viscoelastic wave does
not possess the characteristics of a surface wave to the same degree as the quasi-elastic
wave, and may therefore be of less importance. However, this objection cannot be
raised for the case of an incompressible material. In Sec. 6 we exhibited two admissible
Rayleigh waves with very similar decay properties. One is retrograde and travels slower
than the body waves; the other is direct and travels faster than the body wave.
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