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Abstract

We review viscoplastic flow over inclined surfaces, focusing on constant-flux extrusions from small vents and the slumping of a fixed volume

of material. Lubrication theory is used for shallow and slow flows to reduce the governing equations to a nonlinear diffusion-type equation for the

local fluid depth; this model is used as the basis for exploration of the problem. Theory is compared to experiments. A number of complications

and additional physical effects are discussed that enrich real situations.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As reviewed by Ancey in this volume [1] a large number of

problems in geophysics and engineering surround the flow of a

viscoplastic fluid over an inclined surface. Our goal in the current

article is to consider the problem as a basic type of fluid dynam-

ical flow, review some of the efforts to model the situation and

highlight the current status of the subject. We focus on viscoplas-

tic fluids that have a well-defined yield stress in combination

with power-law viscous behaviour (i.e. Herschel–Bulkley flu-

ids). However, we also review some of the many complications

introduced by a range of other physical effects, which enrich the

dynamics of real flows.

Of course, even flow of a Newtonian fluid over a surface is

not straightforward and is still a subject of active research. Mak-

ing the fluid non-Newtonian only adds to the richness, so we

must make some idealizations and simplifications to gain some

inroads into the problem. The main simplification we make here

is that the fluid is relatively shallow and flows slowly. Thus,

we take advantage of a lubrication-style approximation to the

� Part of this work was presented at the BIRS workshop: “Viscoplastic fluids:

from Theory to Application”, Banff (AB), CA, October 22–27, 2005.
∗ Corresponding author.

E-mail address: njb@math.ubc.ca (N.J. Balmforth).
1 This author was partially supported by EPSRC through Grant number

GR/S47663/01.

governing fluid equations to reduce them into a single evolu-

tion equation for the local fluid depth. This trick is well used in

a great many fluid problems (ranging from engineering tribol-

ogy to glaciology), and can similarly be used to great effect for

viscoplastics.

To be more specific, we use the lubrication model to explore

two canonical examples that illustrate some of the distinctive

features of how viscoplastic fluid flows over inclined surfaces

and highlight the main differences with the equivalent Newto-

nian problem:

• The growth of an inclined fluid structure by extrusion from a

small vent.

• The slump to rest of a suddenly released, fixed mass of fluid.

Extrusions and slumps are a component of a large number of

industrial processes and occur in various geological problems

(such as mudslides and lava flows) [2,3,8,9,4–6].

The key differences between viscoplastic and Newtonian film

flow come about chiefly because of the yield stress, which can

hold the fluid rigid even when acted upon by external forces

and internal stresses. Consequently, plugs and stagnant zones

form adjoining regions of true deformation and flow. Indeed, a

gross idealization might say that viscoplastic flow dynamics is all

about the interplay of plug regions and yield zones. This defines

a complicated free boundary problem that to date has resisted

much analysis. At the birth of the subject, attacks on the prob-
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lems were limited, including only some exact solutions suited

to very simple flow geometries (such as standard solutions like

Poiseuille flow and Oldroyd’s use of the hodograph technique

[10]). More recently, with the use of clever numerical methods

and asymptotics, the subject has significantly advanced; other

papers in the current volume mention the latest attempts to deal

with some of the outstanding issues. Our focus here is on using

asymptotic methods for shallow flows.

One key feature of viscoplastic flow dynamics that comes out

naturally in the shallow limit is the notion of a “pseudo-plug”

[11]: a region that is neither completely rigid, nor freely shearing.

The material inside the pseudo-plug is very weakly yielded and

acts much like a perfectly plastic material. The viscoplastic fluid

dynamics thus shares many common aspects with conventional

plasticity theory. Pseudo-plugs dominate the dynamics over sub-

stantial regions of shallow flows and arise naturally when there

is a separation of length scales.

The use of lubrication approximation in thin films dates

back to Reynolds [12]. For Newtonian films with free surfaces,

flow over inclined planes was discussed by Huppert [13] and

Lister [16]. Simple extensions have also been made to power-

law fluids, which have notable application in glaciology (the

“shallow-ice approximation”; e.g. [17]). For viscoplastic fluids,

Liu and Mei [18,19] presented the lubrication model for two-

dimensional (sheet) flow and applied it to problems of mud flow

(see also [20–22]). Balmforth et al. [5] considered the axisym-

metric version of the problem and, following earlier work by

Hulme [2], Blake [3] and Griffiths and Fink [6], modelled the

extrusion of lava domes. Most recently, the lubrication model has

been extended to three dimensions [23–25]. There are also appli-

cations to flows over varying topographies [35,59] and around

cylinders [60]. A tangential vein of literature generalizes the

Newtonian self-similar solution of Smith [62] to the problem

of a steady, gradually widening flow of a viscoplastic “rivulet”

down an inclined plane [27,61].

From the rheological viewpoint, flow over flat or inclined

planes offers a straightforward vision of a relatively sim-

ple dynamics, which suggests that observations could provide

insight into material behaviour. Indeed, two flows in partic-

ular have been suggested in the past as means to determine

yield stress: the initiation or cessation of flow of a film on an

inclined plane as one varies the slope was suggested by De

Kee et al. [26], much as one measures the friction angles of

a granular material. Second, the “slump test” was advocated by

Pashias et al. [7] as a “fifty cent rheometer”. Here, one mea-

sures the final shape of a slumped dome of material of given

volume. Coussot et al. [9] suggested the same methodology

for slumps on inclined surfaces. A key difference between the

mudflows of Mei et al. and the typical slump test of materi-

als like concrete is that whereas the former is often a shal-

low flow, the latter can be quite the opposite. As a result, the

modelling of slump tests has proceeded in somewhat different

directions than we take here [28]. Unfortunately, without the

simplifications of lubrication theory, the problem is much more

complicated and far less can be gleaned about the general flow

dynamics.

2. Mathematical formulation

2.1. The flow of a two-dimensional sheet on an inclined

plane

We begin with the governing equations for a two-

dimensional, incompressible fluid on an inclined plane. As

illustrated in Fig. 1, we align coordinates so that the plane occu-

pies z = 0, and x points downslope. The fluid velocity field is

(u(x, z, t), w(x, z, t)) and p(x, z, t) is the pressure. Conservation

of mass and momentum then read:

ux + wz = 0, (1)

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτxz + ρg sin φ, (2)

and

ρ(wt + uwx + wwz) = −pz + ∂xτxz + ∂zτzz − ρg cos φ, (3)

where ρ is the density, g the gravity, φ is the angle of the inclined

plane, and subscripts denote partial derivatives except for the

deviatoric stress components, (τxx, τxz, τzz).

The Herschel–Bulkley law is formulated mathematically as

follows:

ux = wz = uz + wx = 0, for τ ≡
√

τ2
xx + τ2

xz < τy, (4)

Fig. 1. Sketch of a flow on an inclined plane. φ is the angle of inclination to the horizontal.
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(

τxx τxz

τxz τzz

)

=
1

γ̇
(Kγ̇n + τy)

(

2ux uz + wx

uz + wx 2wz

)

,

for τ ≥ τy, (5)

where

γ̇ ≡
√

(uz + wx)2 + 4u2
x.

The model has three parameters, assumed constant: K (the con-

sistency), τy (the yield stress) and n (the power-law index).

We impose no slip on the inclined plane, so that u = w = 0

on z = 0. The upper surface, z = h(x, t), is a material surface and

stress free. The latter conditions, assuming atmospheric pressure

to be a negligible constant and ignoring surface tension, can be

formulated by taking the product of the normal vector to the

surface with the stress tensor. After a little algebra, the surface

boundary conditions can be summarized as:

ht + uhx = w

(1 − h2
x)p + (1 + h2

x)τxx = 0

(1 − h2
x)τxz − 2hxτxx = 0

⎫

⎪

⎬

⎪

⎭

on z = h(x, t). (6)

2.2. Non-dimensionalization and the lubrication model

To remove dimensions we use the typical film thickness (H),

to measure lengths transverse to the film (which we loosely refer

to as “vertical”), and L for distances downslope (loosely called

“horizontal”); the aspect ratio, ε = H/L is a key, small parameter.

We then set

x = Lx̃, z = Hz̃, u = V ũ, w =
HVw̃

L
, t =

Lt̃

V
,

h = Hh̃, p = ρgHp̃ cos φ, γ̇ =
V

H
˜̇γ, τjk = ρν

V

H
τ̃jk,

(7)

and so on, where V = gH3 cos φ/(νL) is a characteristic flow

speed, and ν = K(V/H)n−1/ρ is an effective kinematic viscosity.

After dropping the tilde decoration, the dimensionless equations

become:

ux + wz = 0, (8)

εRe(ut + uux + wuz) = −px + ε∂xτxx + ∂zτxz + S, (9)

ε3Re(wt + uwx + wwz) = −pz + ε2∂xτxz + ε∂zτzz − 1,

(10)
(

τxx τxz

τxz τzz

)

=
1

γ̇
(γ̇n + B)

(

2εux uz + ε2wx

uz + wx 2εwz

)

,

for τ ≥ B, (11)

and

γ̇ = ux = wz = uz + wx = 0, for τ < B, (12)

where S = ε−1 tan φ is a slope parameter that can be set to unity

unless the plane is horizontal, and two important dimensionless

groups appear,

Re =
VH2

νL
and B =

τyH

ρνV
,

which are the Reynolds number based on the characteristic speed

V, and the Bingham number (dimensionless yield stress).

Our slow and shallow flow approximation amounts to taking

ε ≪ 1 and keeping Re order one. One can then drop all terms

of order ε or higher from the momentum equations which then

simply express the dominant force balance. The equations can

be integrated in z, to find

p = h − z and τxz = (S − hx)(h − z), (13)

which uses the leading-order stress-free boundary conditions,

p = τxz = 0 on z = h. With these quantities in hand, we may find the

velocity components from the constitutive law and continuity.

For example,

u =
n|S − hx|1/n

n + 1
sgn(S − hx)

×

{

[Y1+1/n − (Y − z)1+1/n], z ≤ Y

Y1+1/n, z > Y
, (14)

where

Y = max

(

h −
B

|S − hx|
, 0

)

, (15)

which is illustrated in the sketch of Fig. 1. The surface, z =

Y(x, t), separates a shearing flow adjacent to the plane from a

plug-like superficial flow. It is not a true plug because the mate-

rial actually lies order ε above the yield stress for z > Y(x, t),

which circumvents some inconsistencies that would otherwise

seem to occur within the lubrication theory [29,23]. The weak

yielding allows the material in the “pseudo-plug” to spread and

flow over the plane.

Finally, the application of the kinematic surface boundary

condition leads to the evolution equation,

ht + ∂x

[

nY1+(1/n)|S − hx|(1/n)−1

(1 + n)(1 + 2n)
(2nh + h − nY )(S − hx)

]

= ws(x, t), (16)

where ws(x, t) is a prescribed function that represents any

source of fluid on the plane, such as a localized vent.

2.3. Three-dimensional lubrication flow

In three dimensions, we add the cross-slope coordinate, y, and

velocity v(x, y, z, t). The scaling and lubrication theory follow

much as above. We quote only the final formula for the evolution

equation for h(x, y, t):

ht + Ux + Vy = ws(x, y, t),
(

U

V

)

=
nY (sY )1/n[(1 + 2n)h − nY ]

s(n + 1)(2n + 1)

(

S − hx

−hy

)

,
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where

Y (x, y, t) = max

(

h −
B

s
, 0

)

and s =
√

(S − hx)2 + h2
y,

the depth-integrated velocity field is (U,V), and s is the slope of

the fluid surface.

For Bingham fluids, the evolution equation simplifies to

ht + Ux + Vy = ws,

(

U

V

)

=
1

6
Y2(3h − Y )

(

S − hx

−hx

)

,

(17)

We consider this model for most of our examples. In general

situations, the equations must be solved numerically; we use the

scheme discussed in Appendix A.

3. Limiting dynamics

Before considering our two model problems, we briefly

digress to describe some features of the lubrication theory, which

serve to illustrate the dynamics it captures and help prepare for

some of the analysis to come.

3.1. Yielding and cessation conditions; planar slumps

The condition for yield in the full Herschel–Bulkley law cor-

responds to the von Mises yield criterion, which is commonly

used in plasticity theory (e.g. [30]), but is complicated to deal

with in most situations. By contrast, in the lubrication model,

this condition is particularly simple: when Y → 0, the shearing

region at the base of the fluid layer vanishes and the pseudo-

plug fills the entire fluid depth, at which point it becomes a real

rigid plug. The yield condition is the same whether it marks the

initiation or cessation of flow and can be written in the form,

h ≥
B

s
, or (S − hx)2 + h2

y ≥
B2

h2
. (18)

If these conditions are violated, the fluid layer is insufficiently

stressed to flow.

The equality in (18) describes the final resting state of those

parts of the fluid layer that yielded during its evolution, if the

ultimate fate of the fluid is to come to a standstill. That is, the lim-

iting state wherein the stresses over the yielded regions decline

and approach the yield stress from above. We give a fuller discus-

sion of such states in Section 5 when we examine the final shape

of slumps, describing how they may be constructed analytically

using Charpit’s method. Even when the fluid does not come to

rest, but flows continually, the solution of the limiting problem,

Y → 0, can still be relevant. For example, the limit also charac-

terizes slow, yield-stress dominated flows like the extrusions of

Section 4 with B ≫ 1.

For a two-dimensional sheet of fluid, the limiting state is

described by the even simpler relation,

h|S − hx| = B, (19)

which can be straightforwardly integrated to give an implicit

solution for the profile:

h(x) − h(X) ±
B

S
log

[

B ∓ Sh(x)

B ∓ Sh(X)

]

= x − X, (20)

where the constant of integration has been fixed by assuming that

we know h(x) at x = X. Which of the two branches of the solu-

tion one takes depends on whether the background inclination

opposes or compounds the tilt of the fluid surface.

By way of illustration, we display in Fig. 2 numerical solu-

tions showing the slump of a two-dimensional block of Bingham

fluid over an inclined surface. Three cases are shown with dif-

ferent Bingham numbers. In the first panel, the collapse of the

block’s walls forces fluid to yield within localized strips adjacent

to the edges. However, the central areas of the fluid are held in

place by the yield stress throughout the slump. Flow eventually

ceases when the surface slopes decline sufficiently, leading to a

final deposit with a central, stagnant core, buffered by the profiles

(20). In the second case, the central core is again held in place

during the initial collapse of the block’s walls. Now, however,

the yielding regions widen until they meet near x = −0.3, by

which point the entire fluid layer has yielded. The flow again

comes to rest; this time the final shape is given by the two

branches of the profile (20), pieced together at the common apex

of the slumped structure. The apex has a discontinuity in surface

slope, and roughly marks the division between fluid slumping in

either direction. In the final example, the yield stress is too small

even to hold the central core in place (h(x, 0) = 1 > B/S), and the

whole block yields immediately. The final shape is another, fully

slumped structure given by (20).

The three-fold characterization of the slumps illustrated in

Fig. 2 carries over to more general situations, such as three-

dimensional dam breaks (Section 5). The first two examples

illustrate “edge collapses”, in which only the walls of the initial

structures suffer mechanical failure; they differ in the later stages

of the slump when it transpires whether or not part of the initial

shape is left intact. The background slope is not essential here,

and both kinds of edge collapse occur over flat surfaces. The

third case is a “layer collapse”, much like a landslide, and can

only occur when there is a relatively strong background slope.

For flat-topped initial states with unit depth, which kind of slump

occurs depends on B and the initial width. But in all three cases,

we observe flows that decelerate to rest, leaving states marked

with points of surface-slope discontinuity.

More solutions of the one-dimensional problem are presented

in various other articles: Liu and Mei [18] consider a range of

kinematic-wave-type solutions, and one-dimensional extrusions

(i.e. line sources) are explored by Balmforth et al. [24]. Slumps

specifically with the form of dam breaks are given by Matson and

Hogg [31] and Balmforth et al. [32] in this volume. One notable

feature of these dam break solutions, and also the slumps shown

in Fig. 2, is that the approach to the final state is relatively slow

(with dependence 1/t), which can be verified either numerically

or asymptotically.

Note that Eq. (19) can be derived more directly from the

original governing equations by noticing that they follow from
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Fig. 2. Numerical solutions showing the slump of a two-dimensional block of fluid on an incline. Snapshots of h (solid lines) and Y (dotted lines) are shown for (a)

B = 2, (b) B = 1.25 and (c) B = 0.5 (the snapshots are at t = 0, 0.0625, 0.25, 1, 4, 100, 400, 2500, 104). In panels (d) and (e), we show time series of the downstream

and upstream fluid edges, Xmax and Xmin, respectively. Also indicated is a
√

t dependence that fits the early part of the data.

asymptotic approximation of the plasticity problem:

ε∂xτxx + ∂zτxz = px − S, (21)

ε2∂xτxz + ε∂zτzz = pz + 1, (22)

τ2
xz + τ2

xx = B2, (23)

with the usual stress-free surface boundary conditions, supple-

mented by the basal condition, τxx = 0, which corresponds to the

existence of a boundary layer of thin, sheared fluid adjacent to

the plane. We mention the latter point primarily to indicate how

one might construct the final state of a non-shallow fluid layer

with ε ∼ O(1) (see later).

3.2. Large slope

Although the lubrication problem in (17) is not analytically

tractable in general, one limit that does heed to further analysis

is that of “large” slope, S. At first sight, this limit sounds a little

curious since we have already claimed that one can scale S to

unity, provided the plane is not horizontal. In fact, the whole

lubrication analysis is laid out assuming that S = (L/H)tan φ is

an order one parameter, which demands relatively mild slopes.

However, one can also consider order-one slopes provided one

revises the asymptotic scalings and scheme. The result is the

three-dimensional evolution equation,

ht +
1

6
[(h − B)2(2h + B)]x = 0, if h > B, (24)

and ht = 0 otherwise. This evolution equation is nothing more

than our standard lubrication model with |hx, hy| ≪ S, and is

really what is meant by “large slope S”. The equivalent approx-

imation of the Newtonian problem is considered by Lister [16];

Huang and Garcia [22] and Ancey [1] also present versions of

[24].

Eq. (24) is easily solved using the usual method of charac-

teristics for quasi-linear partial differential equations. Indeed,

it is a standard shock-forming equation and to determine the

solution, one suitably translates the initial profile downslope. If

hI(x0, y) = h(x0, y, 0), then implicitly we have

h(x, y, t) = hI (x0, y),

x = x0 + thI (x0, y)max[hI (x0, y) − B, 0]. (25)

The main novelty in the solution lies in the yield condition:

only that part of the solution with h > B moves downslope. For

those parts of the fluid layer, the thicker regions travel fastest, and

so the top of the profile overtakes the shallower and static parts

ahead leading to a multivalued solution. As in a great many other

hyperbolic problems, one needs to regularize this behaviour by

inserting a shock. As used in [14,15] for a Newtonian fluid, a

Maxwell-(equal area)-type construction can be used to insert the

shock so that the solution is single valued (if discontinuous) and

conserves mass.

The shock speed follows from returning to the full equa-

tion and performing a boundary layer expansion. Even without

solving for the shock path in detail, we can predict the final

state: as time goes on the multivalued solution becomes increas-

ingly displaced downstream. However, it has limited area and so

becomes a long skinny finger. The equal area rule demands that

the shock is placed in the solution close to the downslope edge

of the yielded region. Thus, to calculate the final state, we take
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the initial profile and truncate it at h = B to form a “pedestal”;

we then extend the pedestal downstream by adding the material

that is cut away, keeping the level at h = B, and cutting it off

abruptly at a stationary shock such that mass is conserved. In

two dimensions, one does this for the whole profile at once; in

three dimensions, for each section in y separately. In practice

one could even improve the final profile by inserting the Y → 0

analytical solution.

Fig. 3 presents an illustration of the characteristics solution

and the insertion of the shock. Here, a slumping Gaussian mound

is shown in both two and three dimensions. The characteristics

solution is also compared with numerical computations of the

thin-layer equation. All in all, we see that slumps on steep slopes

develop wide plateaux with almost vertical cliffs at their down-

stream edges.

4. Extrusions

In this section, we consider extrusions from a localized, cir-

cular source. Our exploration is based in part on the study of

Balmforth, Craster & Sassi [24], who describe extrusions of this

kind, as well as flows from fixed apertures. As a model for the

source, we fix

ws = W(t)

⎧

⎪

⎨

⎪

⎩

3π−1r−2
∗

(

1 −
r2

r2
∗

)2

, r =
√

x2 + y2 ≤ r∗

0, r =
√

x2 + y2 > r∗

,

(26)

where r* is the vent radius, and W(t) describes the amplitude

and variability of total the source flux. Once the extruded fluid

Fig. 3. Slump of Gaussian structures on steep inclined planes. Panels (a) and (b) show the “S ≫ 1” characteristics solution of the two-dimensional problem with

hI = exp(−2x2/25) and B = 0.5. Shown are snapshots of h(x, t) at the instants indicated, with and without the shock; the dashed curve is the expected final shape

and the dotted line shows h = B. Panel (c) shows the solution computed numerically using the thin-layer model (the snapshots are at t = 0, 1, 4, 25, 100, 400, 2500,

104; Y is also included). Panels (d) and (e) show the final shape of a three-dimensional, slumped Gaussian, hI = exp[−2(x2 + y2)/25], as predicted by the “S ≫ 1”

characteristics solution and by direct computation using the ADI scheme, respectively.
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Fig. 4. Dome shapes of extruded domes at t = 400 for (a) B = 0.1, (b) B = 2 and (c) B = 20. The profiles of h (solid lines) and Y (dotted lines) along the midsection of

the domes are shown in panel (d).

structure extends over a much larger distance than the vent, the

detailed shape of the source becomes unimportant. Note that the

centre of the vent is now the origin of our coordinate system.

Figs. 4 and 5 show results for constant-flux extrusions (W = 1)

at three different Bingham numbers: B = 0.1, 2 and 20. The first

figure displays the dome shapes after a time t = 400; the second

figure shows a sequence of four snapshots of the domes’ edges,

together with the (depth-integrated) velocity vectors at t = 400.

The low B extrusion makes little progress up the incline and

flows rapidly downslope. Overall, this extrusion is similar to a

Newtonian extrusion. Indeed, it is clear from the correspond-

ing Y-surface (Fig. 4(d)) that the pseudo-plug occupies only a

thin superficial layer and most of the fluid is strongly sheared.

The large-B case, on the other hand, expands in all directions

throughout the period shown; the internal strength of the mate-

rial is able to withstand the gravitational force down the slope,

and the dynamics is dominated by the yield stress (the pseudo-

plug occupies almost the whole layer). The intermediate case,

with B = 2, lies between the two extremes.

4.1. Similarity scalings

Convenient diagnostics of the extrusion are offered by the

furthest positions of the upstream and downstream edges,

Xmin(t) and Xmax(t) (respectively), and the maximum half-width,

Ymax(t). In certain limits of the problem, these diagnostics follow

power laws in time that can be deduced from scaling theory.

Conservation of mass demands that the total amount of mate-

rial extruded at time t is given by

∫ Xmax

Xmin

∫ Ymax

−Ymax

h(x, y, t)dxdy ≡
∫ t

0

W(t)dt, (27)

which equals tα if we adopt the power-law form, W = αtα−1 (any

other pre-factor can be scaled away by suitably choosing the

lengthscale H).

We now introduce the similarity form, h(x, y, t)∼t∆φ(ξ, η),

where ξ = xt−γ and η = yt−δ. The mass conservation constraint

(27) demands ∆ = α − γ − δ, and the lubrication model becomes

�φ − ξγφξ − ηδφη + υξ + νη = 0, (28)

where
(

v

ν

)

=
1

6
t2∆+1−γΥ 2(3ϕ − Υ )

(

S − t∆−γϕξ

−tγ+∆−2δϕη

)

, (29)

Υ = φ −
Btγ−2∆

ς
≡ t−∆Y (30)
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Fig. 5. Panels (a), (c) and (e): a sequence of four snapshots of the edges of the extruded material at times t = 25, 100, 225 and 400 Panels (b), (d) and (f): the depth

integrated velocity vectors at t = 400 together with contours of constant height. Panels (a) and (b) corresponds to B = 0.1, (c) and (d) to B = 2, and (e) and (f) to B = 20.

and

ς =
√

(ϕξ − tγ−∆S)
2 + t2(γ−δ)ϕ2

η ≡ tγ−∆s. (31)

As described by Balmforth, Craster and Sassi, it is not nec-

essary to solve this equation to determine the characteristic

scalings of the dome diagnostics: the time coordinate is embed-

ded within the equation as a parameter and as t varies, different

terms within (29)–(31) grow or decay to enter the dominant bal-

ances. Thus, by judicious juggling of the terms, we may deduce

the temporal scalings. Moreover, by observing when the dom-

inant balances change, we may estimate when the transitions

occur between the different regimes. Note that Balmforth, Cras-

ter and Sassi consider only the constant flux case; the current

discussion generalizes the results to arbitrary power-law extru-

sion rates (i.e. variable α).

The balancing act leads to the following conclusions (for

α > 0). First, yield stresses and slope play little role in the ini-

tial phase of evolution; extrusions begin their life evolving in

an axisymmetric Newtonian fashion (cf. [16]). This early life

can be curtailed in two different ways: If B ≫ S, the yield stress

term becomes large in Υ , and triggers a transition to a yield-

stress dominated state. Expansion continues axisymmetrically

for a while, but the downslope component of gravity becomes

important at larger times, and there is a second transition to

an inclined, yield-stress-dominated state (this final phase does

not follow readily from the scaling theory, but can be extracted

using an asymptotic expansion designed to construct yield-

stress-dominated domes—see [24]). If S ≫ B, on the other hand,

the slope term, S, emerges in s and triggers a transition to a

slope-dominated, Newtonian state. This state is again a tran-

sient because the yield stress term continues to grow in Υ and

eventually triggers another late-time transition to the same final

state as before.

We summarize the various scalings and transitions in Fig. 6,

and Fig. 7 compares these predictions with the results of numer-

ical simulations. The predictions are largely borne out by the

computations; indeed the expected transition times appear to

be useful estimates of when the scalings change. However, the

computations do not reach the ultimate, yield-stress and slope

dominated state because none of the cases computed progress far

enough. In fact, the final transitions are expected so late that con-

straints of resolution prohibit reaching them. These constraints

also force us into an underhand computational trick to ensure that

we adequately resolve the vent and keep the source flux constant

over the duration of long extrusions: when the number of grid

points covering the vent becomes too few (typically six points in

the x direction) we start rescaling the vent radius, r*, with time,

continually enlarging the source (see Appendix A). This has the

unfortunate consequence that, eventually, the upslope fluid edge

approaches the vent, and the computational predictions for Xmin

no longer make sense. We have conveniently omitted this part

of the time series of Xmin from Fig. 7. Though not particularly

satisfactory, we cannot do any better without introducing a much

more sophisticated numerical algorithm, and even this trick fails

to allow us access to the asymptotic regime.
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Fig. 6. Scalings and transitions for constant rate extrusions.

Fig. 7. Evolution of the dome diagnostics for constant-flux extrusions. Panel (a): low Bingham number extrusions with B = 0 (dotted), B = 0.1 (solid) and B = 1

(dashed). The squares denote the expected transition time for when the slope term breaks the axisymmetric Newtonian scalings (t = S−2 ≡ 1). Panel (b): moderate

Bingham number extrusions with B = 5 (solid) and B = 2 (dashed). The circles show the expected transition time for when the yield stress breaks the axisymmetrical

Newtonian scalings (t = B−2). Panel (c): large Bingham number, B = 20 (solid). The dot-dashed line shows the yield-stress dominated asymptotic theory of (24). In

panels (c) and (d), the stars indicate the expected transition times for the slope to become important in yield-stress dominated domes (t = B3).
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Fig. 8. Experimental extrusions of cornsyrup. Two experiments with slightly different slope are illustrated (tan φ = 0.046 and 0.048), with the dome diagnostics, Xmin,

Xmax and Ymax, plotted against time. The dimensional measurements are converted into dimensionless values using the slope, viscosity (4 Pa s), density (1.4 g/cm3)

and pump rate, q (equal 12.2 cm3/min; q = HLV and H = L tan φ). The second picture shows a photograph of one of the extrusions at late times (the syrup is dyed red

with food colouring).

4.2. Comparison with experiments

To test the theoretical predictions, we conducted a series

of laboratory experiments in which we extruded fluid at con-

stant rate onto an inclined plane. We used two fluids: cornsyrup

(as a Newtonian control fluid; density 1.4 g/cm3 and viscos-

ity 4 Pa s) and a kaolin slurry (an aqueous suspension of joint

compound—a commercially available, kaolin-based building

material; density 1.6 g/cm3).

Extrusions of cornsyrup are presented in Fig. 8, which dis-

plays dome diagnostics, Xmin, Xmax and Ymax, against time. As

predicted by the theory, the dome first expands axisymmetri-

cally, but then slumps downhill; for each phase of evolution, the

dependence of the diagnostics on time matches scaling theory.

In one sense, this match of theory and experiment is surprising:

as illustrated by the photograph included in Fig. 8, the edge of

the cornsyrup extrusion becomes much more irregular than the

relatively smooth theoretical domes (which are like the low-B

example of Fig. 4). We attribute this to surface tension: as the

dome grows a capillary ridge develops near the fluid edge, caus-

ing incipient, surface-tension-driven fingering of the advancing

contact line. The situation is aggravated by the evaporation of

water from a superficial “skin”; as evidenced by its ability to

buckle and wrinkle, this skin behaves partly elastically and pre-

sumably supports some of the stresses exerted on the dome. The

surface effects are probably responsible for the qualitative, but

not quantitative, agreement between the observed and theoret-

ical dome diagnostics (compare Fig. 8 with the first panel of

Fig. 7); Lister [16] presents a better comparison for a different

set of experiments.

Kaolin extrusions are shown in Figs. 9 and 10. Measurements

made in a cone-and-plate rheometer suggest that this particular

material can be fit by a Herschel–Bulkley model with power-law

index, n ≈ 0.5, and consistency, K ≈ 40 m.k.s. (although no reli-

able yield stress could be recorded because of wall slip effects).

With such a value for n, the early time axisymmetric scaling for

the dome radius is about 0.46. Fig. 9 shows data from an extru-

sion onto a flat plane, and presents evidence for a cross-over

from this type of scaling to a late-time yield-stress dominated

regime in which the scaling of radius falls to 2/5. Also shown in

the figure are the results of a theoretical computation in which

parameters have been matched to the experiments; except for

the earliest times, the observations and theory show quantita-

tive agreement. It is plausible that the discrepancy at early times

occurs because the experimental extrusions begin with a fin-

ger of unyielded fluid being pushed up through the vent. The

finger subsequently fails by collapsing to one side, and the result-

ing non-axisymmetry obscures the radius scalings at the earliest

times.

Fig. 10 shows kaolin extrusions on an inclined plane. Again,

there is some evidence for a cross-over from the axisymmet-

ric scalings to the yield-stress dominated ones (particularly in

Ymax). However, the domes also begin slumping downhill, and

the three diagnostics quickly diverge from one another. Fig. 10

again includes theoretical computations with matched parameter

settings. The general trends of the observations are reproduced

by the theory, although the comparison is not as satisfying as

in Fig. 9. We are not completely certain why this should be so,

although the rheological parameters are not particularly well

constrained by our measurements. The final panel of the figure

also presents evidence for an intermediate scaling with (Xmax,

Xmin, Ymax) ∼ (t2/3, t0, t1/3), which is not expected from the scal-

ing theory (and could merely be an artifact of fitting a power law

over too short an interval).

Although the extrusions of the kaolin slurry proceed much

more symmetrically and smoothly than those of the syrup, the

edges and surface of the kaolin domes still develop imperfec-

tions. Previous articles by Blake [3], Griffiths and Fink [6]

and Osmond and Griffiths [4] present pictures of surface fea-

tures on kaolin domes which take the form of a network of
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Fig. 9. Experimental extrusions of a kaolin slurry over a horizontal plane. Shown is the average radius (the mean of four measurements in orthogonal directions)

against time for two extrusions with different extrusion rates. The dimensional measurements are converted into dimensionless variables by taking B = 1 and using

the pumping rate (about 22 and 26 cm3/s for the two experiments), K ≈ 40 m.k.s., n ≈ 0.5, p ≈ 1.6 g/cm3 and τy ≈ 13 Pa (as estimated by (47)). The solid curve also

included in the picture is the result of a theoretical extrusion, with parameter settings matched to the experimental conditions. The photograph shows a top view of

one of the extruded domes at late times; a tilted mirror offers a side view.

intersecting arcs or grooves. Analogous textures formed in all

our experiments, and as these grooves became more extensive

and prominent, some of our domes also developed small-scale,

saw-tooth-like patterns at their edges (see Fig. 11). The edge

structure is more pronounced in experiments with longer extru-

sions times and seems to be connected to the drying out of

the dome surface. Although the causes of both the surface

arcs and edge imperfections remain unknown, the two appear

to be related because prominent grooves typically terminate

between the “teeth” (e.g. Fig. 11b). Stick-slip or surface ten-

Fig. 10. Experimental extrusions of a kaolin slurry. Panels (a)–(c) show the dome diagnostics, Xmin, Xmax and Ymax, against time for three extrusions on planes

with varying slope (as indicated). These panels show the dimensionless diagnostics versus dimensionless time; the dimensional measurements are converted into

dimensionless variables by taking S = 1 and using the pumping rate (about 13 cm3/min), K ≈ 40 m.k.s., n ≈ 0.5, ρ ≈ 1.6 g/cm3 and τy ≈ 13 Pa (which also give the

values of B indicated). The solid curves shows the results of theoretical extrusions, with parameter settings matched to the experimental conditions. The three

photographs show the extruded domes at times of 6000, 4670 and 3120 sees (dimensionless times of 6.5, 35.4, 114).
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Fig. 11. Photographs of surface features on extruded, inclined kaolin domes. The top left photograph shows the network of intersecting curves close to the vent. The

top right picture shows the serrated fluid edge and the surface grooves connecting to it. The bottom picture shows what appears to be buckling and folding of the

strips carved by the grooves.

sion effects might be responsible, induced by the drying of the

fluid edge and surface layers.2 A change in rheology is further

suggested by the buckling and folding of surface strips between

the grooves, which occurred later in the same experiments

(Fig. 11c).

5. Slumps

Our second problem surrounds the release of a finite volume

of material, or slump for short.

5.1. Axisymmetrical dam breaks

We begin with the circular dam break on a flat surface. In cir-

cular polar coordinates, the initial condition can be conveniently

written in the form,

h(r, 0) =

{

1, r ≤ 1,

0, r > 1.
(32)

The resulting slumps fall into two categories depending on

whether the Bingham number is greater or less than a critical

value, Bc = (2/15)1/2. The two kinds of slumps are illustrated in

Fig. 12, and are similar to the edge collapses of planar slumps

described in Section 3.1. In either case, the slump begins with

the yield and collapse of the fluid edge. For B > Bc, the internal

strength arrests the collapse before the yielded margins of the

dome reach the centre, resulting in a partial slump with an inner

core of stagnant fluid. For B < Bc, on the other hand, the internal

strength is unable to prevent the entire mound of fluid from

yielding, and a complete slump occurs.

2 To test the idea that stick-slip might be occurring at the base of the dome,

we conducted a number of experiments in which half the plane was covered by

sandpaper. In the early stages of the experiment, the two sides of the dome were

barely different. Later, however, we saw structures developing on the surface

and edge mainly on the half of the dome expanding over the smoother part of

the plane. Though a little structure did develop on the sandpaper side, this part

of the dome was much smoother. The dome expansion also lost its symmetry

about the midline. Thus, there does appear to be some effect of the roughness

of the underlying surface, which could reflect the influence of effective slip.

The final states are given by

B < Bc : h(r, ∞) =

{√
2B(R∞ − r), 0 ≤ r ≤ R∞

0, r > R∞
, (33)

with

R∞ =

[

(

15

8

)2 1

2B

]1/5

and h(0, ∞) =
√

2BR∞, (34)

or

B > Bc : h(r, ∞) =

⎧

⎪

⎨

⎪

⎩

1, r < Rc√
2B(R∞ − R), Rc ≤ r ≤ R∞

0, r > R∞

(35)

where Rc denotes the inner radius of the yielded regions and

R∞ =
1

6B
+

1

B

(

B2 − B2
c +

1

9

)1/2

, Rc = R∞ −
1

2B
.

In both cases, R∞ denotes the final maximal radius. Eq. (33)

repeats Nye’s solution [33], which was written down originally

as a plastic model of a glacier.

Note that for partial slumps, the final profile has a disconti-

nuity in surface slope at r = Rc. That is, there is a circular “scar”

disfiguring the final shape. This feature is equivalent to the points

of slope discontinuity seen on one-dimensional flows in Section

3. As we will see below, when we incline the plane, the circu-

lar arc of the scar becomes distorted into a more complicated

geometrical structure.

The convergence of the slump to its final state can be explored

with perturbation theory. Following Matson and Hogg’s [31]

analysis of planar dam breaks, we set

h(r, t) = h∞(Ξ) + Λ(t)Θ(Ξ), Ξ =
r − rc(t)

ro(t) − rc(t)
, (36)

where rc(t) and ro(t) denote the inner and outer radii of the

yielded annular regions, h∞(Ξ) prescribes the final shape, and

Λ(t)Θ(Ξ) is the perturbation in separable form. By taking Λ,
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Fig. 12. Axisymmetric dam breaks with initial condition, h(r, 0) = 1 for r < 1 (dots). Shown are snapshots of h(r, t) (solid curves) and Y(r, t) (dashed curves) for (a)

B = 0.75 and (b) B = 0.15, at t = 0, 0.625, 2.5, 10, 40, 1000, 4000, 25,000, 105. The crosses and solid curve shows the final profile as given by (33) and numerical

computation, respectively. Panel (c) shows a plot of the maximum radius, ro(t), against time.

|Rc − rc| and |R∞ − ro| all small, we may eventually show that

ro(t) = R∞ −

{

[R∞ − ro(0)]−1 + λ

[

B

h∞(0)

]3

t

}−1

, (37)

where λ ≈ 23.3 is a separation constant that is the eigenvalue of

the nonlinear ordinary differential equation (ODE),

2λ(1 − x2)(1 − Q) =
d

dx
[(1 − x2)Q2

x], (38)

with Q(0) = 0 and regular at x = 1. Thus, the decay to the final

state follows the dependence t−1.

5.2. Slumps on slopes

We consider three types of slumps on slopes:

(i) The circular dam break, with initial condition (32);

(ii) The slump of an inclined Nye solution, with h(0, t) given

by (33);

(iii) The three-dimensional block, with h = 1 for −1 < x, y < 1

and zero beyond.

Figs. 13 and 14 show two examples of inclined circular dam

breaks. In the case with large B in the first figure, the initial col-

umn suffers an edge collapse; much of the material remains in

place and the very top of the dome falls little during the slump

(had the yield stress been slightly larger, the dome would have

contained a stagnant core). Conversely, the case with lower B

suffers a layer collapse and slumps quickly downslope, leav-

ing a relatively flat final deposit. In either case, a scar develops

demarking the regions that slumped downhill from those that

moved uphill.

An inclined Nye solution is shown in Fig. 15. In this exam-

ple, a fraction of the upslope portion of the initial dome remains

below the yield stress and consequently never yields; this is

brought out by the diagnostics, Xmin and Ymax, which remain at

or close to their initial values. Another feature of this slump that

is nicely brought out by Xmax is that the advance of the downslope

edge is significantly delayed beyond t = 0. This occurs because

the initial dome has a relatively steep (but not vertical) edge

with |hx| ∼ h−1 ≫ S. Hence, the tilting of the fluid edge has

little effect, and it is the central regions that collapse first (in

other words, the slump cannot be classified as an edge collapse).

Another scar divides the yielded and unyielded portions of the

final dome.

Finally, the slump of an inclined block is shown in Fig. 16.

The steep sides of the initial condition ensures that this structure

slumps in all directions; for this value of B, the block fully yields

although once more the yield strength is almost high enough

to hold a central core in place. The final shape is disfigured by

multiple scars which are related to the divisions between material

that slumped in the four directions.

5.3. Scaling and stopping times

To apply the scaling theory of Section 4.1 (with α = 0) to

the slumps above, we must first revise the analysis to take into

account the fact that the initial phases of a slump can contain

stagnant zones of fixed height bordered by growing margins

of yielded fluid. Initial conditions with flat, central regions have

this feature (i.e. an edge collapse) provided that their initial depth
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Fig. 13. Circular dam break on an incline for B = 1. The top row of pictures show dome shapes at (a) t = 0, (b) t = 1 and (c) t = 104. In the middle row, we show

snapshots of h and Y along the midsection of the dome (for t = 0, 1, 4, 16, 100, 400, 2500 and 104), and the evolution of the dome diagnostics. The last picture shows

the final shape, as reconstructed from the Charpit solution, and using the footprint of the final dome from the ADI computation. The curve at the top of the dome

ended by dots shows the position of the scar. The other lines are contours of constant height and sample characteristic curves.

does not exceed B/S, or B > 1 with our chosen scalings. In this

situation, it does not make sense to apply the mass conservation

constraint (27), and we should instead demand that ∆ = 0 (giv-

ing fixed height). It follows that slumps begin with a Newtonian

phase that is unaffected by either slope or yield stress; the char-

acteristic scalings are (Xmin, Xmax, Ymax) ∼ t1/2, as seen in the

time series of dome diagnostics presented in Figs. 13–16.

As in Section 4.1, this early Newtonian evolution can be inter-

rupted either by the emergence of yield stresses or the slope.

However, there is also now a third possibility because the yield-

ing margins of the fluid can at some stage meet, signifying that

the whole fluid layer is in motion. At that point, we must rein-

state the mass conservation constraint and apply the scaling of

Section 4.1 with α = 0. In other words, there can be a transi-

tion from partial to complete slump. If the initial structure has

a lengthscale (ℓ), then the time required for the whole layer to

yield is t ∼ ℓ2, provided that neither the yield stress nor slope has

broken the early time scalings. Comparing the relative size of B,

S and ℓ, we can now categorize the various possible scenarios,

which leads us to the scenario shown in Fig. 17.

In brief, if B ≫ 1 and ℓ ≫ 1, the yield stress dominates first,

bringing the partial slump to rest. In this case, we expect a “stop-

ping time”, Tstop ∼ B−2. If the initial structure is sufficiently

narrow, on the other hand, and ℓ2 ≪ B−2 ≪ 1, then even a rel-

atively strong fluid completely slumps after a time, t ∼ O(ℓ2).

The yield stress subsequently brings motion to a halt, giving a

stopping time, Tstop ∼ B−8/5.

For B ≪ 1, the yield stress cannot prevent the fluid from fully

yielding immediately (i.e. there is a layer collapse). Neverthe-

less, as illustrated in Fig. 14, it still takes time for the structure

to lose its original form, and the early time scaling remains as

before. For relatively narrow structures, ℓ ≪ 1, the slump is

first affected by the collapse of the initial structure; only later is

there a transition to a slope-dominated Newtonian era. The final
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Fig. 14. Circular dam break on an incline for B = 0.2. The top row of pictures show dome shapes at (a) t = 1, (b) t = 25 and (c) 104. In the middle row, we show

snapshots of h and Y along the midsection of the dome (for t = 0, 1, 4, 16, 100, 400, 2500 and 104), and the evolution of the dome diagnostics.

transition is precipitated by the emergence of the yield stress,

giving Tstop ∼ B−3. For B ≪ 1 and relatively wide initial con-

ditions, ℓ ≫ 1, the slope becomes important first (for t ∼ O(1))

The ensuing phase of evolution corresponds to the large-slope

limit of Section 3.2, which we have not explored in detail.

Fig. 18 presents a summary of numerically determined stop-

ping times for a range of computations. Panel (a) shows results

for a flat plane. The numerical data are determined by measuring

the length of time required for the edge to reach a given distance

of its final position (which is known analytically from formulae

in Section 5.1). In particular, we define

ro(Tstop) − ro(0) = 0.99[R∞ − ro(0)], (39)

so that the distance travelled by the fluid edge is within one

percent of its final value. In this case, scaling theory predicts

that Tstop ∼ B−2 if B ≫ 1, or Tstop ∼ B−8/5 if B ≪ 1, which agree

roughly with the numerical data. The figure also includes a more

refined estimate of Tstop, based on the perturbation result in (37):

Tstop =
100

K(R∞ − 1)

[

h∞(0)

B

]3

. (40)

The other two panels in Fig. 18 show data for inclined circular

dam breaks, with stopping times determined for Xmax and Ymax

in analogy with (39). In these cases, the final values of the dome

diagnostics are not known analytically, but they can be extracted

from the numerical computations in order to determine Tstop

(more precisely, we take Xmax(∞) and Ymax(∞) to be given by

the position of the edge at t ∼ 104). The values of B over which

the various scalings apparently emerge is, in some cases, quite

narrow and the agreement with the predicted slopes is certainly

suggestive, but not exact. Panel (b) shows the stopping times for

the dam break configuration used above, with an initial radius

of unity (i.e. ℓ = 1). In this instance, the large B data limit to

the expected B−2 scaling, but the limiting dependence of B−3 is

not reached for the smaller values of B. To bring out that second

scaling, we computed a further suite of dam breaks in which

the initial radius was 1/8. As shown in panel (c) of Fig. 18, this

second set of data display the expected, low-B behaviour (at least

for Xmax; the other diagnostic comes to rest earlier, which is also

clear from the scaling theory). In both cases, we also observe

the intermediate scaling, Tstop ∼ B−8/5. Rather curiously, this

scaling is observed for B < 1, whereas theory predicts it should

arise only for 1 ≫ B ≫ ℓ−1; we have no explanation for this,

other than a fortuitous coincidence of order one factors.

5.4. Scars

As a slump comes to rest, the fake yield surface Y approaches

the base of the fluid and the pseudo-plug fills the dome. As

mentioned in Section 3.1, we then obtain a first-order partial

differential equation (PDE) for the shape of the deposit:

(S − hx)2 + h2
y −

B2

h2
= 0. (41)

This equation can be solved by Charpit’s method (e.g. [34]);

Balmforth, Craster and Sassi [24] have offered several sugges-

tions on the practicalities. Here, we will follow suit but focus
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Fig. 15. Collapse of a Nye solution on an incline for B = 1 and volume π. The top row of pictures show dome shapes at t = 0, 1 and 104. In the middle row, we

show snapshots of h and Y along the midsection of the dome (for t = 0, 1, 4, 16, 100, 400, 2500 and 104), and the evolution of the dome diagnostics. The last picture

shows the final shape, as reconstructed from the Charpit solution, and using the footprint of the final dome from the ADI computation, but only where the material

slumped. The characteristics from the yielded footprint are terminated when they intersect the back of initial dome. In this way, the yielded Charpit solution can be

patched onto the unyielded initial dome. The curve cutting through the dome shows the position of the scar that divides yielded from stagnant fluid. The other lines

are contours of constant height and sample characteristic curves.

mainly on the case in which one wants to reconstruct h given the

footprint contour on the x–y plane.

Instead of directly solving for a surface, z = h(x, y), the idea

behind Charpit’s method is to parameterize the solution in terms

of two new coordinates, denoted here by ζ and κ. The “net”

formed by the curves of constant ζ and κ can be constructed by

setting hx = P(ζ, κ) and hy = Q(ζ, κ), and then demanding that x,

y, h, P and Q solve the ordinary differential equations (ODEs),

xζ = FP = 2(S − P), yζ = FQ = −2Q,

hζ = PFP + QFQ = 2P(S − P) − 2Q2,

Pζ = −Fx − PFh =
2PB2

h3
, Qζ = −Fy − QFh =

2QB2

h3
,

(42)

where the PDE is represented by

F (x, y, h, P, Q) =
B2

h2
− (S − P)2 − Q2 = 0. (43)

Finally, we impose the initial condition that for ζ = 0 the curves

pass through a point of the footprint contour. Each such charac-

teristic curve is indexed by κ

From the last two equations in (42), it emerges that

Pζ/P = Qζ/Q and so P = aQ. The value of the parameter a = a(κ)

is a property of each characteristic curve, and is fixed once one

decides on a parameterization of the footprint contour. Solving

Eq. (41) for Q, and then integrating hζ/xζ and hζ/yζ , as obtained

from the first three equations in (42), we find

x(κ, ζ) − x0(κ) =
h

S
−

B

2S2
log

[

∆(h)

∆(0)

]

, (44)
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Fig. 16. Collapse of a block on an incline for B = 1. The top row of pictures show dome shapes at t = 0, 1 and 104. In the middle row, we show snapshots of h and Y

along the midsection of the dome (for t = 0, 0.0625, 0.25, 1, 4, 25, 100, 400, 2500 and 104), and the evolution of the dome diagnostics. The last picture shows the final

shape, as reconstructed from the Charpit solution, and using the footprint of the final dome from the ADI computation. The curves ended by dots show the position

of the scars. The other lines are contours of constant height and sample characteristic curves.

Fig. 17. Scalings and transitions for slumps.
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Fig. 18. Panel (a) shows the stopping times for Xmax in the absence of the

downslope terms, i.e. the axisymmetric case; the dotted line shows Bc. Panel (b)

shows the stopping times for Ymax (circles) and Xmax (stars) together with the

predictions B−8/5 and B−2. Panel (c) gives stopping times for a different initial

condition: h = 1 for r < 1/8.

y(κ, ζ) − y0(κ) =
1

S2

√

B2 + a2(κ)B2 − S2h2

−
B

S2

√

1 + a2(κ), (45)

where

∆(h) =

(

aB +
√

B2 + a2B2 − S2h2

aB −
√

B2 + a2B2 − S2h2

)

(

B + Sh

B − Sh

)

. (46)

These relations provide the solution in y ≥ 0. The solution for

y < 0 is obtained with an additional minus sign on the left of (45),

and the solution is then symmetric with respect to y = 0 only if

the footprint has that symmetry. Note that one can formally take

the limit S → 0 of (44) and (45), to arrive at the results for a flat

plane.

The Eqs. (44) and (45) implicitly determine h(x, y) given the

footprint. Some sample solutions for inclined domes are illus-

trated in Fig. 19. In these solutions, instead of prescribing the

footprint, we instead assume that all the characteristics eventu-

ally meet at a single point, which forms the dome’s apex and

lies at the origin. There we set h(0, 0) = 1, and (44) and (45) then

give the footprint. Balmforth et al. [24] proceed well beyond the

construction of such dome shapes and present solutions for the

extrusion of yield-stress dominated domes via a perturbation the-

ory. The theory also provides the depth-averaged velocity field

of the extrusion; Fig. 19 includes such velocity fields. Note that

B must exceed unity; otherwise the dome cannot withstand the

pull of gravity and accelerates downslope.

In Fig. 19, the characteristic curves are terminated once they

meet at the dome’s apex. Though quite natural, this operation

is more than a mere convenience: if the curves had been con-

tinued any further, the resulting surface would have become

multi-valued and unphysical. Thus, terminating the character-

istics once they cross is a mathematical necessity. This is also

Fig. 19. Charpit solutions for inclined domes. Shown are contours of constant

depth (spaced by 0.1), a selection of characteristics, and depth-averaged velocity

vectors for four domes with the values of B indicated. The depth-averaged veloc-

ity field is that which would be obtained if the dome were being extruded slowly,

and is constructed according to the perturbation theory outlined by Balmforth

et al [24].

true in more general situations than an inclined dome with a sin-

gle pinnacle. Indeed, once that simple geometry is abandoned,

it becomes clear that the crossing of the characteristics and the

creation of a multi-valued surface is a pervasive feature of the

general problem. Moreover, instead of crossing at a single apex,

the characteristics meet along curves. In general, a solution can

be rendered single-valued and continuous by interrupting the

characteristics at their first crossing points and continuing them

no further.3 Because the characteristics typically reach the cross-

ing points with different surface gradients, the height profile then

acquires “seams” or “scars” of discontinuous slope along the

curves of intersection.

The final panels of Figs. 13, 15 and 16 all show height profiles

reconstructed as described above. For the inclined dam break

and blocks in Figs. 13 and 16, the characteristics are started off

using the locus of final dome edge from the ADI computation.

The reconstruction of the inclined Nye solutions is a little more

3 It is also possible to insert discontinuous shocks into the profiles to make

them single-valued. However, we are searching for static shapes and any such

discontinuity would normally force the fluid to flow (as in our dam breaks). We

are unable to give a mathematical proof that the current construction is the correct

one, but by comparing reconstructed height profiles with numerical simulations

we are confident that the assumption is sensible.
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complicated because the upstream section of the initial structure

does not yield during the slump and therefore cannot be built as

a Charpit solution. Instead, we first locate the downstream part

of the footprint that did yield and build up characteristics from

there. We terminate the characteristics when they intersect the

upslope side of the initial condition, thereby patching the Charpit

solution onto the unyielded part of the dome.

5.5. Another comparison with experiments

A difficulty in comparing theoretical slumps with experimen-

tal slumps is that it is not straightforward to set up and release a

volume of fluid with a given shape on the inclined plane. Dam

breaks in channels work quite well [32] because the fluid is con-

fined between three walls and a single gate that can be suddenly

raised. Moreover, when the gate is released, the fluid advances

past its original position and any spillage and splashes caused

by lifting the obstruction are swept away. The same cannot be

said of fluid emplaced on a slope beneath a container, especially

when we are ultimately interested in the final shape. Indeed, the

slump test is a pretty messy device for relatively fluid materials.

To get around any problems with the release mechanism, we

avoided confining fluid inside a container and followed a differ-

ent route, equivalent to some of the theoretical slumps described

above. We first extruded a dome of kaolin slurry on a horizontal

surface along the lines of Section 4.2, switched off and allowed

the dome to come to rest. This produces a structure which is the

experimental equivalent of Nye’s solution. Once the axisymmet-

rical dome was at rest, we then quickly tilted the inclined plane

to the desired angle and observed the resulting slump. Before-

and-after images of two experiments conducted in this way are

shown in Fig. 20. In the second experiment, half of the surface

of the initial dome was covered with poppy seeds to help track

the fluid motion during the slump.

In Fig. 20, we also compare the final shapes with theoreti-

cal reconstructions. The latter are generated by first matching

parameter values with the experimental conditions: the depth

and radius of the initial axisymmetrical dome provide the length

scales, H ≈ 1.6 cm and L ≈ 16 cm. Nye’s solution then indicates

that

τy =
ρgH2

2L
≈ 13.4 Pa, (47)

given that ρ ≈ 1.6 g/cm3. This scaling implies that B = 0.5 in

both experiments, and S = (L/H)tan φ ≈ 10 tan φ, or S ≈ 0.6 and

1.7. Lastly, we use the ADI scheme to solve the corresponding

initial-value problem; the final shape, or its reconstruction using

the Charpit solution, can be compared directly with experiment.

In Fig. 20, we display the Charpit reconstruction, together with

its distinctive scar. For both examples, the footprints of the final

dome compare favourably with experiment.

Because the experimental domes are so shallow, observing a

discontinuity in surface slope (i.e. a scar) is difficult. Moreover,

the prominent surface texture of our extruded domes obscures

what structure there could be. Thus, we are unable to detect

experimental analogues of the theoretical scars. Nevertheless,

the surface markers in the second experiment do indicate that

only a down-slope portion of the dome slumps after the plane

is tilted. In fact, the markers clearly reveal a set of fissures that

open up in the surface skin, all downhill of the expected scar.

6. Discussion

Our goal in this article has been to summarize recent efforts in

developing theory of viscoplastic flow over inclined surfaces. In

the slow and shallow limit, we can make much progress using

the lubrication approximation, and the results show quantita-

tive agreement with experiments. More specifically, in addition

to formulating a model that is straightforwardly and efficiently

solved numerically, we can extract analytically the kinematic

wave structures [18,22,1], detailed conditions for initiation and

cessation of flow, the characteristic time dependence of extru-

sions, the limiting shape of slumps, and convergence rates

to standstill [31]. We end by describing some simple exten-

sions of the theory presented earlier, some unresolved issues,

and the generalizations needed to approach a variety of real

applications.

6.1. Topography

Although we have considered constant inclines, the analy-

sis can be extended to develop lubrication models for flows

over topography [35,25,36]. Instead of aligning our coordinates

with an inclined plane, we now orientate z vertically so the

(x, y)—plane is horizontal. The basal topography is denoted by

F(x, y), the total height of the free surface above the z = 0 plane

is represented by h(x, y, t) = F(x, y) + θ(x, y, t), and θ(x, y, t) is

fluid depth (the special case of constant slope is recovered by

taking F(x, y) = −Sx). The lubrication analysis proceeds much

as before and furnishes the thin-layer model,

∂th + ∂xU + ∂yV = ws,
(

U

V

)

= −
1

6
(3h − Y − 2F )(Y − F )2

(

hx

hy

)

, (48)

where

Y = max

⎛

⎝h −
B

√

h2
x + h2

y

, F

⎞

⎠ . (49)

As above, one can solve these equations numerically with

a suitable ADI scheme [25]. Instead of proceeding down that

pathway, we comment only on how the final shapes of slumped

deposits are affected by topography: these shapes are determined

by the condition Y → 0, or

(Fx + θx)2 + (Fy + θy)2 =
B2

θ2
. (50)

This equation can be attacked with Charpit’s method,

although the elegant simplification of Section 5.4 that allows for

a completely analytical solution relies upon (50) being explic-

itly a function of θ and its derivatives, but not of x and y. None

the less, one can write out the Charpit equations and solve them
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Fig. 20. Photographs of two pump-then-slump experiments. Poppy seeds have been scattered over half the surface of the second experiments by way of surface

markers. In the images of the final, slumped domes, contours of constant depth (dotted curves) from theoretical computations are superposed. The circle shows the

position of the vent through which the original dome was extruded. The solid curve shows the division between the reconstructed Charpit solution and the unyielded

initial dome.

numerically as a system of ODEs. A sample computation for a

deposit in a channel (F(x, y) = y2 − x) is shown in Fig. 21.

6.2. More complicated constitutive behaviour

Our main discussion has surrounded Herschel–Bulkley flu-

ids, which are analytically convenient but not essential to the

derivation of the lubrication model. Indeed, one can try other

constitutive laws that build in different material properties. A

particularly useful feature of the lubrication analysis is that it

simplifies the mathematical structure of complicated constitu-

tive laws and incorporates only the most important physics. One

can then tell immediately if a change in the physical model has

any impact on a shallow, slow flow, and if it does, the theory

offers an expeditious route to finding the consequences. Thus,

one could gauge, for example, recent suggestions that thixotropy

plays a major role in viscoplastic fluid dynamics [37].

By way of illustration, we consider a generalization of the

Herschel–Bulkley model with a slightly more complicated yield

condition. Plasticity theory tells us that, in general, a physically

sensible constitutive law should have a yield criterion that can be

couched as a functional relation between the various invariants

of the total stress tensor [1]. In two dimensions, these invariants

are the pressure and τ ≡
√

τ2
xx + τ2

xz, and so the yield criterion

must take the general form, G(p, τ) = 0, for some function, G. The

von Mises condition embedded in the Herschel–Bulkley law,

τ = τy, ignores the pressure dependence of the yield condition.

By contrast, in theory of granular media, the popular Coulomb

law expresses yield in terms of a stress, τy = p tan ψ, where ψ is

the internal angle of friction. We combine both examples into

the yield condition,

τ = τy(p) ≡ τ0y + p tan ψ, (51)
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Fig. 21. Height profile of a viscoplastic dome held at its yield stress atop a parabolic channel given by F(x, y) = y2 − x. B = 2.

Fig. 22. Limiting shapes with pressure-dependent yield stress. Panel (a) shows height profiles for planar shapes on a slope with B = 1; 10 profiles are shown for

ψ = mπ/20, m = 0, 1, . . ., 9 (the fluid edges are adjusted so that the profiles have equal area). Panel (b) shows a three-dimensional example with the parameter settings

indicated.

where τ0y and ψ are parameters. This model incorporates a pres-

sure dependence into the Herschel–Bulkley law, or allows for

cohesion when considered as a model of a granular medium.4

In the lubrication analysis, the main impact of the redefinition

of τy is on the shear stress, τxz:

τxz = (S − hx)(h − z)

= |uz|n−1uz + [B + (h − z)tan ϕ]sgn(uz), (52)

where

B =
τ0yH

ρνV
, tan ϕ =

1

ε
tan ψ (53)

(unless ψ is small, the pile of material cannot be shal-

low). This relation is suitable only provided |S − hx|(h − z) >

4 An important difference between Herschel–Bulkley and the Coulomb law is

that the former uses the von Mises yield condition, whereas the latter is typically

written in terms of Tresca’s condition. The example yield condition in the text

is actually equivalent to a Drucker–Prager granular material.

B + (h − z)tan ϕ, which gives the fake yield surface,

Y (x, t) = h −
B

|S − hx| − tan ϕ
. (54)

As before, the fluid yields significantly for z < Y, but only slightly

above this surface. Continuing on, we find that the thin-layer

equation takes the same form as (16), except for the redefinition

of Y.

Again, we give no complete discussion of the new system,

and only explore the consequences on the final shape of a slump:

flow ceases when Y → 0, giving the equation for the final profile:

h|S − hx| = B + h tan ϕ, (55)

For B = 0, this gives h = (x − x0)(S ± tan ϕ), where x0 denotes the

position of the fluid edge, and we expect a wedge of “fluid” held

at the critical angle, ϕ, i.e. a sandpile. With the cohesion term:

h −
B

(tan ϕ ± S)
log

[

1 + h
(tan ϕ ± S)

B

]

= (S ± tan ϕ)(x − x0).

This formula interpolates between our old results and the sand-

pile. Some sample height profiles are shown in Fig. 22. The sec-
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ond solution presented in this figure is obtained from the three-

dimensional generalization of (55), namely (S − hx)2 + h2
y =

(B + h tan ϕ)2/h2.

6.3. Unresolved issues

Although our experiments agree fairly satisfactorily with

theory, they expose some thorny issues. In particular, surface

textures of various kinds are seen in all the experiments. For

corn syrup, we observe a dry, elastic-like skin that can buckle and

wrinkle. For kaolin suspensions, the surface becomes grooved

with a network of intersecting arcs, and one again sees a distinct

skin that may have more plastic-like qualities. Both phenomena

motivate an exploration of “elastic/plastic-plated gravity cur-

rents” [38], a problem also relevant to fluid films with solidified

surfaces (such as lava flows and drying paint). One also won-

ders whether the features could be used to understand more of

the fluid properties, or diagnose the emplacement (flow) condi-

tions given only an image of the final state (often a geological

necessity).

The surface grooves on kaolin suspensions, for example, have

been likened to slip lines in plasticity theory. Do they also delin-

eate the state of stress in our domes? A difficulty here is that the

theory of the slip lines is normally applied to two-dimensional

plastic flow, whereas here there are strong shear stresses (τxz and

τyz) acting transverse to the plane of the surface pattern. Nev-

ertheless, the question remains as to what they tell us about the

material structure and flow conditions.

6.4. Inertial and thick flow

We began our theoretical discussion with two key assump-

tions, namely that the flow is slow and shallow. Thus, by taking

ε ≪ 1 but Re order one in (9) and (10), we were able to ignore

inertial effects. However, relatively fast shallow flows also occur

in which the combination εRe can no longer be considered small.

Such inertial viscoplastic films have applications in, for example,

fast mud flows and landslides. The main problem with adding

inertial terms back into the film equations is that we can then

no longer integrate the leading-order relations, which remain

fully three-dimensional PDEs. Despite this mathematical prob-

lem, the allure of the relatively simple thin-film equations has

led many researchers to press on regardless and write down

inertial generalizations of the lubrication model for Newtonian

films. The ideas have also been adapted to viscoplastic fluids

[1,39,22]. The reader should be warned that, although these mod-

els can be very useful, they are nothing more than uncontrolled

approximations (i.e. they are not derived from formal asymptotic

expansions) of the governing fluid equations; only in the inertia-

less limit can they be mathematically justified with lubrication

theory.

An important practical problem that demands inertial films

are roll waves. These are the objects seen on windows and gut-

ters on rainy days. In the viscoplastic context, they have been

used to rationalize the surges seen on mud flows [20]. Roll

waves on a flowing kaolin suspension in a flume are shown in

Fig. 23. As discussed in detail by Balmforth and Liu [40], inertial

Fig. 23. A kaolin suspension flowing down a channel (width 10 cm, flow depth about 0.5 cm) displays the formation of roll waves. Two experiments are shown; in

the first, smooth roll waves appear. In the second, the roll waves develop a secondary instability.
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generalizations of the viscoplastic film equations can lead to a

qualitative description of roll-wave dynamics, but not quantita-

tive one. More specifically, the models are able to rationalize roll

waves as the linear instability of the uniform flow and furnish

nonlinear structures that resemble them. However, unless one

carefully constructs the inertial model via improved averaging

techniques [41], the model incorrectly predicts the criterion for

the onset of roll waves, and can even generate spurious instabil-

ities.

There are further complications in modelling slow, but not

shallow viscoplastic flows: without the thin-layer approxima-

tion one must deal with the full Herschel–Bulkley constitutive

law, and face all the problems in identifying the yield surfaces.

Augmented Lagrangian schemes and regularized constitutive

models have become popular in numerical approaches to the

problem, as described elsewhere in this volume. However, one

also wonders whether insightful analytical progress could be

made in some of the limiting situations, such as the approach to

rest or the onset of motion. In Section 3.1, we already commented

how the limiting shape of a shallow layer could be viewed as a

problem of plasticity. Indeed, the fluid need not be shallow for

this observation to be made. This poses the question of whether

one can construct the limiting shapes of viscoplastic structures

using ideas from plasticity theory (such as slip-line theory and

Hencky’s characteristic net [30]), and without solving the full

governing equations as an initial-value problem.

6.5. Additional physical effects

In many of the applications of theory of viscoplastic films,

other physical effects come into play. Notably, in a variety

of problems in geophysics [42,6,43] and nuclear engineering

[44,45], the film is non-isothermal and cools as it flows. The

changes in temperature can significantly affect the fluid’s mate-

rial properties, or even induce phase changes like the solidifi-

cation of a surface skin. Attempts to incorporate a thin-layer

heat equation and temperature-dependent rheology often run

into difficulties in the applications because heat diffusion does

not necessarily take place quickly. For example, in lava flows

and nuclear coolants, the thermal diffusivity is too low to allow

the fluid to become isothermal across its depth. As a result, even

though the other fluid equations are simplified by the lubrication

approximation, one cannot follow suit with the heat equation and

it remains a three dimensional PDE [46,47]. To date, solidifica-

tion has not been dealt with at all.

Thin films are also often influenced strongly by surface ten-

sion. We have ignored this possibility entirely so far, even though

it plagues a great many industrial applications and decorates the

contact line of a falling film with fingering patterns [48,49]. In

this volume, Balmforth et al. [50] incorporate yield stresses into

the fingering problem. They derive the generalization of [17]

including surface tension, construct steadily propagating planar

fronts and test their linear stability to detect fingering instabil-

ity. But the problem, apart from some experiments [58], remains

unexplored.

Finally, we mention slip. Our thin-layer model assumes a

no-slip boundary condition on the plane over which the film

flows. However, a large number of complex fluids exhibit the

phenomenon of wall slip—an effective slip between the fluid

and the wall which is usually attributed to the formation of a rel-

atively dilute layer of fluid that lubricates the more concentrated

bulk [51]. Much research is still underway to understand and

model the phenomenon. Here we mention only that if one trusts

a particular parameterization, then it can be incorporated readily

into the thin-layer equations (cf. Balmforth et al. [5]). Indeed,

one could even turn the problem around, and use thin-layer flows

to try to extract a useful parameterization of the slip law. Note

that if slip becomes sufficiently severe, the flow can become rel-

atively plug-like across the film thickness. In this circumstance,

the shear stresses, τxz and τyz, that normally dominate in the

lubrication force balance can be weakened to the point that the

extensional stresses, (τxx, τyy, τzz), and in-plane shear stress, τxy,

also enter the problem. The situation, which demands a rather

different theoretical model [52], has analogies with theories of

free liquid threads and films in fluid mechanics [53], and ice

shelves and streams in glaciology [54]. The viscoplastic version

of these problems is yet to be addressed.

Appendix A. Numerical scheme

Our numerical scheme for solving the thin-layer equations

is based on the alternating direction implicit (ADI) method

[55–57,25]. The main idea is to produce a Crank–Nicholson-like

set of equations that deal with each space direction indepen-

dently, and which still produces a consistent (low order in time)

scheme. It is vital to use semi-implicit time-stepping schemes

as, after spatial discretization, the governing system of ODEs

for the discretized equations is stiff. If one uses central differ-

ence approximations for the spatial derivatives then the matrices

requiring inversion are tri- or penta-diagonal (cyclic if periodic-

ity is invoked), and sparse inversion routines can be employed.

The upshot is that one can construct highly accurate, and rea-

sonably fast, schemes in this manner.

The governing equation for h is:

ht =
1

3
∇ · (C∇h) −

S

3
∂x(C), C =

Y2[3h − Y ]

2
. (A.1)

A Crank–Nicholson-style approach is used for the non-linear

diffusion terms while the advective piece is treated explicitly.

Using the superscript (n) to denote the nth time step, one discre-

tises in time to arrive at:

h(n+1) − h(n)

�t
=

1

6
∇ · (C∇h)(n+1) +

1

6
∇ · (C∇h)(n)

−
S

3
∂x(C)(n) + O(�t2) (A.2)

To proceed we introduce the two operators

Lx =
[

I −
�t

6
∂x(C∂x)

]

, Ly =
[

I −
�t

6
∂y(C∂y)

]

(A.3)

We aim for a first order scheme in time, so ht = [h(n+1) − h(n)]/

�t + O(�t) with h(n) as the value of h at t = tn, and �t as the
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time step. The nonlinear terms in Lx,y are evaluated at t = tn.

The resulting scheme is then

L
n
xH

(n) = L
(n)
x L

(n)
y [h(n+1) − h(n)]

=
�t

3
∇ · (C∇h)(n) −

S�t

3
∂x(C)(n) + O(�t2). (A.4)

The product of operators, L(n)
x L

(n)
y can be inverted sequentially

for each direction, and the two-dimensional problem is thereby

solved as a pair of one-dimensional ones.

A major issue that we encounter for long-time extrusions is

that as the fluid expands, the domain grows continually. We deal

with the expanding domain by rescaling the space variables:

ξ =
x − M(t)

L(t)
, η =

y

W(t)
(A.5)

where L(t) is the dome length in the x direction, W(t) is half

dome width in the y direction (assuming it to be symmetrical)

and M(t) keeps the dome centered in the computational domain.

The change of variables introduces two extra advective terms:

ht → ht −
(ξL̇ + Ṁ)hξ

L
−

ηẆhη

W
, (A.6)

and evolution equations are needed for L(t), W(t) and M(t). The

ADI scheme becomes:

L
(n)
x L

(n)
η [h(n+1) − h(n)]

=
�t

3
∇ · (C∇h)(n) −

S�t

3L(n)
∂ξ(C)(n)

+
[ξ(L(n+1) − L(n)) + (M(n+1) − M(n))]

L(n)
h

(n)
ξ,UP

+
η(W (n+1) − W (n))

W (n)
h

(n)
η,UP , (A.7)

with

Lξ =
[

I −
�t

6L2
∂ξ(C∂ξ)

]

, Lη =
[

I −
�t

6W2
∂η(C∂η)

]

.

The rescaling advective terms are computed using a simple first-

order upwinding scheme to avoid numerical instability.

The equations for L, W and M are found by imposing the

boundary condition that h = 0 at the front (F), back (B) and side

(S), and then solving the following equations for L(n+1), M(n+1)

and W(n+1):

−RHS(n) =
[ξ(L(n+1) − L(n)) + (M(n+1) − M(n))]

L(n)
h

(n)
ξ

at B and F,

−RHS(n) =
η(W (n+1) − W (n))

W (n)
h(n)

η at S,

where RHS is the righthand side of (A.7).
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