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a b s t r a c t

We consider lubrication theory for a two-dimensional viscoplastic fluid confined between rigid moving

boundaries. A general formulation is presented which allows the flow field and pressure to be calculated

given an arbitrary rheological model; the Herschel–Bulkley law is used for illustration. The theory is first

applied to a (full) viscoplastic journal bearing with arbitrary motions allowed for the inner cylinder

(either prescribed, or arising from an imposed load and torque). Conditions are derived determining

when motion is arrested by the yield stress. We next apply the theory to a slider bearing filled with Bing-

ham fluid, computing the lift force on the bearing and the fluid flux through it. The results are then

extended to model an inclined plate that is towed at constant horizontal speed over a shallow viscoplastic

layer but is able to move vertically. Steady planing solutions are stable at low towing speeds, but give way

to unstable vertical oscillations of the plate at higher speed; the yield stress has a relatively weak effect

on this instability. The pattern imprinted on the fluid layer by the oscillations provides an analogue of the

washboard phenomenon on gravel roads.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A wide variety of lubrication problems involve the flow of non-

Newtonian fluid between moving surfaces [1,2]. Our focus in the

present article is lubrication by viscoplastic fluids, and, in particu-

lar, on the role of a yield stress. Although viscoplastic fluids are

commonly used as lubricants (grease, for example, has previously

been described as a Bingham fluid, e.g. [3,1]), the impact of a yield

stress on the flow dynamics has not previously been fully explored.

One explanation for this omission may be the complicated consti-

tution of real lubricants, which defies an accurate description by

idealized models such as the Bingham or Herschel–Bulkley laws.

The operating conditions of many bearings also precludes yield

stresses from playing an important dynamical role in practical sit-

uations [4]. On the other hand, yield stresses have recently been

suggested as the key to stabilize lubricating multi-layer flows [5].

Moreover, in biological contexts, yield stresses may play an

important role in peristaltic pumping [6,7] and animal locomotion

problems, such as the swimming of a sperm [8], and the crawling

of a snail [9,10].

The key difficulty in viscoplastic lubrication is that the yield

stress can arrest flow over localized regions within the fluid.

Importantly, the locations of these rigid plugs (or ‘cores’, as they

are sometimes referred to) and how the flow pattern is organized

around them may not be known at the outset. Instead, the yield

surfaces are part of the solution of the problem in the fashion of

a type of free-boundary problem. Complicating the problem fur-

ther is that, in slender geometries, even if the fluid is yielded, the

yield stress may still dominate the viscous stresses to create

plug-like regions or ‘‘pseudo-plugs’’ [11,12].

In some situations, geometrical considerations can allow one to

anticipate the pattern of plugs and pseudo-plugs and thereby more

easily determine the flow field. Such considerations are exploited

by existing solutions for viscoplastic slider and journal bearings

[3,1,13,4], and underly the flow patterns for free-surface flows

[14,12]. Nevertheless, in general settings, the flow pattern must

be determined along with the solution, one implication of which

is that in dynamical problems the plugs or pseudo-plugs may ap-

pear or disappear as the flow evolves. Such complications plague

the swimming problems considered by Balmforth et al. [8] and

Pegler [15], and constitute one of the difficulties that we address

in the present article.

Our goal, then, is a general method for viscoplastic lubrication

problems in which the flow pattern cannot be predicted ahead of

time. In Section 2, we describe a general formulation of this

method, following which, in Sections 3 and 4, we present two

illustrative examples. The first, the viscoplastic journal bearing

(Section 3), extends the work of Milne [3] and others [1,13] by

allowing for general unsteady motion of the bearing surfaces. The

applications of this analysis to real bearings are not so clear, in view

of our restriction to full, non-cavitating, two-dimensional bearings
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filled with a model viscoplastic fluid (a Herschel–Bulkley fluid). Our

purpose, however, is to use this classical type of bearing chiefly as a

model problem to illustrate the difficulties and the features of the

solutions. Accordingly, we focus on the dynamical behaviour of

the bearing, rather than steady solutions of the Sommerfeld type

as presented previously [3,1,13]. Along the way, we elucidate

dynamics relevant to sedimentation problems. In particular, the

thin-gap geometry of the bearing allows us to make considerable

analytical headway into exploring how a cylinder sediments

throughaviscoplasticfluid towardsawall,with its progress arrested

by the yield stress. The corresponding problem for a cylinder falling

through an unbounded yield-stress fluid is rathermore complicated

owing to the convoluted structure of the yield surfaces and

pseudo-plugs [17,18], and we are aware of no existing results for

sedimentation towards a plane wall (unlike the Newtonian version

which is a classic problem in viscous fluid mechanics [19]).

Our second example, in Section 4, is motivated by experiments

on the phenomenon of washboard roads [20–22]. This phenome-

non is usually thought of as a practical pattern-formation problem

originating from the passage of a vehicle with a suspension over a

sand or gravel surface. However, as alluded to by Mather [20] and

demonstrated experimentally by Hewitt et al. [16] the surface need

not be granular (many fluids can apparently be ‘‘washboarded’’)

and the vehicle can simply be an inclined plate towed at constant

speed. In the version of the problem explored here, the inclined

plate is towed over a thin layer of a viscoplastic fluid; images from

the corresponding experiment are shown in Fig. 1. Within the

framework of lubrication theory, the dynamics can be discussed

relatively concisely and the washboarding instability demon-

strated theoretically. In fact, the idealized geometry we adopt

makes this problem similar to two other standard lubrication prob-

lems: the slider bearing [1] and blade coating [23]. In Section 4, we

therefore also revisit and extend some earlier work on sliders and

blades moving over viscoplastic fluids.

The principal difference in the washboarding problem is that

the inclined plate is free to move vertically according to the im-

posed gravitational load and the opposing fluid lift force, unlike

the standard lubrication problems, where the plate position is held

fixed. Despite this, we begin our study of the washboard instability

by constructing the steady planing states in which the plate is

dragged at fixed height over the layer, and which have a close rela-

tion to the slider bearing and blade coater. With that solution in

hand, we then explore whether the plate is stable towards vertical

oscillations (this unsteady problem has some similarities with the

oscillations of an air slider bearing studied in [24]). We do indeed

find that oscillations can grow unstably, generating periodic undu-

lations of the plate that imprint a washboard pattern in the fluid

layer left behind (cf. Fig. 1). The generality of both the experiments

and theory suggests that this washboarding instability may well

play a role in other problems, such as blade coating with pivoted

or flexible blades [25]. It also turns out that the imprint carved

by the plate features sharp steps that undoubtedly would be

smoothed by gravity or surface tension. Thus, the passage of the

washboarding plate leaves behind an adjusting fluid layer in which

cliffs slump back to equilibrium in a novel variant of the free-sur-

face flow problem [14,12,26].

We conclude our study in Section 5, and the Appendices contain

a number of technical details that underscore many of the results

described in the main text.

2. Mathematical formulation

The lubrication problem centres on the two-dimensional flow of

viscoplastic fluid within a narrow gap, as sketched generically in

Fig. 2a, and for our specific examples in panels (b) and (c). For each

of these problems. the gap is described by a Cartesian coordinate

system which is orientated with x running approximately along

the gap, and y directed across it. The surfaces bordering the gap

are denoted y = Y1(x, t) and y = Y2(x, t), with the thickness,

h(x, t) = Y2 � Y1. Along these surfaces, the velocities are (U1(x, t),

V1(x, t)) and (U2(x, t), V2(x, t)).

2.1. Lubrication analysis

The gap has a characteristic thickness, H, and length, L; fluid

flows through the gap with a characteristic speed of U , and the

cross-slot speeds are order UH=L. For the lubrication analysis, we

demand H � L, and assume that the reduced Reynolds number

ðH=LÞRe � 1, where Re ¼ UH=m and m is a characteristic kinematic

viscosity. These scales can be exploited to express all lengths and

velocities in dimensionless form. We further add the timescale,

L=U , and assume that shear stresses scale with T ¼ qmU=H, and

pressures with LT =H (guaranteeing the lubrication pressures

greatly exceed shear stresses);q is thefluiddensity. To leadingorder

in the aspect ratio of the gap, H=L, the momentum and continuity

equations for the fluid can be written in the dimensionless form

px ¼ sy; py ¼ 0; ux þ vy ¼ 0; ð1Þ

where p(x, t) is the fluid pressure, s(x,y, t) is the shear stress, and the

x and y subscripts denote partial derivatives. Gravity is ignored.

The boundary conditions are that

uðx; Y1; tÞ ¼ U1; vðx;Y1; tÞ ¼ V1 � Y1t þ U1Y1x; ð2Þ

uðx; Y2; tÞ ¼ U2; vðx;Y2; tÞ ¼ V2 � Y2t þ U2Y2x: ð3Þ

The momentum equations are integrated to furnish

s ¼ s1 þ ðy� Y1Þpx ¼ s2 � ðY2 � yÞpx; ð4Þ

where s1 and s2 are the surface shear stresses, which satisfy

px ¼
1

h
ðs2 � s1Þ: ð5Þ

For our viscoplastic fluids, when the shear rate, uy, dominates

the other strain rates, the constitutive law, to leading order, can

be written in scalar form and in terms of a prescribed function:

Fig. 1. An experiment in which an inclined plate is towed at constant speed over

the surface of a layer of viscoplastic fluid [16]. The plate is pivoted so that it can

move freely up and down under the action of gravity and the lift force from the fluid

(when the plate and fluid are in contact). If the towing speed is sufficiently fast, the

plate oscillates vertically due to an unstable interaction with the deforming fluid

layer, leaving the surface between regularly spaced impacts and sculpting a

washboard pattern in its wake. The top picture shows an image captured from high-

speed video footage; the dashed line indicates the path taken by the far corner of

the trailing edge of the plate. The lower picture shows a photograph taken of a

longer section of the final washboard pattern; a shadow cast over the layer

highlights the relief of the washboard (the peak-to-trough elevation differences are

less than 2 mm). The towing speed was 37 cm/s, fluid depth was 7 mm, and the

plate angle was 15�; the fluid is joint compound (a commercially available kaolin-

based material), mixed with a little water, and possesses a yield stress of about

30 Pa.
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s = T(uy). Note that, for a yield-stress fluid, the rigid phase (with

uy = 0) corresponds to T(uy) being multi-valued over the range of

stress beneath the yield value. More usefully, we define the

(well-defined) inverse, uy =C(s). A sketch of C(s) for the Her-

schel–Bulkley law is given in Fig. 3. This model, in our dimension-

less notation, takes the form,

uy ¼ CðsÞ ¼ ðjsj � BÞ1=nþ sgnðsÞ; ð6Þ

where (�)+ indicates max(�, 0), n is a power-law index and the Bing-

ham number B is a dimensionless yield stress, with

B ¼
sY
T

¼
sYH
qmU

; qm �
KUn�1

H
n�1

; ð7Þ

sY is the dimensional yield stress and K is the consistency. In this

one-dimensional form of the model, the fluid is yielded for jsjP B

and rigid otherwise; in the lubrication approximation of a two-

dimensional fluid, however, the yield condition must be interpreted

a little more carefully, as outlined by Balmforth and Craster [12] and

mentioned later.

Exploiting the boundary conditions in (2) and (3), we may write

U � U2 � U1 ¼

Z Y2

Y1

uy dy �
1

px

Z s2

s1

CðsÞ ds; ð8Þ

in view of (4). If we define the new functions,

IjðsÞ ¼
Z

sjCðsÞ ds; ð9Þ

then,

U

h
ðs2 � s1Þ ¼ I0ðs2Þ � I0ðs1Þ: ð10Þ

Also, the y � integral of the continuity relation in (1) implies

@

@x

Z Y2

Y1

u dyþ ht ¼ 0: ð11Þ

The x-integral thus implies

QðtÞ ¼

Z Y2

Y1

u dyþ

Z x

0

htðx̂; tÞ dx̂

�
1

2

Z Y2

Y1

ðY2 þ Y1 � 2yÞuy dyþ qðx; tÞ; ð12Þ

where Q(t) is a ‘‘constant’’ of integration that has the physical inter-

pretation of a flux through x = 0, and

qðx; tÞ ¼

Z x

0

htðx̂; tÞ dx̂þ
1

2
hðU1 þ U2Þ: ð13Þ

Therefore

Q � q ¼
hUðs2 þ s1Þ
2ðs2 � s1Þ

�
h
2
½I1ðs2Þ � I1ðs1Þ�

ðs2 � s1Þ
2

: ð14Þ

Eqs. (10) and (14) constitute a pair of algebraic equations that

must be solved at each position in x, given the gap thickness, h,

surface velocities, (Uj,Vj), and the flux, Q(t). In most situations,

however, the flux is not prescribed, and instead one must impose

pressure conditions at the two ends of the gap. In particular, there

is a prescribed pressure difference across the gap of

PðtÞ ¼

Z

D

px dx; ð15Þ

where D refers to the interval of x spanned by the fluid gap. With

(5), we then arrive at the additional integral constraint,

P ¼

Z

D

ðs2 � s1Þ
dx

h
; ð16Þ

which determines Q. We present a convenient numerical algorithm

to solve (10), (14) and (16) in Appendix A.

(a)

(c)

(b)

Fig. 2. Three sample geometries: (a) colliding smooth surfaces with an intervening viscoplastic fluid; (b) a viscoplastic journal bearing; and (c) a plate planing over a

viscoplastic layer.
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Fig. 3. The functions (a) C(s), (b) I0(s) and (c) I1(s) for the Herschel–Bulkley model in lubrication approximation, with s = T(uy) = (B + juyj
n)sgn(uy) for uy–0, or

uy ¼ CðsÞ ¼ ðjsj � BÞ1=nþ sgnðsÞ, where B = 0.4 is the Bingham number and n = 1/3 the power-law index. The yield points, jsj = B, are indicated by stars.
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2.2. Yield surfaces and plugged regions

Once we solve this integro-algebraic system, we may recon-

struct the flow field. Importantly, for a material with a yield stress,

the fluid is predicted to yield when the magnitude of the shear

stress attains the yield value B. The two conditions, s = ± B, imply

yield surfaces at the levels,

Y� ¼ Y1 �
s1
px

�
B

jpxj
: ð17Þ

For y > Y+ and y < Y�, the fluid is fully yielded. Over the interval

Y� < y < Y+, the fluid is dominated by the yield stress. As described

by Balmforth and Craster [12], however, this region is not necessar-

ily rigid, but can be held just above the yield stress, with the exten-

sional stresses becoming of the same order as the shear stress. The

region is then weakly yielded and more precisely referred to as a

‘‘pseudo-plug’’, with its borders signifying ‘‘fake’’ yield surfaces.

The velocity profile across the pseudo-plugs is independent of y to

leading order, but varies with x. Only if that velocity profile turns

out to be independent of x is the region a true plug flow. This can

be ascertained from the plug speed, ub, which follows from the

integrals,
R Y�

Y1
uydy ¼ �I0ðY1Þ=px ¼ up � U1 or

R Y2

Yþ
uydy ¼ I0ðY2Þ=px ¼

U2 � up. That is,

up ¼ U1 �
I0ðs1Þ
px

¼ U2 �
I0ðs2Þ
px

: ð18Þ

If the surface stresses both exceed the yield stress, jsjj > B for

j = 1 and 2, but have opposite sign, then Y1 < Y� < Y+ < Y2 and up dif-

fers from U1 and U2, varying with x; i.e. the layer contains a pseudo-

plug. On the other hand, if both surface stresses exceed the yield

stress and have the same sign, Y± lie outside the gap and the layer

is fully yielded. If js1j < B and js2j > B, the plug is rigidly attached to

the lower boundary, and moves with speed U1 (in that case,

Y� < Y1 < Y+ < Y2). Conversely if js1j > B and js2j < B, a rigid plug is at-

tached to the upper boundary and travels with speed U2 (corre-

sponding to Y1 < Y� < Y2 < Y+). The only other possibility is the

uninteresting case jsjj < B,j = 1 and 2, for which the fluid layer must

be unyielded and the surfaces unable to move relative to each

other.

Based upon the surface shear stresses or the positions of the

yield surfaces, we can therefore classify four different types of flow

field:

� A: Central pseudo-plug; js1j, js2j > B and sgn(s1) = �sgn(s2).
� B: Lower plug; js1j < B.

� C: Fully yielded zone; js1j, js2j > B and sgn(s1) = sgn(s2).
� D: Upper plug; js2j < B.

As detailed in Appendix B, the governing Eqs. (10) and (14) for

the Herschel–Bulkley model can be simplified in regions B and D,

with analytical forms found for the stresses and pressure gradi-

ent. Similar reductions are possible in region C if n = 1. However,

region A is more complicated, and the stresses and pressure must

be found from solving the algebraic problem in (10), (14) and

(16) (see also [27,4]). For the problems of interest, it is not

known a priori where each type of flow field is attained (or if

they appear at all); the relations in (10) and (14) encompass

all four possibilities without having to explicitly identify the flow

structure.

2.3. Force on surfaces

In the examples to follow, we also need to compute the forces

on the moving surfaces in order to determine their dynamic evolu-

tion. To leading order in aspect ratio, the dimensional force per unit

width acting on the lower surface due to the fluid is

L
2
T

H

Z

D

H

L
ðs1 þ pY1xÞx̂� pŷ

� �

dx: ð19Þ

Note that the force along the slot is much less than transverse to it.

Also, because the fluid has no inertia, the force on the upper surface

is equal and opposite to that on the lower surface.

3. Viscoplastic journal bearings

3.1. Bearings with prescribed motion

The journal bearing consists of an inner cylinder of dimensional

radius a that is able to translate and rotate, contained within a sta-

tionary outer cylinder of dimensional radius b. We define the char-

acteristic length scales, H and L, by H ¼ b� a and L ¼ a. In the

laboratory frame, the dimensional position of the inner cylinder

centre is

ðb� aÞeðcosH;� sinHÞ; ð20Þ

where the dimensionless separation of the two centres is e(t). The
line of centres makes a clockwise-increasing angle H(t) with the

horizontal (see the sketch in Fig. 2), and the inner cylinder’s (dimen-

sionless) rotation rate is X(t). We define x and y in terms of a clock-

wise polar (r,h)-coordinate system centred on the inner cylinder

and orientated by the line of centres (with h = 0 aligned with the

narrowest part of the gap):

y ¼
r � a

b� a
; x ¼ h: ð21Þ

The locations of the cylinder surfaces are therefore

Y1 ¼ 0 and Y2 ¼ 1� e cos h: ð22Þ

and the fluid velocities are, to leading order,

U1 ¼ X� _H; V1 ¼ 0; ð23Þ

U2 ¼ � _H; V2 ¼ � _e cos h� e _H sin h: ð24Þ

Hence

h ¼ 1� e cos h; U ¼ �X; q ¼
1

2
hðX� 2 _HÞ � _e sin h: ð25Þ

Finally, the bearing is periodic in h, so P = 0 in (16).

A sample journal bearing solution, for prescribed geometry and

cylinder velocity and rotation is shown in Fig. 4. This solution con-

tains a fully yielded gap over two angular ranges (region C), two

unconnected central pseudo-plugs (A), and genuine rigid zones

attached to either cylinder (B and D). These flow morphologies be-

come spliced together to create the overall flow pattern.

3.2. Small motions; large yield stress

For either large yield stress, B	 1, or small motions of the inner

cylinder, ð _e; _H;X; q;QÞ 
 U � 1, it becomes possible to calculate

the flow field largely analytically. In these limits, the arrangement

of alternating plugs, pseudo-plugs and yielded zones converges to

certain patterns, as illustrated in Figs. 5 and 6. Notably, for the first

example, sj 
 B over pairs of B,C and D regions, but there are inter-

vening A regions in which the surface stresses have opposite sign

with jsjj 
 B. In the second example, sj 
 B, throughout the gap

and there are no pseudo-plugs.

Referring to the analysis of the different regions in Appendix B,

we see that in the limit of large B or smallU, the pressure gradient is

ph ¼
s2 � s1

h



2Bs2
h

ð26Þ

over region A and smaller elsewhere (except for the slender connec-

tion zones in regions B and D bordering region A). Thus, provided
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the flow pattern contains A regions as in Fig. 5, the periodicity con-

dition,
R 2p
0

phdh ¼ 0, is dominated by them and is equivalent, to

leading order, to
Z

AB

dh

h
¼

Z

AD

dh

h
; ð27Þ

where AB and AD denote the two A regions that exist within the do-

main, which cover the angular intervals, h
ð1Þ
AB ; h

ð2Þ
AB

� �

and h
ð1Þ
AD ; h

ð2Þ
AD

� �

,

and are bordered by the B and D regions, respectively.1 That is,

tan�1

ffiffiffiffiffiffiffiffiffiffiffi

1þ e
1� e

r

tan
h

2

" #h
ð2Þ

AB

h
ð1Þ

AB

¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffi

1þ e
1� e

r

tan
h

2

" #h
ð2Þ

AD

h
ð1Þ

AD

: ð28Þ

Importantly, the borders of the A regions, hðkÞAB and h
ðkÞ
AD for k = 1 and 2,

turn out to depend only on the velocity and rotation rate of the in-

ner cylinder and Q (see (B.24)). Thus, (28) implicitly determines Q

independently of the yield stress, and we find that

Q 

1

2
X� _H

� �

ð1� e2Þ: ð29Þ

The most straightforward way to verify this limiting flux is to insert

(29) into the relations specifying theedgesof theA region (seeAppen-

dix B), solve them for hðkÞAB and h
ðkÞ
AD, and then check that (28) is satisfied.

For later use we also quote the leading-order forms of the

integrals,

fe ¼

Z 2p

0

ph sin h dh 

2Bs

e
log

h h
ð2Þ
AB

� �

h h
ð1Þ
AD

� �

h h
ð1Þ
AB

� �

h h
ð2Þ
AD

� �

2

4

3

5; ð30Þ

fv ¼ �

Z 2p

0

ph cos h dh 

2Bs

e
h
ð1Þ
AD � h

ð2Þ
AD þ h

ð2Þ
AB � h

ð1Þ
AB

h i

; ð31Þ
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Fig. 4. A journal bearing solution, showing (a) s1 and s2, (b) p, (c) the plug speed up, and (d) h and Y± (either against h or on a polar plot, with the plugs and pseudo-plugs

shaded). The dashed curves in (a) show the Newtonian solution and the horizontal dotted lines show ±B. The vertical and radial dotted lines show the borders of the various

regions composing the overall flow pattern. Parameters are e ¼ 0:745; H ¼ 1:11; _e ¼ 1; X ¼ �2; _H ¼ 0; n ¼ 1
2
and B = 3, with b� a ¼ 3
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a adopted for illustration.
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Fig. 6. A journal bearing solution similar to that in Fig. 5, but with e ¼ 0:745; H ¼ p; _e ¼ 0:01; X ¼ 0:05 and _H ¼ 0:02.

1 The connection zones within regions B and D, over which one of the surface

stresses transitions from B to �B, or vice versa, and ph drops sharply from its value in

(26), are too slender to contribute to the integral of ph to leading order.
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and

T f ¼

Z 2p

0

s1 dh 
 2Bs pþ h
ð1Þ
AB � h

ð2Þ
AB

h i

; ð32Þ

where s is the sign of s1 over the AD region. These limits follow from

(26) and the leading-order forms of s1 in the various regions (over

most of the AD, B, C and D, we have s1 
 Bs, whereas s1 
 � Bs over

the AB region).

These limits of the flux, forces and torque are rather different

if the flow pattern does not contain any A regions, as in the sec-

ond example of Fig. 6. In fact, for this case, Q, jsjj � B, Y± and ph
all become independent of B. This feature arises because the sur-

face stresses become single-signed and B then cancels out from

(10) and (14) (as can be shown with a little algebra; see Appen-

dix B). Although the formulae for the pressure gradient simplify

in this instance, the entire gap contributes to (16) and the flux

constraint reduces to a relatively opaque implicit equation for

Q (cf. [13]), preventing us from offering any concise limiting

solutions.

3.3. Dynamic evolution

The leading-order force on the inner cylinder, which acts in

the y-direction, is expressible in terms of the two unit vectors, ê

and v̂, directed along the line of centres (from the outer’s centre

to the inner’s), and perpendicular to that line (in the counter-

clockwise sense), since ŷ � �ê cos h� v̂ sin h. Per unit width, the

force is

qma2U

ðb� aÞ2
ðfeêþ fvv̂Þ � �

qma2U

ðb� aÞ2

Z 2p

0

pðê cos hþ v̂ sin hÞdh: ð33Þ

Furthermore, the clockwise torque per unit width acting on the in-

ner cylinder, about its centre, is

qma2U
ðb� aÞ

T f �
qma2U
ðb� aÞ

Z 2p

0

s1 dh: ð34Þ

The equations of motion of the inner cylinder, subject to an

external load, �ðqma2UÞ=ðb� aÞ2, acting vertically downwards,

and a clockwise torque, qma2UT=ðb� aÞ, each per unit length, are
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Fig. 7. Solutions of the inertialess initial-value problem ðI ¼ M ¼ 0Þ for T = 1.5, n = 1 and B = 0.15. (a) show time series of e and X for a solution starting at e = 0.2 andH = 0;

the dot-dashed lines indicate the Sommerfeld equilibrium (es, Xs). (b) shows a phase portrait of the evolving solution on the polar (e,H)-plane, along with more solutions

starting along the horizontal line through the outer cylinder centre. The dots indicate the times at which the snapshots of the surface stresses, s1 (solid) and s2 (dashed) are
shown in (c)–(g) (the dotted lines indicate ±B); the polar plots on the right display the position of the inner cylinder and the plug regions in the fluid gap are shaded

(b � a = 0.5a is adopted for illustration). In (b), the lighter grey line shows a solution with I ¼ 50 that spirals into the fixed point corresponding to the Sommerfeld

equilibrium. Panel (h) shows the stresses and plug regions for that equilibrium; the rigid plug attached to the outer cylinder has constant radius (see Appendix B).
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therefore

Mð€e� e _H2Þ ¼ fe þ sinH;

Mðe €Hþ 2 _e _HÞ ¼ fv þ cosH;

I _X ¼ T f þ T;

ð35Þ

where

M ¼ Re
mðb� aÞ2

qa4
; I ¼

I

qa4
Re; ð36Þ

q is the fluid density and m and I are the inertial mass and moment

of inertia per unit width of the inner cylinder, respectively

ðRe ¼ Uðb� aÞ=mÞ. Note that we have exploited the speed scale U ,

which is unspecified if the motion evolves dynamically, to scale

the dimensionless imposed load to unity. Lastly, in lubrication the-

ory, the reduced Reynolds number HRe=L is assumed small. Thus,

in practice, if all the mass of the inner cylinder is contained within

the bearing (implying m = pa2qs and I =ma2/2, with qs the solid

density) then it is likely that M � 1. On the other hand, I may be

order one (for moderate density ratios).

If the inertia of the inner cylinder is unimportant (the case usu-

ally considered for Newtonian journal bearings, see [1]), then

ðM; IÞ ! 0 and the equations of motion (35) become implicit equa-

tions for the cylinder’s radial and angular speeds, _e and _H, and its

rotation rate, X. These implicit equations can be solved by extend-

ing the Newton iteration algorithm described in Appendix A, and

the ODEs then integrated in time. Sample solutions are shown in

Fig. 7. The solution shown in detail corresponds to a periodic orbit

in which the inner cylinder circulates inside the outer one, with

plug zones adjacent to the walls expanding and shrinking as the in-

ner cylinder shifts off-centre. Note that the dynamical system is

non-dissipative in the inertia-less limit and the periodic orbit exe-

cuted depends on the initial condition, just as for the Newtonian

(full) journal bearing [1]. With rotational inertia ðI > 0Þ, the system

becomes dissipative, and the solution converges to the fixed point

with (e,H,X) = (es,p,Xs), where the radial position, es, and rotation

rate, Xs, depend upon the yield stress. This fixed point is the ana-

logue of the classical Sommerfeld solution, and is also shown in

Fig. 7. Sommerfeld-type solutions without pseudo-plugs have been

constructed previously for Bingham fluids [3,1,13].

3.4. Pure sedimentation

When there is no imposed torque (T = 0) and the inner cylinder

begins without rotation (X(0) = 0) from a position that is shifted

off-centre in the direction of the imposed load (H(0) = p/2), then
that object ‘‘sediments’’ (a terminology more suitable when the

load is gravity) without adjusting its angle or starting to rotate.

The only nontrivial equation of motion is

M€e ¼ fe þ 1: ð37Þ

Moreover, the symmetry of the problem demands that

s1 = �s2 = �hph/2, Y+ = h � Y�, U = Q = 0 and q ¼ � _e sin h, implying,

from (14), that the stress s2 satisfies the algebraic equation,

h
2
I1ðs2Þ
2s22

þ _e sin h ¼ 0: ð38Þ

The solution must then be fed into the integral fe (cf. (33)) in order

that (37) can be integrated.

Sample numerical solutions for sedimentation are shown in

Fig. 8. A key feature of these solutions is that the inner cylinder

only sediments if the yield stress is sufficiently small: B < 1
8
. More-

over, even if B < 1
8
, the cylinder stops sedimenting and reaches an

equilibrium position, e = e
⁄
(B) < 1, without making contact with

the outer cylinder.

To understand this dynamics, we first explore the limit,

B? 0 (i.e. a power-law fluid), for which I1(s2)? njs2j
2+1/n/

(2n + 1)sgn(s2). The resulting stress distribution indicates that

e? 1 � O(t�2) for t?1, and as the inner cylinder approaches con-

tact with the outer, the pressure over the narrowest part of the

intervening gap dominates the resisting force. Hence

s2 ¼ �
2ð2nþ 1Þ

nh
2

� �n

j _e sin hjnsgnð _e sin hÞ


 �2nð2þ 1=nÞnd�3n j _eUjn sgnðUÞ

ð1þU2=2Þ2n
;

ð39Þ

for e = 1 � d2, h = dU and h 
 d2(1 +U2/2) withU = O(1). The surface

shear rate in the gap, juyj = js2j
1/n, is therefore of order _ed�3 ¼ Oð1Þ

for t	 1. More importantly, the stresses and shear rate decline as

one progresses outside the gap (ı.e. for jUj 	 1): s2? jUj�3n and

juyj 
 jUj�3. These observations suggest that, if the yield stress is

reintroduced into the problem, the narrowest part of the gap is

likely to remain yielded if so to begin with, but yield stresses will

eventually dominate throughout the bulk of the gap elsewhere,

thereby bringing the inner cylinder to rest before it makes contact.2

To proceed a little further, we consider the limit _e � 1 in (38),

which indicates that

1 	
2 _es22
h
2

sin h ¼ �I1ðs2Þ 
 �
nB

nþ 1
ðjs2j � BÞ1þ1=nsgnðs2Þ: ð40Þ
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Fig. 8. Sedimentation solutions (H = p/2 and X = T = 0). (a) and (b) show solutions with ðeð0Þ; _eð0ÞÞ ¼ ð0:1; 0Þ; ð0:3;2� 10�3Þ and (0.5,0), for n = 1, B = 0.1 and M ¼ 100. The

dotted line in (b) shows the solution forM ¼ 0 and the dashed line indicates the limiting t	 1 solution in (42). Panel (c) shows contours of constant _e on the (B,e) � plane for

M ¼ 0, in increments of 2 � 10�3, starting at 10�6; the dots show the curve e = e
⁄
(B) given by (43).

2 The same considerations apply to the more classical problem of the sedimenta-

tion of a smooth object towards a plane surface through a viscous fluid (e.g. [19]). That

is, the Newtonian solution predicts O(1) shear rates within the narrowest parts of the

intervening gap, where the lubrication pressure is highest, but increasingly low shear

rates elsewhere. Thus sedimentation in a yield-stress fluid is controlled by yield

stresses outside the narrowest part of the gap. Such a situation defies straightforward

analysis in general geometries (cf. [17]) but remains analytically accessible in the

geometry of the journal bearing.
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Hence, to leading order (given that s2 ¼ 1
2
hph)

ph 
 �
2B

h
þ
2

h

2 _eBðnþ 1Þ

nh
2

j sin hj

� �n=ðnþ1Þ
( )

sgnðsin hÞ: ð41Þ

Finally, ignoring the inertial term in (37) (which is small in this lim-

it), we arrive at the force balance

2 _eB
nþ 1

n
4

Z p

0

ðsin hÞð2nþ1Þ=ðnþ1Þ dh

ð1� e cos hÞð3nþ1Þ=ðnþ1Þ

" #ðnþ1Þ=n


 1�
4B

e
log

1þ e
1� e

� �� �ðnþ1Þ=n

: ð42Þ

The inner cylinder therefore comes to rest as e? e
⁄
� O(t�1/n),

where

1 ¼
4B

e�
log

1þ e�
1� e�

� �

: ð43Þ

The predictions in (42) and (43) are also shown in Fig. 8. Note

that the final O(t�1/n) approach to rest is relatively slow and coin-

cides with the convergence to the final shapes encountered for the

slumps of free surface flows [28], and is quite different from the fi-

nite stopping time found for confined flows with fixed boundaries

(e.g. [29]).

3.5. General stopping conditions

The relation in (43) provides the radial location along the mid-

line of the bearing (H = p/2) at which the inner cylinder is brought

to rest if B < 1
8
. We may arrive at this condition more directly, and

also generalize it to arbitrary positions and rotations, by consider-

ing the limits of the forces implied by (30)–(32), in tandem with

the equations of motion (35) with the inertial terms neglected.

For simplicity, we describe the analysis explicitly assuming that

the cylinder is not able to rotate at all, so that X = 0. In this case,

the B, C and D regions all shrink to zero width (indicating that there

are sharp jumps in the surface shear stresses, s1 and s2, across the
borders of the two A regions; cf. Fig. 9(c)) and h

ð2Þ
AD ! h

ð1Þ
AB and

h
ð1Þ
AD ! h

ð2Þ
AB þ 2p, after arranging the domain so that AD always lies

to the left of AB. Thus

4B

e
ln

h h
ð1Þ
AB

� �

h h
ð2Þ
AB

� �

2

4

3

5  sinH;

4B

e
p� h

ð2Þ
AB þ h

ð1Þ
AB

h i

 cosH:

ð44Þ

If we set _H ¼ ! _e, and recall from (29) that Q ! �ð1� e2Þ _H in

this limit, we may determine the critical values of ! and B for

which the inner cylinder is brought to rest at the position

(e,H) = (e
⁄
,H

⁄
). The critical value of � is given only implicitly by

(44), and it is more expedient to computeH
⁄
and B explicitly from

(44), given values for e
⁄
and � (and first determining h

ðkÞ
AB from

(B.24)); see Fig. 9. This figure also reports the results of some ini-

tial-value computations that illustrate the convergence to the stop-

ping condition for B = 0.1. For H
⁄
= p/2, � = 0 and (44) reduce to

(43); conversely, for H
⁄
? 0, �?1 and we discover B = e

⁄
/

(4p � 8cos�1e
⁄
). For B < 1/4p, the curves representing the stopping

condition intersect the outer cylinder at a given angle, H, suggest-

ing that the inner cylinder can either sediment onto the outer wall

or be brought to rest inside the bearing, depending on the path

taken from the initial condition.

If the inner cylinder also rotates under an imposed torque, then

the stopping conditions must necessarily change. If the torque sets

a given rotation rate, then the fluid must yield to accommodate the

imposed shear; the inner cylinder then always sediments onto the

outer cylinder unless the rotation is sufficient to suspend it indef-

initely, as in the sample solutions shown in Fig. 7. On the other

hand, if the torque is fixed, then it is possible that the inner cylin-

der simultaneously comes to rest and stops rotating; the corre-

sponding stopping criterion can be determined much as above,

though with more effort, assuming that the dynamics is controlled

by the A regions present in the flow pattern. Awkwardly, those re-

gions actually disappear if the torque and rotation rate become too

large, calling for a different asymptotic description. We avoid

becoming overly distracted by such technical detail, and nowmove

on to our second lubrication problem.

4. Viscoplastic sliders, blades and washboards

We next consider an inclined plate moving over the surface of a

viscoplastic layer, as sketched in Fig. 2c. The plate is held at a

constant angle a to the horizontal and moves with a fixed horizon-
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Fig. 9. (a) Stopping conditions for X = 0; shown are polar plots of the critical curves, [e
⁄
(B),H

⁄
(B)], for B = 0.05, 0.06, . . . , 0.12. The dotted lines show phase portraits on the

same polar plane of inertialess initial-value problems with [e(0),H(0)] = (0.1k,0), for B = 0.1 and k = 1, 2, . . . , 8, all with the same duration (t < 4000). Further details of the

initial-value computation with e(0) = 0.2 are shown in the other two panels: (b) shows the time series of e(t) and H(t), and (c) shows snapshots of s1 = �s2 at the times t = 0,

100, 1000 and 4000 (the dashed lines denote ±B).
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tal speed U . We will work in a frame that moves horizontally with

the plate, for which the lowest point (the ‘tip’) lies at x = 0 and

y = Y(t); the plate moves vertically with speed _Y . On selecting

H=L ¼ tana in the non-dimensionalization of Section 2, the sur-

faces confining the fluid gap are given by

Y1 ¼ 0; Y2 ¼ Y þ x; ð45Þ

and the velocities there are

U1

V1

� �

¼
�1

0

� �

;
U2

V2

� �

¼
0
_Y

� �

: ð46Þ

Hence, in the notation of Section 2

h ¼ Y þ x; U ¼ 1; q ¼ �
1

2
hþ _Yx: ð47Þ

The fluid makes contact with the plate over the section

0 6 x 6 L, and we impose p = 0 at the two ends, implying P = 0

in (16). The dimensionless lift force on the plate due to the fluid

is

f ðY ; _Y ; L; BÞ ¼

Z L

0

p dx; ð48Þ

written to emphasize the parametric dependence on the yield

stress, which is one of our main objectives below. Hereon, we also

focus on the Bingham fluid (n = 1), for which additional analytical

headway is possible, expediting the exploration.

4.1. Slider bearing and blade coating solutions

The configuration summarized above applies to the classical

lubrication problems of the slider bearing and blade coating

[1,23]. For the slider bearing, the length L and the position of the

upper surface Y are fixed, and one requires the forces on the plate.

In blade coating, L and Y are again prescribed, but the flux, and

therefore the depth of the fluid layer left behind are of primary

interest. In either case, we may set L = 1, equivalent to a choice

of horizontal lengthscale L.

Fig. 10 shows how the lift force on a slider bearing varies with

the size of the gap and the yield stress of the fluid. In the Newto-

nian case, the lift force is given by the standard expression

f0ðY ; L;0Þ ¼ 12
1

2
log

Y þ L

Y

� �

�
L

2Y þ L

� �

; ð49Þ

In the limit of large B, as shown in Appendix C (see also [1]), the

force is instead given by

f0ðY; L;1Þ ¼
12 1

2
log YþL

Y

	 


� L
2YþL

h i

Y P L

1
9

YþL
Y

	 
2
� 2 log YþL

Y

	 


þ 56 log2� 40
h i

Y < L:

8

>

<

>

:

ð50Þ

As seen in Fig. 10, f0(Y,L; B)P f0(Y,L; 0) for given Y. Note that f0(Y,L;

B) = f0(Y,L; 1) for finite yield stress if

BP BcðY; LÞ ¼
ð2Y þ LÞ

9Y3
ðL� YÞþ: ð51Þ

The critical value, Bc(Y,L), increases monotonically from 0 to 1 as Y

decreases from L to 0, and arises because of the disappearance of

any pseudo-plugs (A regions) within the flow (see Appendix C).

Note that if YP L the Newtonian expression (49) holds regardless

of the value of B, since the fluid is always fully yielded in that case.

In general, however, for 0 < B < Bc, there is no analytical expression
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Fig. 10. Steady state relationships for gap width Y, lift force f0, and yield stress B, with L = 1 for a Bingham fluid: (a) f0(Y,L; B)/f0(Y,L; 0) as a function of Y for the values of B

indicated (the inset shows the actual forces f0(Y,L; B)), (b) f0 as a function of B for four different values of Y. The fluid is fully yielded below the lower grey line, has plugs

attached to the upper and lower surfaces between the two grey lines, and has a central pseudo-plug above the upper grey line. Panel (c) shows Q0(Y,L; B)/Q0(Y, L;0) as a

function of B. Crosses in (b) mark the cases shown in Fig. 11. Dots on the curves in (a) and (c) mark the transition between states that involve pseudo-plugs and those that do

not.
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for f0(Y,L; B), and the lift force must be computed numerically, using

a method like that in Appendix A.

Fig. 11 shows sample solutions for the steady slider bearings,

for different values of the yield stress. Provided Y < L (as in these

cases), the Newtonian solution possesses curves of zero shear

stress which, when a small yield stress is added, broaden into

pseudo-plugs (i.e region A; the overall arrangement of the flow pat-

tern is A–B–C–D–A, see the second panel of Fig. 11). As the yield

stress is increased, these pseudo-plugs thicken and turn into real

plugs by becoming attached to the upper surface (region D) near

the leading edge (third panel of Fig. 11), and to the lower surface

(region B) near the trailing edge. The A region disappears entirely

once the plugs are both fully attached to the surfaces for

B > Bc(Y,L); the flow structure then becomes independent of the

yield stress and the sole effect of B is to shift the surface shear

stresses (final panel of Fig. 11; the flow arrangement is now B–

C–D). The yield surface within region D is conspicuously flat, a fact

which is easily verified from the details in Appendix B, where with

q ¼ � 1
2
h and U = 1, the stress s1, pressure gradient px and yield sur-

face Y� are all seen to be independent of x ((B.14)–(B.17)).

The horizontal drag force on the plate can also be calculated,

and an analytical expression found for the case when there is no

A region (see [1]). The force is dominated by the shear stresses

for B	 1 (see (19)), and therefore increases linearly with B in this

limit, whereas the vertical lift force becomes independent of B. On

the other hand, the shear stress cannot continue to increase with-

out bound in the lubrication analysis without violating the implicit

assumption that this stress is smaller than the pressure by a factor

of order of the aspect ratio; a different analysis is called for at such

high yield stress.

Note that solutions equivalent to the final example of Fig. 11

were presented by Milne [3], but the flow pattern appears to have

been assumed to take the relevant form, and the possibility that

pseudo-plugs may exist for B < Bc(Y,L) is not mentioned. Later work

[1,27,4,30] notes the possibility, but does not provide any solutions

with pseudo-plugs; thus, Figs. 10 and 11 provide a more complete

summary of viscoplastic slider bearings.

For the blade coater, the steady flux Q = Q0(Y,L; B), determines

the depth, gT, of the layer of fluid emplaced downstream of the

plate: by mass conservation, gT = �Q0. The classical Newtonian

solution [31,23] gives the flux as

Q0ðY; L;0Þ ¼ �
Y þ L

2Y þ L
Y: ð52Þ

Thus, gT varies from 1
2
Y to Y as the gap becomes narrower. For finite

yield stress, it turns out that Q0(Y,L; B) = Q0(Y,L; 0) provided the

plugs are fully attached (BP Bc(Y,L); see Appendix C). When there

is an A region, for 0 < B < Bc(Y,L), the flux is slightly enhanced,

Q0(Y,L; B)/Q0(Y,L; 0) > 1, as shown in Fig. 10c.

4.2. Washboarding dynamics

For the washboard problem, the vertical position of the plate is

not fixed, but adjusts in response to the downward load imposed

on the plate and the fluid lift force. This demands that the wetted

length, L(t), also vary as fluid is dredged up from the incoming

layer and pushed out upstream of the plate. Simultaneously, the

fluid left behind becomes of variable depth, allowing for the pos-

sibility of a downstream flow adjustment. In principle, the full

solution of the problem therefore requires us to consider the

free-surface flows to either side of the plate, and match both to

the flow underneath the plate. Unfortunately, for x < 0 and

x > L(t), the formulation of Section 2 no longer applies because

we must now impose stress conditions at the upper surface,

and, in principle, include surface tension and gravity. To simplify

the situation, we neglect those effects, in which case lubrication

theory predicts that the pressure and shear stress are both zero

throughout the upstream and downstream layers owing to the

stress-free surface conditions. Thus, as for the slider and blade

solutions, the pressure still vanishes at the plate’s edges and P = 0.

Upstream of the plate, the entire fluid layer is of uniform depth,

H, and moves with the velocity of the lower boundary, �U (ie. it is

stationary in the frame of the fluid bed). These scales can be used

for the non-dimensionalization of the problem, implying that the

upstream solution has unit depth and speed u = �1. Underneath

the plate, on the other hand, the flow takes a very different form,

satisfying no slip on both surfaces, and the fluid depth at the lead-

ing edge, h(L, t) = Y + L, is not necessarily equal to unity. With a

reintroduction of gravity and surface tension, free surface gradients

drive flow that smoothes out any discontinuities, but because we

neglect that physics, we must accept a jump in depth across the

leading (and also trailing) edge of the plate. The effect of gravity

in smoothing out this jump is discussed in Appendix D.

To connect the uniform upstream layer with the flow under the

plate we apply a jump condition to conserve mass: for x > L(t),

there is a dimensional flux �HU , or a dimensionless flux of �1.

On the other hand, for x? L(t) from the left, the (dimensionless)

flux is Q � L _Y . Any difference in these two fluxes forces the wetted

length to change and the fluid ‘‘wedge’’ underneath the plate to

grow or shrink. The transport associated with the motion of the

leading edge is ½hðL; tÞ � 1� _L, and so mass conservation demands

½hðL; tÞ � 1� _L ¼ Q � _YLþ 1. That is,

ðY þ L� 1Þ _L ¼ Q þ 1� _YL: ð53Þ

Behind the plate, the flow dynamics beneath that obstruction

dictates the outflowing layer depth. Again, in the absence of sur-

face tension and gravity, the free surface depth, g(x,t), need not

be the same as the height of the plate’s tip at the trailing edge,

but is determined by mass conservation: g(0,t) � gT(t) = �Q(t),

where gT is the free surface depth just downstream of the trailing

edge. In the moving frame of the plate, the free surface is simply

advected downstream according to

gt � gx ¼ 0; gð0; tÞ ¼ gTðtÞ; ð54Þ

with solution

gðx; tÞ ¼ �Qðt þ xÞ: ð55Þ

If the elevation of the plate is fixed, we recover the blade-coating

formula outlined earlier.

Finally, we write the equation of motion for the vertical position

of the paddle:

M€Y ¼ �W þ f ; f ðY ; _Y; LÞ ¼

Z L

0

p dx ð56Þ

(suppressing the parameterical dependence on B). In this dimen-

sionless equation, the ‘load’ W corresponds to a dimensional

weight, WL
2
T =H, and M corresponds to a dimensional inertial

mass, ML
4
T =U2

H
2 (if the weight is g times the inertial mass, then

W ¼ M ðgL=U2ÞðL=HÞ).

To summarize: given current values of Y; _Y and L, the algebraic

Eqs. (10), (14) and (16) can be solved to determine the distribution

of shear stresses and pressure gradient px beneath the plate, as well

as the flux Q. This determines the lift force in (56), and completes

the right-hand side of (53). That third-order system can then be

integrated forwards in time. Our goal is to find planing states,

where the plate is dragged steadily over the viscoplastic layer,

and then explore whether these states are stable, or suffer an

instability wherein the plate oscillates up and down, imprinting a

washboard pattern on the surface left behind.

Note that a key simplification in the prescription is afforded

when the flow pattern does not contain any pseudo-plugs (A re-
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gions). In this situation, and as for the steady problems considered

in Section 4.1, the formulae simplify sufficiently that the flux, Q,

and lift force, f ðY ; _Y; LÞ, can be computed analytically. The details

of this computation are outlined in Appendix C; importantly, both

the force and flux become independent of the yield stress B.

4.3. Steady planing

The washboard Eqs. (53)–(56) admit a steady planing solution

in which the vertical position Y and the wetted length L are tuned

so that the lift force f balances the prescribed load W, and the flux

beneath the trailing edge Q matches the influx from upstream, �1.

This exercise constitutes a nonlinear algebraic problem for the two

unknowns, L and Y. In practice, however, it is more expedient to

determine the steady state load, f0(Y; B) and wetted length, L0(Y;

B), that are required for a given plate position Y.

Fig. 12 illustrates how such steady planing states depend upon

the yield stress of the fluid, and Fig. 13 presents sample flow pat-

terns. The results are qualitatively similar to those for the slider

bearing or blade coater, the main difference being the determina-

tion of L from the flux condition, Q = �1. In the flow patterns of

Fig. 13, the first case is fully yielded (region C alone), whereas

the second example has pseudo-plugs at the leading and trailing

edges (the arrangement is A-B-C-D-A); in the third example, the

right-hand plug has attached to the plate and become truly rigid

(arrangement A-B-C-D), and both plugs are attached to the two

surfaces in the fourth example (arrangement B-C-D).

As before, any pseudo-plugs disappear when the yield stress ex-

ceeds the critical value in (51) (although L is not yet known), and

the flux Q thereafter becomes equal to the Newtonian value in

(52). In that case, L0(Y; B) = L0(Y; 0), with flux balance demanding

L0ðY ;0Þ ¼
ð2� YÞY

Y � 1
: ð57Þ

The steady planing depth must therefore lie over the range

1 6 Y 6 2. With this wetted length, the critical yield stress (51) re-

duces to

BcðYÞ ¼
ð3� 2YÞþ

9ðY � 1Þ2
: ð58Þ

For BP Bc, the steady load required for the adopted Y is given by

(50). If YP 3/2 (equivalently, L0(Y;0) 6 Y or f0 6 6log2 � 4), the

steady state is fully yielded regardless of the value of B and the load

reduces to (49).

As seen in Fig. 12, as the yield stress is increased for a given

plate height, the steady state load varies smoothly between the

Newtonian value, f0(Y; 0), and the large-B limit, f0(Y; 1). At the

same time, the wetted length first drops below L(Y; 0) before

returning to that same value once the pseudo-plugs disappear.

4.4. Washboard instability

We now explore the stability of the planing states described

above by solving the equations of motion as an initial-value prob-

lem. Some examples are shown in Figs. 14 and 15; in short, the

steady planing state is stable when the imposed weight W is suffi-

ciently large, but becomes unstable to vertical oscillations when W

falls below a threshold value that depends upon the inertia M and

the rheological properties.

When the steady planing state is unstable, the vertical oscilla-

tions of the plate amplify until a periodic oscillation is established.

The amplitude of this oscillation increases as the load is reduced
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(moving further from the stability threshold), and for sufficiently

small weight the oscillations become strong enough that the plate

loses contact with the fluid for part of the cycle (that is, the wetted

length L vanishes over a fraction of the period). After taking off, the

plate follows a ballistic trajectory, making contact with the fluid

again when Y falls back to the undisturbed surface depth. Note

how the plate’s take off and landing deposit a cliff in the underlying

fluid layer (an artifact of the lubrication approximation and our ne-

glect of surface tension and gravity). This is because the flux Q at

those instances is not equal to the undisturbed value �1; indeed

in the case that there are no pseudo-plugs, one can show that

gT ¼ 1
2
Y at take-off and landing (when L = 0; see Appendix C and

(C.3)).

Fig. 16a shows how the amplitude of the periodic states varies

with the yield stress. As B is increased from zero, the threshold

weight for instability is slightly reduced, but becomes independent

of B once the yield stress exceeds a critical value corresponding to

the disappearance of pseudo-plugs from the steady planing state.

The amplitude of the oscillations continues to depend on B above

this critical value, however, owing to the generation of such A re-

gions during the unsteady oscillations. At sufficiently large B, the

pseudo-plugs do not occur even during the oscillations, and the

plate dynamics then becomes completely independent of B.

When there are no pseudo-plugs, an analytical expression is

available for f ðY; _Y; LÞ (see (C.4)–(C.6)). In such situations, it is

straightforward to explore the linear stability; the condition for

instability may be expressed as

W < W�ðM;1Þ; ð59Þ

with W�ðM;1Þ shown in Fig. 16b. This condition also applies for

any sufficiently large B > Bc(Y) (Y being the steady state value corre-

sponding to W�). A similar calculation for the Newtonian case indi-

cates that instability occurs for W < W�ðM;0Þ, as also shown in

Fig. 16b (note that for W� < 6 log 2� 4  0:159;BcðYÞ ¼ 0 so the

two conditions are equal). For intermediate values of B the critical

W�ðM;BÞ must be determined numerically, and additional calcula-

tions suggest a monotonic variation between W�ðM;0Þ and

W�ðM;1Þ.

4.5. Shape of the imprinted pattern

The washboarding theory above ignores the effects of gravity

and surface tension on the fluid layer, and therefore places jumps

in the height of the downstream layer when the plate lands and

takes off. This free surface pattern becomes ‘frozen’ into the fluid,

even if there is no yield stress. More realistically, gravity and sur-

face tension smooth out the surface over the regions where the

shear stresses generated by the surface slope and curvature exceed

the yield stress (in the experimental images shown in Fig. 1, the
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yield stress is sufficiently strong that the deformed fluid surface re-

mains relatively steep near the edges of the splash pattern).

To illustrate this, we reintroduce gravity into the problem,

taking its dimensionless size to be G ¼ qgH2=TL, where g is the

gravitational acceleration. The evolution of the free surface g is

then given (for the Bingham fluid) by

gt � gþ
1

6
f2ð3g� fÞGgx

� �

x

¼ 0; f ¼ g�
B

Gjgxj

� �

þ

; ð60Þ

with

gþ
1

6
f2ð3g� fÞGgx

� ��

�

�

�

x¼0

¼ �QðtÞ; gx ! 0 as x ! �1; ð61Þ

where f is analogous to Y� and represents the lower limit of a sur-

face pseudo-plug [14,12,32,26].

To solve (60), we use finite differences on a uniform grid to eval-

uate the spatial derivatives, then integrate the resulting ordinary

differential equations in time using a standard stiff integrator with

a variable time step (MATLAB’s ODE15s). However, special care is

required in order to avoid unwanted numerical diffusion associ-

ated with the advection term, especially to compute the long-time

evolution towards the final washboard pattern. We minimize such

diffusion by actually solving (60) in the frame of the fluid layer.

Having moved into that frame and defined the new spatial coordi-

nate, n = x + t, the flux �Q(t) is prescribed at the moving right-hand

edge of the domain, n = t. To avoid spurious oscillations due to fi-

nite resolution, occurring as grid points move onto the computa-

tional grid in n < t, we replace the flux condition by a distributed

source term, narrowly confined around n = t (verifying that the

width of the source does not affect the solution).

Fig. 17a shows a sample free surface pattern evolving from the

forcing imposed by the periodic oscillation shown earlier in Fig. 15.

Under gravity, the forcing pattern �Q(x + t) collapses over the re-

gions where gjgxj > B=G, invading the surrounding layers where

fluid was initially deposited below the yield stress. The fluid subse-

quently brakes to rest once surface slopes become sufficiently shal-

low. As t?1, the slumped regions are characterized by f? 0

(corresponding to an approach of the shear stress to the yield

stress), indicating that the smoothed-out regions of the eventual

pattern converge to profiles of the form,

gðnÞ � gðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
� �

2B

G
ðxþ t � n�Þ

s

; ð62Þ

where n
⁄
and g

⁄
= g(n

⁄
) denote a given point and depth within the

slumped region.

As shown in Fig. 17b, the spatial intervals occupied by the

slumped sections of the profile depend on the gravitational param-
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eter: if G is small, the profile remains largely unaltered from

�Q(x + t), but slumps over distinct, localized zones surrounding

the discontinuities that arise from the entry and take-off of the

paddle. For larger G, further sections of the fluid layer collapse,

and the slumps widen with time and merge together, smoothing

out the final shape more significantly. Although the surface is

now rendered continuous everywhere, the surface slope remains

discontinuous at the edges of the slumped sections.

5. Discussion

In this paper, we have described a general method to compute

stresses and flow fields in viscoplastic lubrication problems. The

central difficulty in such problems is that the structure of the flow

field, and the resulting relationships between pressure gradient

and fluid velocity, are generally not known a priori, but must be

determined as part of the solution. For example, the flow may con-

tain fully yielded sections, genuine plugs attached to the walls, and

floating pseudo-plugs, all of which come and go as the surfaces

change position. The current formulation avoids any need to

explicitly decompose the flow pattern into constituents of this kind

and can be solved using an efficient numerical scheme.

We applied the theory to the viscoplastic journal bearing, deriv-

ing richer families of solutions than previously documented.

Although typical bearing operating conditions may preclude any

important impact of a yield stress (B is small in our dimensionless

model), magneto-rheological fluids might present a novel applica-

tion in which controlled yield stresses do play an elemental role, as

remarked by Tichy [4]. Indeed, a recent article by Ewoldt et al. [33]

illustrates how one can manipulate the yield stress over a thin fluid

layer to control adhesion between the bounding solid surfaces.

In such applications it is important to understand the arrest of

motion by the yield stress, motivating our analysis of the sedimen-

tation of the inner cylinder within a journal bearing. In the bear-

ing’s thin geometry, lubrication theory can be exploited

throughout the fluid, allowing a good deal of analytical headway

into this problem. In more general geometries (such as sedimenta-

tion onto a planar surface), the lubrication approximation fails

away from the thinnest sections of the intervening gap, which is

where the yield stress arrests motion, precluding further analysis.

A main goal of this study was to examine the washboarding

instability on a viscoplastic fluid layer. An earlier paper [16] pre-

sented a conceptualmodel of the problem, designed to complement

experiments in which washboards were observed. That model was

too crude to demonstrate definitively that washboard patterns

emerge due to the linear instability of the steady planing state. Here,

we have been able to shore up the idea with a model derived from

the governing fluid equations, and, therefore, based more firmly

on the detailed fluid mechanics. The theory may also be relevant

to industrial processes such as blade coating: if the blade can deform

in response to the fluid force (such designs are common, see [25]),

the washboarding instability could be a concern.

The analysis suggests that to make the plate stable, one should

increase the dimensionless weight or decrease the dimensionless

inertia. On the other hand, the dimensional weight and inertia

are likely related to one another, and it proves more helpful to

think in terms of the velocity U , with instability occurring above

a critical speed, Uc .
3 Washboarding is avoided if speeds are suffi-

ciently slow, a solution which does not cut much mustard with driv-

ers on roads. The model predictions, however, apply to a relatively

shallow layer for which the fluid is forced to flow throughout its

depth; when the layer is deeper, deformation is likely to be confined

close to the surface and the stability conditions may be different.

A worthwhile extension of the analysis is to consider moving

objects with different shapes. A parabolic shape is of interest for

both washboarding with a wheel and for industrial roll-coating

applications [23]. The formulation in Section 2 is not restricted to

a flat plate, but the chief difficultly in extending the analysis lies

in locating the separation point where the fluid detaches down-

stream. For the plate with its sharp edge, we can sensibly assume

that the flow separates at the lowest point; but for more general

shapes this is not the case. Additional separation conditions (see

[34,35,23]) must be applied, and surface tension likely plays a

more prominent role.

Finally, we have not considered the stability of our planing or

washboarding solutions to perturbations in the third (lateral)

dimension. Particularly when the vertical flow front at L is retreat-

ing, the flow may well become unstable to fingering, as in the prin-

ter’s instability [36]. Indeed, in the experiments reported by Hewitt

et al. [16] and illustrated in Fig. 1, the washboard patterns dug out

by the oscillating plate often featured a serrated downstream edge,

where the plate detached from the fluid; fingering just prior to

detachment offers a plausible explanation.
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Appendix A. Newton iteration for lubrication flows

To solve (10), (14) and (16), assume that we have a trial solution

for the surface stresses, �s1 and �s2, and the flux, �Q . Then small cor-

rections satisfy

Fð�s1; �s2Þ þ F1Ds1 þ F2Ds2  0 ðA:1Þ

Gð�s1; �s2; �QÞ þ G1Ds1 þ G2Ds2  DQ ðA:2Þ

and

P �

Z

D

ð�s2 � �s1Þ
dx

h


Z

D

ðDs2 � Ds1Þ
dx

h
; ðA:3Þ

where

Fðs1; s2Þ ¼
I0ðs1Þ � I0ðs2Þ

s1 � s2
�
U

h
; ðA:4Þ

Gðs1; s2; �QÞ ¼
Uhðs2 þ s1Þ
2ðs2 � s1Þ

�
h
2
½I1ðs2Þ � I1ðs1Þ�

ðs2 � s1Þ
2

� �Q þ q; ðA:5Þ

F j ¼
@F

@sj

�

�

�

�

s1¼�s1 ;s2¼�s2

and Gj ¼
@G

@sj

�

�

�

�

s1¼�s1 ;s2¼�s2

: ðA:6Þ

Thus, denoting �F ¼ Fð�s1; �s2Þ and �G ¼ Gð�s1; �s2; �QÞ,

Dsj 
ð�1Þj

J
½FkDQ � �GFk þ �FGk�; ðA:7Þ

where J = F1G2 � F2G1 and k = 3 � j. Then,

DQ

Z

D

ðF1 þ F2Þ
dx

hJ
 P �

Z

D

ð�s2 � �s1Þ
dx

h

�

Z

D

½�FðG2 þ G1Þ � �GðF1 þ F2Þ�
dx

hJ
: ðA:8Þ

In other words, after adopting a suitable discretization and quadra-

ture rule with which to evaluate the various integrals, we may

correct Q from (A.8), and then sj from (A.7). In practice, the first

guess can be provided by the Newtonian solution, whereas later

guesses can be taken from previous solutions or earlier time steps.

3 If the plate’s dimensional inertia is m, and weight mg, then our dimensionless

inertia parameter, M ¼ WðH=LÞðU2=gLÞ. But Fig. 16b indicates that Mmust typically

be rather larger than W for instability to occur. Thus, U should be large relative to

gL ¼ gH= tana to destabilize steady planing.
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Note that the iteration involves purely vector operations, and is

therefore relatively fast.

Appendix B. Flow configurations

For the Herschel–Bulkley model

CðsÞ ¼ sgnðsÞðjsj � BÞ1=nþ ; ðB:1Þ

I0ðsÞ ¼
n

nþ 1
ðjsj � BÞ1þ1=n

þ ; ðB:2Þ

I1ðsÞ ¼ sgnðsÞ Bþ
nþ 1

2nþ 1
ðjsj � BÞþ

� �

I0ðsÞ; ðB:3Þ

where (�)+ indicates max(�,0). If

rj ¼ jsjj � B and sj ¼ sgnðsjÞ; ðB:4Þ

then the stress relationships (10) and (14) are rewritten as

U

h
¼

nðr1þ1=n
2þ � r1þ1=n

1þ Þ

ðnþ 1Þ½ðs2 � s1ÞBþ s2r2 � s1r1�
; ðB:5Þ

2ðnþ 1Þ

nh
2

ðQ � qÞ ¼
n s2r

2þ1=n
2þ � s1r

2þ1=n
1þ

� �

ð2nþ 1Þ½ðs2 � s1ÞBþ s2r2 � s1r1�
2

�
r1þ1=n

2þ þ r1þ1=n
1þ

� �

½ðs2 � s1ÞBþ s2r2 � s1r1�
: ðB:6Þ

B.1. Central pseudo-plug (region A); js1j, js2j > B, s1 = �s2

In this case there are no further simplifications of the full alge-

braic expressions in (B.5) and (B.6), except in the limit of large B or

low surface speeds. In those cases, rj � B and a number of terms

disappear from the leading-order balances, to furnish

r1

r2

� �



2Bs1

nh
2
ðnþ 1Þ Q � q�

1

2
hU

� �� �n=ðnþ1Þ

: ðB:7Þ

Also,

px 

2s2B

h
: ðB:8Þ

The positions of the yield surfaces are given to leading order by

Y� 
 Y1 þ
h

2B
r1; Yþ 
 Y2 �

h

2B
r2; ðB:9Þ

and are therefore O(Un/(n+1)B�1/(n+1)) from the walls (see Fig. 5).

B.2. Lower plug (region B); js2jP B, js1j < B

With js1j < B, r1+ = 0 and (B.5) and (B.6) then determine r2 to be

r2 ¼
ðnþ 1Þs2U

2

ð2nþ 1Þ Q � qþ 1
2
hU

	 


" #n

: ðB:10Þ

Hence

s1 ¼ Bs2 þ s2r2

ð2nþ 1ÞðQ � qÞ þ 1
2
hU

ð2nþ 1Þ Q � qþ 1
2
hU

	 
 ; ðB:11Þ

px ¼
ns2r2U

ð2nþ 1Þ Q � qþ 1
2
hU

	 
 : ðB:12Þ

The yield surface at the top of the plug is given by

Yþ ¼ Y2 �
2nþ 1

n

Q � qþ 1
2
hU

U
: ðB:13Þ

The borders of this region occur for s1? ± Bs2, corresponding to

connections to a C or an A region, respectively. In the limit of large

B or low surface speed (when Q and q are both order U� 1), we

observe from (B.10) that r2 is O(Un) throughout most of the B

region. However, over a slender zone with a thickness of order

Un/(n+1)B�1/(n+1) adjoining the transition point to region A, this extra

stress diverges to become O(Un/(n+1)Bn/(n+1)), allowing s1 to

approach �B s2 in (B.11).

B.3. Upper plug (region D); js1jP B, js2j < B

Similarly, with js2j < B, r2+ = 0 and we find

r1 ¼ �
ðnþ 1Þs1U

2

ð2nþ 1Þ Q � q� 1
2
hU

	 


" #n

; ðB:14Þ

and hence

s2 ¼ Bs1 þ s1r1

ð2nþ 1ÞðQ � qÞ � 1
2
hU

ð2nþ 1Þ Q � q� 1
2
hU

	 
 ; ðB:15Þ

px ¼
ns1r1U

ð2nþ 1Þ Q � q� 1
2
hU

	 
 : ðB:16Þ

The yield surface at the bottom of the plug is given by

Y� ¼ Y1 �
2nþ 1

n

Q � q� 1
2
hU

U
: ðB:17Þ

The D region is bordered by the points where s1 = ± Bs1, correspond-

ing to transitions to C and A regions. Once again, r1 = O(Un)� B in

the large yield stress or low surface speed limit, except within a

slender zone adjacent to the transition to A, where r1 becomes

O(Un/(n+1)Bn/(n+1)).

B.4. Fully yielded (region C); js1j, js2j > B, s1 = s2

In this case B drops out from the stress relationships (B.5) and

(B.6), but for general n, no further progress can be made. For

n = 1, the equations are identical to those for the Newtonian case,

and have the solution

s1r1 ¼
U

h
þ

6

h
2
ðQ � qÞ; s2r2 ¼

U

h
�

6

h
2
ðQ � qÞ; ðB:18Þ

px ¼ �
12

h
3
ðQ � qÞ; ðB:19Þ

(which indicate that s1 = s2 must have the sign of U).

B.5. Boundaries between regions

Given the explicit formulae for regions B and D, we may deter-

mine the borders between the four configurations:

xAB : 2Bþ
ð2nþ 1ÞðQ � qÞ þ 1

2
hU

ð2nþ 1Þ Q � qþ 1
2
hU

	 
r2 ¼ 0; ðB:20Þ

xBC : Q � qþ
1

2ð2nþ 1Þ
hU ¼ 0; ðB:21Þ

xCD : Q � q�
1

2ð2nþ 1Þ
hU ¼ 0; ðB:22Þ

xAD : 2Bþ
ð2nþ 1ÞðQ � qÞ � 1

2
hU

ð2nþ 1Þ Q � q� 1
2
hU

	 
r1 ¼ 0: ðB:23Þ

In the limit of large B or low surface speed, rj � B, and so the first

and last of these formulae reduce to

xAB : Q 
 q�
1

2
Uh;

xAD : Q 
 qþ
1

2
Uh:

ðB:24Þ
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B.5.1. Steady states

In the steady states of our example problems (ie. when _e; _H or _Y

are zero), the commonly appearing terms Q � q� 1
2
hU are Q � hU1

and Q � hU2. Since either the upper or lower surface is always at

rest, one of these terms is simply Q and is therefore independent

of x. In that case, one or other of regions B and D has constant pres-

sure gradient and a yield surface that is independent of x (see

Fig. 7(h) and Fig. 11).

Appendix C. The lift force on the rigid plate without pseudo-

plugs

For the washboarding problem with the Bingham fluid, we have

q ¼ _Yx� 1
2
h and h = Y + x. The boundaries between regions B, C and

D in that case are given by

xBC ¼ �
3Q þ 2Y

2� 3 _Y
; xCD ¼ �

3Q þ Y

1� 3 _Y
: ðC:1Þ

The boundaries with region A, xAB and xAD, are given respectively by

the roots of the quadratic Eqs. (B.20) and (B.23). For large B, these

positions tend to the limits

xAB 
 �
Q þ Y

1� _Y
; xAD 


Q
_Y
; ðC:2Þ

If xAB and xAD lie outside 0 < x < L, there is no region A, and the

analytical expressions for the pressure gradient in (B.12), (B.16)

and (B.19) can be integrated to determine the flux:

Q ¼ �
Y½ðY þ LÞ � _YL�

2Y þ L
: ðC:3Þ

Having calculated Q, it may then be verified whether the boundaries

of region A are indeed outside of 0 < x < L. When the plate is not

moving vertically, _Y ¼ 0, and the condition for there to be no region

A (the most restrictive condition is xAB < 0) becomes (51); if L is fur-

ther prescribed by (57), we arrive at (58).

If the calculated flux confirms that there is no A region, the force

can be calculated by integrating the known pressure distribution.

The result depends upon how the remaining B, C, or D regions

are organized within the flow pattern. It turns out the only feasible

arrangements are B-C-D, D–C–B, and the fully yielded case C. For

the arrangement B-C-D (which can be shown to occur when

3L _Y < L� Y), we find

f ¼
2ð3L _Y � Lþ YÞ

9 _Yð1� _YÞðY þ L _YÞ
� 6ð1� 2 _YÞ log

1� 3 _Y

2� 3 _Y

 !

� 4þ
2

9 _Y2
log

ð1� 3 _YÞðY þ L _YÞ

Yð1� 2 _YÞ

" #

þ
2

9ð1� _YÞ2
log

ð2� 3 _YÞðY þ L _YÞ

ð1� 2 _YÞðY þ LÞ

" #

; ðC:4Þ

for C alone (occurring when L� Y 6 3L _Y 6 2Lþ Y),

f ¼ 12ð1� 2 _YÞ
1

2
log

Y þ L

Y

� �

�
L

2Y þ L

� �

; ðC:5Þ

and for D-C-B (which arises for 3L _Y > 2Lþ Y),

f ¼
2ð3L _Y � 2L� YÞ

9 _Yð1� _YÞðY þ L� L _YÞ
þ 6ð1� 2 _YÞ log

1� 3 _Y

2� 3 _Y

 !

þ 4�
2

9 _Y2
log

ð1� 3 _YÞðY þ L� L _YÞ

ð1� 2 _YÞðY þ LÞ

" #

�
2

9ð1� _YÞ2
log

ð2� 3 _YÞðY þ L� L _YÞ

Yð1� 2 _YÞ

" #

: ðC:6Þ

In the steady state, when _Y ¼ 0, the expressions in (C.4)–(C.6)

reduce to (50). The horizontal force on the plate can similarly be cal-

culated in these cases, integrating the expressions for the stress in

(B.11), (B.14) and (B.18).

Appendix D. Free surfaces adjacent to the washboarding plate

The planing solution in Section 4 includes jumps in surface

height at the leading and trailing edges, which in reality are

smoothed out by some combination of surface tension, gravity,

and fully two-dimensional flow. With gravity alone, the free sur-

face height g satisfies (60). Upstream of the plate, the appropriate

boundary conditions are

gðL; tÞ ¼ hðL; tÞ � YðtÞ þ LðtÞ; g ! 1 as x ! 1: ðD:1Þ

The flux at x = L is then � gþ 1
6
f2ð3g� fÞGgx

� 

x¼L
. In the washboard-

ing model of Section 4, this flux is taken equal to the upstream value

�1, and then used to determine the motion of the leading edge via

the jump condition (53). In principle, however, the flux is deter-

mined from solving (60) subject to (D.1), then matching the solu-

tion to that for the flow underneath the plate at x = L(t), leading

to a coupled system of equations describing both regions.

Nevertheless, if B=G 	 1, the free-surface region over which

gravity has an effect is small and we may rescale near the leading

edge, x ¼ Lþ XG=B, so that the time derivative in (60) drops out to

leading order. The flux is then approximately given by �1, and so

gþ
1

6
f2ð3g� fÞBgX ¼ 1; f ¼ ðg� 1=jgX jÞþ: ðD:2Þ

This relation must be solved to match to the depth, Y(t) + L(t), of the

plate at X = 0; some example solutions are shown in Fig. D.18. If B is

large, a pseudo-plug occupies the bulk of the layer (f 
 B�1/2) and

the upstream surface profile is given by

gðx; tÞ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðY þ LÞ2 � 2ðx� LÞB=G

q

;

1;

(

ðD:3Þ

for ðx� LÞ < 1
2
½ðY þ LÞ2 � 1�G=B and ðx� LÞP 1

2
½ðY þ LÞ2 � 1�G=B

respectively, as shown in Fig. D.18c.
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Fig. D.18. (a) Steady state free surface shapes at leading edge according to (D.1) and (D.2), for the steady planing plate with Y ¼ 1:2; G ¼ 0:1, and for B = 0, 0.05, 0.1, 0.5, 5, 50

(the arrow indicates the trend with increasing B). Note the value of L, where the free surface meets the plate, varies with B as in Fig. 12. Panels (b) and (c) show close-ups of the

transition region for the cases B = 0.5 and B = 50, with the shading denoting the pseudo-plug. The dashed line in (c) shows the square-root solution in (D.3).
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It turns out that gravity is not sufficient to enforce continuity at

the trailing edge of the plate; instead we must include surface ten-

sion or solve the full two-dimensional Stokes problem. Discussion

of related Newtonian problems is given by Tuck & Schwartz [37],

Moriarty and Terrill [38] and Quintans Carou et al. [39].
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