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Viscoplastic sessile drop coalescence
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The evolution of the liquid bridge formed between two coalescing sessile yield-stress
drops is studied experimentally. Surprisingly, we find that the height of the bridge evolves
similar to a Newtonian fluid as h0(t ) ∼ t , before arresting at long time due the fluid’s
yield stress. From viscoplastic lubrication theory we find a model for the arrested interface
shape based on the balance between capillary pressure and yield stress. We then solve
numerically for this final arrested profile shape and find it to depend on the fluid’s yield
stress τy, the surface tension coefficient σ and the coalescence angle α, represented by a
modified Bingham number. We also present a scaling argument for the bridge’s temporal
evolution using the length scale found from this arrested shape analysis and present a
similarity solution for the spatial evolution of the liquid bridge.
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Yield-stress fluids only flow when subjected to a stress greater than their yield stress τy. We rely
on yield-stress fluids. They allow us to squeeze toothpaste from tubes, lay mortar for bricks, plaster
walls, and even paint. Much focus has been spent on yield-stress flows [1,2] with a growing interest
in capillary flows such as surface spreading for inkjet printing and spray coating [3–7], viscous
fingering [8], and the adhesion of pastes [9].

We focus here on the dynamics of sessile viscoplastic drop coalescence utilizing both side-view
and bottom-view imaging as shown in Figs. 1(a) and 1(b). When two drops coalesce, a liquid
bridge forms between them. Much emphasis has been placed on the evolution of this bridge for
both free and sessile Newtonian drops [10–13]. For sessile drops, the growth of the bridge can be
characterized by its width r0(t ) as viewed from below and its height h0(t ) as viewed from the side.
The presence of a symmetry breaking substrate generates additional stress near the growing bridge
where the coalescence angle α can drastically alter its temporal evolution [14].

For Newtonian drops many different coalescence regimes have been identified. For free drop co-
alescence, or α = 90◦, the bridge grows as h0(t ) ∼ t0.5 when the coalescence is inertially dominated
[12] and as h0(t ) ∼ t with corrections in the early time as h0(t ) ∼ t ln t when viscously dominated
[15]. Similarly for viscous sessile drops h0(t ) ∼ t [13,15] and r0(t ) ∼ t0.5 [16] before transitioning
to a Tanner’s-like spreading at long times [17,18]. Early time inertial to late time viscous crossover
has also been found to depend on liquid properties and drop size [19].

Despite relevance in many motivating applications [20–22], far less is known about non-
Newtonian coalescence. For polymeric fluids, recently the effects of elasticity have been considered,
showing polymer stretching affects spatial self-similarity, but in low concentrations not temporal
growth [23]. Other studies have shown new scaling laws for temporal bridge growth [24], transitions
from inertial to visco-elastic regimes [25], effects of approach velocity during sessile coalescence
[26], and considerations of power-law fluid coalescence [27]. When two yield-stress drops coalesce,

*vanesske@math.uio.no
†acarlson@math.uio.no

2469-990X/2022/7(8)/L081601(7) L081601-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9799-2733
https://orcid.org/0000-0002-3068-9983
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.L081601&domain=pdf&date_stamp=2022-08-12
https://doi.org/10.1103/PhysRevFluids.7.L081601


KERN, SÆTER, AND CARLSON

(a) (b)

FIG. 1. Side (a) and bottom (b) view viscoplastic sessile drop coalescence with yield stress τy = 30 Pa.
High speed imagery captures the coalescence event. Postcoalescence (b) the contact line spreads characterized
by r0(t ), and (a) the bridge grows characterized by its minima h0(t ), before halting due to the drop’s yield stress.
The initial height of the drop hdrop and its footprint a are related through the coalescence angle α. Bottom and
side view time sequences are presented from two different experiments with similar initial conditions.

their interface arrests before minimizing their surface energy. Arrested coalescence events have been
previously observed for “jammed” interfaces in pickering emulsions [28] as well as for anisotropic
colloids [29–31].

Here we find that the evolution of the liquid bridge formed during the coalescence of two sessile
yield-stress drops behaves similarly to that of an n = 1 power-law fluid or a viscous Newtonian
fluid in its temporal evolution h0(t ) ∼ t . We propose a length scale based on the yield stress τy,
surface tension σ , and aspect ratio hdrop/a to find a temporal scaling for the bridge evolution similar
to that of a power-law fluid [27], and find the spatial evolution of the liquid bridge is self-similar
[32]. These results are striking in that the effect of the yield stress appears to be subdominant to the
dynamics of the bridge’s evolution and that the yield-stress fluid’s ability to have yielded, liquidlike
and non-yielded, solidlike flow regions seems to play no role in the scaling of the bridge’s evolution.

Experiment. Side- and bottom-view sessile coalescence events were imaged using a Photron
Fastcam SA5 with a Nikon 200mm f/4 AF-D Macro lens and two teleconverters (Nikon 2x and 1.7x)
resulting in resolutions of ∼6 μm/pixel. Further processing in Matlab using partial area subpixel
edge detection techniques afforded resolutions below 6 μm/pixel [33,34]. Coalescence substrates
were glass microscope slides (VWR Ca. 631-1550) rinsed with isopropanol (VWR Ca. 20922.364),
plasma cleaned and kept in DI water until use. Immediately prior to use slides were blown dry with
oil free compressed air. Coalescing drops were Carbopol 940 solutions with yield stresses varying
from τy = 2 Pa to 50 Pa measured using the stress growth test as shown in Fig. 2(b), details in the
Supplemental Material [35]. Drop densities were assumed to be close to water ρ ≈ 1000 kg/m3.

Only relatively spherically-cap shaped precoalescence sessile drops with aspect ratios a/hdrop >

1.5 and α < 45◦ were considered. To minimize deviations from the spherical-cap shape, drops with
footprints a < 1 mm were preferred [4]. When yield-stress drops spread on substrates, spreading
arrests before drops minimize their surface energy as by the Young-Dupré equation σ cos(α) =
σSV − σSL [3]. Therefore for our experiments, the smallest obtainable initial coalescence angles α

we expect are 6.5◦ to 34◦ for τy = 2 Pa and 50 Pa, respectively [3,4,35]. Slides were plasma cleaned
before each set of experiments to maintain a low substrate surface energy, thereby minimizing α. By
knowing the initial drop size, approximate arrested angle, and footprint a at which spreading will
cease, drops were simultaneously dispensed at known relative distances achieving both minimal α

as well as contact line velocities below the initial bridge height velocity dh0(t )/dt . Post coalescence,
drops arrested within seconds rendering negligible evaporative losses.

Results. We frame our problem as a 2D flow parallel to the bridge justified by the small relative
aspect ratio h0(t )/r0(t ) � 1, and low film Reynolds number [12,15,35]. As the fluid has a yield
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FIG. 2. (a), (b) Rheological data for Carbopol 940. A fit of the Herschel-Buckley model (2) recovers
n = [0.44, 0.4, 0.37, 0.37] and K = [1.5, 4.0, 10.2, 14.9] Pa · sn for yield stress τy = [2, 14, 30, 50] Pa sam-
ples respectively. (a) Measurement of viscosity against shear rate. (b) Measurement of yield stress using the
constant oscillatory shear rate test. (c) Postcoalescence (t = ∞) final arrested shapes for increasing yield stress
τy, each scale bar is 500 μm. For similar coalescence angles α, increasing τy decreases the arrested bridge height
h0(∞). Increases in α serve to increase the arrested bridge height, as shown for the 50 Pa case. (d) Comparison
of the experimentally measured liquid/gas interfacial profiles h(x, ∞)/hdrop (circles) against x/a with their
corresponding numerical solutions (solid lines) obtained from a scaled (4), ĥ(x̂)d3ĥ(x̂)/dx̂3 = J/(hdrop/a)3,
with boundary conditions dĥ(x̂)/dx̂ = 0 at (x̂ = −1, 0) and ĥ(x̂ = −1) = 1 for the experiments shown in (c).

stress τy, the system can be described using viscoplastic lubrication theory [3,36],

∂h(x, t )

∂t
= n

n + 1

(
1

K

) 1
n ∂

∂x

((
nY (x, t )

2n + 1
− h

)
Y (x, t )

1
n +1

∣∣∣∣∂P(x, t )

∂x

∣∣∣∣
1
n

)

and Y (x, t ) = max

(
0, h(x, t ) − τy

∣∣∣∣∂P(x, t )

∂x

∣∣∣∣
−1) , (1)

where Y (x, t ) represents the boundary between the yielded and non-yielded regions of the drop,
h(x, t ) the liquid/gas interface, and P(x, t ) the capillary pressure. Here Carbopol is represented
using the Herschel-Bulkley model with a stress τ versus shear rate γ̇ dependency that can be
expressed as

τ = τy + K γ̇ n for τ � τy, (2)

where K and n are known as the consistency index and power-law index, respectively [37,38]. The
fluid is yielded when τ > τy and non-yielded when τ < τy [39]. Expressed in terms of viscosity,

η = K|γ̇ |n−1 + τy|γ̇ |−1. (3)

For our experiments n = [0.44, 0.4, 0.37, 0.37] and K = [1.5, 4.0, 10.2, 14.9]Pa · sn for yield stress
τy = [2, 14, 30, 50] Pa samples, respectively. We see that n < 1 indicates a shear thinning flow as
shown in Fig. 2(a). For lubrication theory to hold, one would expect for the coalescence angle α

at which our experiment is constrained that the lubrication approximation would be inaccurate;
however, this approximation has been shown to hold for α as large as α = 67◦ [32].

It has been previously shown that due to the positively-charged nature of Carbopol’s terminal
group that Carbopol will have a non-negligible slip length on glass [40]. Considering that slip would
modify (1) and could affect our experimental results, additional coalescence experiments presented
in the Supplemental Material [35] were performed on waterproof sandpaper with a prewetted layer.
We found that these experiments on sandpaper were qualitatively similar to those on glass, allowing
us to reasonably assume the effects of slip did not influence our results.

Final arrested shape. Post Newtonian drop-drop coalescence, interfacial energies are minimized
and the liquid/gas interface assumes a spherical-cap shape. However, post yield-stress drop-drop
coalescence, the drop’s bridge arrests at some fraction of its total height h0(∞)/hdrop, see Fig. 2(c).
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FIG. 3. Bridge evolution and self-similarity. (a) Unscaled bridge h0(t ) evolution data. (b) Scaled bridge
h0(t ) evolution data. At early times the bridge growth is suggestive of h0(t ) ∼ t n with n ≈ 0.4 before evolving
linearly as h0(t ) ∼ t . At late times the growth ceases due to the yield stress τy. (c) Scaled drop interface
H(ξ ) = h(x, t )/h0(t ) against the similarity variable ξ from (5) with β = 1 in the linear regime of (d). The
solid line is the numerically determined similarity solution obtained when Y (x, t ) ≈ h(x, t ) and n = 1 from
(1), H(ξ ) − ξH′(ξ ) + 1/V (H3(ξ )H′′′(ξ ))′ = 0 with one unknown parameter V and boundary conditions
H(0) = 1, H′(0) = H′′′(0) = 0, H′′(∞) = 0, and H′(∞) = 1 [32], ()′ = d/dξ . Excellent agreement can be
seen despite increasing τy.

From (1) we see that when Y (x, t ) = 0 the yielded region of the drop vanishes. The shape
of the arrested interface h(x,∞) can then be characterized by the nonlinear ordinary differential
equation obtained from (1) in the limit Y (x,∞) → 0,

h(x,∞)
d3h(x,∞)

dx3
= τy

σ
. (4)

Here the pressure P(x,∞) is approximated as the local interfacial curvature σ d2h(x,∞)/dx2 with
the small angle approximation and flow unidirectional towards the bridge x = 0. We numerically
solve (4) as a system of first order ODEs in python using SciPy’s “solve_bvp” function by prescrib-
ing the experimentally determined aspect ratio hdrop/a and Bingham number J = τyhdrop/σ , scalings
for the height ĥ(x̂) = h(x,∞)/hdrop and length x̂ = x/a and boundary conditions dĥ(x̂)/dx̂ =
0 at (x̂ = −1, 0) and ĥ(x̂ = −1) = 1, representing symmetry at x = −a, symmetry at the bridge
x = 0, and the height of the drop, respectively. Here we note that the center of each drop relative to
the symmetry plane at x = 0 remains near x = |a| for all of our experiments.

Figure 2(d) shows the results of numerically integrating (4) with the y-axis rescaled compared
with experimental data. We see good height profile agreement when the precoalesced drop shape is
relatively spherically-capped, despite the fact that our model is 2D and ignores out of plane curva-
tures. In general, we find that initial deviations from a spherical-cap shape that are a byproduct of
the initial deposition cause deviations in the final arrested profile. More details about this numerical
solution as well as a comparison of numerically recovered versus experimentally measured final
bridge heights h0(∞) can be found in the Supplemental Material [35].

From the scaling of (4) we can see that a non-dimensional quantity in the form of the
Bingham number modified by the aspect ratio J/(hdrop/a)3 arises, begetting a new length scale
(hdrop/a)3(σ/τy). From this new length scale it can be seen that decreases in τy or increases in
α ∼ hdrop/a lead to an increase in the final arrested bridge height, recovering the intuition of a
simple force balance shown in the Supplemental Material [35].

Temporal evolution. In Fig. 3(a) we use the bridge height h0(t ) as a measure of the liquid bridge’s
temporal evolution and observe that α, τy, and K significantly affect the coalescence velocity and
arrested bridge height. We observe for similar yield stresses τy that increasing α decreases the overall
coalescence time and increases the final arrested bridge height h0(∞) [35]. We also observe that for
similar coalescence angles α that increasing the yield stress τy decreases the bridge velocity and the
final arrested bridge height h0(∞).
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From (1) we can see that as τy → 0 or as |∂P(x, t )/∂x| 	 τy in regions of high interfacial
curvature that Y (x, t ) ≈ h(x, t ), reducing (1) to the 2D lubrication equation for a power-law fluid
[27,32,41]. Assuming a similarity solution of the form

H(ξ ) = h(x, t )

vtβ
, with ξ = αx

vtβ
, (5)

and substituting into (1) we find that the liquid bridge should evolve in time as h0(t ) ∼ tβ with
β = n and with a scaling for the coalescence velocity v ∼ (σ/K )α3+n. Using the length scale found
in the previous section (hdrop/a)3(σ/τy), a scaling for the coalescence time t̂ can be written as

t̂ ∼
(

a3τy

h3
dropK

)1/n

α3/n+1t . (6)

It has been previously shown that both shear-thinning and yield-stress fluids in extensional rather
than shear flow can behave similarly to constant viscosity Newtonian fluids [42]. Here we see a
similar effect. Despite scanning a large parameter space, it can be seen from Fig. 3(a) that for
the majority of the bridge’s temporal evolution β 
= n ≈ 0.4 but instead β ≈ 1, indicating that the
shear-thinning properties of the fluid appear to be subdominant for the majority of the dynamics
of the growing liquid bridge and could be indicative of a flow of approximately constant shear
rate and therefore constant viscosity. Similarly in the radial direction, the drop’s advancing contact
line spreads as r0(t ) ∼ t0.5 before transitioning to a long-time relaxation as r0(t ) ∼ t0.1 similar to
Tanner’s spreading law [18], shown in the Supplemental Material [35], supporting the idea of a flow
of nearly constant viscosity.

The results of rescaling the data using (6) are shown in Fig. 3(b). As not all experiments are
perfectly spherically-cap shaped initially, error inherently exists in the determination of the drop’s
aspect ratio hdrop/a and, consequently, coalescence angle α. However, despite these uncertainties,
scaling in this fashion does group the data around a collapsed linear regime and suggest the existence
of an early time regime of power-law growth where β = n, though this early time regime remains
inconclusive as it occurs outside the temporal resolution of most of our experiments.

Due to similarities in the temporal evolution of the liquid bridge with n = 1 and h0(t ) ∼ t for the
majority of the dynamics, we are then tempted to seek a similar universal rescaling and similarity
solution using n = 1. For times t̂ in the linear region of Fig. 3(b), we expect that the interface h(x, t )
should collapse onto a self-similar shape for all coalescence angles α and yield stresses τy, and by
rescaling our data with the similarity variables of (5) with β = 1 we find that in this linear regime
for varying yield stress a self-similar collapse of the liquid bridge’s spatial evolution in time does
occur as presented in Fig. 3(c). Comparing this collapse with the numerically calculated similarity
solution from (1) with Y (x, t ) ≈ h(x, t ) and n = 1 shows excellent agreement, implying that for
this system liquid-bridge evolutions across varying yield stresses are indeed self-similar and can be
collapsed [32,41].

Discussion. Here we present a look at the sessile drop coalescence of viscoplastic drops. Sur-
prisingly we find that the effect of the yield stress on the evolution dynamics is subdominant to the
bridge evolution and that the majority of the bridge’s evolution scales as a viscous, constant viscosity
fluid or power-law fluid with n = 1, h0(t ) ∼ t . At early times the data suggests the bridge’s evolution
may scale as a power-law fluid h0(t ) ∼ t n with n ≈ 0.4 for our Carbopol solutions, though this
scaling remains inconclusive as it falls mostly outside the temporal resolution of our experiments.
We postulate this reduction in the viscoplastic lubrication equations (1) to that of a power-law fluid
can be explained for regions of rapidly changing interfacial curvature such as in the vicinity of h0(t ).

We also find that both the yield stress τy and coalescence angle α affect the fractional height
h0(∞)/hdrop at which the evolving bridge arrests, and that the arrested interface shape can be
described by the balance between the capillary pressure gradient and the fluid’s yield stress. Lastly,
we find a scaling that captures the spatial self-similarity in the bridge’s evolution across multiple
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yield stresses τy and coalescence angles α during the linear bridge evolution regime n = 1, and show
that the bridge adopts a self-similar shape.

Here only experiments where drops were reasonably spherical-cap shaped were considered.
These conditions, however, only represent a small set of cases for the coalescence of sessile yield-
stress drops that can easily adopt highly nonspherical cap shapes [4]. It would then be interesting
for future study to include drops with highly nonuniform initial liquid/gas interfacial curvatures and
potentially larger initial coalescence angles α.
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