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VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC PATH
DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

BY ZHENJIE REN1

CMAP, Ecole Polytechnique

This paper extends the recent work on path-dependent PDEs to elliptic
equations with Dirichlet boundary conditions. We propose a notion of viscos-
ity solution in the same spirit as [Ann. Probab. 44 (2016) 1212–1253, Part 1;
Ekren, Touzi and Zhang (2016), Part 2], relying on the theory of optimal stop-
ping under nonlinear expectation. We prove a comparison result implying the
uniqueness of viscosity solution, and the existence follows from a Perron-
type construction using path-frozen PDEs. We also provide an application to
a time homogeneous stochastic control problem motivated by an application
in finance.

1. Introduction. In this paper, we develop a theory of viscosity solutions of
elliptic PDEs on the continuous path space, by extending the recent literature on
path-dependent PDEs (PPDE) to this context.

Nonlinear PPDEs appear in various applications, for example, non-Markovian
stochastic control problems are naturally related to path-dependent Hamilton–
Jacobi–Bellman equations (see [10]), and non-Markovian stochastic differential
games are related to path-dependent Isaacs equations (see [22]). PPDEs are also
intimately related to the backward stochastic differential equations introduced by
Pardoux and Peng [21], and their extension to the second order in [3, 25]. We refer
to the survey paper [24] as an introduction to this new topic. We also refer to the
recent applications in [12] to establish a representation of the solution of a class
of PPDEs in terms of branching diffusions, and to [16] for the small noise large
deviation results of path-dependent diffusions.

In the existing literature, the authors are all focus on developing the well-
posedness theory for parabolic PPDEs. In this paper, we explore the notion of
an elliptic PPDE. An elliptic PPDE on the continuous path space � is of the form:

G
(·, u, ∂ωu, ∂2

ωωu
)
(ω) = 0, ω ∈ Q ⊂ �, and

(1.1)
u(ω) = ξ(ω), ω ∈ ∂Q.
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Our notions of the derivatives ∂ω and ∂2
ωω are inspired by the calculus developed

in Dupire [7] as well as in Cont and Fournie [4]. Let

�e := {
ω ∈ � : ω = ωt∧· for some t ∈ R+}

and u : �e →R,

that is, �e is the subspace of all the paths with flat tails. Denote by {ut }t∈R+ the
process ut (ω) := u(ωt∧·). According to [4, 7], one may define the horizontal and
vertical derivatives for the process

∂tut (ω) := lim
h→0

ut+h(ωt∧·) − ut (ω)

h
and

(1.2)

∂ωut (ω) := lim
h→0

ut (ω) − ut (ω· + h1[t,∞))

h
.

Also, in [4, 7] the authors proved that a smooth process satisfies the functional Itô
formula

dut = ∂tudt + ∂ωudωt + 1
2∂2

ωωud〈ω〉t ,
(1.3)

P-a.s. for all continuous semimartingale measures P.

Note that in the definition (1.2) one requires to extend the process u to the set
of càdlàg paths. Although this technical difficulty is addressed and solved in [4],
it was observed by Ekren, Touzi and Zhang [8] that it is more convenient to de-
fine the derivatives by the Itô decomposition (1.3), namely, we call the continuous
processes �,Z,� the derivatives of the process u if

dut = �t dt + Zt dωt + 1
2�t d〈ω〉t ,

P-a.s. for all continuous semimartingale measures P.

In this paper, we follow this idea to define the path derivatives (see Definition 2.6
below). We next restrict our solution space so that all potential solutions u of ellip-
tic PPDE (1.1) agree with the time-independence property, that is, ∂tu = 0. A func-
tion u : �e →R is called to be time-invariant, if

u(ω) = u(ω�(·)) for all ω and all increasing bijection � :R+ →R+,

that is, the value of a time-invariant function u is unchanged by any time scaling of
path. It follows from the definition of the horizontal derivative in (1.2) that ∂tu = 0.
Therefore, the time-invariance implies the time-independence, and in this paper we
will prove the well-posedness of time-invariant solutions to PPDE (1.1).

It is noteworthy that the elliptic PPDE (1.1) can reduce to be an elliptic PDE (on
the real space). Assume that the nonlinearity G in (1.1) has no dependence on ω,
u : �e → R is a smooth solution to (1.1) and that there is a function v : Rd → R

such that u(ω) = v(ω∞) for all ω ∈ �e. It follows that the path derivatives reduce
to the normal derivatives in the real space, that is, ∂ωu(ω) = ∂xv(ω∞), ∂2

ωωu(ω) =
∂2
xxv(ω∞). Then the function v satisfies the corresponding elliptic PDE

(1.4) −G
(
v, ∂xv, ∂2

xxv
) = 0.
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There is an enormously rich literature studying the elliptic PDE (1.4). In particu-
lar, it is known that the solutions to the Dirichlet problem of the equation (1.4) are
not always classical (i.e., smooth enough). For example, Nadirashvili and Vladut
constructed in [17] a singular solution to an equation −G(∂2

xxv) = 0, where G

satisfies the uniform ellipticity condition. A type of weak solutions, viscosity so-
lutions, was introduced by Crandall and Lions [5] to study the equations like the
one (1.4), and turns out to be very useful. Since the PDE (1.4) is a special case
of the PPDE (1.1), we are motivated to develop a theory of viscosity solutions to
elliptic PPDEs.

In this paper, we give a definition of viscosity solutions in the context of el-
liptic PPDE, and then prove the existence and uniqueness of bounded, uniformly
continuous and time-invariant viscosity solutions to the PPDE (1.1) under certain
conditions. We try to keep the structure of the paper close to that of Ekren, Touzi
and Zhang [11], in which the authors studied the viscosity solutions to parabolic
PPDEs. As in [11], our main idea is to construct a viscosity solution to (1.1) by an
approximation of piecewise smooth solutions provided by the path-frozen PDEs.
Further, we prove the viscosity solution we construct is the unique one through
a partial comparison result (i.e., the comparison between a viscosity subsolution
and a piecewise smooth supersolution). There are new difficulties in the elliptic
context, for example, we need to handle the boundary of Dirichlet problem (in
particular, the discontinuity of the hitting time of the boundary HQ), and we are
not allowed to apply certain changes of variables (e.g., ũt := ertut ), which are
quite convenient in the parabolic context. In particular, our argument to verify the
uniform continuity of the constructed viscosity solution is new, and quite different
from the argument in [11]. Since the path-frozen PDEs do not conserve the uni-
form continuity of the data of the problem, in [11] the authors require additional
uniform continuity assumptions (see their Assumption 3.5) to ensure the uniform
continuity of the constructed viscosity solution. Curiously, we observe in the ellip-
tic case that the solutions θω,ε to the path-frozen PDEs are “almost” (with an error
ε) uniform continuous in the parameter ω, that is,∣∣θω1,ε − θω2,ε

∣∣ ≤ ε + ρ(2ε) + Cερ
(
de(ω1,ω2))

,

for some modulus of continuity ρ

[see (5.10) below for the more accurate result], and this intermediate result leads
to the uniform continuity of the constructed viscosity solution without any extra
assumptions. By comparing to the parabolic context, we think the above property
is intrinsically elliptic.

We also provide an application of elliptic PPDE to the problem of superhedging
a time invariant derivative security under uncertain volatility model. This is a clas-
sical time homogeneous stochastic control problem motivated by the application
in financial mathematics.
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The rest of paper is organized as follows. Section 2 introduces the main notation,
as well as the notion of time-invariance, and recalls the result of optimal stopping
under nondominated measures. Section 3 defines the viscosity solution of the el-
liptic PPDEs. Section 4 presents the main results of this paper. In Section 5, we
prove the comparison result which implies the uniqueness of viscosity solutions.
In Section 6, we verify that a function constructed by a Perron-type approach is an
viscosity solution, so the existence follows. We present in Section 7 an application
of elliptic PPDE in the field of financial mathematics. Finally, we complete some
proofs in the Appendix.

2. Preliminary. Let � := {ω ∈ C(R+,Rd) : ω0 = 0} be the set of continuous
paths starting from the origin, B be the canonical process, F = {Ft }t∈R+ be the
filtration generated by B , T be the set of all F-stopping times, and P0 be the
Wiener measure.

Denote the L∞-norm on the continuous path space � by ‖ω‖∞ := sups≤∞ |ωs |.
Introduce the concatenation of the continuous paths(

ω ⊗t ω′)(s) := ωs1[0,t)(s) + (
ωt + ω′

s−t

)
1[t,∞)(s)

(2.1)
for ω,ω′ ∈ � and s, t ∈ R+.

Given a random variable ξ : � →R and a process X : R+ ×� →R, we define the
shifted random variable and the shifted process

ξ t,ω(
ω′) := ξ

(
ω ⊗t ω′), Xt,ω(

s,ω′) := X
(
t + s,ω ⊗t ω′).

For a τ ∈ T , we often write ξτ,ω (resp. Xτ,ω) instead of ξτ(ω),ω (resp., Xτ(ω),ω)
for simplicity.

In this paper, we focus on a subset of � denoted by �e, which will be considered
as the solution space of elliptic PPDEs. Define

�e := {ω ∈ � : ω = ωt∧· for some t ≥ 0},
that is, the set of all paths with flat tails.

We denote the starting of the flat fail of a path ω ∈ �e by

t̄ (ω) := min{t : ω = ωt∧·} for all ω ∈ �e.

Recall the definition of the concatenation in (2.1). For ω ∈ �e, ω′ ∈ � and ξ : � →
R, we define(

ω ⊗̄ω′)(s) := (
ω ⊗t̄ (ω) ω′)(s) and ξω(

ω′) := ξ t̄(ω),ω(
ω′) = ξ

(
ω ⊗̄ω′).

In our arguments, we will be interested in the subsets in �e of some particular
form. Denote by

R the set of all open, bounded and convex subsets of Rd containing 0.
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We are interested in the subsets in �e corresponding to D ∈R:

(2.2) D := {
ω ∈ �e : ωt ∈ D for all t ≥ 0

}
.

By defining the stopping time

HD := inf{t ≥ 0 : ωt /∈ D}, and the set H := {HD : D ∈ R},
we may further define the boundary and the cloture of D:

∂D := {
ω ∈ �e : t̄ (ω) = HD(ω)

}
, cl(D) := D ∪ ∂D.

Elliptic equations are devoted to model time-invariant phenomena, and in the
path space the time-invariance property can be formulated mathematically as fol-
lows.

DEFINITION 2.1. Define the distance on �e:

de(ω,ω′) := inf
�∈I sup

t∈R+

∣∣ω�(t) − ω′
t

∣∣ for ω,ω′ ∈ �e,

where I is the set of all increasing bijections from R+ to R+. We say ω is equiv-
alent to ω′, if de(ω,ω′) = 0. A function u on �e is time-invariant, if u is well
defined on the equivalent class, that is,

u(ω) = u
(
ω′) whenever de(ω,ω′) = 0.

For a subset D ⊂ �e, C(D) denotes the set of all functions ϕ : D → R continu-
ous with respect to de(·, ·). The notation C(D;Rd), C(D;Sd) (Sd denotes the set
of d × d symmetric matrices) are also used when we need to emphasize the space
in which the functions take values.

Finally, we say u ∈ BUC(D) if u : D → R is bounded and uniformly continuous
with respect to de(·, ·), that is, there exists a modulus of continuity ρ such that

(2.3)
∣∣u(

ω1) − u
(
ω2)∣∣ ≤ ρ

(
de(ω1,ω2))

for all ω1,ω2 ∈ D.

REMARK 2.2. For any modulus of continuity ρ, the concave envelop ρ̂ :=
conc[ρ] is still a modulus of continuity for the same function. Thus, without loss
of generality, we may assume that moduli of continuity are concave.

EXAMPLE 2.3. Let us show an example of two equivalent paths of which the
L∞-distance is large. Let (ti, xi) ∈R+ ×Rd for each 1 ≤ i ≤ n. We denote by

(2.4) ω := Lin
{
(0,0), (t1, x1), . . . , (tn, xn)

}
the linear interpolation of the points with a flat tail extending to t = ∞ (ωt = xn,
for t ≥ tn). Then by defining another path

ω′ := Lin
{
(0,0),

(
t ′1, x1

)
, . . . ,

(
t ′n, xn

)}
,

we clearly have de(ω,ω′) = 0 regardless of the choice of {t ′i}1≤i≤n. However, the
L∞-distance ‖ω − ω′‖∞ can reach max1≤i,j≤n |xi − xj | by choosing a particular
sequence {t ′i}1≤i≤n.
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EXAMPLE 2.4. We show some examples of time-invariant functions:

• Markovian case: Assume that there exists ū : Rd → R such that u(ω) =
ū(ωt̄(ω)). Since |ω1

t̄ (ω1)
− ω2

t̄ (ω2)
| ≤ de(ω1,ω2) for all ω1,ω2 ∈ �e, u is time-

invariant.
• Maximum dependent case: Assume that there exists ū : R→R such that u(ω) =

ū(‖ω‖∞). Note that ‖ω‖∞ = de(ω,0) and de(ω1,0)− de(ω2,0) ≤ de(ω1,ω2).
Thus, ‖ω1‖∞ = ‖ω2‖∞ whenever de(ω1,ω2) = 0. Consequently, u is time-
invariant.

Here is some useful notation:

• OL := {x ∈ Rd : |x| < L}, and OL := {x ∈ Rd : |x| ≤ L}.
• [aId, bId ] := {γ ∈ Sd : aId ≤ γ ≤ bId}.
• H0(E) denotes the set of all F-progressively measurable processes taking values

in the set E, and in particular H0
L := H0([√2/LId,

√
2LId ]) for L > 0.

• Denote the quadratic variation of the path ω by 〈ω〉t := |ωt |2 − 2
∫ t

0 ωs dωs ,
where

∫ ·
0 ωs dωs is the pathwise stochastic integral defined in Karandikar [13].

• Given γ, η ∈ Sd , we define γ : η := Trace[γ η];
• Given a function ϕ : � →Rd , we may define the corresponding process

(2.5) ϕt (ω) := ϕ(ωt∧·).
We next introduce the smooth functions on the space �e. First, for every con-

stant L > 0, we denote by PL the collection of all continuous semimartingale
measures P on � whose drift and diffusion belong to H0(OL) and H0

L, respec-
tively. More precisely, let �̃ := � × � × � be an enlarged canonical space and
B̃ := (B,A,M) be the canonical process. A probability measure P ∈ PL if there
exists an extension Qα,β of P on �̃ such that

B = A + M, A is absolutely continuous,M is a martingale,

∥∥αP
∥∥∞ ≤ L, βP ∈ H0

L where αP
t := dAt

dt
, βP

t :=
√

d〈M〉t
dt

,(2.6)

Qα,β-a.s.

REMARK 2.5. The definition of PL is slightly different from the one in [11],

since we urge that the coefficient of diffusion βP ≥
√

2
L
Id .

Further, denote P∞ := ⋃
L>0 PL.

DEFINITION 2.6 (Smooth time-invariant processes). Let D ∈ R, and recall
D ⊂ �e defined in (2.2). We say ϕ ∈ C2(D), if ϕ ∈ C(D) and there exist Z ∈
C(D;Rd), � ∈ C(D;Sd) such that

dϕt = Zt · dBt + 1
2�t : 〈B〉t for t ≤ HD,P∞-q.s.
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[ϕt is defined in (2.5)], where P∞-q.s. means P-a.s. for all P ∈ P∞. By a direct
localization argument, we see that the above Z and �, if they exist, are unique.
Denote ∂ωu := Z and ∂2

ωωu := �.

REMARK 2.7. In the Markovian case mentioned in Example 2.4, if the func-
tion ū :Rd →R is in C2(D), then it follows from Itô’s formula that u ∈ C2(D).

REMARK 2.8. In the path-dependent case, Dupire [7] defined derivatives, ∂tu

and ∂ωu, for process u : R+ × � →Rd . In particular, the t-derivative is defined as

∂tu(s,ω) := lim
h→0+

u(s + h,ωs∧·) − u(s,ω)

h
.

Also, Dupire and other authors, for example, [4], proved the functional Itô formula
for the processes regular in Dupire’s sense:

dus = ∂tus ds + ∂ωus · dBs + 1
2∂2

ωωus : 〈B〉s, P∞-q.s.

Note that in the time-invariant case it always holds that ∂tu = 0. Consequently,
the processes with Dupire’s derivatives in C(D) are also smooth according to our
definition.

We next introduce the notation of nonlinear expectations. For a family of proba-
bilities P , a measurable set A ∈ F∞, a random variable ξ , we define the capacity C,
the sublinear expectation E and the superlinear expectation E :

CP [A] := sup
P∈P

P[A], EP [ξ ] := sup
P∈P

EP[ξ ], EP [ξ ] := inf
P∈P EP[ξ ].

We also define the optimal stopping operator (in other words, the Snell envelop)
S and S :

SP
t [X](ω) := sup

τ∈T
EP [

Xt,ω
τ

]
, SP

t [X](ω) := inf
τ∈T EP [

Xt,ω
τ

]
,

with the barrier process X.

Recall the family of probabilities PL defined above. For simplicity, we denote

CL := CPL

, EL := EPL

, EL := EPL

, SL := SPL

, SL := SPL

.

The existing literature gives the following results.

LEMMA 2.9 (Tower property, Nutz and van Handel [20]). For a bounded ran-
dom variable ξ , we have

EL[ξ ] = EL[
EL[

ξτ(·),·]] for all τ ∈ T .
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LEMMA 2.10 (Snell envelop characterization, Ekren, Touzi and Zhang [9]).
Let T ∈ R+, HD ∈ H and X ∈ BUC(D). Denote H := HD ∧ T . Define the Snell
envelope and the corresponding first hitting time of the obstacles:

Y := SL[XH∧·], τ ∗ := inf{t ≥ 0 : Yt = Xt }.
Then Y ≥ X, Yτ∗ = Xτ∗ and τ ∗ is an optimal stopping time, that is, Y0 = EL[Xτ∗].

It is also important to have the following result, of which the proof can be found
in the Appendix.

PROPOSITION 2.11. Let D ∈ R, and denote

(2.7) Dx := {y : x + y ∈ D} for x ∈ D.

Assume that O is also in R. Define a sequence of stopping times {Hn}n∈N:

(2.8) H0 = 0, Hn := inf{s ≥ Hn−1 : Bs − BHn−1 /∈ O}, n ≥ 1.

Then we have:

(i) limn→∞ CL[Hn < T ] = 0 for all T ∈ R+,

(ii) EL[HD] < ∞,
(iii) limT →∞ supx∈D CL[HDx > T ] = 0,
(iv) limn→∞ supx∈D CL[Hn < HDx ] = 0.

3. Fully nonlinear elliptic PPDEs.

3.1. Definition of viscosity solutions of uniformly elliptic PPDEs. Let Q ∈ R
and consider Q (:= {ω ∈ �e : ωt ∈ Q for all t ≥ 0}) as the domain of Dirichlet
problem of the PPDE:

Lu(ω) := −G
(
ω,u, ∂ωu, ∂2

ωωu
) = 0 for ω ∈ Q,

(3.1)
u = ξ on ∂Q,

with nonlinearity G and boundary condition by ξ .

ASSUMPTION 3.1. The nonlinearity G : � ×R×Rd × Sd →R satisfies:

(i) |G(·,0,0,0)| ≤ C0;
(ii) G is uniformly elliptic, that is, there exists L0 > 0 such that for all (ω, y, z)

G(ω,y, z, γ1) − G(ω,y, z, γ2) ≥ 1

L0
Id : (γ1 − γ2) for all γ1 ≥ γ2.

(iii) G is uniformly continuous on �e with respect to de(·, ·), and is uniformly
Lipschitz continuous in (y, z, γ ) with a Lipschitz constant L0;
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(iv) G is uniformly decreasing in y, that is, there exists a function λ : R → R

strictly increasing and continuous, λ(0) = 0, and

G(ω,y1, z, γ ) − G(ω,y2, z, γ ) ≥ λ(y2 − y1),

for all y2 ≥ y1, (ω, z, γ ) ∈ �e ×Rd × Sd .

For any time-invariant function u on �e and ω ∈ Q, we define the set of test
functions:

APu(ω) := {
ϕ : ϕ ∈ C2(Oε) and

(
ϕ − uω)

0 = SP
0

[(
ϕ − uω)

Hε∧·
]

for some ε > 0
}
,

AP
u(ω) := {

ϕ : ϕ ∈ C2(Oε) and
(
ϕ − uω)

0 = SP
0

[(
ϕ − uω)

Hε∧·
]

for some ε > 0
}
,

with Hε := HOε ∧ ε.

We call Hε a localization of test function ϕ. In particular, we denote AL := APL

,
AL := APL

, as we choose PL as the family of probabilities. Now, we define the
viscosity solutions to the elliptic PPDE (3.1).

DEFINITION 3.2. Let {ut }t∈R+ be a time-invariant progressively measurable
process.

(i) u is a P-viscosity subsolution (resp., supersolution) of PPDE (3.1), if we

have for all ω ∈ Q and ϕ ∈APu(ω) [resp., ϕ ∈ AP
u(ω)]:

−G
(
ω,u(ω), ∂ωϕ0, ∂

2
ωωϕ0

) ≤ (resp. ≥)0.

(ii) u is a P-viscosity solution of PPDE (3.1), if u is both a P-viscosity subso-
lution and a P-viscosity supersolution of PPDE (3.1).

By very similar arguments as in the proof of Theorem 3.16 and Theorem 5.1 in
[10], we may easily prove the following.

THEOREM 3.3 (Consistency with classical solution). Let Assumption 3.1 hold
true and L > 0. Given a function u ∈ C2(Q), then u is a PL-viscosity supersolu-
tion (resp., subsolution, solution) to PPDE (3.1) if and only if u is a classical
supersolution (resp., subsolution, solution).

THEOREM 3.4 (Stability). Let L > 0, G satisfy Assumption 3.1, and u ∈
BUC(Q). Assume that:

(i) for any ε > 0, there exist Gε and uε ∈ BUC(Q) such that Gε satisfies As-
sumption 3.1 and uε is a PL-viscosity subsolution (resp., supersolution) of PPDE
(3.1) with generator Gε;
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(ii) as ε → 0, (Gε,uε) converge to (G,u) locally uniformly in the following
sense: for any (ω, y, z, γ ) ∈ �e ×R×Rd × Sd , there exits δ > 0 such that

lim
ε→0

sup
(ω̃,ỹ,z̃,γ̃ )∈Oδ(ω,y,z,γ )

[∣∣(Gε − G
)ω

(ω̃, ỹ, z̃, γ̃ )
∣∣ + ∣∣(uε − u

)ω
(ω̃)

∣∣] = 0,

where we abuse the notation Oδ to denote the δ-ball in the corresponding space.
Then u is a PL-viscosity solution (resp., supersolution) of PPDE (3.1) with

generator G.

3.2. Equivalent definition by semijets. Following the standard theory of vis-
cosity solutions for PDEs, we may also define viscosity solutions via semijets.
Similar to [24] and [23], we introduce the notion of semijets in the context of
PPDE. First, denote functions:

ψα,β(ω) = α · ωt̄(ω) + 1
2β : ωt̄(ω)ω

ᵀ
t̄ (ω)

.

We next define the sub and superjets:

J Lu(ω) := {
(α,β) : ψα,β ∈ALu(ω)

}
and

J L
u(ω) := {

(α,β) : ψα,β ∈AL
u(ω)

}
.

PROPOSITION 3.5. Let u ∈ BUC(Q). Then u is an PL-viscosity subsolution
(resp., supersolution) of PPDE (3.1), if and only if for any ω ∈Q,

−G
(
ω,u(ω),α,β

) ≤ (resp. ≥)0 for all (α,β) ∈ J Lu(ω)
(
resp. J L

u(ω)
)
.

PROOF. The “only if” part is trivial by the definitions. It remains to prove the
“if” part. We only show the result for PL-viscosity subsolutions, while the result
for the supersolution can be proved similarly. Let ϕ ∈ ALu(ω) and Hδ(:= HOδ ∧ δ)

be the corresponding localization. Without loss of generality, we may assume that
ω = 0 (i.e., ωt = 0 for all t ∈ R+) and ϕ0 = u0. Define

α := ∂ωϕ0 and β := ∂2
ωωϕ0.

Let ε > 0. Since the processes ∂ωϕ and ∂2
ωωϕ are both continuous, there exists

δ′ ≤ δ such that

|∂ωϕt − α| ≤ ε and |∂2
ωωϕt − β| ≤ ε, for t ≤ HOδ′ .

Denote βε := β + (1 + 2L)ε. Then, for all τ ∈ T such that τ ≤ Hδ′ , we have

u0 − EL[(
ψα,βε − u

)
τ

] = EL[(
u − u0 − ψα,βε

)
τ

]
≤ EL[

(u − ϕ)τ
] + EL[(

ϕ − ϕ0 − ψα,βε
)
τ

]
≤ EL

[∫ τ

0
(∂ωϕs − α)dBs + 1

2

∫ τ

0

(
∂2
ωωϕs − βε

)
ds

]
≤ EL

[∫ τ

0

(
L|∂ωϕs − α| + 1

2

(
∂2
ωωϕs − βε

))
ds

]
≤ 0,
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where we used the fact that ϕ ∈ ALu(0) and the definition of PL in (2.6). Conse-
quently, we obtain (α,βε) ∈ J Lu(0), and thus

−G
(
0, u(0), α,βε

) ≤ 0.

Finally, thanks to the continuity of G, we obtain the desired result by sending
ε → 0. �

4. Main results. Following Ekren, Touzi and Zhang [11], we introduce the
path-frozen PDEs:

(E)ωε Lωv := −G
(
ω,v, ∂xv, ∂2

xxv
) = 0 on Oε(ω) := Oε ∩ Qω,

(4.1)
with Qω := Qωt̄(ω) .

[Recall the notation in (2.7).] Note that ω is a parameter rather than a variable in
the above PDE. Similar to [11], our well-posedness result relies on the following
condition on the PDE (E)ωε .

ASSUMPTION 4.1. For ε > 0, ω ∈ Q and h ∈ C(∂Oε(ω)), we have v = v,
where

v(x) := inf
{
w(x) : w ∈ C2

0
(
Oε(ω)

)
,Lωw ≥ 0 on Oε(ω),w ≥ h on ∂Oε(ω)

}
,

v(x) := sup
{
w(x) : w ∈ C2

0
(
Oε(ω)

)
,Lωw ≤ 0 on Oε(ω),w ≤ h on ∂Oε(ω)

}
,

and C2
0(Oε(ω)) := C2(Oε(ω)) ∩ C(cl(Oε(ω))).

In this paper, we call the classical notion of viscosity solution to PDE (see, e.g.,
[5]) as Crandall–Lions (C–L) viscosity solution, in order to distinguish the one to
PPDE.

EXAMPLE 4.2. Assume that g : Sd →R is convex, and that the corresponding
uniformly elliptic PDE

Lw = −g
(
∂2
xxw

) = 0 on O, w = h on ∂O

has a C–L viscosity solution. Then according to Caffareli and Cabre [2] (Theo-
rem 6.6 on page 54), the C–L viscosity solution has the interior C2-regularity. In
particular, this equation satisfies Assumption 4.1.

The rest of the paper is devoted to prove the following two main results.

THEOREM 4.3 (Comparison result). Let Assumptions 3.1 and 4.1 hold true,
and u, v ∈ BUC(Q) be a PL-viscosity sub and supersolution to the PPDE (3.1)
for some L > 0, respectively. If u ≤ v on ∂Q, then we have u ≤ v on Q.

THEOREM 4.4 (Well-posedness). Let Assumptions 3.1 and 4.1 hold true,
and ξ ∈ BUC(∂Q). Then the PPDE (3.1) has a unique PL-viscosity solution in
BUC(Q) for L ≥ L0.
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5. Comparison result.

5.1. Partial comparison. Similar to [11], we introduce the class of piecewise
smooth processes in our time-invariant context.

DEFINITION 5.1. Let u : Q →R. We say u ∈ C
2
(Q), if u is bounded, process

{ut }t∈R+ is continuous in t , and there exists an increasing sequence of F-stopping
times {Hn}n≥0 (H0 = 0) such that:

(i) for each i ≥ 0 and ω ∈ Q, �Hi,ω := H
Hi ,ω
i+1 − Hi (ω) is a stopping time

in H whenever Hi (ω) < HQ(ω) < ∞, that is, there is a set Oi,ω ∈ R such that
�Hi,ω(ω′) = inf{t : ω′

t /∈ Oi,ω};
(ii) for each i ≥ 0 and ω ∈ Q, we have

uωHi∧· ∈ BUC(Oi,ω) ∩ C2(Oi,ω);
(iii) {i : Hi (ω) < HQ(ω)} is finite P∞-q.s. and limi→∞ CL

0 [Hω
i < Hω

Q] = 0 for
all ω ∈ Q and L > 0.

The rest of the subsection is devoted to the proof of the following partial com-
parison result.

PROPOSITION 5.2. Let Assumption 3.1 hold true. Let u ∈ C
2
(Q), v ∈

BUC(Q) be a PL-viscosity sub and supersolution of PPDE (3.1) for some L > 0,
respectively. If u ≤ v on ∂Q, then u ≤ v in cl(Q). A similar result holds if we
exchange the roles of u and v.

In preparation to the proof of Proposition 5.2, we prove the following lemma.

LEMMA 5.3. Let T > 0, D ∈ R and X ∈ BUC(D) and nonnegative. Denote

H := HD ∧ T . Assume that X0 > EL[XH], then there exist ω∗ ∈ D and t∗ := t̄ (ω∗)
such that

X
(
ω∗) = SL

t∗[XH∧·](ω∗)
and X

(
ω∗)

> 0.

PROOF. Denote Y as the Snell envelop of XH∧·, that is, Yt := SL

t [XH∧·]. By
Lemma 2.10, the stopping time τ ∗ := inf{t : Xt = Yt } defines an optimal stopping
rule. So, we have

EL[Xτ∗] = Y0 ≥ X0 > EL[XH].
Hence, {τ ∗ < H} �= φ. Suppose that Xτ∗ = 0 on {τ ∗ < H}. Then

0 = Xτ∗1{τ∗<H}(ω) = Yτ∗1{τ∗<H}(ω) ≥ EL[
(XH)τ

∗(ω),ω]
1{τ∗<H}(ω) ≥ 0.
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The last inequality is due to the fact X ≥ 0. Therefore, XH1{τ∗<H} = 0. It follows
that Xτ∗ = XH on {τ ∗ < H}. Thus, we conclude that

X0 ≤ Y0 = EL[Xτ∗] = EL[XH] < X0.

This contradiction implies that {τ ∗ < H,Xτ∗ > 0} �= φ. Finally, take ω ∈ {τ ∗ <

H,Xτ∗ > 0}, and then ω∗ := ωτ∗(ω)∧· is a path satisfying the requirements. �

PROOF OF PROPOSITION 5.2. Recall the notation Hi , �Hi,ω and Oi,ω in Def-
inition 5.1. We divide the proof in two steps.

Step 1. We first show that

(u − v)+Hi
(ω) ≤ EL[(

uHi ,ω − vHi ,ω
)+
�Hi,ω

]
= EL[(

(uHi+1 − vHi+1)
+)Hi ,ω

]
for all i ≥ 0,ω ∈ Q.

Without loss of generality, we set i = 0. Assume the contrary, that is,

(u − v)+(0) − EL[
(u − v)+H1

]
> 0.

Denote X := (u−v)+. Since limT →∞ CL[H1 ≥ T ] = 0 (Proposition 2.11) and u, v

are both bounded, there exists T > 0 such that

X0 − EL[XH] > 0 with H := H1 ∧ T .

Then, by Lemma 5.3, there exists ω∗ ∈ O0,0 and t∗ := t̄ (ω∗) such that

(5.1) X
(
ω∗) = SL

t∗[XH∧·](ω∗)
and X

(
ω∗)

> 0.

Since u ∈ C
2
(Q), in particular u ∈ C2(O0,0), we have ϕ := uω∗ ∈ C2(Oω∗

0,0) (recall
that for a set D ∈ R and ω ∈ �e, we define Dω := Dωt̄(ω) and correspondingly we

have the definition of Dω). Together with (5.1), we get ϕ ∈ AL
v(ω∗). By the PL-

viscosity supersolution property of v and Assumption 3.1, this implies that

0 ≤ −G
(·, v, ∂ωϕ0, ∂

2
ωωϕ0

)(
ω∗) ≤ −G

(·, u, ∂ωu, ∂2
ωωu

)(
ω∗) − λ

(
X

(
ω∗))

< −G
(·, u, ∂ωu, ∂2

ωωu
)(

ω∗)
.

This is in contradiction with the classical subsolution property of u.

Step 2. By the result of Step 1 and the tower property of EL
stated in

Lemma 2.9, we have

EL[
(u − v)+Hi

] ≤ EL[
(u − v)+Hi+1

]
for all i ≥ 0.

It follows by induction that

(u − v)+(0) ≤ EL[
(u − v)+Hi

]
for all i ≥ 1.
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Then we obtain

(u − v)+(0) ≤ EL[
(u − v)+HQ

] + EL[
(u − v)+Hi

− (u − v)+HQ

]
.

By Proposition 2.11, we have limi→∞ CL[Hi < HQ] = 0. Since u, v are both
bounded, we have

(u − v)+(0) ≤ EL[
(u − v)+HQ

] = 0. �

5.2. The Perron type construction. Define the following two functions:

(5.2) u(ω) := inf
{
ψ(ω) : ψ ∈ Dξ

Q(ω)
}
, u(ω) := sup

{
ψ(ω) : ψ ∈ Dξ

Q(ω)
}
,

where

Dξ

Q(ω) := {
ψ ∈ C

2(
Qω) : Lωψ ≥ 0 on Q,ψ ≥ ξω on ∂Q

}
,

Dξ
Q(ω) := {

ψ ∈ C
2(
Qω) : Lωψ ≤ 0 on Q,ψ ≤ ξω on ∂Q

}
.

As a direct corollary of Proposition 5.2, we have the following.

COROLLARY 5.4. Let L > 0 be constant. Under Assumption 3.1, for all PL-
viscosity supersolutions (resp., subsolution) u ∈ BUC(Q) such that u ≥ ξ (resp.,
u ≤ ξ ) on ∂Q, we have u ≥ u (resp., u ≤ u) on Q.

In order to prove the comparison result of Theorem 4.3, it remains to show the
following result.

PROPOSITION 5.5. Let ξ ∈ BUC(∂Q). Under Assumptions 3.1 and 4.1, we
have u = u.

The proof of this proposition is reported in Section 5.4, and requires the prepa-
rations in Section 5.3.

5.3. Preliminary: HJB equations. In this subsection, we recall the relation be-
tween HJB equations and stochastic control problems. Recall the constants L0 and
C0 in Assumption 3.1 and consider two functions:

(5.3)

g(y, z, γ ) := C0 + L0|z| + L0y
− + sup

β∈[√2/L0Id ,
√

2L0Id ]
1

2
β2 : γ,

g(y, z, γ ) := −C0 − L0|z| − L0y
+ + inf

β∈[√2/L0Id ,
√

2L0Id ]
1

2
β2 : γ.

Then for all nonlinearities G satisfying Assumption 3.1, it holds g ≤ G ≤ g. Con-
sider the HJB equations

Lu := −g
(
u, ∂xu, ∂2

xxu
) = 0 and Lu := −g

(
u, ∂xu, ∂2

xxu
) = 0.
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In the next lemma, we will show that the solutions to the PDEs above with the
boundary condition hD have the stochastic representations

(5.4)
w(x) := sup

b∈H0([0,L0])
EL0

[
hD(BHx

D
)e− ∫ Hx

D
0 br dr + C0

∫ Hx
D

0
e− ∫ t

0 br dr dt

]
,

w(x) := inf
b∈H0([0,L0])

EL0

[
hD(BHx

D
)e− ∫ Hx

D
0 br dr + C0

∫ Hx
D

0
e− ∫ t

0 br dr dt

]
,

where we use the new notation

Hx
D := HDx

so as to shorten the formulas.

LEMMA 5.6. Let hD(x) := EL0[v(Hx
D,BHx

D∧·)] for some v ∈ BUC(R+ ×�e).
Then w and w are the unique C–L viscosity solutions in BUC(cl(D)) to the
equations Lu = 0 and Lu = 0, respectively, with the boundary condition u = hD

on ∂D.

PROOF. We claim and will prove in Proposition A.1 in the Appendix that there
exists a modulus of continuity ρ such that

(5.5) EL0[∣∣Hx1
D − H

x2
D

∣∣] ≤ ρ
(|x1 − x2|).

Since v ∈ BUC(R+ × �e), we obtain that∣∣hD(x1) − hD(x2)
∣∣ ≤ EL0[∣∣v(

H
x1
D ,B

H
x1
D ∧·

) − v
(
H

x2
D ,B

H
x2
D ∧·

)∣∣]
(5.6)

≤ ρ
(
EL0[∣∣Hx1

D − H
x2
D

∣∣] + EL0[‖B
H

x1
D ∧· − B

H
x2
D ∧·‖∞

])
,

where we used the concavity of ρ (recall Remark 2.2) and the Jensen’s inequality.
Recall the definition of PL (each P ∈ PL corresponds to a measure Qα,β in an
extended probability space). We have

EP[‖B
H

x1
D ∧· − B

H
x2
D ∧·‖∞

] ≤ EQα,β
[∥∥∥∥∫ H

x1
D ∧·

0
αt dt −

∫ H
x2
D ∧·

0
αt dt

∥∥∥∥∞

]
+EQα,β [‖M

H
x1
D ∧· − M

H
x2
D ∧·‖2∞

] 1
2

(5.7)
≤ L0E

L0[∣∣Hx1
D − H

x2
D

∣∣] + (
2L0E

L0[∣∣Hx1
D − H

x2
D

∣∣]) 1
2 ,

for all P ∈ PL0 .

In view of (5.5), we conclude that hD ∈ BUC(Rd). Further, since hD is bounded
and the control processes b in (5.4) only takes nonnegative values, it follows that
for x1, x2 ∈ D,∣∣w(x1) − w(x2)

∣∣ ≤ EL0[∣∣hD(B
H

x1
D

) − hD(B
H

x2
D

)
∣∣] + CEL0[∣∣Hx1

D − H
x2
D

∣∣].
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Since hD ∈ BUC(Rd), by the same arguments in (5.6) and (5.7), we conclude that
w ∈ BUC(cl(D)). Then, by a verification argument, one can easily show that w is
the unique C–L viscosity solution to Lu = 0 with the boundary condition hD on
∂D. Similarly, we may prove the corresponding result for w. �

5.4. Proof of u = u. Recall the two functions u,u defined in (5.2). In the next
lemma, we will use the path-frozen PDEs to construct the functions θε

n , which will
be needed to construct the approximations of u and u defined in (5.2). Recall the
notation of linear interpolation in (2.4). Then:

• let (x1, x2, . . . , xn) ∈ (Oε)
n, xi := ∑i

j=1 xj and then denote

(5.8) πn := Lin
{
(0,0), (1,x1), . . . , (n,xn)

}
(in particular, note that πn ∈ �e);

• denote πx
n := Lin{πn, (n + 1,xn + x)} for all x ∈ Oε (clearly, we have

πx
n ∈ �e), where we slightly abuse the notation: Lin{πn, (n + 1,xn + x)} =

Lin{(0,0), (1,x1), . . . , (n,xn), (n + 1,xn + x)};
• define a sequence of stopping times: Hx

0 := 0,

Hx
1 := inf{t ≥ 0 : x + Bt /∈ Oε},

Hx
i+1 := inf

{
t ≥ Hx

i : Bt − BHx
i

/∈ Oε

}
for i ≥ 1, and(5.9)

H
ω,πn,x
i := Hx

i ∧ H
Qω ⊗̄πx

n

[recall that Qω is defined in (4.1)];
• given ω ∈ �, we define

πm
n (x,ω) := Lin

{
πn, (n + 1,xn + x + ωHx

1
), . . . , (n + m,xn + x + ωHx

m
)
}

for all m ≥ 1.

The following lemma plays an essential role in our arguments.

LEMMA 5.7. Let Assumption 3.1 hold, and assume that |ξ | ≤ C0. Let ω ∈ Q,
|xi | = ε for all i ≥ 1, πn be defined as in (5.8), and ω ⊗̄πx

n ∈Q. Then:

(i) there exist continuous functions (πn, x) �→ θω,ε
n (πn, x), bounded uniformly

in (ε, n), such that

θω,ε
n (πn; ·) is a C–L viscosity solution of (E)ω ⊗̄πn

ε ,

with boundary conditions{
θω,ε
n (πn;x) = ξ

(
ω ⊗̄πx

n

)
, |x| < ε and x ∈ ∂Qω ⊗̄πn,

θω,ε
n (πn;x) = θ

ω,ε
n+1

(
πx

n ;0
)
, |x| = ε and x ∈ Qω ⊗̄πn;
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(ii) moreover, there is a modulus of continuity ρ and a constant Cε > 0 such
that for any ω1,ω2 ∈ Q

(5.10)
∣∣θω1,ε

0 (0;0) − θ
ω2,ε
0 (0;0)

∣∣ ≤ ε + ρ(2ε) + Cερ
(
de(ω1,ω2))

.

REMARK 5.8. For the domain Oε(ω) defined in (4.1), a part of its boundary
belongs to ∂Qω, while the rest belongs to ∂Oε . On ∂Qω ∩ ∂Oε(ω), we should
set the solution to be equal to the boundary condition of the PPDE. Otherwise,
on ∂Oε ∩ ∂Oε(ω), the value of the solution should be consistent with that of the
next piece of the path-frozen PDEs. The proof of Lemma 5.7 is similar to that of
Lemma 6.2 in [11]. However, the stochastic representations and the estimates that
we will use are all in the context of the elliptic equations. So it is necessary to
present the proof in detail.

In preparation of the proof of Lemma 5.7, we give the following estimate on
the C–L viscosity solutions to the path-frozen PDEs. The proof is reported in the
Appendix.

LEMMA 5.9. Fix D ∈ R. Let hi : ∂D →R be continuous (i = 1,2), G satisfy
Assumption 3.1, and vi be the C–L viscosity solutions to the following PDEs:

G
(
ωi, vi, ∂xv

i, ∂2
xxv

i) = 0 on D, vi = hi on ∂D.

Then we have(
v1 − v2)

(x) ≤ EL0[(
h1 − h2)+

(x + BHx
D
)
] + Cρ

(
de(ω1,ω2))

,

where ρ is a modulus of continuity in ω of the function G. In particular, if ω1 = ω2,
then we have (

v1 − v2)
(x) ≤ EL0[(

h1 − h2)+
(x + BHx

D
)
]
.

PROOF OF LEMMA 5.7. Since ε is fixed, to simplify the notation, we omit ε

in the superscript in the proof. We divide the proof in five steps.

Step 1. We first prove (i) in the case of G := g, where g is defined in (5.3). For
any N , denote

θ
ω
N,N(πN ;0) := EL0[

(ξHQ
)ω ⊗̄πN

]
.

We define θ
ω
N,n(πn; ·) as the C–L viscosity solution of the following PDE:

−g
(
θ, ∂xθ, ∂2

xxθ
) = 0 on Oε(ω ⊗̄πn),

(5.11)
θ(x) = θ

ω
N,n+1

(
πx

n ;0
)

on ∂Oε(ω ⊗̄πn) for all n ≤ N − 1.
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In order to shorten the formulas below, we denote the path

�N

(
ω,πx

n ,B
) := ω ⊗̄πNω−n

n (x,B) ⊗̄ (BH
Qω ⊗̄πx

n
∧·)Hx

Nω−n

with Nω := max
{
n ≤ i ≤ N : Hx

i−n < H
Qω ⊗̄πx

n

}
.

By Lemma 5.6 and simple induction, we have the stochastic representation of
θ

ω
N,n(πn; ·):

θ
ω
N,n(πn;x) = sup

b∈H0([0,L0])
EL0

[
e− ∫ H

ω,πn,x
N−n

0 br drξ
(
�N

(
ω,πx

n ,B
))

+ C0

∫ H
ω,πn.x
N−n

0
e− ∫ s

0 br dr ds

]
for n ≤ N − 1.

Lemma 5.6 also implies that

(5.12) θ
ε
N,n(πn;x) is continuous in both variables (πn, x),

and clearly, they are uniformly bounded. We next define

θ
ω
n (πn;x) := sup

b∈H0([0,L0])
EL0

[
e− ∫ H

Qω ⊗̄πx
n

0 br dr lim
N→∞ ξ

(
�N

(
ω,πx

n ,B
))

+ C0

∫ H
Qω ⊗̄πx

n

0
e− ∫ s

0 br dr ds

]
.

Then it follows that∣∣θω
n (πn;x) − θ

ω
N,n(πn;x)

∣∣ ≤ CCL0
[
Hx

N−n < H
Qω ⊗̄πx

n

] → 0, N → ∞.

By Proposition 2.11, the convergence is uniform in (πn, x). Together with (5.12),
it implies that θ

ω
n (πn;x) is uniformly bounded and continuous in (πn, x). More-

over, by the stability of C–L viscosity solutions we see that θ
ω
n (πn; ·) is the C–L

viscosity solution of PDE (5.11) in Oε(ω ⊗̄πn), with the boundary condition{
θ̄ω
n (πn;x) = ξ

(
ω ⊗̄πx

n

)
, |x| < ε and x ∈ ∂Qω ⊗̄πn,

θ̄ω
n (πn;x) = θ̄ω

n+1
(
πx

n ;0
)
, |x| = ε and x ∈ Qω ⊗̄πn.

Hence, we have showed the desired result in the case G = g. Similarly, we may
show that θω

n defined below is the C–L viscosity solution to the path-frozen PDE
when the nonlinearity is g:

θω
n (πn;x) := inf

b∈H0([0,L0])
EL0

[
e− ∫ H

Qω ⊗̄πx
n

0 br dr lim
N→∞ ξ

(
�N

(
ω,πx

n ,B
))

+ C0

∫ H
Qω ⊗̄πx

n

0
e− ∫ s

0 br dr ds

]
.
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Step 2. We next prove (ii) in the case of G = g. Considering πx
n ∈ Qω1 ∩Qω2

,
we have the following estimate:∣∣θω1

N,n(πn;x) − θ
ω2

N,n(πn;x)
∣∣

≤ CEL0[∣∣Hω1,πn,x
N−n − H

ω2,πn,x
N−n

∣∣]
+ CEL0[∣∣ξ (

�N

(
ω1, πx

n ,B
)) − ξ

(
�N

(
ω2, πx

n ,B
))∣∣].

We observe that∣∣Hω1,πn,x
N−n − H

ω2,πn,x
N−n

∣∣ ≤ |H
Qω1 ⊗̄πx

n
− H

Qω2 ⊗̄πx
n
|,

de(�N

(
ω1, πx

n ,B
)
,�N

(
ω2, πx

n ,B
))

≤ de(ω1,ω2) + ‖BH
Qω1 ⊗̄πx

n
∧· − BH

Qω2 ⊗̄πx
n

∧·‖∞ + 2ε.

As in Lemma 5.6, one may show that∣∣θω1

N,n − θ
ω2

N,n

∣∣ ≤ ρ
(
de(ω1,ω2) + 2ε

) ≤ ρ
(
de(ω1,ω2)) + ρ(2ε),

in particular, ρ is independent of N and ε. By sending N → ∞, we obtain that∣∣θω1

n − θ
ω2

n

∣∣ ≤ ρ
(
de(ω1,ω2)) + ρ(2ε).

A similar argument provides the same estimate for θω
n :

(5.13)
∣∣θω1

n − θω2

n

∣∣ ≤ ρ
(
de(ω1,ω2)) + ρ(2ε).

Step 3. We now prove (i) for general G. Given the construction of Step 1, we
define

θ
ω,m
m (πm;x) := θ

ω
m(πm;x), θω,m

m (πm;x) := θω
m(πm;x), m ≥ 1.

For n ≤ m − 1, we define θ
ω,m
n and θω,m

n as the unique C–L viscosity solution of
the path-frozen PDE (E)ω ⊗̄πn

ε with the boundary conditions

θ
ω,m
n (πn;x) = θ

ω,m
n+1

(
πx

n ;0
)
,

θω,m
n (πn;x) = θ

ω,m
n+1

(
πx

n ;0
)

for x ∈ ∂Oε(ω ⊗̄πn).

Since g ≤ G ≤ g, it is obvious that θ
ε,m
m and θε,m

m are respectively C–L viscosity

supersolution and subsolution to the path-frozen PDE (E)ω ⊗̄πm
ε . By the compari-

son result for C–L viscosity solutions of PDEs, we obtain that

θ
ω,m
m (πm; ·) ≥ θ

ω,m+1
m (πm; ·) ≥ θω,m+1

m (πm; ·)
≥ θω,m

m (πm; ·) on Oε(ω ⊗̄πm).
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Further, it follows from the comparison again that

θ
ω,m
n (πn; ·) ≥ θ

ω,m+1
n (πn; ·) ≥ θω,m+1

n (πn; ·)
(5.14)

≥ θω,m
n (πn; ·) on Oε(ω ⊗̄πn) for all n ≤ m.

Denote δθω,m
n := θ

ω,m
n − θω,m

n . Applying Lemma 5.9 repeatedly and using the

tower property of EL0 stated in Lemma 2.9, we obtain that∣∣δθω,m
n (πn;x)

∣∣ ≤ EL0[∣∣δθω,m
m

(
πm−n

n (x,B);0
)∣∣1{Hx

m−n<H
Qω ⊗̄πx

n
}
]

[we also used the fact that δθω,m
m (ω′;0) = 0 as ω′ ∈ ∂Qω]. Then, by Proposi-

tion 2.11, we have∣∣δθω,m
n (πn;x)

∣∣ ≤ CCL0
[
Hx

m−n < H
Qω ⊗̄πx

n

] → 0 as m → ∞.

Together with (5.14), this implies the existence of θω
n such that

(5.15) θ
ω,m
n ↓ θω

n , θω,m
n ↑ θω

n as m → ∞.

Clearly, θω
n is uniformly bounded and continuous (because it is both lower and

upper semicontinuous). Finally, it follows from the stability of C–L viscosity so-
lutions that θω

n satisfies the statement of (i).
Step 4. We next prove (ii) for a general nonlinearity G. For the simplicity of

notation, we denote the stopping times

Hi := H
Qωi ⊗̄πx

n
for i = 1,2, H1,2 := H1 ∧ H2.

First, considering θ
ω,m
n defined in Step 3, we claim that for πx

n ∈ Qω1 ∩Qω2

(
θ

ω1,m
n − θω2,m

n

)
(πn;x)

≤ EL0[(
θ

ω1

m − θω2

m

)(
πm−n

n (x,B);0
)
1{Hx

m−n≤H1,2}(5.16)

+ (
ρ

(
de(ω1,ω2)) + ρ(2ε)

)
1{Hx

m−n>H1,2}
] + C(m − n)ρ

(
de(ω1,ω2))

.

This claim will be proved in Step 5. Since θ
ω1

m , θω2

m are both bounded, it follows
from (5.16) that(

θ
ω1,m
n − θω2,m

n

)
(πn;x)

≤ CCL[
Hx

m−n < H1,2] + C(m − n + 1)ρ
(
de(ω1,ω2)) + ρ(2ε).

Recalling (5.15), we obtain that(
θω1

n − θω2

n

)
(πn;x)

≤ CCL[
Hx

m−n < H1,2] + C(m − n + 1)ρ
(
de(ω1,ω2)) + ρ(2ε).
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Since limm→∞ CL[Hx
m−n < H1,2] = 0, there is a constant Cε such that(

θω1

n − θω2

n

)
(πn;x) ≤ ε + Cερ

(
de(ω1,ω2)) + ρ(2ε).

By exchanging the roles of ω1 and ω2, we have∣∣(θω1

n − θω2

n

)
(πn;x)

∣∣ ≤ ε + ρ(2ε) + Cερ
(
de(ω1,ω2))

.

Step 5. We now prove Claim (5.16). Suppose that m ≥ n+1. We first show that(
θ

ω1,m
n − θω2,m

n

)
(πn;x)

≤ EL0[(
θ

ω1,m
n+1 − θ

ω2,m
n+1

)(
π1

n(x,B);0
)
1{Hx

1≤H1,2}(5.17)

+ (
ρ

(
de(ω1,ω2)) + ρ(2ε)

)
1{Hx

1>H1,2}
] + Cρ

(
de(ω1,ω2))

.

Then (5.16) follows from simple induction. Recall that θ
ω1,m
n (resp., θω2,m

n ) is a
solution to the PDE with generator G(ω1, ·) [resp., G(ω2, ·)]. Now we study those
two PDEs on the domain

Oε ∩ Qω1 ∩ Qω2
.

The boundary of this set can be divided into three parts which belong to ∂Oε ,
∂Qω1

and ∂Qω2
, respectively. We denote them by Bd1, Bd2 and Bd3.

(i) On Bd1, we have Hx
1 ≤ H1,2, and thus

θ
ω1,m
n (πn;x) = θ

ω1,m
n+1

(
πx

n ;0
)

and θω2,m
n (πn;x) = θ

ω2,m
n+1

(
πx

n ,0
)
.

(ii) On Bd2, we have H1 < Hx
1 , so we have θ

ω1,m
n (πn;x) = ξ(ω1 ⊗̄πx

n ) =
θω1,n

n (πn;x).

(iii) On Bd3, we have H2 < Hx
1 , so we have θω2,m

n (πn;x) = ξ(ω2 ⊗̄πx
n ) =

θ
ω2,n
n (πn;x).

Then it follows from Lemma 5.9 that(
θ

ω1,m
n − θω2,m

n

)
(πn;x)

≤ EL0[(
θ

ω1,m
n+1 − θ

ω2,m
n+1

)(
π1

n(x,B);0
)
1{Hx

1≤H1,2}

+ (
θω1,n

n (πn;x + BH1) − θω2,m
n (πn;x + BH1)

)
1{H1<Hx

1≤H2}(5.18)

+ (
θ

ω1,m
n (πn;x + BH2) − θ

ω2,n
n (πn;x + BH2)

)
1{H2<Hx

1≤H1}
]

+ Cρ
(
de(ω1,ω2))

.
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We next estimate

� := θω1,n
n (πn;x + BH1) − θω2,m

n (πn;x + BH1).

As in Step 3, the comparison result of C–L viscosity solution implies that

θω2,m
n (πn;x + BH1) ≥ θω2,n

n (πn;x + BH1).

It follows from (5.13) that

� ≤ θω1,n
n (πn;x + BH1) − θω2,n

n (πn;x + BH1) ≤ ρ
(
de(ω1,ω2)) + ρ(2ε).

Similarly, we can obtain the same estimate for θ
ω1,m
n (πn;x +BH2)−θ

ω2,n
n (πn;x +

BH2). Together with (5.18), we obtain (5.17). �

The previous lemma shows the existence of C–L viscosity solution to the path-
frozen PDEs. Further, we will use Assumption 4.1 to construct piecewise smooth
super and subsolutions to the PPDE. Recall the stopping times defined in (5.9),
and denote

θε
n := θ0,ε

n , Hn := H0
n ∧ HQ and π̂n := Lin

{(
Hi (ω),ωHi (ω)

);0 ≤ i ≤ n
}
.

LEMMA 5.10. There exists ψε ∈ C
2
(Q) such that

ψε(0) = θε
0 (0) + ε, ψε ≥ ξ on ∂Q,

−G
(
π̂n,ψ

ε(ω), ∂ωψε(ω), ∂2
ωωψε(ω)

) ≥ 0 when Hn(ω) ≤ t̄ (ω) < Hn+1(ω),

for all n ∈ N,

where ∂ωψε, ∂2
ωωψε are the derivatives of ϕε on the corresponding intervals.

PROOF. For simplicity, in the proof, we omit the superscript ε. First, since
PDE (E)0

ε satisfies Assumption 4.1 and G(ω,y, z, γ ) is decreasing in y, there
exists a function v0 ∈ C2

0(Oε(0)) such that

v0(0) = θ0(0) + ε

2
, L0v0 ≥ 0 on Oε(0) and v0 ≥ θ0 on ∂Oε(0).

Denote v0(0; ·) := v0(·). Similarly, applying Assumption 4.1 to PDE (E)π̂n
ε (n ≥

1), we can find a function vn(π̂n; ·) ∈ C2
0(Oε(π̂n)) such that

vn(π̂n;0) = vn−1(π̂n−1;ωHn(ω) − ωHn−1(ω)) + 2−n−1ε,

Lπ̂nvn(π̂n; ·) ≥ 0 on Oε(π̂n), vn(π̂n; ·) ≥ θn(π̂n; ·) on ∂Oε(π̂n).

We now give the definition of the required function ψ : Q →R:

ψ(ω) :=
∞∑

n=0

(
vn(π̂n;ωt̄(ω) − ωHn(ω)) + ε − 2−n−1ε

)
1{Hn(ω)≤t̄ (ω)<Hn+1(ω)}.
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Clearly, we have ψ ∈ C
2
(Q). Consider a path ω such that Hn(ω) ≤ t̄ (ω) <

Hn+1(ω). Since ψ(ω) ≥ vn(π̂n;ωt̄(ω) − ωHn(ω)), it follows from the monotonic-
ity of G

−G
(
π̂n,ψ(ω), ∂ωψ(ω), ∂2

ωωψ(ω)
) ≥ Lπ̂nvn(π̂n;ωt̄(ω) − ωHn(ω)) ≥ 0.

Finally, we may easily check that ψ(0) − θ0(0) = ε
2 + ε

2 = ε, and that ψ ≥ ξ on
∂Q. �

Now we have done all the necessary constructions and are ready to show the
main result of the section.

PROOF OF PROPOSITION 5.5. For any ε > 0, let ψε be as in Lemma 5.10, and
ψ

ε := ψε + ρ(2ε) + λ−1(ρ(2ε)), where ρ is the common modulus of continuity
of ξ and G, and λ−1 is the inverse of the function in Assumption 3.1. Then clearly

ψ
ε ∈ C

2
(Q) and bounded. Also,

ψ
ε
(ω) − ξ(ω) ≥ ψε(ω) + ρ(2ε) − ξ(ω) ≥ ξ

(
ωε) − ξ(ω) + ρ(2ε) ≥ 0 on ∂Q.

Moreover, when t̄ (ω) ∈ [Hn(ω),Hn+1(ω)), we have that

Lψ
ε
(ω) = −G

(
ω,ψ

ε
, ∂ωψε, ∂2

ωωψε)
≥ −G

(
π̂n,ψ

ε + λ−1(
ρ(2ε)

)
, ∂ωψε, ∂2

ωωψε) − ρ(2ε)

≥ −G
(
π̂n,ψ

ε, ∂ωψε, ∂2
ωωψε) ≥ 0.

Then by the definition of u we see that

u(0) ≤ ψ
ε
(0) = ψε + ρ(2ε) + λ−1(

ρ(2ε)
)

(5.19)
≤ θε

0 (0) + ε + ρ(2ε) + λ−1(
ρ(2ε)

)
.

Similarly, u(0) ≥ θε
0 (0) − ε − ρ(2ε) − λ−1(ρ(2ε)). That implies that

u(0) − u(0) ≤ 2ε + 2ρ(2ε) + 2λ−1(
ρ(2ε)

)
.

Since ε is arbitrary, this shows that u(0) = u(0). Similarly, we can show that
u(ω) = u(ω) for all ω ∈ Q. �

6. Existence. In this section, we verify that

(6.1) u := u = u

is the unique PL-viscosity solution in BUC(Q) to the PPDE (3.1) for L ≥ L0. We
will prove that u ∈ BUC(Q) in Section 6.1 and u satisfies the viscosity property in
Section 6.2.
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6.1. Regularity. The noncontinuity of the hitting time HQ(·) brings difficulty
to the proof of the regularity of u. One cannot adapt the method used in [11]. In our
approach, we make use of the estimate (5.10) for the solution of the path-frozen
PDEs.

PROPOSITION 6.1. Let Assumption 3.1 hold and ξ ∈ BUC(∂Q). Then u is
bounded from above and u is bounded from below.

PROOF. Assume that |ξ | ≤ C0. Define

ψ := λ−1(C0) + C0.

Obviously, ψ ∈ C
2
. Observe that ψT ≥ C0 ≥ ξ . Also,

Lωψs = −Gω(·,ψs,0,0) ≥ C0 − Gω(·,0,0,0) ≥ 0.

It follows that ψ ∈ Dξ

Q(ω), and thus u(ω) ≤ ψ(0) = λ−1(C0)+C0. Similarly, one
can show that u(ω) ≥ −λ−1(C0) − C0. �

PROPOSITION 6.2. The function u defined in (6.1) is uniformly continuous
in Q.

PROOF. Recall (5.19), that is, for ω1,ω2 ∈Q, it holds that

u
(
ω1) ≤ θω1

0 (0) + ε + ρ(2ε) and u
(
ω2) ≥ θω2

0 (0) − ε − ρ(2ε).

Hence, it follows from Lemma 5.7 that

u
(
ω1) − u

(
ω2) = u

(
ω1) − u

(
ω2)

≤ θω1

0 (0) − θω2

0 (0) + 2
(
ε + ρ(2ε)

)
≤ Cερ

(
de(ω1,ω2)) + 3

(
ε + ρ(2ε)

)
for all ε > 0.

By exchanging the roles of ω1 and ω2, we obtain |u(ω1) − u(ω2)| ≤ Cερ(de(ω1,

ω2))+3(ε+ρ(2ε)), from which the uniform continuity of u can be easily deduced.
�

6.2. Viscosity property. After having shown that u is uniformly continuous,
we need to verify that it indeed satisfies the viscosity property. The following proof
is similar to that of Proposition 4.3 in [11].

PROPOSITION 6.3. The function u defined in (6.1) is a PL-viscosity solution
to PPDE (3.1) for L ≥ L0.
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PROOF. We only prove that u is a PL-viscosity supersolution. The subsolution
property can be proved similarly. Without loss of generality, we only show the
PL0 -viscosity supersolution property at the point 0. Assume the contrary, that is,

there exists ϕ ∈ AL0
u(0) such that −c := Lϕ(0) < 0. For any ψ ∈ Dξ

Q(0) and

ω ∈ Q, it is clear that ψω ∈ Dξ

Q(ω) and ψ(ω) ≥ u(ω). Now by the definition of u,

there exists ψn ∈ C
2
(Q) such that

(6.2) δn := ψn(0) − u(0) ↓ 0 as n → ∞, Lψn(ω) ≥ 0, ω ∈ Q.

Let Hε := ε ∧ HOε be a localization of test function ϕ. Since ϕ ∈ C2(Oε) and
u ∈ BUC(Q), without loss of generality we may assume that

(6.3) Lϕ(ωt∧·) ≤ −c

2
and |ϕt − ϕ0| + |ut − u0| ≤ c

6L0
for all t ≤ HOε .

Since ϕ ∈AL0
u(0), this implies for all P ∈ PL0 that

(6.4) 0 ≥ EP[
(ϕ − u)Hε

] ≥ EP[(
ϕ − ψn)

Hε

]
.

Denote GPφ := αP · ∂ωφ + 1
2(βP)2 : ∂2

ωωφ. Then, since ϕ ∈ C2(Oε) and ψn ∈
C

2
(Q), it follows from (6.2) that

δn ≥ EP[(
ϕ − ψn)

Hε
− (

ϕ − ψn)
0

]
= EP

[∫ Hε

0
GP

(
ϕ − ψn)

(Bs∧·) ds

]
≥ EP

[∫ Hε

0

(
c

2
− G

(·, ϕ, ∂ωϕ, ∂2
ωωϕ

) + G
(·,ψn, ∂ωψn, ∂2

ωωψn)
+ GP(

ϕ − ψn))
(Bs∧·) ds

]
≥ EP

[∫ Hε

0

(
c

2
− G

(·, ϕ, ∂ωϕ, ∂2
ωωϕ

) + G
(·, u, ∂ωψn, ∂2

ωωψn)
+ GP(

ϕ − ψn))
(Bs∧·) ds

]
,

where the last inequality is due to the monotonicity in y of G. Since ϕ0 = u0 and
G is L0-Lipschitz continuous in y, it follows from (6.3) that

δn ≥ EP

[∫ Hε

0

(
c

3
− G

(·, u0, ∂ωϕ, ∂2
ωωϕ

)
+ G

(·, u0, ∂ωψn, ∂2
ωωψn) + GP

(
ϕ − ψn))

(Bs∧·) ds

]
.
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We next let η > 0, and for each n, define τn
0 := 0 and

τn
j+1(ω) : = Hε(ω) ∧ inf

{
t ≥ τn

j : ρ(
de(ωt∧·,ωτn

j ∧·)
) + ∣∣∂ωϕ(ωt∧·) − ∂ωϕ(ωτn

j ∧·)
∣∣

+ ∣∣∂2
ωωϕ(ωt∧·) − ∂2

ωωϕ(ωτn
j ∧·)

∣∣ + ∣∣∂ωψn(ωt∧·) − ∂ωψn(ωτn
j ∧·)

∣∣
+ ∣∣∂2

ωωψn(ωt∧·) − ∂2
ωωψn(ωτn

j ∧·)
∣∣ ≥ η

}
,

where ρ is a modulus of continuity in ω of G. Since ϕ ∈ C2(Oε) and ψn ∈ C
2
(Q),

one can easily check that τn
j ↑ Hε , PL0 -q.s. as j → ∞. Thus,

δn ≥
(

c

3
− Cη

)
EP[Hε] + ∑

j≥0

EP
(
τn
j − τn

j+1
)(−G

(·, u0, ∂ωϕ, ∂2
ωωϕ

)
+ G

(·, u0, ∂ωψn, ∂2
ωωψn) + GP

(
ϕ − ψn))

(Bτn
j ∧·)

=
(

c

3
− Cη

)
EP[Hε] + ∑

j≥0

EP
(
τn
j − τn

j+1
)

×
(
αn

j · ∂ω

(
ψn − ϕ

) + 1

2

(
βn

j

)2 : ∂2
ωω

(
ψn − ϕ

) + GP(
ϕ − ψn))

(Bτn
j ∧·),

for some αn
j , βn

j such that |an
j | ≤ L and βn

j ∈ H0
L. Note that αn

j and βn
j are both

Fτn
j

-measurable. Take Pn ∈ PL0 such that α
Pn
t = αn

j , β
Pn
t = βn

j for t ∈ [τn
j , τn

j+1).
Then

δn ≥
(

c

3
− Cη

)
EPn[Hε].

Let η := c
6C

. It follows that EL0[Hε] ≤ EPn[Hε] ≤ 6
c
δn. By letting n → ∞, we get

EL0[Hε] = 0, contradiction. �

7. Path-dependent time-invariant stochastic control. In this section, we
present an application of fully nonlinear elliptic PPDE. An important question
which is most relevant since the recent financial crisis is the risk of model mis-
specification. The uncertain volatility model (see Avellaneda, Levy and Paras [1],
Lyons [15] or Nutz [19]) provides a conservative answer to this problem.

In the present application, the canonical process B represents the price process
of some primitive asset, and our objective is the hedging of the derivative security
defined by the payoff ξ(B·) at some maturity HQ defined as the exiting time from
some domain Q.

In contrast with the standard Black–Scholes modeling, we assume that the prob-
ability space (�,F) is endowed with a family of probability measures PUVM. In
the uncertain volatility model, the quadratic variation of the canonical process is
assumed to lie between two given bounds,

σ 2 dt ≤ d〈B〉t ≤ σ 2 dt, P-a.s. for all P ∈PUVM.
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Then, by the possible frictionless trading of the underlying asset, it is well known
that the nonarbitrage condition is characterized by the existence of an equivalent
martingale measure. Consequently, we take

PUVM :=
{
P ∈ P∞ : B is a continuous P-martingale and

d〈B〉t
dt

∈ [
σ 2, σ 2]

,P-a.s.
}
.

The superhedging problem under model uncertainty was initially formulated by
Denis and Martini [6] and Neufeld and Nutz [18], and involves delicate quasi-sure
analysis. Their main result expresses the cost of robust superhedging as

u0 := EUVM[
e−rHQξ(BHQ∧·)

] := EPUVM[
e−rHQξ(BHQ∧·)

]
,

where r is the discount rate. Further, define u on �e as

(7.1) u(ω) := EUVM[
e−rHQω ξ(ω ⊗̄BHQω∧·)

]
for all ω ∈Q.

We are interested in characterizing u as a viscosity solution of the corresponding
fully nonlinear elliptic PPDE.

ASSUMPTION 7.1. Assume that

ξ ∈ BUC(∂Q), σ > 0, and the discount rate r ≥ 0.

PROPOSITION 7.2. Let L be a constant such that 1
L

≤ σ and L ≥ σ . Under
Assumption 7.1, the function u defined in (7.1) is in BUC(Q) and is a PL-viscosity
solution to the elliptic path-dependent HJB equation

ru − sup
γ∈[σ,σ ]

1
2γ 2∂2

ωωu = 0 on Q, and u = ξ on ∂Q.

LEMMA 7.3. The function u defined in (7.1) is in BUC(Q).

PROOF. As in Lemma 5.6, the required result follows easily from the fact
ξ ∈ BUC(∂Q). �

LEMMA 7.4. We have u0 = EUVM[e−rτ uτ ] [recall that ut(ω) := u(ωt∧·)] for
all τ ≤ HQ.

PROOF. By the definition of u, we have

e−rtu(ωt∧·) = e−rtEUVM[
e−rHQωt∧· ξ(ω ⊗t BHQωt∧· ∧·)

]
= e−rtEUVM[

e−r((HQ)t,ω−t)(ξHQ
)t,ω

]
= EUVM[

e−r(HQ)t,ω(ξHQ
)t,ω

]
.
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Then it follows the tower property (Lemma 2.9) that

u0 = EUVM[
e−rHQξ(BHQ∧·)

] = EUVM[
EUVM[

e−r(HQ)τ,·(ξHQ
)τ,·

]]
= EUVM[

e−rτ uτ

]
. �

PROOF OF PROPOSITION 7.2. Step 1. We first verify the viscosity super-
solution property. Without loss of generality, we only verify it at the point 0.
Recall the equivalent definition of viscosity solutions in Proposition 3.5. Let

(α,β) ∈ J L
u(0), that is, −u0 = maxτ E

L[(ψα,β − u)Hε∧τ ], with Hε := ε ∧ HOε .
Then we have for all P ∈ PUVM ⊂ PL and h > 0 that

0 ≥ EP
[
ψ

α,β
Hε∧h − uHε∧h + u0

]
≥ EP

[
1

2
β〈B〉Hε∧h + αBHε∧h

]
+EP[(

e−r(Hε∧h) − 1
)
uHε∧h

]
−EP[

e−r(Hε∧h)uHε∧h

] + u0.

It follows from Lemma 7.4 that u0 = EUVM[e−r(Hε∧h)uHε∧h] ≥ EP[e−r(Hε∧h) ×
uHε∧h]. Therefore,

0 ≥ EP

[
1

2
β〈B〉Hε∧h + αBHε∧h

]
+EP[(

e−r(Hε∧h) − 1
)
uHε∧h

]
.

Now, we take Pγ ∈ PUVM such that there exists a Pγ -Brownian motion W such
that Bt = γWt , Pγ -a.s. It follows that

0 ≥ 1

h
EPγ

[
1

2
γ 2β(Hε ∧ h) + (

e−r(Hε∧h) − 1
)
uHε∧h

]
.

Let h → 0, we obtain that 0 ≥ −ru0 + 1
2γ 2β . Since γ ∈ [σ ,σ ] can be arbitrary,

we finally have

ru0 − sup
γ∈[σ ,σ ]

1

2
γ 2β ≥ 0.

Step 2. Now we verify the viscosity subsolution property. Without loss of gen-
erality, we only verity it at the point 0. Let (α,β) ∈ J Lu(0), that is, −u0 =
minτ EL[(ψα,β − u)Hε∧τ ], with Hε := ε ∧ HOε . For any h > 0, we have

0 ≤ EL[
ψ

α,β
Hε∧h − uHε∧h + u0

]
.

So we have for all P ∈ PUVM ⊂ PL that

0 ≤ EP

[
1

2
β〈B〉Hε∧h

]
+EP[(

e−r(Hε∧h) − 1
)
uHε∧h

] −EP[
e−r(Hε∧h)uHε∧h

] + u0

≤ EP

[
1

2
sup

γ∈[σ ,σ ]
γ 2β(Hε ∧ h) + (

e−r(Hε∧h) − 1
)
uHε∧h

]
−EP[

e−r(Hε∧h)uHε∧h

] + u0.
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Since u0 = EUVM[e−r(Hε∧h)uHε∧h] (Lemma 7.4), it follows that

(7.2) 0 ≤ EUVM
[

1

2
sup

γ∈[σ ,σ ]
γ 2β(Hε ∧ h) + (

e−r(Hε∧h) − 1
)
uHε∧h

]
.

Since we have∣∣∣∣e−r(Hε∧h) − 1

h
uHε∧h + ru0

∣∣∣∣ ≤
∣∣∣∣e−r(Hε∧h) − 1

h
+ r

∣∣∣∣|uHε∧h| + r|uHε∧h − u0|

≤ C

∣∣∣∣e−r(Hε∧h) − 1

h
+ r

∣∣∣∣ + rρ(ε),

where ρ is a modulus of continuity of u. By denoting

δ(h) := sup
0≤s≤h

∣∣∣∣e−rs − 1

s
+ r

∣∣∣∣,
we have the following estimate:∣∣∣∣e−r(Hε∧h) − 1

h
uHε∧h + ru0

∣∣∣∣
≤ (

Cδ(h) + rρ(ε)
)
1{Hε>h} + (

C
(
r + δ(h)

) + rρ(ε)
)
1{Hε≤h}.

Together with (7.2), we obtain that

0 ≤ EUVM
[

1

2
sup

γ∈[σ ,σ ]
γ 2β

Hε ∧ h

h
− ru0

]
+ Cδ(h) + rρ(ε)

+ (
C

(
r + δ(h)

) + rρ(ε)
)
CPUVM[Hε ≤ h]

≤ 1

2
sup

γ∈[σ ,σ ]
γ 2β − ru0 + Cδ(h) + rρ(ε)

+
(
C

(
r + δ(h)

) + rρ(ε) + 1

2
σ 2|β|

)
CPUVM[Hε ≤ h].

By letting h → 0, we get ru0 − rρ(ε) − supγ∈[σ ,σ ] 1
2γ 2β ≤ 0. Finally, by letting

ε → 0, we obtain

ru0 − sup
γ∈[σ ,σ ]

1

2
γ 2β ≤ 0. �

APPENDIX

PROOF OF PROPOSITION 2.11. The first result is easy, and we omit its proof.
We decompose the proof in two steps.
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Step 1. We first prove that EL[HD] < ∞. Without loss of generality, we may
assume that D = Or . Denote by B1 the first entry of B . Since

HOr ≤ H1
r := inf

{
t ≥ 0 : |B1

t | ≥ r
}
,

it is enough to show that EL[H1
r ] < ∞. Thus, without loss of generality, we may

assume that the dimension d = 1.
We first consider the following Dirichlet problem of ODE:

(A.1) −L|∂xu| − 1

L
∂2
xxu − 1 = 0, u(r) = u(−r) = 0.

It is easy to verify that equation (A.1) has a classical solution:

u(x) = 1

L3

(
eL2r − eL2x) − 1

L
(R − x) for 0 ≤ x ≤ r, and

u(x) = u(−x) for −r ≤ x ≤ 0.

Further, it is clear that u is concave, so u is also a classical solution to the equation

(A.2) −L|∂xu| − 1

2
sup

2
L

≤β≤2L

β∂2
xxu − 1 = 0, u(r) = u(−r) = 0.

Then by Itô’s formula we obtain

0 = u(BHOr
) = u0 +

∫ HOr

0
∂xu(Bt ) dBt + 1

2

∫ HOr

0
∂2
xxu(Bt ) d〈B〉t .

Recalling the definition of Qα,β in (2.6) and taking the expectation on both sides,
we have

0 = u0 +EQα,β
[∫ HOr

0

(
αt∂xu(Bt) + 1

2
β2

t ∂2
xxu(Bt )

)
dt

]
(A.3)

for all ‖α‖ ≤ L,
2

L
≤ β· ≤ 2L.

Since u is a solution of equation (A.2), we have

EQα,β
[∫ HOr

0

(
αt∂xu(Bt) + 1

2
β2

t ∂2
xxu(Bt )

)
dt

]
≤ −EQα,β [HOr ].

Hence, u0 ≥ EL[HOr ]. On the other hand, taking α∗ := L sgn(∂xu(Bt )) and β∗ :=√
2
L

, we obtain from (A.2) and (A.3) that

u0 = EQα∗,β∗ [HOr ].
So, we have proved that u0 = EL[HOr ]. Consequently, EL[HOr ] < ∞.
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Step 2. Note that

CL[HD ≥ T ] ≤ EL[HD]
T

.

By the result of Step 1, we have CL[HD ≥ T ] ≤ C
T

, and then limT →∞ CL[HD ≥
T ] = 0. Further,

CL[Hn < HD] ≤ CL[Hn < HD; HD ≤ T ] + CL[Hn < HD; HD > T ]
(A.4)

≤ CL[Hn < T ] + CL[HD > T ].
We conclude that limn→∞ CL[Hn < HD] = 0.

Further, define D̂ := ⋃
x∈D Dx . Note that Hx

D ≤ H
D̂

for all x ∈ D. Hence, we
have

sup
x∈D

CL[
Hx

D ≥ T
] ≤ CL[H

D̂
≥ T ] → 0.

Together with (A.4), we obtain limn→∞ supx∈D CL[Hn < Hx
D] = 0. �

PROOF OF LEMMA 5.9. For simplicity, denote

gi := G
(
ωi, ·, ·, ·) (i = 1,2), c0 := ρ

(
de(ω1,ω2)) (≥ ∣∣g1 − g2∣∣),

Liu := −gi(u, ∂xu, ∂2
xxu

)
(i = 1,2), and δh := h1 − h2.

By standard argument, one can easily verify that function

w(x) := EL0[
δh+(x + BHx

D
) + c0Hx

D

]
is a C–L viscosity solution of the nonlinear PDE

−c0 − L0|∂xw| − 1

2
sup√

2
L0

Id≤γ≤√
2L0Id

γ 2 : ∂2
xxw = 0 on D, and

w = (δh)+ on ∂D.

Let K be a smooth nonnegative kernel with unit total mass. For all η > 0, we define
the mollification wη := w ∗ Kη of w. Then wη is smooth, and it follows from a
convexity argument as in [14] that wη is a classic supersolution of

−c0 − L0
∣∣∂xw

η
∣∣ − 1

2
sup√

2
L0

Id≤γ≤√
2L0Id

γ 2 : ∂2
xxw

η ≥ 0 on D, and

(A.5)
wη = (δh)+ ∗ Kη on ∂D.

We claim that

w̄η + v2 is a C–L viscosity supersolution to the PDE with generator g1,
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where w̄η := wη + δ, with δ := maxx∈∂D |wη(x) − (δh)+(x)|. Then we note that

w̄η + v2 ≥ wη + h2 + δ ≥ h1 = v1 on ∂D.

By comparison principle for the C–L viscosity solutions of PDEs, we have w̄η +
v2 ≥ v1 on cl(D). Setting η → 0, we obtain that v1 − v2 ≤ w. The desired result
follows.

It remains to prove that w̄η + v2 is a C–L viscosity supersolution of the PDE
with generator g1. Let x0 ∈ D, φ ∈ C2(D) be such that 0 = (φ − w̄η − v2)(x0) =
max(φ − w̄η − v2). Then it follows from the viscosity supersolution property of
v2 that L2(φ − w̄η)(x0) ≥ 0. Hence, at the point x0, by (A.5) we have

L1φ ≥ L1φ − L2(
φ − w̄η)

= −g1(
φ, ∂xφ, ∂2

xxφ
) + g2(

φ − w̄η, ∂x

(
φ − w̄η)

, ∂2
xx

(
φ − w̄η))

≥ −g1(
φ, ∂xφ, ∂2

xxφ
) + g2(

φ, ∂x

(
φ − w̄η)

, ∂2
xx

(
φ − w̄η))

≥ −c0 − L0
∣∣∂xw

η
∣∣ − 1

2
sup√

2
L0

Id≤γ≤√
2L0Id

γ 2 : ∂2
xxw

η

≥ 0,

where the last inequality is due to (A.5). �

PROPOSITION A.1. For all n ≥ 1, there exists a modulus of continuity ρ such
that

EL[∣∣Hx1
Q − H

x2
Q

∣∣] ≤ ρ
(|x1 − x2|).

PROOF. By the tower property, we have

EL[∣∣Hx1
Q − H

x2
Q

∣∣] ≤ EL[∣∣Hx1
Q − H

x2
Q

∣∣1{H
x1
Q ≤H

x2
Q }

] + EL[∣∣Hx1
Q − H

x2
Q

∣∣1{H
x1
Q >H

x2
Q }

]
≤ EL[

EL[
H

x2+B
H
x1
Q

Q

]
1{H

x1
Q ≤H

x2
Q }

] + EL[
EL[

H

x1+B
H
x2
Q

Q

]
1{H

x1
Q >H

x2
Q }

]
.

So, it suffices to show that there exists a modulus of continuity ρ such that

EL[
H

x2+ω′
H
x1
Q

Q

] ≤ ρ
(|x1 − x2|), for all ω′ such that H

x1
Q

(
ω′) ≤ H

x2
Q

(
ω′).

Denote yi := xi + ω′
Hω1

Q

for i = 1,2. Note that

|y1 − y2| = |x1 − x2|, y1 ∈ ∂Q,y2 ∈ Q.

In the case of the dimension d = 1, we may assume that Q = [0, h] for some
h > 0. Next, consider the Dirichlet problem of ODE:

(A.6) −L|∂xu| − 1

2
sup

2
L

≤β≤2L

β∂2
xxu − 1 = 0 and u

(
−h

2

)
= u

(
h

2

)
= 0.
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Then, as in the proof of Proposition 2.11 above, we can prove that equation (A.6)
has a classical solution u and

EL[
H

y2
Q

] = u

(
h

2
− |x1 − x2|

)
= u

(
h

2
− |x1 − x2|

)
− u

(
h

2

)
≤ ρ

(|x1 − x2|),
where ρ is the modulus of continuity of u.

In the case d > 1, we need the following discussion. Since Q is bounded and
convex, there exists a d-dimensional open cube Q̂ such that Q ⊂ Q̂, d(y2, ∂Q̂) ≤
|y1 − y2| = |x1 − x2| and there is a unique point y∗ ∈ ∂Q̂ such that d(y2, ∂Q̂) =
|y2 − y∗|. Since H

y2
Q ≤ H

y2

Q̂
, it is enough to prove

(A.7) EL[
H

y2

Q̂

] ≤ ρ
(|x1 − x2|).

Denote the unit vector e∗ := y∗−y2|y∗−y2| . Note that

y2 + ∣∣y∗ − y2
∣∣e∗ ∈ ∂Q̂

(A.8)
and there is a constant � > 0 such that y2 − �e∗ ∈ ∂Q̂.

Denote a new stopping time

H∗ := inf
{
t ≥ 0 : B · e∗ /∈ (−�,

∣∣y∗ − y2
∣∣)}.

Since Q̂ is a cube, it follows from (A.8) that H
y2

Q̂
≤ H∗. Since B · e∗ takes values in

R1, it follows from the previous result in the case d = 1 that

EL[
H∗] ≤ ρ

(∣∣y∗ − y2
∣∣) ≤ ρ

(∣∣x1 − x2
∣∣), for some modulus of continuity ρ.

Together with the fact H
y2

Q̂
≤ H∗, we finally obtain (A.7). �
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