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VISCOSITY SOLUTIONS OF FULLY NONLINEAR PARABOLIC
PATH DEPENDENT PDES: PART II

BY IBRAHIM EKREN, NIZAR TOUZI1 AND JIANFENG ZHANG2

ETH Zurich, Ecole Polytechnique Paris and University of Southern California

In our previous paper [Ekren, Touzi and Zhang (2015)], we introduced
a notion of viscosity solutions for fully nonlinear path-dependent PDEs, ex-
tending the semilinear case of Ekren et al. [Ann. Probab. 42 (2014) 204–
236], which satisfies a partial comparison result under standard Lipshitz-type
assumptions. The main result of this paper provides a full, well-posedness
result under an additional assumption, formulated on some partial differen-
tial equation, defined locally by freezing the path. Namely, assuming further
that such path-frozen standard PDEs satisfy the comparison principle and the
Perron approach for existence, we prove that the nonlinear path-dependent
PDE has a unique viscosity solution. Uniqueness is implied by a comparison
result.

1. Introduction. This paper is the continuation of our accompanying papers
[7, 8]. The main objective of this series of three papers is the following, fully
nonlinear parabolic path-dependent partial differential equation:{−∂tu − G

(·, u, ∂ωu, ∂2
ωωu

)}
(t,ω) = 0, (t,ω) ∈ [0, T ) × �.(1.1)

Here � consists of continuous paths ω on [0, T ] starting from the origin, G is
a progressively measurable generator and the path derivatives ∂tu, ∂ωu, ∂2

ωωu are
defined through a functional Itô formula, initiated by Dupire [5]; see also Cont
and Fournie [3]. Such equations were first proposed by Peng [16], and they pro-
vide a convenient language for many problems arising in non-Markovian, or say
path dependent framework, with typical examples, including martingales, back-
ward stochastic differential equations, second-order BSDEs and backward stochas-
tic PDEs. In particular, the value functions of stochastic controls and stochastic
differential games with both drift and diffusion controls can be characterized as
the solution of the corresponding path dependent PDEs. This extends the classical
results in Markovian framework to non-Markovian ones. We refer to [8] and [17]
for these connections.
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A path dependent PDE can rarely have a classical solution. We thus turn to the
notion of viscosity solutions, which had great success in the finite dimensional
case. There have been numerous publications on viscosity solutions of PDEs, both
in theory and in applications, and we refer to the classical references [4] and [9]. In
our infinite dimensional case, the major difficulty is that the underlying state space
� is not locally compact, and thus many tools from the standard PDE viscosity
theory do not apply to the present context. In our earlier paper [6], which stud-
ies semilinear path-dependent PDEs, we replace the pointwise extremality in the
standard definition of viscosity solution in PDE literature with the corresponding
extremality in the context of an optimal stopping problem under a nonlinear ex-
pectation E . More precisely, we introduce a set of smooth test processes ϕ, which
are tangent from above or from below, to the processes of interest u in the sense of
the following nonlinear optimal stopping problems:

sup
τ

E
[
(ϕ − u)τ

]
, inf

τ
E
[
(ϕ − u)τ

]
(1.2)

where E := sup
P∈P

EP,E := inf
P∈PEP.

Here τ ranges over a convenient set of stopping times, and P is an appropriate
set of probability measures. The replacement of the pointwise tangency by the
tangency in the sense of the last optimal stopping problem is the key ingredient
needed to bypass the local compactness of the underlying space in the standard
viscosity solution theory (or the Hilbert structure, which allows us to access local
compactness by finite realization approximation of the space). Indeed, the Snell
envelope characterization of the solution of the optimal stopping problem allows
us to find a “point of tangency.” Interestingly, the structure of the underlying space
does not play any role, and the standard first and second-order conditions of max-
imality in the standard optimization theory has the following beautiful counterpart
in the optimal stopping problem: the supermartingale property (negative drift; no-
tice that drift is related to the second derivative) of the Snell envelope and the
martingale property (zero drift) up the optimal stopping time (first hitting of the
obstacle/reward process).

In [6], we proved existence and uniqueness of viscosity solutions for semilinear
path-dependent PDEs. In particular, the unique viscosity solution is consistent with
the solution to the corresponding backward SDE.

In [6], all probability measures in the class P are equivalent, and consequently
P is dominated by one measure. In our fully nonlinear context, the class P be-
comes nondominated, consisting of mutually singular measures induced by certain
linearization of the nonlinear generator G. This causes another major difficulty of

the project: the dominated convergence theorem fails under EP
. To overcome this,

we need some strong regularity for the involved processes, and thus we require
some rather sophisticated estimates. In particular, the corresponding optimal stop-
ping problem becomes very technical and is established in a separate paper [7].
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We remark that the weak compactness of the class P plays a very important role
in these arguments.

In [8], we introduced the appropriate class P for fully nonlinear path dependent
PDEs (1.1) and the corresponding notion of viscosity solutions. We investigated
the connection between our new notion and many other equations in the existing
literature of stochastic analysis, for example, backward SDEs, second-order BS-
DEs and backward SPDEs. Moreover, we proved some basic properties of viscos-
ity solutions, including the partial comparison principle; that is, for a viscosity sub-
solution u1 and a classical supersolution u2, if u1

T ≤ u2
T , then u1(t,ω) ≤ u2(t,ω)

for all (t,ω) ∈ [0, T ] × �.
In this paper we prove our main result, the comparison principle of viscosity

solutions. That is, for a viscosity subsolution u1 and a viscosity supersolution u2,
if u1

T ≤ u2
T , then u1(t,ω) ≤ u2(t,ω) for all (t,ω) ∈ [0, T ] × �. Again, due to

the lack of local compactness and now also due to our new definition of viscosity
solutions, the standard approach in PDE literature, namely the doubling variable
technique combined with Ishii’s lemma, does not seem to work here. Our strategy
is as follows: We start from the above partial comparison established in [8], but
we slightly weaken the smooth requirement of the classical (semi-)solutions. Let u

denote the infimum of the classical supersolution and u, the supremum of classical
subrsolutions, satisfying appropriate terminal conditions. Then the partial compar-
ison implies u1 ≤ u and u ≤ u2. Thus the comparison will be a direct consequence
of the following claim:

u = u.(1.3)

Then clearly our focus is (1.3). We first remark that due to the failure of the

dominated convergence theorem under our new EP
, the approach in [6] does not

work here. In this paper, we shall follow the alternative approach proposed in [8],
Section 7, which is also devoted to semilinear path-dependent PDEs. However,
as explained in [8], Remark 7.7, there are several major difficulties in the fully
nonlinear context, and novel ideas are needed.

Note that (1.3) is more or less equivalent to constructing some classical superso-
lution uε and classical subsolution uε , for any ε > 0, such that limε→0[uε − uε] =
0. Our main tool is the following local path-frozen PDE: for any (t,ω) ∈ [0, T ) ×
�,

−∂tv(s, x) − gt,ω(s, v,Dv,D2v
)= 0,

(1.4) s ∈ [t, t + ε], x ∈ Rd such that |x| ≤ ε,

where gt,ω(s, y, z, γ ) := G(s,ω·∧t , y, z, γ ).

Here D and D2 denote the gradient and Hessian of v with respect to x, respectively,
and we emphasize that gt,ω is a deterministic function, and thus (1.4) is a standard
PDE. We shall assume that the above PDE has a unique viscosity solution (in
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standard sense), which can be approximated by classical subsolutions and classical
supersolutions. One sufficient condition is that after certain smooth mollification of
gt,ω, the above local PDE with smooth boundary condition has a classical solution.
We then use this classical solution to construct the desired uε and uε .

We remark that this approach is very much like Perron’s approach in standard
PDE viscosity theory. However, there are two major differences: First, in the stan-
dard Perron approach, u and u are the extremality of viscosity semi-solutions,
while here they are the extremality of classical semi-solutions. This requires the
smoothness of the above uε and uε and thus makes their construction harder. More
importantly, the standard Perron approach assumes the comparison principle and
uses it to obtain the existence of viscosity solutions, while we use (1.3) to prove
the comparison principle. Thus the required techniques are quite different.

Once we have the comparison principle, then following the idea of the standard
Perron approach, we see u = u is indeed the unique viscosity solution of the path-
dependent PDE, so we have both existence and uniqueness. Our result covers quite
general classes of path-dependent PDEs, including those not accessible in the ex-
isting literature of stochastic analysis. One particular application is the existence
of the game value for a path-dependent zero sum stochastic differential game, due
to our well-posedness result of the path-dependent Bellman–Isaacs equation; see
Pham and Zhang [17]. We also refer to Henry-Labordere, Tan and Touzi [12] and
Zhang and Zhuo [18] for applications of our results to numerical methods for path-
dependent PDEs.

We also note that there is potentially an alternative way to prove the compar-
ison principle. Roughly speaking, given a viscosity subsolution u1 and a viscos-
ity supersolution u2, if we could find certain smooth approximations ui,ε , close
to ui , such that u1,ε is a classical subsolution and u2,ε is a classical supersolu-
tion, then it follows from partial comparison (actually classical comparison) that
u1,ε ≤ u2,ε , which leads to the desired comparison immediately by passing ε to 0.
Indeed, in PDE literature the convex/concave convolution plays this role. How-
ever, in the path-dependent setting, we did not succeed in finding appropriate ap-
proximations ui,ε which satisfy the desired semi-solution property. In our current
approach, instead of approximating the (semi-)solution directly, we approximate
the path-frozen PDE by mollifying its generator gt,ω. The advantage of our ap-
proach is that provided the mollified path-frozen PDE has a classical solution, it
will be straightforward to check that the constructed uε and uε are classical semi-
solutions.

The price of our approach, however, is that we need classical solutions of fully
nonlinear PDEs. Partially for this purpose, in the present paper we assume that G

is uniformly nondegenerate, which is undesirable in viscosity theory, and for path-
dependent Bellman–Isaacs equations, we can only deal with the lower dimensional
(d = 1 or 2) problems. We shall investigate these important problems and explore
further possible direct approximations of ui as mentioned above, in our future
research.
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The rest of the paper is organized as follows. Section 2 introduces the general
framework and recalls the definition of viscosity solutions introduced in our ac-
companying paper [8]. Section 3 collects all assumptions needed throughout the
paper. The main results are stated in Section 4, where we also outline strategy of
proof. In particular, the existence and comparison results follow from the partial
comparison principle, the consistency of the Perron approach and the viscosity
property of the postulated solution of the PPDE. These crucial results are proved
in Sections 5, 6 and 7, respectively. Finally, Section 8 provides some sufficient
conditions for our main assumption, under which our well-posedness result is es-
tablished, together with some concluding remarks.

2. Preliminaries. In this section, we recall the setup and the notation of [8].

2.1. The canonical spaces. Let � := {ω ∈ C([0, T ],Rd) :ω0 = 0} be the set
of continuous paths starting from the origin, B , the canonical process, F, the nat-
ural filtration generated by B , P0, the Wiener measure and 	 := [0, T ] × �. Here
and in the sequel, for notational simplicity, we use 0 to denote vectors, matrices
or paths with appropriate dimensions whose components are all equal to 0. Let Sd

denote the set of d × d symmetric matrices, and

x · x′ :=
d∑

i=1

xix
′
i for any x, x′ ∈Rd,

γ :γ ′ := tr
[
γ γ ′] for any γ, γ ′ ∈ Sd .

We define a semi-norm on � and a pseudometric on 	 as follows: for any
(t,ω), (t ′,ω′) ∈ 	,

‖ω‖t := sup
0≤s≤t

|ωs |, d∞
(
(t,ω),

(
t ′,ω′)) := ∣∣t − t ′

∣∣+ ∥∥ω·∧t − ω′
·∧t ′

∥∥
T .(2.1)

Then (�,‖·‖T ) is a Banach space, and (	,d∞) is a complete pseudometric space.
We shall denote by L0(FT ) and L0(	) the collection of all FT -measurable ran-
dom variables and F-progressively measurable processes, respectively. Let C0(	)

[resp., UC(	)] be the subset of L0(	) whose elements are continuous (resp., uni-
formly continuous) in (t,ω) under d∞. The corresponding subsets of bounded pro-
cesses are denoted by C0

b(	) and UCb(	). Finally, L0(	,Rd) denote the space of
Rd -valued processes with entries in L0(	), and we define similar notation for the
spaces C0, C0

b , UC and UCb.
We next introduce the shifted spaces. Let 0 ≤ s ≤ t ≤ T .

− Let �t := {ω ∈ C([t, T ],Rd) :ωt = 0} be the shifted canonical space; Bt the
shifted canonical process on �t ; Ft the shifted filtration generated by Bt , Pt

0
the Wiener measure on �t , and 	t := [t, T ] × �t .

− Define ‖ · ‖s
t on �s and ds∞ on 	s in the spirit of (2.1), and the sets L0(	t) etc.

in an obvious way.
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− For ω ∈ �s and ω′ ∈ �t , define the concatenation path ω ⊗t ω′ ∈ �s by(
ω ⊗t ω′)(r) := ωr1[s,t)(r) + (

ωt + ω′
r

)
1[t,T ](r) for all r ∈ [s, T ].

− Let ξ ∈ L0(F s
T ) and X ∈ L0(	s). For (t,ω) ∈ 	s , define ξ t,ω ∈ L0(F t

T ) and
Xt,ω ∈ L0(	t) by

ξ t,ω(ω′) := ξ
(
ω ⊗t ω′), Xt,ω(ω′) := X

(
ω ⊗t ω′), for all ω′ ∈ �t.

It is clear that for any (t,ω) ∈ 	 and any u ∈ C0(	), we have ut,ω ∈ C0(	t).
The other spaces introduced before enjoy the same property.

We denote by T the set of F-stopping times, and by H ⊂ T , the subset of those
hitting times H of the form

H := inf{t :Bt /∈ O} ∧ t0,(2.2)

for some 0 < t0 ≤ T , and some open and convex set O ⊂ Rd containing 0. The
set H will be important for our optimal stopping problem, which is crucial for the
comparison and the stability results. We note that H = t0 when O = Rd , and for
any H ∈ H,

0 < Hε ≤ H for ε small enough, where Hε := inf
{
t ≥ 0 : |Bt | = ε

}∧ ε.(2.3)

Define T t and Ht in the same spirit. For any τ ∈ T (resp., H ∈ H) and any (t,ω) ∈
	 such that t < τ(ω) [resp., t < H(ω)], it is clear that τ t,ω ∈ T t (resp., Ht,ω ∈ Ht ).

Finally, the following types of regularity will be important in our framework:

DEFINITION 2.1. Let u ∈ L0(	).

(i) We say u is right continuous in (t,ω) under d∞ if for any (t,ω) ∈ 	

and any ε > 0, there exists δ > 0 such that for any (s, ω̃) ∈ 	t satisfying
d∞((s, ω̃), (t,0)) ≤ δ, we have |ut,ω(s, ω̃) − u(t,ω)| ≤ ε.

(ii) We say u ∈ U if u is bounded from above, right continuous in (t,ω) un-
der d∞ and there exists a modulus of continuity function ρ such that for any
(t,ω), (t ′,ω′) ∈ 	,

u(t,ω) − u
(
t ′,ω′)≤ ρ

(
d∞

(
(t,ω),

(
t ′,ω′))) whenever t ≤ t ′.(2.4)

(iii) We say u ∈ U if −u ∈ U .

The progressive measurability of u implies that u(t,ω) = u(t,ω·∧t ), and it is
clear that U∩U = UCb(	). We also recall from [7] Remark 3.2 that condition (2.4)
implies that u has left-limits and positive jumps.
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2.2. Capacity and nonlinear expectation. For every constant L > 0, we de-
note by PL the collection of all continuous semimartingale measures P on � whose
drift and diffusion characteristics are bounded by L and

√
2L, respectively. To be

precise, let �̃ := �3 be an enlarged canonical space, B̃ := (B,A,M) be the canon-
ical processes and ω̃ = (ω, a,m) ∈ �̃ be the paths. A probability measure P ∈ PL

means that there exists an extension Q of P on �̃ such that

B = A + M A is absolutely continuous, M is a martingale,

∣∣αP
∣∣ ≤ L,

1

2
tr
((

βP)2)≤ L where αP
t := dAt

dt
, βP

t :=
√

d〈M〉t
dt

(2.5)

Q-a.s.

Similarly, for any t ∈ [0, T ), we may define P t
L on �t and P t∞ :=⋃

L>0 P t
L.

The set P t
L induces the following capacity:

CL
t [A] := sup

P∈P t
L

P[A], for all A ∈ F t
T .(2.6)

We denote by L1(F t
T ,P t

L) the set of all F t
T -measurable r.v. ξ with

supP∈P t
L
EP[|ξ |] < ∞. The following nonlinear expectation will play a crucial

role:

EL

t [ξ ] = sup
P∈P t

L

EP[ξ ] and EL
t [ξ ] = inf

P∈P t
L

EP[ξ ] = −EL

t [−ξ ]
(2.7)

for all ξ ∈ L1(F t
T ,P t

L

)
.

DEFINITION 2.2. Let X ∈ L0(	) satisfy Xt ∈ L1(Ft ,PL) for all 0 ≤ t ≤ T .

We say that X is an EL
-supermartingale (resp., submartingale, martingale) if, for

any (t,ω) ∈ 	 and any τ ∈ T t , EL

t [Xt,ω
τ ] ≤ (resp., ≥,=) Xt(ω).

We now state the Snell envelope characterization of optimal stopping under
the above nonlinear expectation operators. Given a bounded process X ∈ L0(	),
consider the nonlinear optimal stopping problem

SL

t [X](ω) := sup
τ∈T t

EL

t

[
Xt,ω

τ

]
and SL

t [X](ω) := inf
τ∈T t

EL
t

[
Xt,ω

τ

]
,

(2.8)
(t,ω) ∈ 	.

By definition, we have SL[X] ≥ X and SL

T [X] = XT .

THEOREM 2.3 ([7]). Let X ∈ U be bounded, H ∈ H and set X̂t := Xt1{t<H} +
XH−1{t≥H}. Define

Y := SL[X̂] and τ ∗ := inf{t ≥ 0 :Yt = X̂t }.
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Then Yτ∗ = X̂τ∗ , Y is an EL
-supermartingale on [0, H], and an EL

-martingale on
[0, τ ∗]. Consequently, τ ∗ is an optimal stopping time.

We remark that the nonlinear Snell envelope Y is continuous in [0, H) and has
left limit at H. However, in general Y may have a negative left jump at H.

2.3. The path derivatives. We define the path derivatives via the functional Itô
formula, initiated by Dupire [5].

DEFINITION 2.4. We say u ∈ C1,2(	) if u ∈ C0(	), and there exist ∂tu ∈
C0(	), ∂ωu ∈ C0(	,Rd), ∂2

ωωu ∈ C0(	,Sd) such that for any P ∈ P0∞, u is a
P-semimartingale satisfying

du = ∂tudt + ∂ωu · dBt + 1
2∂2

ωωu :d〈B〉t , 0 ≤ t ≤ T ,P-a.s.(2.9)

We remark that the above ∂tu, ∂ωu and ∂2
ωωu, if they exist, are unique, and thus

are called the time derivative, first-order and second-order space derivatives of u,
respectively. In particular, it holds that

∂tu(t,ω) = lim
h↓0

1

h

[
u(t + h,ω·∧t ) − u(t,ω)

]
.(2.10)

We refer to [8], Remark 2.9, and [2], Remarks 2.3, 2.4, for various discussions
on these path derivatives, especially on their comparison with Dupire’s original
definition. See also Remark 4.5 below. We define C1,2(	t) similarly. It is clear
that, for any (t,ω) and u ∈ C1,2(	), we have ut,ω ∈ C1,2(	t), and ∂ω(ut,ω) =
(∂ωu)t,ω, ∂2

ωω(ut,ω) = (∂2
ωωu)t,ω.

For technical reasons, we shall extend the space C1,2(	) slightly as follows.

DEFINITION 2.5. Let t ∈ [0, T ], u :	t → R. We say u ∈ C
1,2

(	t) if there
exist an increasing sequence of {Hi , i ≥ 1} ⊂ T t , a partition {Ei

j , j ≥ 1} ⊂ F t
Hi

of

�t for each i, a constant ni ≥ 1 for each i, and ϕi
jk ∈ UCb(	), ψi

jk ∈ C1,2(	) ∩
UCb(	) for each (i, j) and 1 ≤ k ≤ ni , such that, denoting H0 := t , E0

1 := �t :

(i) for each i and ω, H
Hi ,ω
i+1 ∈ HHi (ω) whenever Hi (ω) < T , the set {i : Hi (ω) <

T } is finite for each ω and limi→∞ CL
s [H

s,ω
i < T ] = 0 for any (s,ω) ∈ 	t and

L > 0;
(ii) for each (i, j), ω,ω′ ∈ Ei

j such that Hi (ω) ≤ Hi (ω
′), it holds for all ω̃ ∈ �,

0 ≤ Hi+1
(
ω′ ⊗Hi (ω

′) ω̃
)− Hi+1(ω ⊗Hi (ω) ω̃) ≤ Hi

(
ω′)− Hi (ω);(2.11)

here we abuse the notation that (ω ⊗s ω̃)r := ωr1[t,s)(r) + (ωs + ω̃r−s)1[s,T ](r);
(iii) for each i, ϕi

jk , ψi
jk , ∂tψ

i
jk , ∂ωψi

jk , ∂2
ωωψi

jk are uniformly bounded, and

ϕi
jk , ψi

jk are uniformly continuous, uniformly in (j, k) (but may depend on i);
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(iv) u is continuous in t on [0, T ], and for each i, ω ∈ � and Hi (ω) ≤ s ≤
Hi+1(ω),

u(s,ω)
(2.12)

= ∑
j≥1

ni∑
k=1

[
ϕi

jk

(
Hi (ω),ω

)
ψi

jk

(
s − Hi (ω),ωHi (ω)+s − ωHi (ω)

)]
1Ei

j
.

The main idea of the above space is that the processes in C
1,2

(	t) are piece-
wise smooth. However, purely for technical reasons, we require rather technical
conditions. For example, (2.11) and (2.12) are mainly needed for Proposition 4.2
below. We remark that these technical requirements may vary from time to time.
In particular, the space here requires a more specific structure than the correspond-
ing space in [6] and that in [8] Section 7, both dealing with semilinear PPDEs.

Nevertheless, by abusing the notation slightly, we still denote it as C
1,2

(	t).

Let u ∈ C
1,2

(	t). One may easily check that us,ω ∈ C
1,2

(	s) for any (s,ω) ∈
	t . For any P ∈ P t∞, it is clear that the process u is a local P-semimartingale on
[t, T ] and a P-semimartingale on [t, Hi] for all i, and

dus = ∂tus ds + 1
2∂2

ωωus :d
〈
Bt 〉

s + ∂ωus · dBt
s, t ≤ s < T ,P-a.s.(2.13)

By setting H1 := T , n0 := 1, ϕ0
11 := 1 and ψ0

11 := u, we see that C1,2(	t) ⊂
C

1,2
(	t).

2.4. Fully nonlinear path dependent PDEs. Following the accompanying pa-
per [8], we continue our study of the following fully nonlinear parabolic path-
dependent partial differential equation (PPDE, for short):

Lu(t,ω) := {−∂tu − G
(·, u, ∂ωu, ∂2

ωωu
)}

(t,ω) = 0, (t,ω) ∈ 	,(2.14)

where the generator G :	×R×Rd × Sd →R satisfies the conditions reported in
Section 3.

For any u ∈ L0(	), (t,ω) ∈ [0, T ) × � and L > 0, define

ALu(t,ω) := {
ϕ ∈ C1,2(	t ) :

(
ϕ − ut,ω)

t = 0 = SL
t

[(
ϕ − ut,ω)

·∧H

]
for some H ∈ Ht},

(2.15)
AL

u(t,ω) := {
ϕ ∈ C1,2(	t ) :

(
ϕ − ut,ω)

t = 0 = SL

t

[(
ϕ − ut,ω)

·∧H

]
for some H ∈ Ht},

where SL
and SL are the nonlinear Snell envelopes defined in (2.8).
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DEFINITION 2.6. (i) Let L > 0. We say u ∈ U (resp., U ) is a viscosity L-
subsolution (resp., L-supersolution) of PPDE (2.14) if, for any (t,ω) ∈ [0, T )×�

and any ϕ ∈ALu(t,ω) [resp., ϕ ∈AL
u(t,ω)],{−∂tϕ − Gt,ω(·, ϕ, ∂ωϕ, ∂2

ωωϕ
)}

(t,0) ≤ (resp., ≥) 0.

(ii) We say u ∈ U (resp., U ) is a viscosity subsolution (resp., supersolu-
tion) of PPDE (2.14) if u is viscosity L-subsolution (resp., L-supersolution) of
PPDE (2.14) for some L > 0.

(iii) We say u ∈ UCb(	) is a viscosity solution of PPDE (2.14) if it is both a
viscosity subsolution and a viscosity supersolution.

As pointed out in [8] Remark 3.11(i), without loss of generality in (2.15), we
may always set H = Ht

ε for some small ε > 0,

Ht
ε := inf

{
s > t :

∣∣Bt
s

∣∣≥ ε
}∧ (t + ε).(2.16)

3. Assumptions. This section collects all of our assumptions on the nonlin-
earity G, the terminal condition ξ and the underlying path-frozen PDE.

3.1. Assumptions on the nonlinearity and terminal conditions. We first need
the conditions on the nonlinearity G as assumed in [8].

ASSUMPTION 3.1. The nonlinearity G satisfies:

(i) for fixed (y, z, γ ), G(·, y, z, γ ) ∈ L0(	) and |G(·,0,0,0)| ≤ C0;
(ii) G is uniformly Lipschitz continuous in (y, z, γ ), with a Lipschitz con-

stant L0;
(iii) for any (y, z, γ ), G(·, y, z, γ ) is right continuous in (t,ω) under d∞;
(iv) G is elliptic, that is, nondecreasing in γ .

Our main well-posedness result requires the following strengthening of (iii) and
(iv) above:

ASSUMPTION 3.2. (i) G is uniformly continuous in (t,ω) under d∞ with a
modulus of continuity function ρ0.

(ii) For each ω, G is uniformly elliptic. That is, there exits a constant c0 > 0
such that G(·, γ1) − G(·, γ2) ≥ c0 tr(γ1 − γ2) for any γ1 ≥ γ2.

Condition (i) is needed for our uniform approximation of G below; in particular
it is used (only) in the proof of Lemma 6.4. We should point out though, for the
semi-linear PPDE and the path-dependent HJB considered in [8], Section 4, this
condition is violated when σ depends on (t,ω). However, this is a technical con-
dition due to our current approach for uniqueness. Condition (ii) is used to ensure
the existence of the viscosity solution for the path-frozen PDE (3.3) below. See
also Example 4.7.

Our first condition on the terminal condition ξ is the following:
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ASSUMPTION 3.3. ξ ∈ L0(FT ) is bounded and uniformly continuous in ω

under ‖ · ‖T , with the same modulus of continuity function ρ0 as in Assump-
tion 3.2(i).

REMARK 3.4. The continuity of a random variable in terms of ω seems less
natural in stochastic analysis literature. However, since by nature we are in the
weak formulation setting, such continuity is in fact natural in many applications.
This is emphasized in the two following examples:

− Let V0 := EP0[g(Xσ· )], for some bounded function g :� −→ R, and some
bounded progressively measurable process σ , with

dXσ
t = σt dBt , P0-a.s.

In the weak formulation, we define Pσ as the probability measure induced by
the process Xσ , and we re-write V0 := EPσ [g(B·)]. Thus the uniform continuity
requirement reduces to that of the function g.

− Similarly, the stochastic control problem in strong formulation V0 :=
supσ≤σ≤σ E

P0[g(Xσ· )] for some constants 0 ≤ σ ≤ σ , may be expressed in the

weak formulation as V0 = supσ≤σ≤σ E
Pσ [g(B·)], thus reducing the uniform

continuity requirement of the terminal data to that of the function g.

Our next assumption is a purely technical condition needed in our proof of
uniqueness. To be precise, it will be used only in the proof of Lemma 6.3 be-
low to ensure the function θε

n constructed there is continuous in its parameter πn.
When we have a representation for the viscosity solution, for example, in the semi-
linear case in [8], Section 7, we may construct the θε

n explicitly and thus avoid the
following assumption:

For all ε > 0, n ≥ 0 and 0 ≤ T0 < T1 ≤ T , denote

�ε
n(T0, T1) := {

πn = (ti, xi)1≤i≤n :T0 < t1 < · · · < tn < T1,
(3.1)

|xi | ≤ ε for all 1 ≤ i ≤ n
}
.

For all πn ∈ �ε
n(T0, T1), we denote by ωπn ∈ �T0 the linear interpolation of (T0,0),

(ti,
∑i

j=1 xj )1≤i≤n, and (T ,
∑n

j=1 xj ).

ASSUMPTION 3.5. There exist 0 = T0 < · · · < TN = T such that for each i =
0, . . . ,N −1, for any ε small, any n and any ω ∈ �, ω̃ ∈ �Ti+1 , the functions πn �→
ξ(ω ⊗Ti

ωπn ⊗Ti+1 ω̃) and πn �→ G(t,ω ⊗Ti
ωπn ⊗Ti+1 ω̃, y, z, γ ) are uniformly

continuous in �ε
n(Ti, Ti+1), uniformly on t ≥ Ti+1, (y, z, γ ) ∈ R × Rd × Sd and

ω̃ ∈ �Ti+1 .

We note that the uniform continuity of ξ and G implies that the above mappings
are continuous in πn ∈ �ε

n(Ti, Ti+1), but not necessarily uniformly continuous. In
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particular, they may not have limits on the boundary of �ε
n(Ti, Ti+1), namely when

ti = ti+1 but xi �= xi+1. We conclude this subsection with a sufficient condition
for Assumption 3.5, where for ω ∈ �, we use the notation ωt := maxs≤t ωs and
ωt := mins≤t ωs , defined componentwise.

LEMMA 3.6. Let ξ(ω) = g(ωT1, . . . ,ωTN
,ωT1, . . . ,ωTN

,ωT1
, . . . ,ωTN

,ω) for
some 0 = T0 < T1 < · · · < TN = T , and some bounded uniformly continuous func-
tion (θ,ω) ∈ R3dN × � �−→ g(θ,ω) ∈ R. Assume further that for all θ , i and
ω ∈ �, there exists a modulus of continuity function ρ and p > 0 (which may
depend on the above parameters), such that∣∣g(θ,ω ⊗Ti

ω1 ⊗Ti+1 ω̃
)− g

(
θ,ω ⊗Ti

ω2 ⊗Ti+1 ω̃
)∣∣≤ ρ

(∫ Ti+1

Ti

∣∣ω1
t − ω2

t

∣∣p dt

)
,

for all ω1,ω2 ∈ �Ti , ω̃ ∈ �Ti+1 . Then ξ satisfies Assumptions 3.3 and 3.5.

PROOF. Clearly ξ satisfies Assumption 3.3. For ω ∈ �, ω̃ ∈ �Ti+1 and
πn, π̃n ∈ �ε

n(Ti, Ti+1), denote ω̂πn := ω ⊗Ti
ωπn ⊗Ti+1 ω̃ and ω̂π̃n := ω ⊗Ti

ωπ̃n ⊗Ti+1 ω̃. Then

∣∣ξ (ω̂π̃n
)− ξ

(
ω̂π̃n

)∣∣≤ ρ0

(
n∑

k=1

|θk − θ̃k|
)

+ ρ

(∫ Ti+1

Ti

∣∣ωπn
t − ω

π̃n
t

∣∣p dt

)
,

where ρ0 is the modulus of continuity function of g with respect to (θ,ω).
Then one can easily check that the πn �−→ ξ(ω̂πn) is uniformly continuous in
�ε

n(Ti, Ti+1). �

3.2. Path-frozen PDEs. Our main tool for proving the comparison principle
for viscosity solutions, or, more precisely, for constructing the uε and uε , men-
tioned in the Introduction, so as to prove (1.3), is some path-frozen PDE. Define
the following deterministic function on [t,∞) ×R×Rd × Sd :

gt,ω(s, y, z, γ ) := G(s ∧ T ,ω·∧t , y, z, γ ), (t,ω) ∈ 	.

For any ε > 0 and η ≥ 0, we denote Tη := (1 + η)T , εη := (1 + η)ε and

Oε := {
x ∈Rd : |x| < ε

}
, Oε := {

x ∈ Rd : |x| ≤ ε
}
,

∂Oε := {
x ∈Rd : |x| = ε

}
,

(3.2)
Q

ε,η
t := [t, Tη) × Oεη, Q

ε,η

t := [t, Tη] × Oεη,

∂Q
ε,η
t := ([t, Tη] × ∂Oεη

)∪ ({Tη} × Oεη

)
,

and we further simplify the notation for η = 0 as

Qε
t := Q

ε,0
t , Q

ε

t := Q
ε,0
t , ∂Qε

t := ∂Q
ε,0
t .
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Our additional assumption is formulated on the following localized and path-
frozen PDE defined for every (t,ω) ∈ 	:

(E)t,ωε,η Lt,ωv := −∂tv − gt,ω(s, v,Dv,D2v
)= 0 on Q

ε,η
t .(3.3)

Notice that for fixed (t,ω), this is a standard deterministic partial differential equa-
tion.

LEMMA 3.7. Under Assumptions 3.1 and 3.2(ii), PDE (3.3) satisfies the com-
parison principle for bounded viscosity solutions (in standard sense, as in [4]).
Moreover, for any h ∈ C0(∂Q

ε,η
t ), PDE (3.3) with the boundary condition h has a

(unique) bounded viscosity solution v.

PROOF. The comparison principle follows from standard theory; see, for ex-
ample, [4]. Moreover, as we will see later, the v and v defined in (4.11) are vis-
cosity supersolution and subsolution, respectively, of the PDE (3.3) and satisfy
v = v = h on ∂Q

ε,η
t . Then the existence follows from the standard Perron ap-

proach in the spirit of [4], Theorem 4.1. �

We will use the following additional assumption:

ASSUMPTION 3.8. For any ε > 0, η ≥ 0, (t,ω) ∈ 	 and h ∈ C0(∂Q
ε,η
t ), we

have v = v = v, where v is the unique viscosity solution of PDE (3.3) with bound-
ary condition h, and

v(s, x) := inf
{
w(s, x) :w classical supersolution of (E)t,ωε,η

and w ≥ h on ∂Q
ε,η
t

}
,

(3.4)
v(s, x) := sup

{
w(s, x) :w classical subsolution of (E)t,ωε,η

and w ≤ h on ∂Q
ε,η
t

}
.

We first note that the above sets of w are not empty. Indeed, one can check
straightforwardly that for any δ > 0 and denoting λδ := C0+L0‖h‖∞

δ
+ L0,

w(t, x) := ‖h‖∞ + δeλδ(Tη−t), w(t, x) := −‖h‖∞ − δeλδ(Tη−t)(3.5)

satisfy the requirement for v(s, x) and v(s, x), respectively. We also observe that
our definition (3.4) of v and v is different from the corresponding definition in
the standard Perron approach [13], in which the w is a viscosity supersolution
or subsolution. It is also different from the recent development of Bayraktar and
Sirbu [1], in which the w is a so called stochastic supersolution or subsolution.
Loosely speaking, our Assumption 3.8 requires that the viscosity solution of (E)t,ωε,η

can be approximated by a sequence of classical supersolutions and a sequence of
classical subsolutions. We shall discuss further this issue in Section 8 below. In
particular, we will provide some sufficient conditions for Assumption 3.8 to hold.
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4. Main results. The following theorem is the main result of this paper:

THEOREM 4.1. Let Assumptions 3.1, 3.2, 3.3, 3.5 and 3.8 hold true:

(i) Let u1 ∈ U be a viscosity subsolution and u2 ∈ U a viscosity supersolution
of PPDE (2.14) with u1(T , ·) ≤ ξ ≤ u2(T , ·). Then u1 ≤ u2 on 	.

(ii) PPDE (2.14) with terminal condition ξ has a unique viscosity solution u ∈
UCb(	).

4.1. Strategy of the proof. There are two key ingredients for the proof of this
main result. The first is the following partial comparison, proved in Section 5,

which extends the corresponding result in Proposition 5.3 of [8] to the set C
1,2

(	).

The reason for extending C1,2(	) to C
1,2

(	) is that typically we can construct
the approximations uε and uε , mentioned in the Introduction, only in the space

C
1,2

(	), and not in C1,2(	).

PROPOSITION 4.2. Assume Assumption 3.1 holds true. Let u2 ∈ U be a vis-

cosity supersolution of PPDE (2.14) and u1 ∈ C
1,2

(	) bounded from above sat-
isfying Lu1(t,ω) ≤ 0 for all (t,ω) ∈ 	 with t < T . If u1(T , ·) ≤ u2(T , ·), then
u1 ≤ u2 on 	.

A similar result holds if we switch the roles of u1 and u2.

The second key ingredient follows the spirit of the Perron approach as in [6].
Let

u(t,ω) := inf
{
ψt :ψ ∈ Dξ

T (t,ω)
}
,

(4.1)
u(t,ω) := sup

{
ψt :ψ ∈Dξ

T (t,ω)
}
,

where

Dξ

T (t,ω) := {
ψ ∈ C

1,2(
	t ) :ψ− bounded,

(Lψ)t,ω ≥ 0 on [t, T ) × �t,ψT ≥ ξ t,ω},
(4.2)

Dξ
T (t,ω) := {

ψ ∈ C
1,2(

	t ) :ψ+ bounded,

(Lψ)t,ω ≤ 0 on [t, T ) × �t,ψT ≤ ξ t,ω}.
By using the functional Itô formula (2.13), and following the arguments in [8],
Theorem 3.16, we obtain a similar result as the partial comparison of Proposi-
tion 4.2, implying that

u ≤ u.(4.3)

Moreover, these processes satisfy naturally a partial dynamic programming prin-
ciple which implies the following viscosity properties.



VISCOSITY SOLUTIONS OF FULLY NONLINEAR PDES II 2521

PROPOSITION 4.3. Let Assumptions 3.1, 3.2 and 3.3 hold true. Then the pro-
cesses u and u are bounded, uniformly continuous viscosity super solutions and
subsolutions, respectively, of PPDE (2.14).

This result will be proved in Section 7. A crucial step for our proof is to show
the consistency of the Perron approach in the sense that equality holds in the last
inequality, under our additional assumptions.

PROPOSITION 4.4. Under the conditions of Theorem 4.1, with N = 1 in As-
sumption 3.5, we have u = u.

The proof of this proposition is reported in Section 6. Given Propositions 4.2,
4.3 and 4.4, Theorem 4.1 follows immediately.

PROOF OF THEOREM 4.1. We prove the theorem in three steps:
Step 1. We first consider the case N = 1 in Assumption 3.5. By Proposition 4.2,

we have u1 ≤ u and u ≤ u2. Then Proposition 4.4 implies u1 ≤ u2 immediately,
which implies (i) and the uniqueness of the viscosity solution. Finally, by Proposi-
tions 4.4 and 4.3, u := u = u is a viscosity solution of (2.14).

Step 2. For general N , it follows from step 1 that the comparison, existence
and uniqueness of the viscosity solution holds on [TN−1, TN ]. Let u denote the
unique viscosity solution on [TN−1, TN ] with terminal condition ξ , constructed by
the Perron approach. Now consider PPDE (2.14) on [TN−2, TN−1] with terminal
condition u(TN−1, ·). We shall prove below that u(TN−1, ·) satisfies the require-
ment of step 1. Then we may extend the comparison, existence and uniqueness
of the viscosity solution to the interval [TN−2, TN ]. By repeating the arguments
backwardly, we complete the proof of Theorem 4.1.

Step 3. It remains to verify Assumptions 3.3 and 3.5 with N = 1 for u(TN−1, ·)
on [TN−2, TN−1]. First, by Proposition 4.3 it is clear that u(TN−1, ·) is bounded.
Given ω ∈ �, note that PPDE (2.14) on [TN−1, TN ] can be viewed as a PPDE with
generator GTN−1,ω and terminal condition ξTN−1,ω. Then, following the arguments
in Lemma 7.3(i) below, one can easily show that u(TN−1,ω) is uniformly con-
tinuous in ω, and it follows from Assumption 3.5 that u(TN−1,ω ⊗TN−2 ωπn) is
uniformly continuous in πn ∈ �ε

n(TN−2, TN−1). �

4.2. Heuristic analysis on Proposition 4.4. While highly technical, Proposi-
tion 4.2 follows along the same lines as the partial comparison of [8], Proposi-
tion 5.3. Proposition 4.3 has a corresponding result in PDE literature, and is proved
in the spirit of the stability result of [8], Theorem 5.1. In this subsection, we pro-
vide some heuristic discussions on Proposition 4.4, focusing on the case u0 = u0,
and the rigorous arguments will be carried out in Section 6 below.

We shall follow [8], Section 7, where Proposition 4.4 is proved in a much sim-

pler, semi-linear setting. The idea is to construct uε ∈ Dξ

T (0,0) and uε ∈Dξ
T (0,0)
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such that limε→0[uε
0 − uε

0] = 0. To be precise, modulus some technical properties,
the approximations uε,uε should satisfy:

• they are piecewise smooth and Luε ≥ 0 ≥ Luε;
• they are continuous in t ;
• uε

T and uε
T are close to ξ .

To achieve this, we shall discretize the path ω so that we can utilize the path-
frozen PDE (3.3). We note that such discretization of ω will not induce big errors,
thanks to the uniform continuity of the involved processes. Fix ε > 0, and set
H0 := 0,

Hi+1 := {
t ≥ Hi : |Bt − Bti | = ε

}∧ T .

Denote π̂n := {(Hi ,BHi
),0 ≤ i ≤ n}. Let πn = {(ti , xi),0 ≤ i ≤ n} be a typical

value of π̂n(ω), and ωπn ∈ � be the linear interpolation of πn. The main idea is to
construct a sequence of deterministic functions vε

n(πn; t, x) so that we may con-
struct the desired uε and uε from a common process uε

t := vε
n(π̂n; t,Bt − BHn),

Hn ≤ t < Hn+1. For this purpose, we require vε
n, and hence uε , satisfying the fol-

lowing three corresponding properties:
• For each πn, the function vε

n(πn; ·) is in C1,2(Qε
tn
) and is a classical solution

of a certain mollified path-frozen PDE,

−∂tv
ε
n − gπn

ε

(
t, vε

n,Dvε
n,D

2vε
n

)= 0,(4.4)

where gπn
ε = gtn,ωπn

ε . Consequently, the process uε is approximately a classical

solution of PPDE (2.14) on [Hn, Hn+1], thanks to the fact that g
π̂n(ω)
ε (t, ·) is a good

approximation of G(t,ω, ·).
• vε

n(π̂n; Hn+1,BHn+1 − BHn) = vε
n+1(π̂n+1; Hn+1,0) so that uε is continuous in

t and is more or less in C
1,2

(	).
• vε

n(πn;T ,x) is constructed from ξ , so that uε
T is close to ξ .

Now by the uniform continuity of ξ and G, we will see that uε := uε + ρ0(2ε)

and uε := uε − ρ0(2ε) satisfy the desired classical semi-solution property. Clearly
uε − uε ≤ 2ρ0(2ε), implying the result.

In [8], Section 7, the functions vε
n can be constructed explicitly via approximat-

ing backward SDEs. In the present setting, since we do not have a representation
for the candidate solution, we cannot construct vε

n directly. By some limiting pro-
cedure, in Lemma 6.3 below, we shall construct certain deterministic functions θε

n

which satisfy all the above three properties, except that θε
n is only a viscosity solu-

tion of PDE (4.4). Now to construct smooth vε
n from θε

n , we apply Assumption 3.8.
In fact, given the viscosity solution θε

n , Assumption 3.8 allows us to construct the
classical supersolution vε

n and the classical subsolution vε
n, rather than one single

smooth function vε
n, such that vε

n ≤ θε
n ≤ vε

n, and vε
n − vε

n is small. This procedure
is carried out in Lemma 6.4 below, and the construction is done piece by piece,
forwardly on each random interval [Hn, Hn+1].
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REMARK 4.5. As we see in the above discussion, the processes we will use to
prove the comparison takes the form v(�n; t,Bt −BHn), Hn ≤ t < Hn+1, for some
deterministic function v, which is smooth in (t, x). Then it suffices to apply the
standard Itô formula on v, rather than the functional Itô formula. Indeed, under our
assumptions, we can prove rigorously the well-posedness of viscosity solutions,
including existence, stability and comparison and uniqueness, without using the
functional Itô formula. In other words, technically speaking, we can establish our
theory without involving the path derivatives. However, we do feel that the path
derivatives and the functional Itô formula are the natural and convenient language
in this path-dependent framework. In particular, it is much more natural to talk
about classical solutions of PPDEs by using the path derivatives. Moreover, the
current proof relies heavily on the discretization of the underlying path ω, with
the help of the path-frozen PDEs. This discretization induces the above piecewise
Markovian structure. The functional Itô formula allows us to explore in future
research other approaches without using such discretization.

4.3. The bounding equations. The proof of Proposition 4.4 requires some es-
timates, which involve the following particular example analyzed in [8]. Recall the
constants L0 C0, and c0 from Assumptions 3.1 and 3.2, and consider the operators

g0(z, γ ) := sup
|α|≤L0,

√
2c0≤|β|≤√

2L0

[
α · z + 1

2
β2 :γ

]
,

g(y, z, γ ) := g0(z, γ ) + L0|y| + C0,
(4.5)

g
0
(z, γ ) := inf

|α|≤L0,
√

2c0≤|β|≤√
2L0

[
α · z + 1

2
β2 :γ

]
,

g(y, z, γ ) := g
0
(z, γ ) − L0|y| − C0,

which clearly satisfy Assumptions 3.1 and 3.2, and

g ≤ G ≤ g.(4.6)

These operators induce the PPDEs

Lu := −∂tu − g(u, ∂ωu, ∂ωωu) = 0 and
(4.7)

Lu := −∂tu − g(u, ∂ωu, ∂ωωu) = 0.

Let Bt
L0

:= {b ∈ L0(	t) : |b| ≤ L0} and

P t
L0,c0

:= {
P t

L0
:
∣∣βP

∣∣≥√
2c0

}
, EL0,c0

t := sup
P∈P t

L0,c0

EP,

(4.8)
EL0,c0

t := inf
P∈P t

L0,c0

EP.
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Following the arguments in our accompanying paper ([8], Proposition 4), we see
that for a bounded, uniformly continuous FT -measurable r.v. ξ ,

w(t,ω) := sup
b∈Bt

L0

EL0,c0
t

[
ξ t,ωe

∫ T
t br dr + C0

∫ T

t
e
∫ s
t br dr ds

]
,

(4.9)

w(t,ω) := inf
b∈Bt

L0

EL0,c0
t

[
ξ t,ωe

∫ T
t br dr − C0

∫ T

t
e
∫ s
t br dr ds

]

are viscosity solutions of the PPDE Lw := 0 and Lw := 0, respectively.
By Lemma 3.7, the PDE version of (4.7),

Lv := −∂tv − g
(
v,Dv,D2v

)= 0 and
(4.10)

Lv := −∂tv − g
(
v,Dv,D2v

)= 0 in Q
ε,η
t ,

satisfies the comparison principle. Moreover, we have the following:

LEMMA 4.6. Under Assumptions 3.1 and 3.2(ii), for any h ∈ C0(∂Q
ε,η
t ), the

following functions are the unique viscosity solutions of PDEs (4.10) with bound-
ary condition h:

v(t, x) := sup
b∈Bt

L0

EL0,c0
t

[
e
∫ H
t br drh

(
H, x + Bt

H

)+ C0

∫ H

t
e
∫ s
t br dr ds

]
,

(4.11)

v(t, x) := inf
b∈Bt

L0

EL0,c0
t

[
e
∫ H
t br drh

(
H, x + Bt

H

)− C0

∫ H

t
e
∫ s
t br dr ds

]
,

where H := Ht,x := {s > t : (s, x + Bt
s) /∈ Q

ε,η
t }.

PROOF. First, by the arguments in [7], one may easily check that v and v are
continuous and satisfy dynamic programing principle for t < H, which implies the
viscosity property immediately. Then it remains to check the boundary conditions.
For x ∈ Oεη , since t ≤ Ht,x ≤ T and h is uniformly continuous with certain mod-
ulus of continuity function ρh, it is clear that∣∣v(t, x) − h(T , x)

∣∣
≤ sup

b∈Bt
L0

EL0
t

[∣∣∣∣e∫ H
t br drh

(
H, x + Bt

H

)+ C0

∫ H

t
e
∫ s
t br dr ds − h(T , x)

∣∣∣∣]

= sup
b∈Bt

L0

EL0
t

[∣∣∣∣[e∫ H
t br dr − 1

]
h
(
H, x + Bt

H

)+ [
h
(
H, x + Bt

H

)− h(T , x)
]

+ C0

∫ H

t
e
∫ s
t br dr ds

∣∣∣∣](4.12)
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≤ CEL0
t

[
H − t + ρh

(
T − H + ∣∣Bt

H

∣∣)]
≤ CEL0

t

[
T − t + ρh

(
T − t + ∥∥Bt

∥∥
T

)]
→ 0,

as t ↑ T . Furthermore, let t < T and 0 �= x ∈ Oεη . Note that for any a > 0 and
P ∈ P t

L0,c0
,

P
(
Ht,x − t ≥ a

)≤ P

(
sup

t≤s≤t+a

x

|x| · Bt
s ≤ εη − |x|

)

≤ P

(
sup

t≤s≤t+a

∫ s

t

x

|x| · βP
r dWP

r ≤ εη − |x| + L0a

)
.

Let As := ∫ s
t

xT

|x| (β
P
r )2 x

|x| dr and τs := inf{r ≥ t :Ar ≥ s}. Then Ms :=∫ τs
t

xT

|x|β
P
r dWP

r is a P-Brownian motion, and As ≥ 2c0(s − t). Thus

P
(
Ht,x − t ≥ a

) ≤ P
(

sup
t≤s≤t+2c0a

Ms ≤ εη − |x| + L0a
)

= P0
(‖B‖2c0a ≤ εη − |x| + L0a

)
= P0

(|B2c0a| ≤ εη − |x| + L0a
)

= P0

(
|B1| ≤ 1√

2c0a

[
εη − |x| + L0a

])

≤ C√
a

[
εη − |x| + L0a

]
.

Set a := εη − |x|, and we get

P
(
Ht,x − t ≥ εη − |x|)≤ C

√
εη − |x|.

Following similar arguments to those in (4.12), one can easily show that for some
modulus of continuity function ρ,∣∣v(t, x) − h(t, x̃)

∣∣≤ ρ
(
εη − |x|) where x̃ := |x|

εη

x ∈ ∂Oεη .

Then, for t0 < T , x0 ∈ ∂Oεη , t < T and x ∈ Oεη , noting that

|x − x̃| ≤ εη − |x| = |x0| − |x| ≤ |x − x0|,
we have, as (t, x) → (t0, x0),∣∣v(t, x) − h(t0, x0)

∣∣≤ ∣∣v(t, x) − h(t, x̃)
∣∣+ ∣∣h(t, x̃) − h(t0, x0)

∣∣
≤ ρ

(
εη − |x|)+ ρh

(|t − t0| + |x0 − x̃|)
≤ ρ

(|x0 − x|)+ ρh

(|t − t0| + 2|x0 − x|)→ 0.
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This implies that v is continuous on Q
ε,η

. Similarly one can prove the result for v.
�

We remark that (4.9) provides representation for viscosity solutions of
PPDEs (4.7), even in the degenerate case c0 = 0. However, this is not true for
the PDEs (4.10), due to the boundedness of the domain Q

ε,η
t , which induces the

hitting time H and ruins the required regularity, as we will see in next example.

EXAMPLE 4.7. Assume Assumption 3.1 holds, but G is degenerate, and thus
c0 = 0. Let d = 1, and set h(s, x) := s on ∂Q

ε,η
t . Then the v defined by (4.11) is

discontinuous in [0, Tη)× ∂Oεη ⊂ ∂Q
ε,η
0 and thus is not a viscosity solution of the

PDE (4.10).

PROOF. It is clear that

v(t, x) = EL0
t

[
eL0(H−t)H + C0

∫ H

t
eL0(s−t) ds

]
,

where the integrand is increasing in H which takes values on [t, Tη]. Then, by
taking the P corresponding to α = β = 0, we have H = Tη, P-a.s. and thus

v(t, x) = eL0(Tη−t)Tη + C0

∫ Tη

t
eL0(s−t) ds, (t, x) ∈ Q

ε,η
0 .

However, we have v(t, x) = t on ∂Q
ε,η
0 , so v is discontinuous in [0, Tη) × ∂Oεη .

�

4.4. A change of variables formula. We conclude this section with a change
of variables formula, which is interesting in its own right. We have previously
observed in [8], Remark 3.15, that the classical change of variables formula is not
known to hold true for our notion of viscosity solutions under Assumption 3.1. We
now show that it holds true under the additional Assumption 3.8.

Let u ∈ C
1,2
b (	) and � ∈ C1,2([0, T ]×R). Assume � is strictly increasing in x,

and let � denote its inverse function. Note that � is increasing in x and �x > 0.
Define

ũ(t,ω) := �
(
t, u(t,ω)

)
and thus u(t,ω) = �

(
t, ũ(t,ω)

)
.(4.13)

Then direct calculation shows that

Lu(t,ω) = �x

(
t, ũ(t,ω)

)
L̃ũ(t,ω) and

(4.14)
L̃ũ := −∂t ũ − G̃

(
t,ω, ũ, ∂ωũ, ∂2

ωωũ
)
,

where

G̃(t,ω, y, z, γ )

:= �t(t, y) + G(t,ω,�(t, y),�x(t, y)z,�xx(t, y)z2 + �x(t, y)γ )

�x(t, y)
.
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Then the following result is obvious:

PROPOSITION 4.8. Under the above assumptions on � , u is classical solu-
tion (resp., supersolution, subsolution) of Lu = 0 if and only if ũ := �(t, u) is a
classical solution (resp., supersolution, subsolution) of L̃ũ = 0.

Moreover, we have the following:

THEOREM 4.9. Assume both (G, ξ) and (G̃,�(T , ξ)) satisfy the conditions
of Theorem 4.1. Then u is the viscosity solution of PPDE (2.14) with terminal
condition ξ if and only if ũ := �(t, u) is the viscosity solution of PPDE (4.14)
with terminal condition ξ̃ := �(T , ξ).

PROOF. One may easily check that w = �(t, u),w = �(t, u), where

w(t,ω) := inf
{
ψt :ψ ∈ C

1,2(
	t ),ψ− bounded, L̃ψ ≥ 0,ψT ≥ �

(
T , ξ t,ω)};

w(t,ω) := sup
{
ψt :ψ ∈ C

1,2(
	t ),ψ+ bounded, L̃ψ ≤ 0,ψT ≤ �

(
T , ξ t,ω)}.

Then the result follows immediately from Proposition 4.4 and the arguments in the
proof of Theorem 4.1. �

We observe that the above operator G̃ is quadratic in the z-variable, so we need
somewhat stronger conditions to ensure the well-posedness.

5. Partial comparison of viscosity solutions. In this section, we prove
Proposition 4.2. The proof is crucially based on the optimal stopping problem
reported in Theorem 2.3.

We first prove a lemma. Recall the partition {Ei
j , j ≥ 1} ⊂ FHi

, the constant

ni and the uniform continuous mappings ϕi
jk and ψi

jk in (2.12) corresponding to

u1 ∈ C
1,2

(	). For δ > 0, let 0 = t0 < t1 < · · · < tN = T such that tk+1 − tk ≤ δ for
k = 0, . . . ,N − 1, and define tN+1 := T + δ.

LEMMA 5.1. For all i, j ≥ 1, there is a partition (Ẽi
j,k)k≥1 ⊂ FHi

of Ei
j and

a sequence (pk)k≥1 taking values 0, . . . ,N , such that

Hi ∈ [tpk
, tpk+1) on Ẽi

j,k, sup
ω,ω′∈Ẽi

j,k

∥∥ω·∧Hi (ω) − ω′·∧Hi (ω
′)
∥∥≤ δ and

min
ω∈Ẽi

j,k

Hi (ω) = Hi

(
ωi

j,k

) =: t̃ ij,k for some ωi
j,k ∈ Ẽi

j,k.

PROOF. Since i, j are fixed, we simply denote E := Ei
j and H := Hi . De-

note Ek := E ∩ {tk ≤ H < tk+1}, k ≤ n. Then {Ek}k ⊂ FH forms a partition of E.
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Since � is separable, there exists a finer partition {Ek,l}k,l ⊂ FH such that, for any
ω,ω′ ∈ Ek,l , ‖ω·∧H(ω) − ω′·∧H(ω′)‖ ≤ δ.

Next, for each Ek,l , there is a sequence ωk,l,m ∈ Ek,l such that tk,l,m :=
H(ωk,l,m) ↓ infω∈Ek,l

H(ω). Denote tk,l,0 := tk+1. Define Ek,l,m := Ek,l ∩
{tk,l,m+1 ≤ H < tk,l,m} ∈ FHi

, and renumerate them as (Ẽk)k≥1. We then verify
directly that (Ẽk)k≥1 defines a partition of E satisfying the required conditions.

�

PROOF OF PROPOSITION 4.2. We only prove u1
0 ≤ u2

0. The inequality for
general t can be proved similarly. Assume u2 is a viscosity L-supersolution and

u1 ∈ C
1,2

(	) with corresponding hitting times Hi , i ≥ 0. By Proposition 3.14
of [8], we may assume without loss of generality that

G(t,ω, y1, z, γ ) − G(t,ω, y2, z, γ ) ≥ y2 − y1 for all y1 ≤ y2.(5.1)

We now prove the proposition in three steps. Throughout the proof, denote

û := u1 − u2.

Since u1 is bounded from above and u2 bounded from below, we see that û+ is
bounded.

Step 1. We first show that for all i ≥ 0 and ω ∈ �,

û+
Hi

(ω) ≤ EL

Hi (ω)

[(
û+

Hi+1−
)Hi ,ω

]
.(5.2)

Since (u1)t,ω ∈ C
1,2

(	t), clearly it suffices to consider i = 0. Assume on the con-
trary that

2T c := û+
0 (0) − EL

0
[
û+

H1−
]
> 0.(5.3)

Recall (2.12). Notice that E0
1 = � and that ϕ0

1k(0,0) are constants, and we may
assume without loss of generality that n0 = 1 and

u1
t = ψ(t,B), 0 ≤ t ≤ H1,

where ψ ∈ C1,2(	) ∩ UCb(	) with bounded derivatives. Denote

Xt := (
ψt − u2

t

)+ + ct, 0 ≤ t ≤ T .

Since u2 is bounded from below, by the definition of U , one may easily check that

X is a bounded process in U , and Xt := û+
t + ct,0 ≤ t ≤ H1.

Define

X̂ := X1[0,H1) + XH1−1[H1,T ]; Y := SL[X̂], τ ∗ := inf{t ≥ 0 :Yt = X̂t }.
Applying Theorem 2.3 and by (5.3), we have

EL

0 [X̂τ∗] = Y0 ≥ X0 = û+
0 (0) = 2T c + EL

0
[
û+

H1−
]≥ T c + EL

0 [X̂H1].



VISCOSITY SOLUTIONS OF FULLY NONLINEAR PDES II 2529

Then there exists ω∗ ∈ � such that t∗ := τ ∗(ω∗) < H1(ω
∗). Next, by the EL

-
supermartingale property of Y of Theorem 2.3, we have

û+(t∗,ω∗)+ ct∗ = Xt∗
(
ω∗)= Yt∗

(
ω∗)≥ EL

t∗
[
X

t∗,ω∗
H

t∗,ω∗
1 −

]≥ EL

t∗
[
cH

t∗,ω∗
1

]
> ct∗,

implying that 0 < û+(t∗,ω∗) = û(t∗,ω∗). Since u2 ∈ U , by (2.3) there exists H ∈
Ht∗ such that

H < H
t∗,ω∗
1 and û

t∗,ω∗
t > 0 for all t ∈ [

t∗, H
]
.(5.4)

Then X
t∗,ω∗
t = ϕt − (u2)

t∗,ω∗
t for all t ∈ [t∗, H], where ϕ(t,ω) := ψt∗,ω∗

(t,ω)+ct .

Observe that ϕ ∈ C1,2(	t∗). Using again the EL
-supermartingale property of Y of

Theorem 2.3, we see that for all τ ∈ T t∗ ,(
ϕ − (

u2)t∗,ω∗)
t∗ = Xt∗

(
ω∗)= Yt∗

(
ω∗)≥ EL

t∗
[
Y t∗,ω∗

τ∧H

]≥ EL

t∗
[
Xt∗,ω∗

τ∧H

]
= EL

t∗
[(

ϕ − (
u2)t∗,ω∗)

τ∧H

]
.

That is, ϕ ∈AL
u2(t∗,ω∗), and by the viscosity L-supersolution property of u2,

0 ≤ {−∂tϕ − G
(·, u2, ∂ωϕ, ∂2

ωωϕ
)}(

t∗,ω∗)
= −c − {

∂tu
1 + G

(·, u2, ∂ωu1, ∂2
ωωu1)}(t∗,ω∗)

≤ −c − {
∂tu

1 + G
(·, u1, ∂ωu1, ∂2

ωωu1)}(t∗,ω∗),
where the last inequality follows from (5.4) and (5.1). Since c > 0, this is in contra-
diction with the subsolution property of u1 and thus completes the proof of (5.2).

REMARK 5.2. The rest of the proof is only needed in the case where u1 ∈
C

1,2
(	) \ C1,2(	). Indeed, if u1 ∈ C1,2(	), then H1 = T , and it follows from

step 1 that û+
0 ≤ EL

0 [û+
T −] ≤ EL

0 [û+
T ] = 0, and then u1

0 ≤ u2
0. In fact, this is the

partial comparison principle proved in [8], Proposition 5.3.

Step 2. We continue by using the following result which will be proved in step 3:

For i ≥ 1, P ∈ PL and PL(P, Hi ) := {
P′ ∈ PL :P′ = P on FHi

}
, we have

(5.5)
�i := û+

Hi− − P
ess-sup

P′∈PL(P,Hi )

EP′[
û+

Hi+1−|FHi

]≤ 0, P-a.s.

Then by standard arguments, we have

EP[û+
Hi−

]≤ sup
P′∈PL(P,Hi )

EP′[
û+

Hi+1−
]≤ EL

0
[
û+

Hi+1−
]
.

Since P ∈ PL is arbitrary, this leads to EL

0 [û+
Hi−] ≤ EL

0 [û+
Hi+1−], and by induction,

û+
0 ≤ EL

0 [û+
Hi−], for all i. Notice that û+ is bounded, limi→∞ CL

0 [Hi < T ] = 0 by
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Definition 2.5(i) and u2
T − ≥ u2

T by the definition of U . Then, sending i → ∞, we

obtain û+
0 ≤ EL

0 [û+
T −] ≤ EL

0 [û+
T ] = 0, which completes the proof of u1

0 ≤ u2
0.

Step 3. It remains to prove (5.5). Clearly it suffices to prove it on each Ei
j . As

in the proof of Lemma 5.1, we omit the dependence on the fixed pair (i, j), thus
writing E := Ei

j , n = ni , H := Hi , H1 := Hi+1, ϕk := ϕi
j,k , ψk := ψi

j,k , � := �i ,
and let C denote the common bound of ϕk,ψk and ρ, the common modulus of
continuity function of ϕk,ψk , 1 ≤ k ≤ n. We also denote Ẽk := Ẽi

j,k , ωk := ωi
j,k

and t̃k := t̃ ij,k , as defined in Lemma 5.1.

Fix an arbitrary P ∈ PL and ε > 0. Since u2 ∈ U , we have u2
H− ≥ u2

H. Then, for
each k, it follows from (5.2) that

û+
H−
(
ωk)≤ û+

H

(
ωk)≤ EPk

[(
û+

H1−
)t̃k ,ωk ]+ ε for some Pk ∈ P t̃k

L .

Define P̂ ∈ PL(P, H) such that for P-a.e. ω ∈ Ẽk , the P̂H(ω),ω-distribution of BH(ω)

is equal to the Pk-distribution of Bt̃k , where P̂H(ω),ω denotes the r.c.p.d. Then P-a.s.
on Ẽk ,

EP̂
[
û+

H1−|FH

]
(ω)

= EP̂H(ω),ω[
û+(H1

(
ω ⊗H(ω) BH(ω)·

)−,ω ⊗H(ω) BH(ω)·
)]

= EPk
[
û+(H1

(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k
.

)]
,

where B̃
t̃k
s := B

t̃k
s−H(ω)+t̃k

, s ≥ H(ω). Recalling that û+ is bounded, P-a.s. this pro-
vides

�(ω) ≤ û+
H−(ω) −EP̂[û+

H1−|FH

]
(ω)

≤ ε + ∑
k≥1

1
Ẽk

(ω)
(
û+

H−(ω) − û+
H−
(
ωk))

+ ∑
k≥1

1
Ẽk

(ω)EPk
[(

û+
H1−

)t̃k ,ωk − û+(H1
(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k·
)]

(5.6)
≤ ε + ∑

k≥1

1
Ẽk

(ω)
(
ûH−(ω) − ûH−

(
ωk))+

+ ∑
k≥1

1
Ẽk

(ω)EPk
[(

(ûH1−)t̃k,ω
k − û

(
H1
(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k·
))+
∧ C

]
.

We now estimate the above error for fixed ω ∈ Ẽk :
(1) To estimate the terms of the first sum, we recall that d∞((H(ω),ω),

(t̃k,ω
k)) ≤ 2δ on Ẽk , by Lemma 5.1. Then since u1 is continuous, it follows from
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(2.12) that on Ẽk ,

u1
Hi−(ω) − u1

Hi−
(
ωj )= u1

Hi
(ω) − u1

Hi

(
ωj )

=
n∑

l=1

[
ϕl

(
H(ω),ω

)− ϕl

(
t̃k,ω

k)]ψl(0,0)

≤ Cnρ(2δ).

Moreover, denoting by ρ2 the modulus of continuity of −u2 ∈ U in (2.4), we see
that

u2
H−
(
ωk)− u2

H−(ω)

= u2(t̃k−,ωk)− u2(t̃k−,ω) + u2(t̃k−,ω) − u2(H(ω)−,ω
)

≤ ρ2(δ) + sup
H(ω)−δ≤t≤H(ω)

[
u2(t−,ω) − u2(H(ω)−,ω

)]
.

By the last two estimates, we see that the first sum in (5.6)∑
k≥1

1
Ẽk

(ω)
(
ûH−(ω) − ûH−

(
ωk))+ −→ 0 as δ ↘ 0.(5.7)

(2) Recall from Lemma 5.1 that 0 ≤ H(ω) − t̃k ≤ δ. Then (2.11) leads to

0 ≤ [
H1
(
ωk ⊗t̃k

B̃ t̃k·
)− t̃k

]− [
H1
(
ω ⊗H(ω) B̃ t̃k·

)− H(ω)
]≤ H(ω) − t̃k ≤ δ,

and therefore, denoting ηδ(ω) := δ + sup{|ωs − ωt | : 0 ≤ t ≤ T , t ≤ s ≤ (t + δ) ∧
T },

d∞
((

H1
(
ωk ⊗t̃k

B̃ t̃k·
)− t̃k, B̃

t̃k
)
,
(
H1
(
ω ⊗H(ω) B̃ t̃k·

)− H(ω), B̃ t̃k
))

(5.8)
≤ ηδ

(
B̃ t̃k

)≤ ηδ

(
Bt̃k

)
.

Then, by using (2.12) again, we see that(
u1)t̃k ,ωk

H
t̃k ,ωk

1 −
− u1(H1

(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k·
)

= u1(H1
(
ωk ⊗t̃k

Bt̃k·
)
,ωk ⊗t̃k

B̃ t̃k·
)− u1(H1

(
ω ⊗H1(ω) B̃ t̃1·

)
,ω ⊗H1(ω) B̃ t̃k·

)
=

n∑
l=1

[
ϕl

(
t̃k,ω

k)ψl

(
H1
(
ω ⊗H(ω) B̃ t̃k·

)− H(ω), B̃ t̃k
)

(5.9)

− ϕl

(
H(ω),ω

)
ψl

(
H1
(
ωk ⊗t̃k

B̃ t̃k·
)− t̃k, B̃

t̃k
)]

≤ Cn
[
ρ(2δ) + ρ

(
ηδ

(
Bt̃k

))]
.
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We now similarly estimate the corresponding term with u2. Since t̃k ≤ H(ω),
by (2.4) and (5.9) we have

u2(H1
(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k·
)− (

u2
H1−

)t̃k ,ωk

= (−u2)(H1
(
ωk ⊗t̃k

Bt̃k·
)−,ωk ⊗t̃k

B̃ t̃k·
)− (−u2)(H1

(
ω ⊗H(ω) B̃ t̃k·

)−,

ω ⊗H(ω) B̃ t̃k·
)

≤ ρ
(
d∞

((
H1
(
ω ⊗H(ω) B̃ t̃k

)
,ω ⊗H(ω) B̃ t̃k

)
,
(
H1
(
ωk ⊗t̃k

B̃ t̃k
)
,ωk ⊗t̃k

B̃ t̃j
)))

≤ ρ
(
d∞

((
H(ω),ω

)
,
(
t̃k,ω

k))
+ d∞

((
H1
(
ωk ⊗t̃k

B̃ t̃k
)− t̃k, B̃

t̃k
)
,
(
H1
(
ω ⊗H(ω) B̃ t̃k

)− H(ω), B̃ t̃k
)))

≤ ρ
(
2δ + ηδ

(
Bt̃k

))
.

Combining the above with (5.9), this implies that the second summation in (5.6)
satisfies∑

k≥1

1
Ẽk

(ω)EPk
[(

(ûH1−)t̃k,ω
k − û

(
H1
(
ω ⊗H(ω) B̃ t̃k·

)−,ω ⊗H(ω) B̃ t̃k·
))+ ∧ C

]
≤ ∑

k≥1

EPk
[(

Cn(ρ + ρ2)
(
2δ + ηδ

(
Bt̃k

)))∧ C
]
1
Ẽk

(ω)

≤ CnEL

0
[
(ρ + ρ2)

(
2δ + ηδ(B)

)∧ C
]
.

One can easily check that limδ→0 E
L

0 [(ρ + ρ2)(2δ + ηδ(B)) ∧ C] = 0. Then by
sending δ → 0 and ε → 0 in (5.6), we complete the proof of (5.5). �

6. Consistency of the Perron approach. This section is dedicated to the
proof of Proposition 4.4. We follow the strategy outlined in Section 4.2, which
is based on the idea in [8], Proposition 7.5. However, as pointed out in [8], Re-
mark 7.7, due to fully nonlinearity, the arguments here are much more involved.
We shall divide the proof into several lemmas. As in the previous section, we may
assume without loss of generality that G satisfies the monotonity (5.1).

We start with some estimates for viscosity solutions of PDE (3.3).

LEMMA 6.1. Let Assumptions 3.1 and 3.2(ii) hold true. Let hi : ∂Qε
t → R

be continuous and vi be the viscosity solution of the PDE (E)
t,ω
ε,0 with boundary

condition hi , i = 1,2. Then, denoting δv := v1 − v2, δh := h1 − h2, on Qε
t we

have

δv(s, x) ≤ EL0,c0
s

[
(δh)+

(
H, x + Bs

H

)]
,

(6.1)
where H := T ∧ inf

{
r ≥ s :

∣∣x + Bs
r

∣∣= ε
}
.
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PROOF. Let w denote the right-hand side of (6.1). Following the arguments in
Lemma 4.6, it is clear that w is the unique viscosity solution of PDE with boundary
condition (δh)+,

−∂tw − g0
(
Dw,D2w

)= 0 on Oε
t .(6.2)

Let K be a smooth nonnegative kernel with unit total mass. For all η > 0, we define
the mollification wη := w ∗ Kη of w. Then wη is smooth, and it follows from a
convexity argument of Krylov [14] that wη is a classical supersolution of

−∂tw
η − g0

(
Dwη,D2wη) ≥ 0 on Oε

t ,
(6.3)

wη = (δh)+ ∗ Kη on ∂Oε
t .

We claim that

w̃η + v2 supersolution of the PDE (E)t,ωε,0 ,
where w̃η := wη + ∥∥wη − (δh)+

∥∥
L∞(∂Qε

t )
.

(6.4)

Then, noting that w̃η + v2 = wη +h2 +‖wη − (δh)+‖L∞(∂Qε
t )

≥ h1 = v1 on ∂Qε
t ,

we deduce from the comparison result of Lemma 3.7 that w̃η + v2 ≥ v1 on Q
ε

t .
Sending η ↘ 0, this implies that w + v2 ≥ v1, which is the required result.

It remains to prove that w̃η + v2 is a supersolution of the PDE (E)t,ωε,0 . Let
(t0, x0) ∈ Oε

t , φ ∈ C1,2(Oε
t ) be such that 0 = (φ − w̃η − v2)(t0, x0) = max(φ −

w̃η − v2). Then it follows from the viscosity supersolution property of v2 that
Lt,ω(φ − w̃η)(t0, x0) ≥ 0. Hence, at the point (t0, x0), by (5.1) and (6.3), we have

Lt,ωφ ≥ Lt,ωφ − Lt,ω(φ − w̃η)
= −∂tw

η − gt,ω(·, φ,Dφ,D2φ
)

+ gt,ω(·, φ − w̃η,D
(
φ − wη),D2(φ − wη))

≥ −∂tw
η − gt,ω(·, φ,Dφ,D2φ

)+ gt,ω(·, φ,D
(
φ − wη),D2(φ − wη))

≥ g0
(
Dwη,D2wη)− α · Dwη − γ :D2wη ≥ 0,

where |α| ≤ L0 and |γ | ≤ L0, thanks to Assumption 3.1. This proves (6.4). �

6.1. Viscosity solutions of a discretized path-frozen PDE. Denote �ε
n :=

�ε
n(0, T ) in (3.1), and by �

ε
n its closure. Under Assumption 3.5 (with N = 1),

clearly one may extend the mapping πn ∈ �ε
n �−→ ξ(ωπn) continuously to the

compact set �
ε
n, and we shall still denote it as ξ(ωπn) for all πn ∈ �

ε
n.

We first construct some stopping times, in light of Definition 2.5. For πn ∈ �ε
n

and (t, x) ∈ Qε
tn

, define the sequence H
ε,πn,t,x
m := Hm as follows: First, H0 := t , and

H1 := inf
{
s ≥ t : |x + Bt

s | = ε
}∧ T ,

Hm+1 := {
s > Hm :

∣∣Bt
s − Bt

Hm

∣∣= ε
}∧ T , m ≥ 1;(6.5)
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πm
n

(
t, x,Bt ) := (

πn,
(
H1, x + Bt

H1

)
,
(
H2,B

t
H2

− Bt
H1

)
, . . . ,(

Hm,Bt
Hm

− Bt
Hm−1

))
.

It is clear that πm
n (t, x,Bt) ∈ �ε

n+m whenever Hm < T .

LEMMA 6.2. {H
ε,πn,t,x
m ,m ≥ 0} satisfies the requirements of Definition 2.5(i)–

(ii), with Em
j = �t in (ii).

PROOF. For notational simplicity, we omit the superscripts ε,πn,t,x . It is clear
that H

Hm,ω
m+1 ∈ HHm(ω) whenever Hm(ω) < T . Next, if Hm(ω) < T for all m, then

|Bt
Hm+1

−Bt
Hm

|(ω) = ε for all m. This contradicts the fact that ω is (left) continuous
at limm→∞ Hm(ω), and thus Hm(ω) = T when m is large enough. Moreover, for
each m,

{Hm < T } ⊂ {∣∣Bt
Hi+1

− Bt
Hi

∣∣= ε, i = 1, . . . ,m − 1
}

⊂
{

m−1∑
i=1

∣∣Bt
Hi+1

− Bt
Hi

∣∣2 ≥ (m − 1)ε2

}
.

Then, for any L > 0,

CL
t [Hm < T ] ≤ 1

(m − 1)ε2E
L

t

[
m−1∑
i=1

∣∣Bt
Hi+1

− Bt
Hi

∣∣2]
(6.6)

≤ CL2

(m − 1)ε2 → 0 as m → ∞.

Similarly one can show that limm→∞ CL
s [Hs,ω

m < T ] = 0 for any (s,ω) ∈ 	t . Fi-
nally, for ω, ω̃ ∈ � and using the notation in Definition 2.5(ii), we have

Hm+1(ω ⊗Hm(ω) ω̃) = T ∧ inf
{
t ≥ Hi (ω) : |ω̃t−Hm(ω)| = ε

}
= T ∧ [

Hm(ω) + H̃(ω̃)
]
,

where H̃(ω̃) := inf{t : |ω̃t | = ε} is independent of ω. Then, given Hn(ω) ≤ Hn(ω
′),

(2.11) follows immediately. �

We next prove the existence of the functions θε
n , as mentioned in Section 4.2,

which allows us to construct classical super and subsolutions in Lemma 6.4 below.

LEMMA 6.3. Let Assumptions 3.1, 3.2(ii), 3.3 and 3.5 with N = 1 hold true.
Then there exists a sequence of continuous functions θε

n : (πn, (t, x)) ∈ �
ε
n+1 �→R,

bounded uniformly in (ε, n), such that

θε
n(πn; ·) is a viscosity solution of (E)

tn,ωπn

ε,0 ;
θε
n(πn; t, x) = ξ

(
ωπn,(t,x)) if t = T ,(6.7)

θε
n(πn; t, x) = θε

n+1
(
πn, (t, x); t,0

)
if |x| = ε.
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PROOF. Step 1. We first prove the lemma in the cases G = g and G = g, as
introduced in (4.5). For any n, denote

θ
ε
n,n(πn; tn,0) := ξ

(
ωπn

)
,

which is continuous for πn ∈ �
ε
n, thanks to Assumption 3.5 (with N = 1). For

m := n − 1, . . . ,0, let θ := θ
ε
n,m(πm; ·) be the unique viscosity solution of the

PDE

Lθ := −∂tθ − g
(
θ,Dθ,D2θ

)= 0 in Qε
tm

,
(6.8)

θ(t, x) = θ
ε
n,m+1

(
πm, (t, x); t,0

)
on ∂Qε

tm
.

Applying Lemma 6.1 repeatedly and recalling Assumption 3.5 (with N = 1) again,
we see that θ

ε
n,m(πm; t, x) are uniformly bounded and continuous in all variables

(πm, t, x). Now for any πm ∈ �
ε
m and (t, x) ∈ Q

ε

tm
, define

θ
ε
m(πm, t, x) := sup

b∈Bt
L0

EL0
t

[
e
∫ T
t br dr lim

n→∞ ξ
(
ωπn−m

m (t,x,Bt ))+ C0

∫ T

t
e
∫ s
t br dr ds

]
.

Then, by (6.6),

∣∣θε
m(πm, t, x) − θ

ε
n,m(πm, t, x)

∣∣≤ CCL0
tm [Hn−m < T ] ≤ C

(n − m − 1)ε2 −→ 0

as n → ∞.

This implies that θ
ε
m(πm; t, x) are uniformly bounded, uniform in (ε,m) and are

continuous in all variables (πm, t, x). Moreover, by stability of the viscosity solu-
tions, we see that

θ
ε
m(πm; ·) is the viscosity solution of PDE (6.8) in Qε

tm

with the boundary condition

θ
ε
m(πm;T ,x) = ξ

(
ωπm,(T ,x)), |x| ≤ ε,

θ
ε
m(πm; t, x) = θ

ε
m+1

(
πm, (t, x); t,0

)
, |x| = ε.

Similarly we may define from g the following θε
m satisfying the corresponding

properties:

θε
m(πm, t, x) := inf

b∈Bt
L0

EL0
t

[
e
∫ T
t br dr lim

n→∞ ξ
(
ωπn−m

m (t,x,Bt ))− C0

∫ T

t
e
∫ s
t br dr ds

]
.

Step 2. We now prove the lemma for G. Given the construction of step 1, define

θ
ε,m
m (πm; t, x) := θ

ε
m(πm; t, x), θε,m

m (πm; t, x) := θε
m(πm; t, x); m ≥ 1.
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For i = m − 1, . . . ,0, by Lemma 3.7 we may define θ
ε,m
i and θ

ε,m
i as the unique

viscosity solution of the PDE (E)ti ,ω
πi

ε,0 with boundary conditions θ
ε,m
i = θ

ε,m
i+1 and

θ
ε,m
i = θ

ε,m
i+1 on ∂Qε

ti
. Note that for (t, x) ∈ ∂Qε

tm
,

θ
ε,m
m (πm; t, x) = θ

ε,m+1
m+1

(
πt,x

m ; t,0
)
, θε,m

m (πm; t, x) = θ
ε,m+1
m+1

(
πt,x

m ; t,0
)
.

Since g ≤ gt,ω ≤ g, it follows from the comparison result of the PDEs defined by
the operators g and g that

θ
ε,m
m (πm; ·) ≥ θ

ε,m+1
m (πm; ·) ≥ θε,m+1

m (πm; ·) ≥ θε,m
m (πm; ·) in Qε

tm
.

Then, by an immediate backward induction, the comparison result of Lemma 3.7
implies

θ
ε,m
i (πi; ·) ≥ θ

ε,m+1
i (πi; ·) ≥ θ

ε,m+1
i (πi; ·) ≥ θ

ε,m
i (πi; ·)

(6.9)
in Qε

ti
, for all i ≤ m.

Denote δθ
ε,m
i := θ

ε,m
i − θ

ε,m
i . For any πi and any (t, x) ∈ Qε

ti
, recall the notation

in (6.5). Applying Lemma 6.1 repeatedly, and following similar but much easier
arguments as those in Lemma 5.5, we see that∣∣δθε,m

i (πi; t, x)
∣∣≤ EL0

t

[∣∣δθε,m
m

(
πm−i

i

(
t, x,Bt ); Hm−i ,0

)∣∣].
Note that δθ

ε,m
i (πi; t, x) = 0 when t = T . Then, by (6.6) again,∣∣δθε,m

i (πi; t, x)
∣∣≤ CCL0

t [Hm−i < T ] ≤ C

(m − i − 1)ε2 → 0 as m → ∞.

Together with (6.9), this implies the existence of θε
i such that θ

ε,m
i ↘ θε

i , θ
ε,m
i ↗

θε
i , as m → ∞. Clearly θε

i are uniformly bounded and continuous. Finally, it fol-
lows from the stability of the viscosity solutions that θε

i satisfies (6.7). �

6.2. Approximating classical super and subsolutions of the PPDE. We now
apply Assumption 3.8 to θε

n to construct smooth approximations of u and u,
namely the uε and uε mentioned in Section 4.2. Define Hε

i := H
ε,(0,0),(0,0)
i , that

is,

Hε
0 := 0 and Hε

n+1 := T ∧ inf
{
t ≥ Hε

n : |Bt − BHε
n
| = ε

}
for all n ≥ 0.

Let π̂n denote the sequence (Hε
i ,BHε

i
)1≤i≤n, and ωε := limn→∞ ωπ̂n . It is clear that∥∥ω − ωε

∥∥
T ≤ 2ε and

∥∥ωπ̂n·∧Hn
− ω

∥∥
Hn+1

≤ 2ε for all n,ω.(6.10)

Recall the common modulus of continuity function ρ0 of G in Assumption 3.2,
and let θε

n be given as in Lemma 6.3. We then approximate θε
0 by a piecewise

smooth processes in C
1,2

(	).
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LEMMA 6.4. Under the conditions of Theorem 4.1, with N = 1 in Assump-

tion 3.5, there exists ψε ∈ C
1,2

(	) bounded from below with corresponding stop-
ping times Hε

n such that

ψε(0,0) = θε
0 (0,0) + ε + Tρ0(2ε),

(6.11)
ψε(T ,ω) ≥ ξ

(
ωε), Lψε ≥ 0 on [0, T ).

PROOF. For notational simplicity, in this proof we omit the superscript ε and
denote θn := θε

n , ψ = ψε etc. Moreover, we extend the domain of θn(πn; ·) to
[tn,∞) ×Rd ,

θn(πn; t, x) := θ
(
πn; t ∧ T ,projOε

(x)
)
,

where projOε
is the orthogonal projection on Oε , the closed centered ball with

radius ε. We shall construct ψ on each [Hn, Hn+1) forwardly, by induction on n.
Step 1. First, let η > 0, λ > 0 be small numbers which will be decided later. Con-

sider PDEs (3.3) and (4.10) on Q
ε,η
0 , and recall the operators L and L at (4.10).

Thanks to Lemma 3.7, let v
η,λ
0 , v

η,λ
0 and v

η,λ
0 denote the unique viscosity solu-

tions of PDEs (E)0,0
ε,η, Lv = 0 and Lv = 0, respectively, with the same boundary

condition θ0 + λ on ∂Q
ε,η
0 .

By comparison, we have v
η,λ
0 ≤ v

η,λ
0 ≤ v

η,λ
0 . Then, by using the estimate in

Lemma 6.1, one can easily show that there exist η0(λ) and C0(λ), which may
depend on L0, λ and the regularity of θ0, such that, for all η ≤ η0(λ),

0 ≤ v
η,λ
0 − θ0 ≤ C0(λ) on Q

ε,η

0 \ Qε
0 with C0(λ) ↘ 0, as λ ↘ 0.

In particular, the above inequalities hold on ∂Qε
0. Then, by the comparison princi-

ple, Lemmas 3.7 and 6.1, we have

0 ≤ v
η,λ
0 − θ0 ≤ C0(λ) in Q

ε,η

0 .

Fix λ0 such that C0(λ0) < ε
4 , and set η0 := η0(λ0). Then v

η0,λ0
0 < θ0 + ε

4 . On the
other hand, by Assumption 3.8, there exists v0 ∈ C1,2(Q

ε,η0
0 ) satisfying

v0(0,0) ≤ v
η0,λ0
0 (0,0) + ε

4
< θ0(0,0) + ε

2
,

L0,0v0 ≥ 0 in Q
ε,η0
0 , v0 ≥ v

η0,λ0
0 on ∂Q

ε,η0
0 .

By the comparison principle and Lemma 3.7, the last inequality on ∂Q
ε,η0
0 implies

that

v0 ≥ v
η0,λ0
0 ≥ θ0 on Q

ε,η0
0 .
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By modifying v0 outside of Q
ε,η0/2
0 and by the monotonicity (5.1), without loss

of generality we may assume v0 ∈ C1,2([0, T ],Rd) with bounded derivatives such
that

v0(0,0) = θ0(0,0) + ε

2
, L0,0v0 ≥ 0 in Qε

0, v0 ≥ θ0 on ∂Qε
0.

We now define

ψ(t,ω) := v0(t,ωt ) + ε

2
+ ρ0(2ε)(T − t), t ∈ [0, H1].(6.12)

Note that (t,ωt ) ∈ Qε
0 for t < H1, (H1,ωH1) ∈ ∂Qε

0, and θ0 is bounded. Then

ψ(0,0) = θ0(0,0) + ε + Tρ0(2ε),
(6.13)

v0(H1,ω) ≥ θ0(H1,ωH1) = θ1(π̂1; H1,0), ψ ≥ −C on [0, H1].
Moreover, by monotonicity (5.1) again, and by Assumption 3.2 and (6.10),

Lψ(t,ω) = ρ0(2ε) − ∂tv0(t,ωt ) − G
(
t,ω,ψ,Dv0(t,ωt ),D

2v0(t,ωt )
)

≥ ρ0(2ε) − ∂tv0(t,ωt ) − G
(
t,ω, v0(t,ωt ),Dv0(t,ωt ),D

2v0(t,ωt )
)

(6.14)
≥ −∂tv0(t,ωt ) − g0,0(t, v0(t,ωt ),Dv0(t,ωt ),D

2v0(t,ωt )
)

= L0,0v0(t,ωt ) ≥ 0 for 0 ≤ t < H1(ω).

Here we use the fact that ∂ω[v0(t,ωt )] = (Dv0)(t,ωt ); see [8], Remark 2.9(i).
Step 2. Let η, λ, δ be small positive numbers which will be decided later. Set

si := (1 − δ)iT , i ≥ 0. Since Oε is compact, there exists a partition D1, . . . ,Dn

such that |y − ỹ| ≤ T δ for any y, ỹ ∈ Dj , j = 1, . . . , n. For each j , fix a point yj ∈
Dj . Now for each (i, j), let v

η,λ
ij denote the unique viscosity solution of the PDE

(E)si ,ω
(si ,yj )

ε,η with the boundary condition v
η,λ
ij (t, x) = θ1(si, yj ; t, x)+ λ on ∂Q

ε,η
si .

Here ω(si ,yj ) denotes the linear interpolation of (0,0), (si, yj ), (T , yj ). Then, by
the same arguments as in step 1, there exist η0(λ) and C0(λ), which may depend
on L0, λ and the regularity of θ1, but independent of δ and (i, j), such that for all
η ≤ η0(λ),

0 ≤ v
η,λ
ij (t, x) − θ1(si, yj ; t, x) ≤ C0(λ) on Q

ε,η

si
\ Qε

si
and

C0(λ) ↘ 0 as λ ↘ 0.

Following the arguments in step 1, we may fix λ0, η0, independently of δ and (i, j),
and there exists vij ∈ C1,2([si, T ],Rd) with bounded derivatives such that

vij (si,0) = θ1(si, yj ; si,0) + ε

4
, Lsi ,ω

(si ,yj )

vij ≥ 0 in Qε
si
,

vij ≥ θ1(si, yj ; ·) on ∂Qε
si
.
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Denote

E1
ij := {si+1 < H1 ≤ si} ∩ {BH1 ∈ Dj } ∈ FH1 .

Here we are using (i, j) instead of j as the index, and clearly E1
ij form a partition

of �. We then define ψ on [H1, H2] in the form of (2.12) with n1 = 2,

ψt :=∑
i,j

[
v0(H1,BH1) + vij (si + t − H1,Bt − BH1) − vij (si,0) + ε

2

]
1E1

ij

(6.15)
+ ρ0(2ε)(T − t), t ∈ [H1, H2].

We show that ψ satisfies all the requirements on [H1, H2] when δ is small enough.
• First, by (6.15), we have

ψH1 =∑
i,j

[
v0(H1,BH1) + ε

2

]
1E1

ij
+ ρ0(2ε)(T − H1)

= v0(H1,BH1) + ε

2
+ ρ0(2ε)(T − H1),

which is consistent with (6.12), and thus ψ is continuous at t = H1.
• We next check, similar to (6.14), that

Lψ(t,ω) ≥ 0, H1 ≤ t < H2.(6.16)

Note that (H1,BH1) ∈ ∂Qε
0 and 0 ≤ si − H1 ≤ si − si+1 = δsi ≤ δT on E1

ij , then

v0(H1,BH1) − vij (si,0) + ε

2
≥ θ1(H1,BH1; H1,0) − θ1(si, yj ; si,0) + ε

4

≥ ε

4
− ρ1(3T δ) on E1

ij ,

where ρ1 is the modulus of continuity function of θ1. In particular, ρ1(3T δ) < ε
4

when δ is small enough. Now on E1
ij , denoting t1 := H1, x := ωH1 , t̃ := si − H1 + t ,

by (5.1), Assumption 3.2(i) and (6.10) again, we have

Lψ(t,ω) ≥ Lψ(t,ω) − Lsi ,ω
(si ,yj )

vij (t̃ , x)

= ρ0(2ε) − G
(
t,ω,ψ(t,ω),Dvij (t̃ , x),D2vij (t̃ , x)

)
+ G

(
t̃ ∧ T ,ω

(si ,yj )
·∧si , vij (t̃ , x),Dvij (t̃ , x),D2vij (t̃ , x)

)
(6.17)

≥ ε

4
− ρ1(3T δ) − G

(
t,ω

π̂1·∧t1
, vij (t̃ , x),Dvij (t̃ , x),D2vij (t̃ , x)

)
+ G

(
t̃ ∧ T ,ω

(si ,yj )
·∧si , vij (t̃ , x),Dvij (t̃ , x),D2vij (t̃ , x)

)
≥ ε

4
− ρ1(3T δ) − ρ0

(
d∞

((
t,ω

π̂1·∧t1

)
,
(
t̃ ∧ T ,ω

(si ,yj )
·∧si

)))
.
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Without loss of generality, assume ε ≤ T . Then

d∞
((

t,ω
π̂1·∧t1

)
,
(
t̃ ∧ T ,ω

(si ,yj )
·∧si

))
≤ |t − t̃ | + sup

0≤s≤T

∣∣∣∣s ∧ t1

t1
x − s ∧ si

si
yj

∣∣∣∣
≤ δT + sup

0≤s≤T

∣∣∣∣s ∧ t1

t1
x − s ∧ t1

t1
yj

∣∣∣∣+ sup
0≤s≤T

∣∣∣∣s ∧ t1

t1
yj − s ∧ si

si
yj

∣∣∣∣
≤ 2δT + ε sup

0≤s≤T

∣∣∣∣s ∧ t1

t1
− s ∧ si

si

∣∣∣∣
= 2δT + ε

[
1 − t1

si

]
≤ 2δT + ε

[
1 − si+1

si

]
= 3δT .

Then Lψ(t,ω) ≥ ε
4 − [ρ0 + ρ1](3T δ). By choosing δ small enough, we ob-

tain (6.16).
• Finally, we emphasize that the bound of vij and its derivatives depend only

on the properties of θ1 (and the η0 which again depends on θ1), but not on (i, j).
Then ψ satisfies Definition 2.5(iii) on [H1, H2]. Moreover, since θ1 is bounded, by
comparison we see that ψ ≥ −C on [H1, H2].

Step 3. Repeating the arguments, we may define ψ on [Hn, Hn+1] for all n. From

the construction and recalling Lemma 6.2, we see that ψ ∈ C
1,2

(	) bounded from
below, ψ(0,0) = θ0(0,0)+ε+Tρ0(2ε) and Lψ ≥ 0 on [0, T ). Finally, since Hn =
T when n is large enough, we see that ψ(T ,ω) = ψ(Hn(ω),ω) ≥ θn(ω

ε) = ξ(ωε).
�

Now we are ready to prove the main result of this section.

PROOF OF PROPOSITION 4.4. For any ε > 0, let Hε
n, n ≥ 0 and ψε be as in

Lemma 6.4, and define ψ
ε := ψε + ρ0(2ε). Then clearly ψ

ε ∈ C
1,2

(	), ψ
ε

is
bounded from below, and

ψ
ε
(T ,ω) − ξ(ω) = ψε(T ,ω) + ρ0(2ε) − ξ(ω) ≥ ξ

(
ωε)− ξ(ω) + ρ0(2ε) ≥ 0,

where the last inequality follows from (6.10). Moreover, for t ∈ [Hn, Hn+1),
by (5.1) again,

Lψ
ε
(t,ω) = −∂tψ

ε(t,ω) − G
(
t,ω,ψε + ρ0(2ε), ∂ωψε, ∂2

ωωψε)
≥ −∂tψ

ε(t,ω) − G
(
t,ω,ψε, ∂ωψε, ∂2

ωωψε)= Lψε(t,ω) ≥ 0.

Then by the definition of u we see that

u(0,0) ≤ ψ
ε
(0,0) = ψε(0,0) + ρ0(2ε) ≤ θε

0 (0,0) + ε + (T + 1)ρ0(2ε).
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Similarly, u(0,0) ≥ θε
0 (0,0) − ε − (T + 1)ρ0(2ε). This implies that

u(0,0) − u(0,0) ≤ 2
(
ε + (T + 1)ρ0(2ε)

)
.

Since ε > 0 is arbitrary, this shows that u(0,0) = u(0,0). Similarly we can show
that u(t,ω) = u(t,ω) for all (t,ω) ∈ 	. �

Fo later use, we conclude this section with a complete well-posedness result for
a special PPDE.

COROLLARY 6.5. Let G(t,ω, y, z, γ ) = g(y, z, γ ) satisfy Assumptions 3.1
and 3.2, and assume that ξ satisfies Assumptions 3.3 and 3.5 with N = 1. Then
u = u and is the unique viscosity solution of the PPDE (2.14).

PROOF. We first observe that g satisfies Assumption 3.2(i). We shall prove in
Proposition 8.2 below that it also satisfies Assumption 3.8. Then it follows from
the last proof that u = u. Moreover, the process w introduced in (4.9) is a viscosity
solution of PPDE (2.14) with terminal condition ξ . Then it follows from the partial
comparison of Proposition 4.2 that u ≤ w ≤ u, hence equality. �

7. Viscosity properties of u and u. This section is devoted to the proof of
Proposition 4.3. The idea is similar to the corresponding result in the PDE liter-
ature, and in spirit is similar to the stability of the viscosity solutions as in [8],
Theorem 5.1. However, we shall first establish the required regularities of u and u.

LEMMA 7.1. Under Assumptions 3.1 and 3.3, the processes u,u are bounded.

PROOF. We shall only prove the result for u, the proof for u being similar. Fix
(t,ω), and set

ψ(s, ω̃) := C0(L0 + 1)e(L0+1)(T −s).

Then ψ ∈ C1,2(	t) ⊂ C
1,2

(	t), ψ ≥ 0, ψT ≥ C0(L0 + 1) ≥ C0 ≥ ξ t,ω, and we
compute that

(Lψ)t,ωs = (L0 + 1)ψs − Gt,ω(·,ψs,0,0) ≥ ψs − Gt,ω(·,0,0,0)

≥ C0(L0 + 1) − C0 ≥ 0.

This implies that ψ ∈ Dξ

T (t,ω), and thus u(t,ω) ≤ ψ(t,0).
On the other hand, by similar arguments one can show that −ψ is a classi-

cal subsolution of PPDE (2.14) satisfying −ψT ≤ ξ t,ω. Then by partial compar-
ison Proposition 4.2, u(t,ω) ≥ −ψ(t,0). Hence |u(t,ω)| ≤ ψ(t,0) ≤ C0(L0 +
1)e(L0+1)T . �

We next prove that u and u satisfy a partial dynamic programming principle.
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LEMMA 7.2. Under Assumptions 3.1 and 3.3, for 0 ≤ t1 < t2 ≤ T , we have

u(t1,ω) ≥ inf
{
ψt1 :ψ ∈Dut2

t2
(t1,ω)

}
, u(t1,ω) ≤ sup

{
ψt1 :ψ ∈ D

ut2
t2

(t1,ω)
}
.

PROOF. We only prove the result for u. For any arbitrary ψ ∈ Dξ

T (t1,ω),

notice that ψt2,ω
′ ∈ C

1,2
(	t2) and ψt2(ω

′) ≥ u
t1,ω
t2

(ω′) for any ω′ ∈ �t1 . Then

ψ ∈ Dut2
t2

(t1,ω), and the result follows. �

The next result shows that the functions u,u are uniformly continuous. We ob-
serve that with this regularity in hand, and following standard techniques, we may
prove that the equality holds in Lemma 7.2, so that u,u satisfy a dynamic program-
ming principle. However, this is not needed for the present analysis. Moreover, the
result is true in degenerate case c0 = 0 as well.

LEMMA 7.3. Under Assumptions 3.1, 3.2(ii) and 3.3, we have u,u ∈ UCb(	).

PROOF. We only prove the result for u.
(i) We first prove that u is uniformly continuous in ω, uniformly in t . For t ∈

[0, T ] and ω1,ω2 ∈ �, denote δ := ‖ω1 − ω2‖t . For ψ1 ∈ Dξ

T (t,ω1), define

ψ2(s, ω̃) := ψ1(s, ω̃) + ψ(s) where ψ(s) := e(L0+1)(T −s)[ρ0(δ) + δ
]
.

Notice that e−(L0+1)s = e−(L0+1)Hi e−(L0+1)(s−Hi ), and one can easily check that

ψ2 ∈ C
1,2

(	t) with the same Hi as those of ψ1. Moreover, ψ2 is bounded from
below, and

ψ2
T = ψ1

T + ψT ≥ ξ
t,ω1

T + ρ0(δ) ≥ ξ t,ω2;(
Lψ2)t,ω2

s ≥ (
Lψ2)t,ω2

s − (
Lψ1)t,ω1

s

= (L0 + 1)ψs − Gt,ω2(
s, ·,ψ2, ∂ωψ1, ∂2

ωωψ1)
+ Gt,ω1(

s, ·,ψ1, ∂ωψ1, ∂2
ωωψ1)

≥ (L0 + 1)ψs − ρ0(δ) − L0ψs = ψs − ρ0(δ) ≥ δ > 0.

Then ψ2 ∈ Dξ

T (t,ω2), and therefore u(t,ω2) ≤ ψ2(t,0), implying that

u
(
t,ω2)− ψ1(t,0) ≤ ψ2(t,0) − ψ1(t,0) = e(L0+1)(T −t)[ρ0(δ) + δ

]
≤ C

[
ρ0(δ) + δ

]
.

Since ψ1 ∈ Dξ

T (t,ω1) is arbitrary, we obtain u(t,ω2) − u(t,ω1) ≤ C[ρ0(δ) + δ].
By symmetry, this shows the required uniform continuity of u in ω, uniformly in t .
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(ii) We now prove that −u satisfies (2.4). Fix t1 < t2 ≤ T , and consider the
process

w(t,ω) := inf
b∈Bt

L0

EL0,c0
t

[
e
∫ t2
t br dru

(
t2,ω ⊗t Bt )− C0

∫ t2

t
e
∫ s
t br dr ds

]
,

(7.1)
(t,ω) ∈ [0, t2] × �.

By (4.9), w is a viscosity solution of the PPDE

Lw := −∂tw − g
(
w,∂ωw, ∂2

ωωw
)= 0,

(7.2)
t ∈ [0, t2),ω ∈ �,w(t2,ω) = u(t2,ω).

Recalling (4.6) and applying partial comparison principle Proposition 4.2 on

PPDE (7.2), we see that ψt1 ≥ w(t1,ω) for any ψ ∈ Dut2
t2

(t1,ω). Then u(t1,ω) ≥
w(t1,ω), and thus

u(t2,ω) − u(t1,ω)

≤ u(t2,ω) − w(t1,ω)

= sup
b∈Bt1

L0

EL0,c0
t1

[
u(t2,ω) − e

∫ t2
t1

br dr
u
(
t2,ω ⊗t1 Bt1

)+ C0

∫ t2

t1

e
∫ s
t1

br dr
ds

]
.

Then it follows from (i) and Lemma 7.1 that

u(t2,ω) − u(t1,ω)

≤ C(t2 − t1) + CEL0,c0
t1

[∣∣u(t2,ω) − u
(
t2,ω ⊗t1 Bt1

)∣∣]
≤ C(t2 − t1) + CEL0,c0

t1

[
ρ
(
d∞

(
(t1,ω), (t2,ω)

)+ ∥∥Bt1
∥∥
t2

)]
,

where ρ is the modulus of continuity of u(t2, ·). Now it is straightforward to check
that −u satisfies (2.4).

(iii) We finally prove that u satisfies (2.4). This, together with Lemma 7.1

and (ii), implies that u ∈ UCb(	). For t1 < t2, ω ∈ � and ψ2 ∈ Dξ

T (t2,ω), define

ξt2(ω̃) := ψ2(t2,0) + eL0(T −t2)ρ0
(
d∞

(
(t1,ω), (t2,ω)

)+ ‖ω̃‖t2

)
, ω̃ ∈ �t2

and

w(t, ω̃) := sup
b∈Bt

L0

EL0,c0
t

[
e
∫ t2
t br drξt2

(
t2, ω̃ ⊗t Bt )+ C0

∫ t2

t
e
∫ s
t br dr ds

]
,

(7.3)
(t, ω̃) ∈ [t1, t2] × �t1 .



2544 I. EKREN, N. TOUZI AND J. ZHANG

By Lemma 7.1, we may assume without loss of generality that |ψ2(t2,0)| ≤ C.
Then ∣∣w(t1,0) − ψ2(t2,0)

∣∣
≤ C(t2 − t1) + CEL0,c0

t1

[
ρ0
(
d∞

(
(t1,ω), (t2,ω)

)+ ∥∥Bt1
∥∥
t2

)]
(7.4)

≤ Cρ
(
d∞

(
(t1,ω), (t2,ω)

))
,

for some modulus of continuity ρ.
By (4.9), the process w is a viscosity solution of the PPDE

Lw := −∂tw − g
(
w,∂ωw, ∂2

ωωw
)= 0,

(7.5)
(t, ω̃) ∈ [t1, t2) × �t1 and w(t2, ·) = ξt2 .

Notice that ξt2 satisfies the conditions of Corollary 6.5, and therefore w = (w),
where (w) is defined for PPDE (7.5) in the spirit of (4.1). Then for any ε > 0,

there exists ψ0 ∈ C
1,2

(	t1) bounded from below such that

ψ0(t1,0) ≤ w(t1,0) + ε,

ψ0(t2, ω̃) ≥ w(t2, ω̃) and(7.6)

−∂tψ
0 − g

(
ψ0, ∂ωψ0, ∂2

ωωψ0)≥ 0.

Therefore, for t ∈ [t1, t2), by (4.5) and (4.6), we have

Lψ0 = −∂tψ
0 − G

(·,ψ0, ∂ωψ0, ∂2
ωωψ0)

(7.7)
≥ g0

(
ψ0, ∂ωψ0, ∂2

ωωψ0)− G
(·,ψ0, ∂ωψ0, ∂2

ωωψ0)≥ 0.

Now define ψ1 on 	t1 by

ψ1(t, ω̃) := ψ0(t, ω̃)1[t1,t2)(t)
(7.8)

+ [
ψ2(t, ω̃t2

)+ (
ψ0(t2, ω̃) − ψ2(t2,0)

)
eL0(t2−t)]1[t2,T ](t),

where ω̃
t2
s := ω̃s − ω̃t2 for ω̃ ∈ �t1 and s ∈ [t2, T ]. Since ψ0,ψ2 and −ψ2(t2,0)

are bounded from below, then so is ψ1. We shall prove in (iv) below that

ψ1 ∈ C
1,2

(	t1). Then it follows from (7.5) and (7.6) that ψ0(t2, ω̃) ≥ w(t2, ω̃) ≥
ψ2(t2,0), and thus ψ1(t, ω̃) ≥ ψ2(t, ω̃t2) for t ≥ t2. Then, for t ∈ [t2, T ],

Lψ1 = −∂tψ
2 + L0

(
ψ1 − ψ2(t, ω̃t2

))− G
(·,ψ1, ∂ωψ2, ∂2

ωωψ2)
≥ L0

(
ψ1 − ψ2(t, ω̃t2

))+ G
(·,ψ2, ∂ωψ2, ∂2

ωωψ2)
(7.9)

− G
(·,ψ1, ∂ωψ2, ∂2

ωωψ2)
≥ 0.
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Moreover, by (7.8), (7.6) and (7.5),

ψ1(T , ω̃) ≥ ψ2(T , ω̃t2
)+ (

w(t2, ω̃) − ψ2(t2,0)
)
eL0(t2−T )

≥ ξ t2,ω
(
ω̃t2

)+ ρ0
(
d∞

(
(t1,ω), (t2,ω)

)+ ‖ω̃‖t2

)≥ ξ t1,ω(ω̃).

This, together with (7.7) and (7.9), implies that ψ1 ∈ Dξ

T (t1,ω). Then it follows
from (7.6) and (7.4) that

u(t1,ω) ≤ ψ1(t1,0) = ψ0(t1,0) ≤ w(t1,0) + ε

≤ ψ2(t2,0) + Cρ
(
d∞

(
(t1,ω), (t2,ω)

))+ ε.

Since ψ2 ∈ Dξ

T (t2,ω) and ε > 0 are arbitrary, this provides (2.4).

(iv) It remains to verify that ψ1 ∈ C
1,2

(	t1). Let H0
i ,E

0,i
j correspond to ψ0 and

H2
i ,E

2,i
j correspond to ψ2 in Definition 2.5. Define a random index

I := inf
{
i : H0

i ≥ t2
}
.

Set H1
i := H0

i for i < I and H1
i (ω) := H2

i−I (ω
t2) for i ≥ I . Moreover, set E

1,i
2j−1 :=

E
0,i
j ∩ {I > i} and E

1,i
2j := E

2,i−I
j ∩ {I ≤ i}, j ≥ 1.

Noting that H1
i+1 = H0

i+1 ∧ t2 whenever H0
i < t2, it is clear that H1

i are F-stopping

times and (H1)
H1

i (ω),ω

i+1 ∈ HH1
i (ω) whenever H1

i (ω) < T . From the construction of

E
1,i
j one can easily see that {E1,i

j , j ≥ 1} ⊂ FH1
i

and form a partition of �t1 . More-

over, since on each E
1,i
j , either H1

i = H0
i or H1

i = H2
i−I , Definitions 2.5(ii)–(iv) are

obvious.
It remains to prove{

i : H1
i < T

}
is finite and lim

i→∞CL
t

[(
H1

i

)t,ω
< T

]= 0
(7.10)

for any (t,ω) ∈ 	t1 .

Notice that, denoting by [ i
2 ] the largest integer below i

2 ,

{
H1

i < T
}=

{
H1

i < T , I >

[
i

2

]}
∪
{

H1
i < T , I ≤

[
i

2

]}
⊂ {

H0[i/2] < t2
}∪ {

ω ∈ �t1 : H2[i/2]
(
ωt2

)
< T

}
.

Then {i : Hi (ω) < T } is finite for all ω. Furthermore, for any L > 0 and P ∈P t1
L ,

P
[
H1

i < T
]≤ P

[
H0[i/2] < t2

]+ P
[{

ω ∈ �t1 : H2[i/2]
(
ωt2

)
< T

}]
≤ CL

t1

[
H0[i/2] < T

]+EP
[
Pt2,ω

[
H2[i/2] < T

]]
≤ CL

t1

[
H0[i/2] < T

]+ CL
t2

[
H2[i/2] < T

]
,
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and thus

lim
i→∞CL

t1

[
H1

i < T
]≤ lim

i→∞
[
CL

t1

[
H0[i/2] < T

]+ CL
t2

[
H2[i/2] < T

]]= 0.

Similarly one can show (7.10) for any (t,ω) ∈ 	t1 . �

PROOF OF PROPOSITION 4.3. In view of Lemmas 7.1 and 7.3, it remains to
prove that u and u are the viscosity L0-supersolution and subsolution, respectively,
of PPDE (2.14). Without loss of generality, we may assume that the generator G

satisfies (5.1), and we prove only that u is a viscosity L0-supersolution at (0,0).

Assume to the contrary that there exists ϕ ∈ AL0
u(0,0) such that −c :=

Lϕ(0,0) < 0. Following the proof of the partial dynamic programming principle

of Lemma 7.2, we observe that for any ψ ∈ Dξ

T (0,0) and any (t,ω) ∈ 	, it is clear

that ψt,ω ∈ Dξ

T (t,ω) and then ψ(t,ω) ≥ u(t,ω). By the definition of u in (4.1),

there exist ψn ∈ C
1,2

(	) such that

δn := ψn(0,0) − u(0,0) ↓ 0 as n → ∞,
(7.11) (

Lψn)
s ≥ 0 and ψn

s ≥ us, s ∈ [0, T ].
Let H be the hitting time required in AL0

u(0,0), and since ϕ ∈ C1,2(	) and u ∈
UCb(	) ⊂ U , without loss of generality, we may assume

Lϕ(t,ω) ≤ −c

2
and |ϕt − ϕ0| + ut − u0 ≤ c

6L0
,

(7.12)
for all t ≤ H.

We emphasize that the above H is independent of n. Now let {Hn
i , i ≥ 1} correspond

to ψn ∈ C
1,2

(	). Since ϕ ∈ AL0
u(0,0), this implies for all P ∈ PL0 and n, i that

0 ≥ EP[(ϕ − u)H∧Hn
i

]≥ EP[(ϕ − ψn)
H∧Hn

i

]
.(7.13)

Recall the processes αP, βP in the definition of P ∈ PL [see (2.5)], and denote
GPφ := αP · ∂ωφ + 1

2(βP)2 : ∂2
ωωφ. Then, applying functional Itô formula in (7.13)

and recalling that ψn is a semi-martingale on [0, Hn
i ], it follows from (7.11) that

δn ≥ EP[ψn
0 − ψn

H∧Hn
i
+ ϕH∧Hn

i
− ϕ0

]
= EP

[∫ H∧Hn
i

0

(
∂t + GP

)(
ϕ − ψn)ds

]

≥ EP

[∫ H∧Hn
i

0

(
c

2
− G

(·, ϕ, ∂ωϕ, ∂2
ωωϕ

)+ G
(·,ψn, ∂ωψn, ∂2

ωωψn)
+ GP

(
ϕ − ψn))ds

]
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≥ EP

[∫ H∧Hn
i

0

(
c

2
− G

(·, ϕ, ∂ωϕ, ∂2
ωωϕ

)+ G
(·, u, ∂ωψn, ∂2

ωωψn)
+ GP(ϕ − ψn))ds

]
,

where the last inequality follows from (5.1) and the fact that u ≤ ψn by (7.11).
Since ϕ0 = u0, by (7.12) and (5.1), we get

δn ≥ EP

[∫ H∧Hn
i

0

(
c

3
− G

(·, u0, ∂ωϕ, ∂2
ωωϕ

)+ G
(·, u0, ∂ωψn, ∂2

ωωψn)
+ GP(ϕ − ψn))ds

]
.

Now let η > 0 be a small number. For each n, define τn
0 := 0, and

τn
j+1 := H ∧ inf

{
t ≥ τn

j :ρ0
(
d∞

(
(t,ω),

(
τn
j ,ω

)))+ ∣∣∂ωϕ(t,ω) − ∂ωϕ
(
τn
j ,ω

)∣∣
+ ∣∣∂2

ωωϕ(t,ω) − ∂2
ωωϕ

(
τn
j ,ω

)∣∣+ ∣∣∂ωψn(t,ω) − ∂ωψn(τn
j ,ω

)∣∣
+ ∣∣∂2

ωωψn(t,ω) − ∂2
ωωψn(τn

j ,ω
)∣∣≥ η

}
.

Recalling Definitions 2.5(iii)–(iv), we see the uniform regularity of ψn on [0, Hn
i ]

for each i. Then, together with the smoothness of G and ϕ, one can easily check
that τn

j ↑ H as j → ∞. Thus

δn ≥
[
c

3
− Cη

]
EP

[
H ∧ Hn

i

]
+ ∑

j≥0

EP[(τn
j+1 ∧ Hn

i − τn
j ∧ Hn

i

)
× (

G
(·, u0, ∂ωψn, ∂2

ωωψn)− G
(·, u0, ∂ωϕ, ∂2

ωωϕ
)

+ GP(ϕ − ψn))
τn
j

]
=
[
c

3
− Cη

]
EP

[
H ∧ Hn

i

]
+ ∑

j≥0

EP

[(
τn
j+1 ∧ Hn

i − τn
j ∧ Hn

i

)
×
(
ατn

j
· ∂ω

(
ψn − ϕ

)+ 1

2
β2

τn
i

: ∂2
ωω

(
ψn − ϕ

)+ GP(ϕ − ψn)
τn
j

)]
for some appropriate ατn

j
, βτn

j
. Now choose Pn ∈ PL0 such that α

Pn
t = ατn

j
, β

Pn
t =

βτn
j

for all τn
j ≤ t < τn

j+1. Then δn ≥ [ c
3 − Cη]EPn[H ∧ Hn

i ]. Set η := c
6C

, send

i → ∞ and recall from Definition 2.5 that limi→∞ CL0
0 (Hn

i < T ) = 0. This leads to
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δn ≥ c
6E

Pn[H] ≥ EL0
0 [H], and by sending n → ∞, we obtain EL0

0 [H] = 0. However,
since H ∈ H, by [8], Lemma 2.4, we have EL0[H] > 0. This is a contradiction. �

8. On Assumptions 3.8 and 3.2(i).

8.1. Sufficient conditions for Assumption 3.8. In this subsection we discuss
the validity of our Assumption 3.8 which is clearly related to the classical Perron
approach, the key argument for the existence in the theory of viscosity solutions,
as shown by Ishii [13]. However, our definition of v and v involves classical su-
persolutions and subsolutions, while the classical definition in [13] involves vis-
cosity solutions. We remark that Fleming and Vermes [10, 11] have some stud-
ies in this respect. The main issue here is to approximate viscosity solutions by
classical supersolutions or subsolutions. This is a difficult problem which requires
some restrictions on the nonlinearity. In this section, we provide some sufficient
conditions, and we hope to address this issue in a more systematic way in future
research.

For ease of presentation, we first simplify the notation in Assumption 3.8. Let

O := {
x ∈Rd : |x| < 1

}
, O := {

x ∈ Rd : |x| ≤ 1
}
,

∂O := {
x ∈Rd : |x| = 1

};
(8.1)

Q := [0, T ) × O, Q := [0, T ] × O,

∂Q := ([0, T ] × ∂O
)∪ ({T } × O

)
.

We shall consider the following (deterministic) PDE on Q:

Lv := −∂tv − g
(
s, x, v,Dv,D2v

)= 0 in Q and
(8.2)

v = h on ∂Q.

We remark that in (3.3) the generator g is independent of x.

ASSUMPTION 8.1. (i) g and h are continuous in (t, x);
(ii) g is uniformly Lipschitz continuous in (y, z, γ ) and uniformly elliptic in γ .

As in Lemma 3.7, under the above assumption, we see that PDE (8.2) has a
unique viscosity solution v, and the comparison principle holds in the sense of
viscosity solutions within the class of bounded functions. Define

v(t, x) := inf
{
w(t, x) :w classical supersolution of PDE (8.2)

}
,

v(t, x) := sup
{
w(t, x) :w classical subsolution of PDE (8.2)

}
.

By the comparison principle we have v ≤ v ≤ v.
Denote Sd+ := {γ ∈ Sd :γ ≥ 0}. The following proposition is the main result of

this section:
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PROPOSITION 8.2. Under Assumption 8.1, we have v = v if g is either convex
in γ or the dimension d ≤ 2.

PROOF. For the case d ≤ 2 we refer to Pham and Zhang [17]. Below, we prove
the result only for the case when g is convex in γ . As in (5.1), we assume without
loss of generality that

g(·, y1, ·) − g(·, y2, ·) ≤ y2 − y1 for all y1 ≥ y2.(8.3)

For any α > 0, we define Oα := {x ∈ Rd : |x| < 1 + α}, Qδ := [0, (1 + α)T ) ×
Oα , and similar to (8.1), define their closures and boundaries. Let μ,η be smooth
mollifiers on Q and Q1 ×R×Rd × Sd , and define for any α′ > 0,

hα(t, x) := (h ∗ μα)

(
t

1 + α
,

x

(1 + α)

)
, (t, x) ∈ Q

α
,

g0(t, x, y, z, γ ) := min
(t ′,x′)∈Q

{
g
(
t ′, x′, y, z, γ

)+ 2ρ0
(∣∣t − t ′

∣∣+ ∣∣x − x′∣∣)},
gα′ := (g0 ∗ ηα′), (t, x, y, z, γ ) ∈ Q1 ×R×Rd × Sd .

By the uniform continuity of g, we have c(α′) := ‖g − gα′‖∞ → 0 as α′ ↘ 0. Set

g
α′ := gα′ − c

(
α′) and gα′ := gα′ + c

(
α′).

By our assumptions on g and h, it follows from Theorem 14.15 of Lieberman [15]
that there exist vα,α′, vα,α′ ∈ C1,2(Qα) ∩ C(Q

α
) solutions of the equations

(Eα,α′) :−∂tv − g
α′
(·, v,Dv,D2v

)= 0 in Qα and v = hα on ∂Qα,

(Eα,α′) :−∂tv − gα′
(·, v,Dv,D2v

)= 0 in Qα and v = hα on ∂Qα,

respectively. In particular, their restriction to Q are in C1,2(Q). By the comparison
principle, vα,α′ ≤ vα,α′ . Moreover, it follows from (8.3) that

gα′
(·, y + 2c

(
α′), ·)≤ gα′(·, y, ·) − 2c

(
α′)= g

α′(·, y, ·).
This shows that vα,α′ + 2c(α′) is a classical supersolution of (Eα,α′), and therefore

vα,α′ + 2c
(
α′)≥ vα,α′ ≥ vα,α′ .

Additionally, notice that the solutions vα,α′, vα,α′ are bounded uniformly in α,α′
for α,α′ small enough. The generators g

α′, gα′ have the same uniform elliptic-
ity constants as g, and they verify the hypothesis of Theorem 14.13 of Lieber-
mann [15] uniformly in α′. Therefore vα,α′, vα,α′ are Lipschitz continuous with
the same Lipshitz constant for all α,α′. Then, denoting hα,α′ := vα,α′ |∂Q and
hα,α′ := vα,α′ |∂Q, this implies that

c
(
α,α′) := max

{‖hα,α′ − h‖∞,‖hα,α′ − h‖∞
}−→ 0

as α → 0, uniformly in α′.
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Now for fixed ε > 0, choose α0, α
′
0 > 0 so that c(α0, α

′) < ε/4 for all α′ > 0, and
c(α′

0) ≤ ε/4. Then wα0,α
′
0
:= vα0,α

′
0
+ c(α0, α

′
0) and wα0,α

′
0
:= vα0,α

′
0
− c(α0, α

′
0)

are respectively the classical supersolution and subsolution of (8.2) on Q. Thus
wα0,α

′
0
≤ v and wα0,α

′
0
≥ v. Therefore,

v − v ≤ wα0,α
′
0
− wα0,α

′
0
= vα0,α

′
0
− vα0,α

′
0
+ 2c

(
α0, α

′
0
)≤ 2c

(
α′

0
)+ 2c

(
α0, α

′
0
)

≤ ε.

Then it follows from the arbitrariness of ε that v = v. �

8.2. A weaker version of Assumption 3.2(i). We remark that, while seemingly
reasonable, the uniform continuity of G in (t,ω) is violated even for semilinear
PPDEs when the diffusion coefficient σ depends on (t,ω). In this subsection we
weaken the uniform regularity in Assumption 3.2 slightly so as to fit into the frame-
work of Pham and Zhang [17], which deals with path-dependent Bellman–Isaacs
equations associated to stochastic differential games.

ASSUMPTION 8.3. There exist a modulus of continuity functions ρ0, ρ̃0 such
that, for any (t,ω), (t̃, ω̃) ∈ 	 and any (y, z, γ ),∣∣G(t,ω, y, z, γ ) − G(t̃, ω̃, y, z, γ )

∣∣
≤ ρ̃0

(|t − t̃ |)[|z| + |γ |]+ ρ0
(
d∞

(
(t,ω), (t̃, ω̃)

))
.

Recall the parameters ε, δ, η0 and the functions vij introduced in the proof of
Lemma 6.4. Notice that Assumption 3.2 is used only in the proof of Lemma 6.4,
more precisely in (6.14) and (6.17). We also note that the smooth functions vij are
typically constructed as the classical solution to some PDE, as in Section 8 and
in [17], and thus satisfy certain estimates. Assume the following:

There exists a constant Cη0 > 0, which may depend on η0 (and ε), but
is independent of δ, such that |Dvij (t, x)| ≤ Cη0, |D2vij (t, x)| ≤ Cη0

for all (t, x) ∈ Q
ε

0.

(8.4)

We claim that Lemma 6.4, hence our main result, Theorem 4.1, still holds true if
we replace Assumption 3.2 by (8.4) and Assumption 8.3.

Indeed, in (6.14), note that

G
(
t,ω,

(
v0,Dv0,D

2v0
)
(t,ωt )

)− g0,0(t, (v0,Dv0,D
2v0

)
(t,ωt )

)
= G

(
t,ω,

(
v0,Dv0,D

2v0
)
(t,ωt )

)− G
(
t,0,

(
v0,Dv0,D

2v0
)
(t,ωt )

)≤ ρ0(ε),

thanks to Assumption 8.3. Thus we still have (6.14).
To see (6.17) under our new assumption, we first note that as in (6.17) and

by (5.1),

Lψ(t,ω) ≥ ρ0(2ε) + ε

4
− ρ1(3T δ) − G

(
t,ω, vij (t̃ , x),Dvij (t̃ , x),D2vij (t̃ , x)

)
+ G

(
t̃ ∧ T ,ω

(si ,yj )
·∧si , vij (t̃ , x),Dvij (t̃ , x),D2vij (t̃ , x)

)
.
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Now by Assumption 8.3 and (8.4) we have, at (t̃ , x) ∈ Q
ε

0,

G
(
t,ω, vij ,Dvij ,D

2vij

)− G
(
t̃ ∧ T ,ω

(si ,yj )
·∧si , vij ,Dvij ,D

2vij

)
= G

(
t,ω, vij ,Dvij ,D

2vij

)− G
(
t,ω

π̂1·∧t1
, vij ,Dvij ,D

2vij

)
+ G

(
t,ω

π̂1·∧t1
, vij ,Dvij ,D

2vij

)− G
(
t̃ ∧ T ,ω

(si ,yj )
·∧si , vij ,Dvij ,D

2vij

)
≤ ρ0

(∥∥ω − ω
π̂1·∧t1

∥∥
t

)+ ρ̃0
(|t − t̃ ∧ T |)[|Dvij | +

∣∣D2vij

∣∣]
+ ρ0

(
d∞

((
t,ω

π̂1·∧t1

)
,
(
t̃ ∧ T ,ω

(si ,yj )
·∧si

)))
≤ ρ0(2ε) + Cη0 ρ̃0(T δ) + ρ0

(
d∞

((
t,ω

π̂1·∧t1

)
,
(
t̃ ∧ T ,ω

(si ,yj )
·∧si

)))
.

Thus

Lψ(t,ω) ≥ ε

4
− ρ1(3T δ) − Cη0 ρ̃0(T δ) − ρ0

(
d∞

((
t,ω

π̂1·∧t1

)
,
(
t̃ ∧ T ,ω

(si,yj )
·∧si

)))
.

Substituting this inequality to (6.17), we see that the rest of the proof of Lemma 6.4
remains the same.

8.3. Concluding remarks. We now summarize the conditions under which we
have the complete wellposedness result.

THEOREM 8.4. Assume the following hold true:

• Assumptions 3.1 and 3.2(ii);
• Assumptions 3.3 and 3.5 or, more specifically, the sufficient conditions of

Lemma 3.6;
• G is either convex in γ or the dimension d ≤ 2;
• Assumption 3.2(i), or more generally, Assumption 8.3 and (8.4).

Then the results of Theorem 4.1 hold true.

We conclude with some final remarks on our assumptions. We first note that the

highly technical requirements of the space C
1,2

(	) are needed only in the proofs,
and are not part of our assumptions. Assumptions 3.1 and 3.3 are more or less
standard, and are in fact the conditions used in [8]. In particular, due to the failure

of the dominated convergence theorem under EPL , the regularity of the involved
processes become crucial, and some assumptions on regularity of data are more or
less necessary.

Assumption 3.5 on the additional structure of ξ is purely technical, due to our
current approach. Indeed, in situations where we have a representation for the vis-
cosity solution, for example, in the semilinear case, as in [8], Section 7, this as-
sumption is not needed. We believe this assumption can also be removed if we
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consider path-dependent HJB equations where the function θε
n in Lemma 6.3 can

be constructed directly via second-order BSDEs.
The uniform continuity of G in (t,ω) in Assumption 3.2(i) excludes the depen-

dence of the diffusion coefficient σ on (t,ω) for stochastic control or stochastic
differential game problems (see [8], Section 4 and [17]) and thus is not desirable.
This is due to our approach of approximating PPDEs by path-frozen PDEs. This
assumption may not be needed if we do not use this approximation.

The uniform nondegeneracy of G in Assumption 3.2(ii) is of course serious, as
in PDE literature.

Finally, Assumption 3.8 is crucial in our current approach. For path-dependent
HJB equations, namely when G is convex in γ , we have, more or less, complete
results in the uniformly nondegenerate case. However, in the present paper we
verify this assumption by the existence of classical solutions of the mollified path-
frozen PDE. Unfortunately, for Bellman–Isaacs equations, we are able to obtain
classical solutions only when d ≤ 2; see [17]. It will be very interesting to explore
more PDE estimates to see if we can verify Assumption 3.8 directly without getting
into classical solutions of high-dimensional Bellman–Isaacs equations.

We note that the essential point of our whole argument is to find approxima-

tions uε,uε ∈ C
1,2

(	) such that Luε ≥ 0 ≥ Luε . Assumptions 3.2, 3.5 and 3.8
all serve this purpose. There is potentially an alternative way to prove the com-
parison principle directly. Let u1 be a viscosity subsolution and u2 a viscosity
supersolution such that u1

T ≤ u2
T . Instead of mollifying the PDE to obtain classical

solutions, we may try to mollify ui directly so that the corresponding ui,ε will be
automatically smooth (in some appropriate sense). In fact, in the PDE literature,
the convex/concave convolution exactly serves this purpose. However, in this case,
the main challenge is that we need to check that u1,ε is a classical subsolution, and
u2,ε a classical supersolution, which, if true, will imply the comparison immedi-
ately. It will be interesting to explore this approach as well in future research.
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