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$0$ . Introduction.

In this paper, we investigate existenoe and uniqueness of viscosity solutions of

Hamilton-Jacobi equations in infinite dimensions. We will be concemed with the Cauchy

problem

$\{_{u(0,x)=u_{0}(x)}^{u_{t}+H(t,x,Du)=0}$ $onon$ $(0,.T$
]

$\times XX$ (0.1)

Here $X$ is a Banach space, $T$ is a given positive number, $H:[0, T]\times X\times X^{*}\rightarrow R$ is a
uniformly continuous function, $u_{0}$ : $X\rightarrow R$ is a given uniformly continuous, $ u:[0, T]\times$

$X\rightarrow R$ is the unknown, $u_{t}=\partial u/\partial t,$ $Du$ is the Fr\’echet derivative of $u$ and $X^{*}$ is the dual

of $X$. This notion of solution was introduced by M. G. Crandall and P. L. Lions (see

[4] and [5]). They studied basic properties of viscosity solutions of first order Hamilton-

Jacobi equations in finite dimensions. In [6], M. G. Crandall, L. C. Evans and P. L.

Lions reformulated and simplified this work. Afterwards, many other authors were
interested in this subject, including, for instance, H. Ishii [12], [13], [15], G. Barles
[1], I. Capuzzo Dolcetta [2], I. Capuzzo Dolcetta and H. Ishii [3], and others. Some
years later, M. G. Crandall and P. L. Lions studied the Hamilton-Jacobi equations in
infinite dimensions; see [7]. They proved uniqueness and existence of viscosity solutions
with the geometrical assumptions that the Banach space has the Radon-Nikodym

property and a smooth bump function, and some technical assumptions of uniform
continuity on the Hamiltonian. The existence of viscosity solutions were established by

use of differential games.
Recently R. Deville, G. Godefroy and V. Zizler [10] proved both existence and

uniqueness of bounded viscosity solutions for the stationary problem of the form

$u+H(Du)=f$ on $X$ .
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Here $X$ is a Banach space with a smooth bump function, $H:X^{*}\rightarrow R$ is a uniformly
continuous function and $f:X\rightarrow R$ is bounded and uniformly continuous. For the
existence proof they used Perron’s method introduced by H. Ishii [14], so they needed
a comparison assertion for discontinuous viscosity subsolutions and supersolutions.

The main result of this paper is Theorem 2.1 in the section 2 which will be proved
indirectly. First, we will give a comparison result in which one of sub-and supersolutions
is assumed to be locally uniformly continuous. In this setting we need the formula 01
subdifferential of the sum of two functions (see Theorem II-1 [9]). In the second step.
we estimate the behabiour of sub- and supersolutions near $t=0$ . This is done by
regularizing the initial data, constructing locally uniformly Lipschitz viscosity sub- and
supersolutions and using the comparison result. Finally, we obtain the desired result
by using the smooth variational principle of R. Deville, G. Godefroy and V. Zizler
[10] and some technics of the nonlinear analysis. In the section 3 we apply the
comparison theorem to show the existence of the viscosity solutions of (0.1) and its
regularity.

1. Definitions and preliminaries.

Throughout this paper we assume that the Banach space $X$ satisfies the following
geometrical assumption:

There exists a $C^{1}$ Lipschitz continuous function $\beta:X\rightarrow R$ with
$(A_{O})$

bounded nonempty support.

Such a function is called a smooth bump function.
For these Banach spaces we have the following variational principle which was

proved by R. Deville, G. Godefroy and V. Zizler in [10] and [11].

THEOREM 1.1. Let $X$ be a Banach space, $f:X\rightarrow R\cup\{+\infty\}$ a lower semicontinuous
bounded below function such that $ D(f):=\{x\in X;f(x)<+\infty\}\neq\emptyset$ and $\epsilon>0$ . Assume
that $(A_{O})$ holds. Then there exists a $C^{1}$ -function $g$ on $X$ such that

a) $f+ghasastrongminimumatsomepointx_{O}\in D(f)$ ,
b) $\Vert g\Vert_{\infty}=\sup\{|g(x)|;x\in X\}<\epsilon$ and $\Vert g^{\prime}\Vert_{\infty}=\sup\{\Vert g^{\prime}(x)\Vert ; x\in X\}<\epsilon$ .
Moreover, we have the following localization property. There exists a constant $c>0$

(depending only on the space $X$) such that whenever $y_{0}\in X$ satisfies $f(y_{0})\leq\inf_{X}f+c\epsilon^{2}$ ,
then the point $x_{O}$ can be chosen so that $\Vert y_{0}-x_{0}\Vert<\epsilon$ .

Let us recall that a function $F:X\rightarrow R$ attains a strong minimum at $x_{O}\in X$ if $F(x_{0})=$

$\inf\{F(x);x\in X\}$ and every minimizing sequence $(y_{n})\in X$ (i.e. $(\gamma_{n})$ satisfies $\lim_{n}F(y_{n})=$

$F(x_{0}))$ converges to $x_{0}$ .
Let $f:X\rightarrow R\cup\{\pm\infty\}$ and $x\in D(f)$ . We say that $f$ is subdifferentiable at $x$ if

$D^{-}f(x)=$ { $\varphi^{\prime}(x);\varphi$ : $X\rightarrow R$ is $C^{1}$ and $ f-\varphi$ has a local minimum at $x$ }
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is non-empty. We say that $f$ is superdifferentiable at $x$ if

$D^{+}f(x)=$ { $\varphi^{\prime}(x);\varphi:X\rightarrow R$ is $C^{1}$ and $ f-\varphi$ has a local maximum at $x$ }

is non-empty (for $x\not\in D(f)$ we set $ D^{+}f(x)=D^{-}f(x)=\emptyset$). Let us mention that, if the
Banach space satisfies the assumption $(A_{0})$ , then $p\in D^{+}f(x)$ if and only if

$\lim_{||h||}\sup_{\rightarrow 0}\frac{f(x+h)-f(x)-\langle p,h\rangle}{\Vert h\Vert}\leq 0$ (1.1)

and $p\in D^{-}f(x)$ if and only if

$\lim_{||h||}\inf_{\rightarrow 0}\frac{f(x+h)-f(x)-\langle p,h\rangle}{\Vert h\Vert}\geq 0$ . (1.2)

Moreover for every lower semicontinuous $f:X\rightarrow Ru\{+\infty\}$ , the set of all point $ x\in$

$D(f)$ such that $ D^{-}f(x)\neq\emptyset$ is dense in $D(f)$ . (See for instance [10] and [11]).

In this paper the Banach space is $X\times R$ and it is easy to see that if $\beta:X\rightarrow R$ (resp.
$h:R\rightarrow R)$ is a $C^{1}$ Lipschitz continuous bump function on $X$ (resp. on R), then $B(t, x)=$

$h(t)\beta(x)$ defines a $C^{1}$ Lipschitz continuous bump on $X\times R$ .
We recall the definition of viscosity solutions of (0.1):

DEFINITION 1.2. A function $u:[0, T]\times X\rightarrow R$ is a viscosity subsolution of (0.1) if
i) $u$ is upper semicontinuous,
ii) for every $(t, x)\in(O, T$] $\times X$ and every $(a, p)\in D^{+}u(t, x)$ :

$a+H(t, x, p)\leq 0$ ,

iii) $u(O, x)\leq u_{0}(x)$ for $x\in X$.
The function $u$ is a viscosity supersolution of (0.1) if

iv) $u$ is lower semicontinuous,
v) for every $(t, x)\in(O, T$] $\times X$ and every $(a, p)\in D^{-}u(t, x)$ :

$a+H(t, x, p)\geq 0$ ,

vi) $u(O, x)\geq u_{O}(x)$ for $x\in X$.
Finally $u$ is a viscosity solution of (0.1) if $u$ is both a viscosity subsolution and a

viscosity supersolution of (0.1).

By the previous definition, we see that a viscosity solution of (0.1) is necessarily
continuous and that if $(A_{0})$ holds, then a classical solution of (0.1) is also a viscosity
solution of (0.1).

In all the sequel we assume that the Hamiltonian $H$ satisfies the following:

(A) His uniformly continuous on $[0, T]\times X\times X^{*},$
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(A) $x\rightarrow H(O, x, 0)$ is bounded on $X$ .

For a subset $S$ of a Banach space $Y$, we denote by $BUC(S)$ the space of bounded
uniformly continuous functions on $S$.

2. Uniqueness of viscosity solutions.

In this section we shall prove the following comparison assertion:

THEOREM 2.1. Let $(A_{O})$ holds and $H_{1},$ $H_{2}$ be two Hamiltonians satisfying $(A_{1})$ ana
(A). Let $u_{0},$ $v_{0}\in BUC(X)$ and let $u,$ $v$ be two real valued functions on $[0, T]\times X$ , such
that $u$ is bounded above and $v$ is bounded below.

If $u$ is a viscosity subsolution of

$\left\{\begin{array}{ll}u_{t}+H_{1}(t, x, Du)=0 & on (0, T] \times X\\u(O, x)=u_{O}(x) & on X\end{array}\right.$ (2.1)

and $v$ is a viscosity supersolution of

$\left\{\begin{array}{ll}v_{t}+H_{2}(t, x, Dv)=0 & on (0, T] \times X\\v(O, x)=v_{0}(x) & on X.\end{array}\right.$ (2.2)

Then

$u(t, x)-v(t, x)\leq e^{t}\max\{\sup_{X}(u_{0}-v_{0}),\sup_{[0,T]xX\times X^{*}}(H_{2}-H_{1})\}$

for $(t, x)\in[0, T]\times X$ .

REMARK 2.2. 1) It is clear that the previous theorem gives the uniqueness of
viscosity solutions of (0.1).

2) In the next section, we shall see that using Theorem 2.1 and Perron’s method,
we obtain the existence of a solution and a modulus of continuity of the solution.

Before proving our theorem, let us mention the following open problem:

PROBLEM. Is it possible to prove a comparison assertion (Theorem 2.1) in an
unbounded viscosity solution case?

Now we prove the following:

PROPOSITION 2.3. Let $(A_{0})$ hold and let $H$ be a Hamiltonian satisfying $(A_{1})$ . Let
$u_{0},$ $v_{0}\in BUC(X)$ and $u,$ $v$ be two real valuedfunctions on $[0, T]\times X$, such that $u$ is bounded
above and $v$ is bounded below. Suppose that one of these functions is locally uniformly
continuous.

If $u$ is a viscosity subsolution of (0.1) and $v$ is a viscosity supersolution of
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$\left\{\begin{array}{l}v_{t}+H(t, x, Dv)=0\\v(0, x)=v_{0}(x)\end{array}\right.$

Then

on $(0, T$] $\times X$

(2.3)
on $X$ .

$\sup_{[0.T]\times X}(u-v)\leq\sup_{X}(u_{0}-v_{0})$ .

PROOF. Here the tool used is the formula of subdifferential of the sum of two

functions proved recently by R. Deville and the author (see [9]):

THEOREM. Let $X$ be a Banach space such that $(A_{0})$ holds. Let $u_{1},$ $u_{2}$ be two real
valued functions defined on $(0, T$] $\times X$ such that $u_{1}$ is lower semicontinuous and $u_{2}$ is
locally uniformly continuous. Suppose that $(t_{0}, x_{0})$ and $(a, p)\in D^{-}(u_{1}+u_{2})(t_{0}, x_{0})$ are given.
Then, for every $\epsilon>0$ , there exist $(t_{1}, x_{1}),$ $(t_{2}, x_{2})\in(0, T$] $\times X$ , there exist $(a_{1}, p_{1})\in$

$D^{-}u_{1}(t_{1}, x_{1})$ and $(a_{2}, p_{2})\in D^{-}u_{2}(t_{2}, x_{2})$ such that
i) $\Vert x_{i}-x_{O}\Vert<\epsilon and|t_{i}-t_{0}|<\epsilon$ , for $i=1,2$ ,

ii) $|u_{1}(t_{1}, x_{1})-u_{1}(t_{0}, x_{0})|<\epsilon$ and $|u_{2}(t_{2}, x_{2})-u_{2}(t_{0}, x_{0})|<\epsilon$ ,

iii) $\Vert p_{1}+p_{2}-p\Vert<\epsilon$ and $|a_{1}+a_{2}-a|<\epsilon$ .

To prove that $\sup_{[0,T]\times X}(u-v)\leq\sup_{X}(u_{0}-v_{O})$ , we suppose the contrary, so there

exist $(t_{0}, x_{0})\in(0, T$] $\times X$ and $\delta>0$ such that

$u(t_{0}, x_{0})-v(t_{0}, x_{0})-2\delta>\sup_{X}(u_{0}-v_{0})$ . (2.4)

Fix $0<\epsilon<\min(\delta, 2\delta/t_{0})$ . Consider the function $\Phi$ defined on $R\times X$ by

$\Phi(t, x)=\left\{\begin{array}{ll}u(t, x)-v(t, x)-\delta t/t_{0} & if (t, x)\in[0, T]\times X\\-\infty & otherwise.\end{array}\right.$

The function $\Phi$ is upper semicontinuous and bounded above, so by Theorem 1.1 applied
to $ f=-\Phi$ , there exists a $C^{1}$ -function $g:R\times X\rightarrow R$ such that:

(i) $\Phi+ghasamaximumatsomepoint(s, y)\in[0, T]\times X$ ,

(ii) $\Vert g\Vert_{\infty}=\sup\{|g(t, x)|;(t, x)\in R\times X\}<\epsilon/2$ and $\Vert g^{\prime}\Vert_{\infty}=\sup\{\Vert g^{\prime}(t, x)\Vert$ ; $(t, x)\in$

$R\times X\}<\epsilon/2$ .
By the first condition in (ii) and (2.4) we have $s\neq 0$ , and by (i) if we set $A=$

$\delta/t_{0}-g_{t}(s, y)$ and $p=D_{x}g(s, y)$ , we have $(A, p)\in D^{+}(u(s, y)-v(s, y))$ with $A>0$ . Now, since
one of the functions is locally uniformly continuous, by the formula of subdifferential
of the sum of two functions, there exist $(t_{1}, x_{1}),$ $(t_{2}, x_{2})\in(0, T$] $\times X$ , there exist $(b_{1},p_{1})\in$

$D^{+}u(t_{1}, x_{1})$ and $(b_{2},p_{2})\in D^{-}v(t_{2}, x_{2})$ satisfying:
$(i^{\prime})$ $|t_{i}-s|<\epsilon$ and $\Vert x_{i}-y\Vert<\epsilon$ for $i=1,2$ ,

(ii’) $|u(t_{1}, x_{1})-u(s, y)|<\epsilon$ and $|v(t_{2}, x_{2})-v(s, y)|<\epsilon$ ,

(iii’) $|b_{1}-b_{2}-A|<\epsilon$ and $\Vert p_{1}-p_{2}-p\Vert<\epsilon$ .
But $u$ is a subsolution of (0.1) and $v$ is a viscosity supersolution of (2.3), so
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$b_{1}+H(t_{1}, x_{1}, p_{1})\leq 0$ , $b_{2}+H(t_{2}, x_{2}, p_{2})\geq 0$ .
If we subtract one from the other, we obtain

$b_{1}-b_{2}+H(t_{1}, x_{1}, p_{1})-H(t_{2}, x_{2}, p_{2})\leq 0$

which yields

$A-\epsilon+H(t_{1}, x_{1}, p_{1})-H(t_{2}, x_{2}, p_{2})\leq 0$ .

Moreover,

$|t_{1}-t_{2}|\leq|t_{1}-s|+|s-t_{2}|<2\epsilon$ ,

$\Vert x_{1}-x_{2}\Vert\leq\Vert x_{1}-y\Vert+\Vert y-x_{2}\Vert<2\epsilon$ ,

$\Vert p_{1}-p_{2}\Vert\leq\Vert p_{1}-p_{2}-p\Vert+\Vert p\Vert<\epsilon+\epsilon/2=3\epsilon/2$ .

Finally, we send $\epsilon$ to zero after using the uniform continuity of the Hamiltonian $H$ on
$[0, T]\times X\times X^{*}$ to obtain, $A\leq 0$ , which yields a contradiction.

REMARK 2.4. Before beginning the proof of Theorem 2.1, consider the Cauchy
problem (0.1) with the assumptions $(A_{0}),$ $(A_{1}),$ $(A_{2})$ and suppose that the initial con.
dition $u_{0}$ is Lipschitz continuous on $X$. It is easy to see that if $K$ is a Lipschitz constant
of $u_{O}$ , then for all $x\in X$ and for all $p\in D^{-}u_{O}(x)\cup D^{+}u_{0}(x),$ $\Vert p\Vert\leq K$ . But $x\rightarrow H(O, x, 0)$ is
bounded and the Hamiltonian $H$ is uniformly continuous, so by $(A_{1})$ and $(A_{2})$ it is
clear that $H$ is bounded on $[0, T]\times X\times\bigcup_{x\in X}(D^{-}u_{0}(x)\cup D^{+}u_{0}(x))$ . Consequently there
exists $M>0$ such that

$\underline{u}(t, x)=Mt+u_{0}(x)$ is a viscosity supersolution of (0.1) ,

$\overline{u}(t, x)=-Mt+u_{0}(x)$ is a viscosity subsolution of (0.1).

In the general case where $u_{0}$ is just continuous on $X$, note that the family $(u_{0}^{\epsilon})_{\epsilon>0}$ of
Lipschitz continuous functions defined by

$u_{0}^{\epsilon}(x)=\inf_{y\in X}\{u_{0}(y)+\frac{1}{\epsilon}\Vert x-y\Vert\}$ (2.5)

converges uniformly on $X$ to $u_{0}$ when $\epsilon$ goes to zero.

PROOF OF THEOREM 2.1. We can assume that $u\geq 0$ and $v\geq 0$ . Consider the func-
tions $\tilde{u},\tilde{v}$ defined by $\tilde{u}(t, x)=e^{-t}u(t, x)$ and $\tilde{v}(t, x)=e^{-t}v(t, x)$ for $(t, x)\in[0, T]\times X$ , for
$i=1,2$ .

We define the maps $\tilde{H}_{i}$ : $[0, T]\times X\times R\times X^{*}\rightarrow R$ by setting $\tilde{H}_{i}(t, x, r, p)=r+$

$e^{-t}H_{i}(t, x, e^{t}p)$ for $(t, x, r, p)\in[0, T]\times X\times R\times X^{*}$ .
We shall need the following:

LEMMA 2.5. $u$ is a viscosity subsolution of (2.1) (resp. $v$ is a viscosity supersolution
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of (2.2)) $lf$ and only if $\tilde{u}$ is a viscosity subsolution of

$\{_{\tilde{u}(0,x)=u_{0}(x)}^{\tilde{u}(t,x)+\tilde{H}_{1}(t,x,\tilde{u}_{t}(t,x),D_{x}\tilde{u}(t,x))=0}$ $forfor$ $x\in X(t,x)\in(0, T$
] $\times X$

(2.6)

(resp. $\tilde{v}$ is a viscosity supersolution of

$\left\{\begin{array}{ll}\tilde{v}(t, x)+\tilde{H}_{2}(t, x,\tilde{v}_{t}(t, x), D_{X}\tilde{v}(t, x))=0 & for (t, x)\in(O, T] \times X\\\tilde{v}(O, x)=v_{0}(x) & for x\in X).\end{array}\right.$ (2.7)

To see this it is enough to prove that for $0<t\leq T,$ $(a, p)\in D^{+}u(t, x)$ (resp. $\in D^{-}v(t,$ $x)$)
if and only if $(-e^{-t}u(t, x)+e^{-t}a,$ $e^{-t}p$) $\in D^{+}\tilde{u}(t, x)$ (resp. $\in D^{-}\tilde{v}(t,$ $x)$).

Let $\beta:X\rightarrow R$ (resp. $h:R\rightarrow R$) be a bump function on $X$ (resp. on R). We can
suppose that $\beta\geq 0,$ $\beta(0)=\sup_{X}\beta=1$ and that the support of $\beta$ is in the unit ball of $X$.
Similarly for $h$ .

Let us fix a positive number $\delta$ . From Remark 2.4, for $\epsilon$ small enough, we have

$ u_{0}(x)\leq u_{0}^{\epsilon}(x)+\delta$ and $ v_{0}(x)\geq v_{0}^{\epsilon}(x)-\delta$ for $x\in X$ (2.8)

where $u_{O}^{\epsilon}$ and $v_{0}^{\epsilon}$ are given by the formula (2.5). So, by (2.8) $u$ is also a viscosity
subsolution of

$\left\{\begin{array}{ll}u_{t}+H_{1}(t, x, Du)=0 & on (0, T] \times X\\u(O, x)=u_{0}^{\epsilon}(x)+\delta & on X\end{array}\right.$ (2.9)

and $v$ is a viscosity supersolution of

$\{_{v(0,x)=v_{0}^{\epsilon}(x)-\delta}^{v_{t}+H_{2}(t,x,Du)=0}$ $onon$ $X(0,.T$
] $\times X$

(2.10)

But $u_{O}^{\epsilon}$ and $v_{0}^{\epsilon}$ are Lipschitz continuous on $X$, hence there exists a positive number $\eta_{0}$

such that

– $ t+u_{0}^{\epsilon}(x)+\delta$

1
is a viscosity supersolution of (2.9) ,

$\eta$

$-\frac{1}{\eta}t+v_{0}^{\epsilon}(x)-\delta$ is a viscosity subsolution of (2.10)

for $\eta\leq\eta_{0}$ . From Proposition 2.3 it follows that

$ u\leq\frac{1}{\eta}t+u_{0}^{\epsilon}(x)+\delta$ and $ v\geq-\frac{1}{\eta}t+v_{0}^{\epsilon}(x)-\delta$ for $(t, x)\in[0, T]\times X$ . (2.11)

Also, we have $\tilde{u}(t, x)\leq\sup u$ and $\tilde{v}(t, x)\geq infv$ for $(t, x)\in[0, T]\times X$ . Let us fix a positive
number $\eta\leq\eta_{0}$ and $\lambda>\sup u$- $infv+v(O, O)-u(O, 0)+3\epsilon$ .

Consider the real valued function $\omega$ defined on $R^{2}\times X^{2}$ by
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$\omega(t, s, x, y)=\left\{\begin{array}{l}\tilde{u}(t, x)-\tilde{v}(s, y)+\lambda h(\frac{t-s}{\eta^{2}})\beta(\frac{x-y}{\epsilon})t,s\in[0, T]\\\\-\infty\end{array}\right.$

The Banach space $X^{2}\times R^{2}$ satisfies the assumption $(A_{O})$ (for example the function
$B(t, s, x, y)=h(t)h(s)\beta(x)\beta(y)$ is a bump function on $X^{2}\times R^{2}$).

The function $\omega$ is upper semicontinuous and bounded above, so by the smooth
variational principle Theorem 1.1 applied to $ f=-\omega$ , there exists a $C^{1}$ -function $g$ on
$R^{2}\times X^{2}$ such that
a) $\omega$ -gattains its strong maximum at some point $(t_{0}, s_{0}, x_{0}, y_{0})\in[0, T]^{2}\times X^{2}$ ,
b) $\Vert g\Vert_{\infty}=\sup\{|g(t, s, x, y)|;(t, s, x, y)\in[0, T]^{2}\times X^{2}\}<\epsilon$ and $\Vert g^{\prime}\Vert_{\infty}=\sup\{|g^{\prime}(t, s, x, y)|$ ;

$(t, s, x, y)\in[0, T]^{2}\times X^{2}\}<\epsilon$ .
We claim that $|t_{O}-s_{0}|\leq\eta^{2}$ and $\Vert x_{O}-y_{0}\Vert\leq\epsilon$ . Indeed, otherwise $h((t_{0}-s_{O})/\eta^{2})\beta((x_{O}-$

$y_{0})/\epsilon)=0$ and by a)

$\tilde{u}(O, O)-\tilde{v}(O, O)+\lambda h(O)\beta(O)\leq\tilde{u}(t_{0}, x_{0})-\tilde{v}(s_{0}, y_{0})+2\epsilon$ .
But $\tilde{u}(t_{0}, x_{0})\leq\sup u,\tilde{v}(t_{0}, x_{0})\geq infv$ and $h(O)=\beta(0)=1$ , so

$\lambda\leq\sup u$- $infv+v(O, O)-u(O, 0)+2\epsilon$ .

This gives a contradiction with the choioe of $\lambda$ .
By a) for $(t, s, x, y)\in[0, T]^{2}\times X^{2}$ , we have

$\tilde{u}(t, x)-\tilde{v}(s, y)+\lambda h(\frac{t-s}{\eta^{2}})\beta(\frac{x-y}{\epsilon})-g(t, s, x, y)$

$\leq\tilde{u}(t_{0}, x_{0})-\tilde{v}(s_{0}, y_{0})+\lambda h(\frac{t_{0}-s_{0}}{\eta^{2}})\beta(\frac{x_{0}-y_{0}}{\epsilon})-g(t_{0}, s_{0}, x_{0}, y_{0})$ . (2.13)

This gives

$\tilde{u}(t, x)-\tilde{v}(s, y)\leq\tilde{u}(t_{O}, x_{O})-\tilde{v}(s_{O}, y_{0})-\lambda h(\frac{t-s}{\eta^{2}})\beta(\frac{x-y}{\epsilon})$

$+\lambda h(\frac{t_{0}-s_{0}}{\eta^{2}})\beta(\frac{x_{0}-y_{0}}{\epsilon})+2\epsilon$ . (2.14)

We argue by distinguishing the following four cases:
First case. $t_{O}=s_{0}=0$ . By (2.14) and the choice of $\beta$ and $h$ , for $(t, x)\in[0, T]\times X$ ,

we have

$ e^{-t}(u(t, x)-v(t, x))\leq u_{O}(x_{0})-v_{0}(y_{0})+2\epsilon$

$\leq u_{O}(x_{0})-v_{0}(x_{0})+v_{0}(x_{0})-v_{0}(y_{0})+2\epsilon$

$\leq\sup(u_{O}-v_{O})+v_{0}(x_{0})-v_{O}(y_{0})+2\epsilon$ .
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Hence,

$u(t, x)-v(t, x)\leq e^{t}\sup(u_{0}-v_{0})+e^{T}(|v_{0}(x_{0})-v_{0}(y_{0})|+2\epsilon)$ . (2.15)

Second case. $t_{0}\neq 0$ and $s_{0}\neq 0$ . From (2.13), if we set

$a=-\frac{\lambda}{\eta^{2}}h^{\prime}(\frac{t_{0}-s_{0}}{\eta^{2}})\beta(\frac{x_{0}-y_{0}}{\epsilon})+g_{t}(t_{0}, s_{0}, x_{O}, y_{0})$ ,

$p=\frac{\lambda}{\epsilon}h(\frac{t_{0}-s_{0}}{\eta^{2}})\beta^{\prime}(\frac{x_{0}-y_{0}}{\epsilon})+g_{x}(t_{0}, s_{0}, x_{0}, y_{0})$ ,

we have $(a, p)\in D^{+}\tilde{u}(t_{O}, x_{O})$ . Similarly if we fix $(t, x)=(t_{O}, x_{0})$ in (2.13), we obtain
$(b, q)\in D^{-}\tilde{v}(s_{0}, y_{0})$ with

$b=-\frac{\lambda}{\eta^{2}}h^{;(\frac{t_{0}-s_{0}}{\eta^{2}})\beta(\frac{x_{0}-y_{0}}{\epsilon})-g_{s}(t_{0},s_{0},x_{0},y_{0})}$ ,

$q=-\frac{\lambda}{\epsilon}h(\frac{t_{0}-s_{0}}{\eta^{2}})\beta^{\prime}(\frac{x_{0}-y_{0}}{\epsilon})-g_{y}(t_{O}, s_{0}, x_{O}, y_{0})$ .

But $\tilde{u}$ is a viscosity subsolution of (2.6) and $\tilde{v}$ is a viscosity supersolution of (2.7), so
$\tilde{u}(t_{0}, x_{0})+\tilde{H}_{1}(t_{0}, a, x_{0},p)\leq 0$ , $\tilde{v}(s_{0}, y_{0})+\tilde{H}_{2}(s_{0}, b, y_{0}, q)\geq 0$ ,

$i.e.$ ,

$\tilde{u}(t_{0}, x_{0})+a+e^{-t_{O}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)\leq 0$ ,

$\tilde{v}(s_{0}, y_{0})+b+e^{-s_{O}}H_{2}(s_{0}, y_{0}, e^{s_{O}}q)\geq 0$ .

If we subtract the two inequalities, we obtain

$\tilde{u}(t_{0}, x_{0})-\tilde{v}(s_{0}, y_{0})+a-b+e^{-t_{0}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)-e^{-s_{O}}H_{2}(s_{O}, y_{0}, e^{s_{O}}q)\leq 0$ .

Thus,

$\tilde{u}(t_{0}, x_{0})-\tilde{v}(s_{0}, y_{0})\leq b-a+e^{-s_{O}}H_{2}(s_{0}, y_{0}, e^{so}q)-e^{-t_{O}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)$

$=b-a+e^{-s_{O}}H_{2}(s_{0}, y_{0}, e^{s_{O}}q)-e^{-s_{0}}H_{1}(s_{0}, y_{0}, e^{s_{O}}q)$

$+e^{-s_{0}}H_{1}(s_{0}, y_{0}, e^{s_{0}}q)-e^{-t_{0}}H_{1}(t_{0}, x_{0}, e^{t_{0}}p)$

$\leq b-a+e^{-s_{O}}\sup(H_{2}-H_{1})+e^{-s_{0}}H_{1}(s_{0}, y_{0}, e^{s_{O}}q)$

$-e^{-t_{O}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)$ .

Now from (2.14), for $(t, x)\in[0, T]\times X$ , we have

$\tilde{u}(t, x)-\tilde{v}(t, x)\leq\tilde{u}(t_{O}, x_{O})-\tilde{v}(s_{O}, y_{0})+2\epsilon$

$\leq b-a+e^{-s_{O}}\sup(H_{2}-H_{1})+e^{-s_{O}}H_{1}(s_{0}, y_{0}, e^{s_{O}}q)$

$-e^{-t_{O}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)+2\epsilon$ .
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And hence,

$u(t, x)-v(t, x)\leq e^{t}\{|b-a|+e^{-s_{O}}\sup(H_{2}-H_{1})+|e^{-s_{O}}H_{1}(s_{O}, y_{0}, e^{s_{O}}q)$

$-e^{-t_{O}}H_{1}(t_{0}, x_{0}, e^{t_{O}}p)|+2\epsilon\}$ . (2.16

Third case. $t_{0}\neq 0$ and $s_{0}=0$ . Let $(t, x)\in[0, T]\times X$ , the fomula (2.14) gives
$\tilde{u}(t, x)-\tilde{v}(t, x)\leq\tilde{u}(t_{O}, x_{0})-\tilde{v}(s_{0}, y_{0})+2\epsilon$ . (2.17

By (2.11) and the fact that $t_{O}\leq\eta^{2}$ , we obtain

$u(t, x)-v(t, x)\leq e^{t}\{\eta+u_{0}^{\epsilon}(x_{0})+\delta-v_{0}(y_{0})+2\epsilon)$

$=e^{t}(\eta+u_{0}^{\epsilon}(x_{0})-u_{0}(x_{0})+u_{0}(x_{0})-v_{0}(x_{0})+v_{0}(x_{0})-v_{0}(\gamma_{0})+\delta+2\epsilon\}$

$\leq e^{T}(\eta+2\delta)+e^{t}\sup(u_{O}-v_{0})+e^{T}\{|v_{0}(x_{O})-v_{O}(y_{0})|+2\epsilon\}$ . (2.18

Fourth case. $s_{0}\neq 0$ and $t_{0}=0$ . Here the fomulas (2.17) and (2.11) with tht
equality $s_{0}\leq\eta^{2}$ give the following: For $(t, x)\in[0, T]\times X$ ,

$u(t, x)-v(t, x)\leq e^{t}\{\eta+u_{0}(x_{0})-v_{0}^{\epsilon}(y_{0})+2\epsilon\}$

$=e^{t}\{\eta+u_{0}(x_{0})-v_{0}(x_{0})+v_{O}(x_{O})-v_{0}(y_{0})+v_{0}(y_{0})-v_{0}^{\epsilon}(y_{0})+\delta+2\epsilon\}$

$\leq e^{T}(\eta+2\delta)+e^{t}\sup(u_{0}-v_{0})+e^{T}\{|v_{0}(x_{0})-v_{O}(y_{0})|+2\epsilon\}$ (2.19

for $(t, x)\in[0, T]\times X$ .
Moreover,

$|t_{O}-s_{0}|\leq\eta^{2}$ , $\Vert x_{O}-y_{0}\Vert\leq\epsilon$ ,

$|a-b|=|g_{t}(t_{0}, s_{0}, x_{0},y_{0})+g_{s}(t_{O}, s_{O}, x_{0}, y_{0})|\leq\Vert g^{\prime}\Vert_{\infty}+\Vert g^{\prime}\Vert_{\infty}<2\epsilon$ ,

$\Vert p-q\Vert=\Vert g_{x}(t_{0}, s_{0}, x_{0}, y_{0})+g_{y}(t_{0}, s_{0}, x_{0}, y_{0})\Vert\leq\Vert g^{\prime}\Vert_{\infty}+\Vert g^{\prime}\Vert_{\infty}<2\epsilon$ .
Finally, since $H_{1}$ and $v_{0}$ are uniformly continuous, by sending $\epsilon,$ $\eta$ and $\delta$ to zerc

in (2.15), (2.16), (2.18) and (2.19) we find the required result and the proof is complete

3. Existence of viscosity solutions.

Recall that if $u$ is a locally bounded function defined on $[0, T]\times X$ , the uppe]

semicontinuous envelope $u^{*}$ of $u$ is defined by

$u^{*}(t, x)=\lim_{r\rightarrow}\sup_{0}\{u(s, y);|t-s|+\Vert y-x\Vert\leq r\}$

and the lower semicontinuous envelope $u_{*}$ of $u$ is defined by

$u_{*}(t, x)=\lim_{r\rightarrow}\inf_{o}\{u(s, y);|t-s|+\Vert y-x\Vert\leq r\}$ .

At first, we consider the problem (0.1) with $u_{O}$ being bounded and $Lipschit_{A}^{\prime}$

continuous on $X$. From Remark 2.4, there exists $M>0$ such that $\underline{u}(t, x)=Mt+u_{0}(x$
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is a viscosity supersolution and $\overline{u}(t, x)=-Mt+u_{0}(x)$ is a viscosity subsolution of (0.1).
Moreover $\underline{u}(0, x)=\overline{u}(0, x)=u_{0}(x)$ for $x\in X$ . By Perron’s method [14], it is clear that there
exists $u:[0, T]\times X\rightarrow R$ , satisfying $\overline{u}\leq u\leq\underline{u}$ such that the upper semicontinuous enve-
lope $u^{*}$ of $u$ is a viscosity subsolution of (0.1) and the lower semicontinuous envelope
$u_{*}$ of $u$ is a viscosity supersolution of (0.1). From Theorem 2.1, we obtain $u^{*}\leq u_{*}$ . And
since $u_{*}\leq u^{*}$ we conclude that $u$ is a unique bounded viscosity solution of (0.1).

In the general case where $u_{0}$ is bounded and uniformly continuous, we have the
following result:

THEOREM 3.1. Let $(A_{0}),$ $(A_{1})$ and $(A_{2})$ hold. Let $u_{0}\in BUC(X)$ . Then the problem
(0.1) has a unique bounded viscosity solution. Moreover this solution is uniformly con-
tinuous on $[0, T$) $\times X$ .

PROOF. For $\epsilon>0$ consider the problem

$\left\{\begin{array}{ll}u_{t}+H(t, x, Du)=0 & on (0, T] \times X\\u(O, x)=u_{O}^{\epsilon}(x) & on X\end{array}\right.$ (3.1),

where $u_{0}^{\epsilon}$ is given by the formula (2.5).
By the previous remark, $(3.1)_{\epsilon}$ has a unique bounded viscosity solution $u^{\epsilon}$ . Now

Theorem 2.1 shows that if $u^{\epsilon_{1}}$ is the viscosity solution of $(3.1)_{\epsilon_{1}}$ and $u^{\epsilon_{2}}$ is the viscosity
solution of $(3.1)_{\epsilon_{2}}$ with $\epsilon_{1}$ and $\epsilon_{2}$ two positive numbers, then

$\Vert u^{\epsilon_{1}}-u^{\epsilon_{2}}\Vert_{\infty}\leq e^{T}\Vert u_{0^{1}}^{\epsilon}-u_{0^{2}}^{\epsilon}\Vert_{\infty}$ . (3.2)

Here $\Vert\cdot\Vert_{\infty}$ is the norm of uniform convergence. Since $(u_{0}^{\epsilon})_{\mathcal{E}\succ 0}$ converges uniformly on
$X$ to $u_{0}$ as $\epsilon$ goes to zero, the sequence $(u_{0}^{1/n})_{n\geq 1}$ is a Cauchy sequence in $(C(X, R),$ $\Vert\cdot\Vert_{\infty}$ ).
Consequently, by (3.2), $(u^{1/n})_{n\geq 1}$ is also a Cauchy sequence on $(C([0, T]\times X, R), \Vert\cdot\Vert_{\infty})$ .
Let $u$ be the limit of $u^{1/n}$ . By the stability of subdifferentials and superdifferentials
Theorem II-5 [8], it is easy to prove that $u$ is a viscosity solution of (0.1).

Now we prove that this solution is uniformly continuous on $[0, T$ ) $\times X$ . Suppose
that $(A_{0}),$ $(A_{1})$ and $(A_{2})$ hold. Let us fix $\epsilon>0$ . By (2.11) and the uniform continuity of
the initial data $u_{0}$ and the Hamiltonian $H$, we can find $0<\delta_{1}<T$ such that for all
$0\leq\delta_{0}\leq\delta_{1}$ , we have

$supX|u(\delta, x)-u_{0}(x)|<e^{-T}\epsilon/2$ , $\sup_{X}|u_{0}(x+h)-u_{0}(x)|<e^{-T}\epsilon/2$

and

$\sup_{[0.T]\times X\times X^{*}}|H(t+\delta, x+h, p)-H(t, x, p)|<e^{-T}\epsilon$

for $0\leq\delta,$ $\Vert h\Vert\leq\delta_{0}$ . Let us fix $0<\delta_{0}\leq\delta_{1}$ and $0\leq\delta,$ $\Vert h\Vert\leq\delta_{0}$ . The function $u_{2}$ defined on
$[0, T-\delta_{O}]\times X$ by $u_{2}(t, x)=u(t+\delta, x+h)$ is a viscosity subsolution of

$\left\{\begin{array}{ll}u_{t}(t, x)+H(t+\delta, x+h, Du(t, x+h))=0 & on (0, T-\delta_{0}] \times X\\u(O, x)=u_{0}(x+h)+e^{-T}\epsilon/2 & on X\end{array}\right.$
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and is a viscosity supersolution of

$\left\{\begin{array}{ll}u_{t}(t, x)+H(t+\delta, x+h, Du(t, x))=0 & on (0, T-\delta_{0}] \times X\\u(O, x)=u_{0}(x+h)-e^{-T}\epsilon/2 & on X.\end{array}\right.$

Finally, by Theorem 2.1,

$|u_{2}(t, x)-u(t, x)|\leq e^{t}\max\{\sup_{X}|u_{0}(x+h)-u_{0}(x)|+e^{-T}\frac{\epsilon}{2}$ ,

$\sup_{[O,T]xX\times X^{*}}|H(t+\delta, x+h, p)-H(t, x, p)|<\epsilon$ ,

for $(t, x)\in[0, T-\delta_{0}]\times X$. So, $|u(t+\delta, x+h)-u(t, x)|\leq\epsilon$ for $(t, x)\in[0, T-\delta_{0}]\times X$ an
$0\leq\delta,$ $\Vert h\Vert\leq\delta_{0}$ . Thus $u$ is uniformly continuous on $[0, T-\delta_{0}]\times X$ and the proof]
complete.
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