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Abstract

We prove that the value function of an optimal stopping problem is
the unique viscosity solution of the associated variational inequalities.
We illustrate by an example how this can be used to solve optimal
stopping problems where the high contact (smooth fit) principle does
not necessarily hold.
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1 Introduction

There is a well-known connection between optimal stopping and variational
inequalities. This connection can (roughly) be described as follows:

Let {X;}i>0 be an Ito diffusion in R", i.e. X; is the unique strong solution
of an Ito stochastic differential equation of the form

dXt = b(Xt)dt + O'(Xt)th; t Z 0
Xo=z € R" .

whereb: R® — R", 0 : R™ — R™ ™ are given Lipschitz continuous functions
(see e.g.[6] Theorem 5.5). Here (Q,F,F;, W) is m-dimensional Brownian
motion (Wiener process).

Suppose ®(z); z € R™ is the value function of an optimal stopping problem
for Xt, le.

(1) ®(z) = sup E” [ATf(Xt)dt+g(XT):l

7<T

where E® denotes the expectation with respect to the probability law Q*
of X; given that Xo = z and f and g are given functions satisfying certain
conditions (see below). The supremum is taken over all F;-stopping times
7 < T where

T :=inf{t > 0; X; ¢ S}
is the first exit time of X; from a given domain S C R"™. Let

R 0  1~, r &2
L= ; bil) g + 5;1(00 )5(®) g0

be the second order partial differential operator which coincides with the
generator A of X; on the space C3 of twice continuously differentiable func-
tions from R™ into R with compact support. Then if ® is smooth enough
— and some additional conditions are satisfied — we can identify ® with the
(unique) solution of the following variational inequalities (see e.g [6], Theo-
rem 10.18):

(2) ®>g inf

(3) Ld+f<0 inS

(4) Lé+f=0 inD:={ze€S;d(z)>g(z)}
(5) ® =g on 0S (the boundary of S).

The domain D is called the continuation region and — again under some
additional conditions — an optimal stopping time 7* (i.e. a stopping time 7




for which we achieve the supremum in (1)) is given by the first exit time of
X; from D :

(6) " = 1p = inf{t > 0; X; ¢ D}.
A more compact way of writing (2) — (5) is

(7) min{—L®(z) — f(z),®(z) —g(z)} =0 for allz € S,
(8) ®(z) = g(z) for all z € JS.

The connection between (1) and (7) — (8) is very useful. However, it has
the drawback that the value function ® of (1) is not always smooth enough
for the expression L® to be defined (for example, ® is not always twice
differentiable). Therefore it is natural to ask if there is a suitable weak for-
mulation of (7) — (8) such that ® is its unique solution even when it is not
smooth. Such a weak solution concept, called wiscosity solution, was devel-
oped by Crandall and Lions [3] for the Hamilton-Jacobi-Bellman equations
(HJB) connected to stochastic control problems. Subsequently the concept
has been extended to a larger class of equations, including the variational
inequalities above. See the expositions in [2] and [5].

This paper is motivated by the papers [4] and [1]. In [4] it is proved that
the value function of a target recognition problem for piecewise determin-
istic processes is the unique viscosity solution of corresponding variational
inequalities. In [1] weak, but sufficient, HJB-quasivariational inequalities
are established for a class of combined stochastic control/impulse control
problems. The existence (and uniqueness) of solutions in Sobolev spaces
of such HJB-quasivariational inequalities was established in [7], under some
conditions.

The purpose of this paper is to prove that — under mild conditions — the
value function ® of the optimal stopping problem (1) is the unique viscosity
solution of (7) — (8). As far as we know this is the first time that — in
this generality — the viscosity solution has been given such a stochastic
interpretation. See Theorem 2.1. Moreover, we emphasize that our methods
enable us to prove uniqueness (which is well-known for bounded sets S) for
a large class of unbounded sets S, thereby covering most cases of interest
for application to optimal stopping (see Theorem 3.4). Finally, in Section 4
we give an example to illustrate the use of our results.

2 Optimal Stopping

From now on we will assume that S € R" is a fixed domain whose boundary
08 is regular for the process X;, i.e.

9) T :=inf{t > 0; X; ¢ S} =0 a.s QF for all z € 9S.




We assume that f and g are continuous functions on S and S, respectively,
satisfying

T
(10) E“”[/O 1£(X3)|df] < oo for all & € §

and the family
(11) {9(X;); 7 stopping time, T < T'}

is uniformly integrable with respect to @ for all z € §. With ® defined by
(1) we will assume that

(12) ® is continuous on S.
‘and, as in (6), we assume that
(13) Tp :=inf{t > 0; X; ¢ D} < oo a.s Q° forall z € D,
where
D= {z € S;®(z) > g(z)}

is the continuation region, as in (4). Then it is well known that ® can be
expressed by

B(z) = B[ /0 P (Xdt + g(Xp))

so that 7* = 7p is an optimal stopping time for the problem (1). Moreover,
we have the f-harmonicity property in D:

(14) B(z) = B /0 " F(Xpdt + B(X,)]

for all stopping times 7 < 7p. And we have the f-superharmonicity property

inS:
(15) B(o) 2 B[ FC)dt+ B

for all stopping times 7 < T'. For these and other results on optimal stopping
we refer to [6], Chapter 10.
We now give the definition of viscosity solutions for a variational inequality.

Definition 2.1. Let u be a real continuous function on S (the closure of
S). Consider the following variational inequality (in u):

(16) min{—Lu(z) — f(z),u(z) —g(z)} =0 for allz € S
(17) u(z) = g(z) for all z € 0S.

Then viscosity solutions are defined as follows,




(a) u is a viscosity subsolution of (16)-(17) in S if (17) holds and for each
Y € C2(S) and each yy € S such that ¢ > u on S and ¥(yo) = u(yo)
we have,

(18) min{—Lt(yo) — f(y0),¥(yo) — g(vo)} <0

(b) w is a viscosity supersolution of (16)- (17) in S if (17) holds and for
each ¢ € C*(S) and each yo € S such that ¢ < u on S and ¢(yy) =
u(yo) we have,

(19) min{—L¢(yo) — f (o), $(v0) — 9(x0)} = 0
(c) u is a viscosity solution of (16)-(17) in S if it is both a viscosity subso-
lution and a viscosity supersolution of (16)-(17).

Remark Note that without loss of generality we may — and will — assume
that the functions ¥ and ¢ above have compact support.

THEOREM 2.1. Assume that (9)-(12) hold. Then ®(y) defined by (1) is
a viscosity solution of the equation

(20) min{—L®(y) — f(y),®(y) ~g(y)} =0  forall ye€S§
(21) ®(y) = g(y) for all y € 8S

Proof. Note that (21) follows immediately from assumption (9). Next we
turn to (20). First we treat the viscosity subsolution case. Let ¢ € C? and
yo € S be such that 1 > ® on S and ¥(yo) = P(vo).

If yo ¢ D then ®(yg) = g(yo) so ¥{(yo) — g(yo) = 0 and hence

min{—Lp(yo) — f(yo), % (%) — 9(v0)} <0
and so (18) holds.

Next, suppose yy € D. For 7 < 7p we have by (14)

B(yo) = B[ /0 " F(X)dt + B(X,)]

Hence, using the relationship between ® and 1), we obtain by Dynkin’s
formula, if 7 is also assumed to be bounded,

Blyo) = Y[ /0 " F(X)dt + B(X,)

IA

Ew| /0 " P (X dt+ ()]
= Bw| /O P (X0 + (o) + /0 " Lp(Xy)d]
- o[ TP + Ip(X))dd] + (wo)




Bw| /0 "X + Lp(X2))dd] > 0

On dividing by E¥[7] and letting 7 — 0, we get

f(yo) + Lp(yo) > 0.

Thus
min{—Ly(yo) — f(yo),¥(yo) — g(v0)} < 0.

This shows that ® is a viscosity subsolution.

The viscosity supersolution case is similar: Let ¢ € C?(S) and yo € S be
such that ¢ < ® on S and ¢(yo) = ®(yo).

For all bounded stopping times 7 < 7' we have by (15)

B(yo) > E¥| / " F(X)dt + B(X,)]

Hence, using the relationship between ® and ¢, we obtain by Dynkin’s
formula

Bo) = B[ FXdt+ B(X)
> Bl F(Xde + 9
= ol sd+ otan) + [ Lox)as
= oL (FO0) + LX) dt] + gl

or
.
B[ (73 + Ly(X)d <0
0
On dividing by E¥[7] and letting 7 — 0, we get

f(yo) + Lo(yo) < 0.

Thus
min{—Laé(yo) — f(y0), (v0) — 9(%0)} > 0,

which shows that ® is a viscosity supersolution. O




3 Uniqueness

We now turn to the question of uniqueness of the viscosity solution of the
variational inequality (16) — (17). It is known that if S is bounded, then
(16) — (17) has a unique solution. (See e.g Theorem 3.3, [2], which applies
to a more general equation than (16) — (17).) But since many important
optimal stopping problems involve unbounded sets S (even S = R"™), it is of
interest to obtain uniqueness also in such cases. However, as the following
simple example shows, uniqueness does not hold unless some conditions are
imposed:

Example 3.1. Let S=R, f =0 and
2
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g(z)
Let Xy = Wy, Brownian motion on R. Then it is easy to see that

O(z) =sup E*[g(W,)] =1 for all z € R.

However, any constant function
u(z) =a

where a > 1 is a viscosity solution of the variational inequality (16) — (17)
in this case, viz.

min{~ 24" (4), u(y) — 9(4)} = 0 for all y € R.

In order to prove our uniqueness result, we need the following result of
independent interest:

Proposition 3.1. Let U be a domain in R™ such that
Ty =1inf{t > 0; X; ¢ U} < 00 a.s Q°for allz € U.

Let F and G be continuous functions on U and U, respectively, satisfying

(22) B / Y IF(X))|d] < 00 for allz € T
0

and

(23) E*|G(X)|| <o forallz €U




a) (Ezistence) Define
w(z) = Ez[/m F(Xy)dt + G(X5,)]
0

Then u = w s a viscosity solution of the equation
(24) Lu+F=0inU
Moreover, u = w satisfies the condition
(25) the family
{u(X;); T stopping time ,7 < 17}
is Q° — uniformly integrable, for all z € U.
b) (Uniqueness) Conversely, if u is a viscosity solution of (24) with the
boundary values
(26) u=G on U
and satisfies (25), then u = w.

Proof. a) We first prove that w is a viscosity solution of (24). The proof is
similar to the proof of Theorem 2.1. To prove that w is a subsolution choose
Y € C*(U) and yo € U such that 1 > w on U and %(yy) = w(yo). Let
7 < 1y be a bounded stopping time. Then by the strong Markov property
we have (see e.g [1], Lemma 9.10).

wlo) = B[ PO+ 0(X0)
< p( [ POt + 9]
= (o) + B[ (L + P
Hence E%[[7 (L + F(X,))dt] > 0. Dividing by E%[r] and letting 7 — 0

we get
Lip(yo) + F(yo) > 0.

This proves that w is a subsolution.
Similarly, to prove that w is a supersolution choose ¢ € C?(U) and yo € U

such that ¢ < w in U, ¢(ys) = w(ys). Let 7 < 7y be a bounded stopping
time. Then by the same argument as above

w(ye) = B /0 " P(X)db + w(X,)]

> d(yo) + B[ /0 "(Lg + F)(X,)dd),




and we get Lo(yp) + F(yo) < 0. Hence w is also a supersolution.
Next we verify that u = w satisfies (25). If 7 < 7y is a stopping time, then
by the strong Markov property

w(X,) = EXT[/OTU F(X.)dt + G(Xry)]
— B / Y R dt+ G(Xoy)) 1 Fr]

Hence by the Jensen inequality

w(X5)| < E”“[(/TU |F(Xt)|dt + |G (X)) Fr] =2 Hr(w)

,
Let 5 : [0,00) — [0, 00) be convex, increasing. Then by the Jensen inequality

TU

E¥[n(jw(X])] < E”[n(Ez[(/ |F(Xp)|dE + |G (Xry ))F])]

< B[ PO+ G ) DI

T

(27) —5*ln( | YRt + 16 (X))

By (22) and (23) the family

([ 1FC) e+ 160D e

is Q®— uniformly integrable (u.i.) and therefore there exists a u.i. test

function 7 (i.e a convex, increasing function 7 such that limg_ @ = 00)

and such that the expression in (27) is uniformly bounded for 7 < 7r;. Hence
{w(X7)}r<ryis @-uniformly integrable.

b) Next we prove uniqueness. By Theorem 3.3 in [2] it follows that the
viscosity solution is unique if U is bounded. To prove the result in the
general case consider

UN)={zeU;lz]<N}for N=1,2,..
Suppose v is a viscosity solution of (24) and (26). Define
Uy = U[—UTN—)
Then trivially u = vy is a viscosity solution of

Lu+F =0in U(N)
u = vy on OU(N)




Since U(N) is bounded it follows by uniqueness and by a) that

TUN)
ox(z) = B7| /0 F(X0)dt +ox (Xrg )]

Since vy =v on U(N), v = G on OU and 7y(yy — 77 < 00 a.s. as N — oo,
we get

v(z) = ]\}1_13100 vy (z)

= B /0 Y P(X)dt + G(Xy)] = w(z),

by (26). This completes the proof of Proposition 3.1. O

We now proceed with the proof of the uniqueness of the viscosity solution
of (16)-(17).

Lemma 3.1. Let v be a wviscosity supersolution of (16). Then

v(y) > g(y) for ally € S

Proof. Fix y € S and let V C S be a bounded neighbourhood of y. Then v
has a minimum point z in V. Hence we can find a function ¢ € C?(S) such
that ¢ <wvon S and ¢(z) = v(z). So by Definition 2.1, part b) we conclude
that

v(z) = ¢(z) > g9(z)

Since the neighbourhood V' can be made arbitary small we conclude by
continuity that

v(y) > g(y)-

Since y is arbitary, the lemma is proved. O

We are now ready for the main result in this section. If v is a viscosity
solution of (16) we define

(28) A=A, ={z € Sv(z) >g(z)}

THEOREM 3.1 (Uniqueness). Let v be a viscosity solution of the vari-
ational inequality

(29) min{—Lv(z) — f(z),v(z) — g(z)} =0 forall z€8§
(30) v(z) = g(z) for all z € S

with the property that

(31) {v(X:)}r<rs is QF — uniformly integrable for all z € S.




Assume that
(32) T4 <00 a.5QF forallz e S

Then
v(z) = ®(z) for allz € S.

Proof. We first observe that v is a viscosity solution of
(33) Lv+f=0in A

with the boundary values

(34) v =g on 0A.

This is a direct consequence of Definition 2.1 combined with the definition
(28). Hence by Proposition 3.2 b) we conclude that

v(z) = Ew[/O” F(Xu)dt + g(X.,)] for all z € A

Therefore,
(35) v(z) < O(z).
To get the opposite inequality define
S(N)={z € S;|z| < N}

and put
UN = ’Ulm, N = ]_,2,

Then vy is a viscosity solution of

(36) min{—Lvy — f,oxy — g} =0 in S(N)
and
(37) uN = v|ag(w) on OS(N).

Then by the comparison theorem on bounded sets (Theorem 3.3 in [2]) and
Lemma 3.3 we conclude that

(38) UN Z’U,N in S(N),
where u is the (unique) solution of (36) with the boundary condition
(39) uy =g on 9S(N)

Hence by Theorem 2.1 we have

on(@) > suwp E7| /0 " F(X)dt + g(X,)

T<TS(N)
Letting N — oo we get
(40) v(z) 2 ().
Combining (35) and (40) we get the result. O
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4 An Example

Theorem 3.4 is useful as a verification theorem for optimal stopping prob-
lems. We illustrate this with the following example:
Let a, ¢, p be positive numbers such that

4pa 1
41 — -~
(41) 1+ 2pa? Se<3

Define

1 for z <0
h{z)=<1—cz for0<z<a

l—ca fora<z
Consider the optimal stopping problem

(42) (s, w) = sup B> [e P R(W,)]
720

where p > 0 is constant. This is a problem of the form (1) with S = R?,
T=o00, f=0,

dX; = [(1)] dt + [(1)] AWy, Xo =2z = (s,w)

and
9(z) = g(s,w) = e”"h(w).
In this case the generator L of X; is
6,18
ot = 2 0uw?

and therefore the variational inequality for (42) is

L=

(43) min{—-L®(z), ®(z) — g(z)} = 0 for all z € R?

We now use some intuition to guess that the continuation region has the
form

D={(t,w),0 <w < w}

for some w; > 0. In the view of (43) the value function @ should solve the
equation

(44) Lo=0for 0 <w<wy
We guess that ® is of the form
J(s,w) = e P K(w)

11




which substituted in (44) gives

%K”(w) — pK(w) =0 for 0 < w < wy
The general solution of this equation is

K(w) = CreV?Pv 4 C’ze_mw;o <w < wy

We now determine Cy,Cy and wy by using the following 3 equations:
(Continuity ot w = 0) K(0) =1, i.e.
(45) Ci+Cy=1
(Continuity at w = wy) K(w1) =1 —ca, ie.
(46) CreV?1 4 Che VU1 = 1 —¢q
(C! at w=w;) K'(w1) =0, i.e.
(47) V/20C1eV?P — | [2pChe VP =

By combining (45)-(47) we get
1
C = 5(1— ca(2—ca)) >0, Co=1-C1 >0

and

1 1—ca
— In(—=
7555

We conclude that with these values of Cy, Cy and w;, our candidate for the
value function ® is

w] = > 0.

(48) J(w) = e K(w),

where
1 for w <0

(49) K(w) = { CreV?? + Che V¥ for 0 <w < wy
1—ca for wy <w

The optimal stopping time 7* corresponding to this value function is

(50) " =7p =1inf{t > 0; W; ¢ (0,w1)}

12




To check if this candidate actually is the value function, it suffices to verify
that it is a viscosity solution of (43). First we note that since
lim K'(w) = +/2p(C1 — C)
w—0+
= —v/2pac(2 — ac) > —c
= lim A/(w)

w—0+

(by (41)), we have
J(z) > g(z) <=z € D.

a) We first verify that J is a viscosity subsolution of (43). By our con-
struction of J it is enough to verify (18) at the points yo = (s,0) and
Yo = (s, w1). Since J(yo) = g(yo) at these points, it is trivial that (18)
holds when 9(yo) = g(yo)-

b) Next we verify that J is a viscosity supersolution of (43) and again it is
enough to verify this at yo = (s,0) and yo = (s, wy).

(i) If yo = (s,0) then no ¢ € C?(R?) exists such that ¢(s,0) =
J(s,0) =1 and ¢ < J on R?, because

lim a—J(s,w) =e 7°v/2pac(2 —ca) < 0= lim Q{(s,w).

w—0+ Ow w—0— Ow

Hence (19) holds trivially.
(ii) Let yo = (s, w1) and choose ¢ € C?(R?) such that ¢(yg) = J(yo) =
1 —ca and ¢ < J on R2. Then the map

(s,w) = H(s,w) := §(s,w) — J(s,w);s € R,w < wy

has a local maximum at all points (s, w;) and therefore by the first
order conditions

0¢ _aJ d¢ oJ
(51) %(s,wl) = E(S’wl) and %(s,wl) > a—w(s,w1)

and by the second order conditions

82 2

¢ . 0%J
2 — < — .
(5 ) w2 (57w1) = 'wl—l)IBl— w2 (87 ’LU)

Since LJ(s,w) =0 for 0 < w < w; it follows from (51) and (52) that
L¢(Saw1) <0

and hence (19) holds at yo = (s, w1).

13




We conclude that our candidate (48) -(49) is indeed a viscosity solution of
(43) and hence it is the value function of the optimal stopping problem (42).
Moreover, the optimal stopping time 7 is given by (50).

Note that in this example the value function is not C* at w = 0, so the ”high
contact” or ”smooth fit” principle does not hold, moreover the solution could
not have been found by using the verification theorem in [1].
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