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Viscosity solutions to delay differential equations
in demo-economy

Giorgio Fabbri*

Abstract

Economic and demographic models governed by linear delay differ-
ential equations are expressed as optimal control problems in infinite
dimensions. A general objective function is considered and the concav-
ity of the Hamiltonian is not required. The value function is a viscosity
solution of the Hamilton-Jacobi-Bellman (HJB) equation and a verifi-
cation theorem is proved.

Key words: viscosity solutions, delay differential equation, vintage
models.

1 Introduction

Fabbri et al. (to appear) study a family of optimal control problems driven by
delay differential equations using strong solutions. Here I treat a larger class
of economic and demographic problems, written as optimal control problems
with delay state equation, using viscosity solutions. 1 use an equivalent
formulation of the delay problem introducing a suitable Hilbert space and
re-writing the state equation as a suitable ordinary differential equation'
(ODE) in the Hilbert space.

Models in epidemiology and in dynamic population governed by linear de-
lay differential equations for which a formulation in Hilbert spaces is possible
are presented in Section 2. I will use a demographic model with an explicit
age structure by Boucekkine et al. (2002), a vintage capital model with linear
production function (AK) by Boucekkine et al. (2005)2, a model for obsoles-
cence and depreciation with linear production function by Boucekkine et al.

*DPTEA, Universita LUISS - Guido Carli, Rome and School of Mathematics and
Statistics, UNSW, Sydney. Supported by the ARC Discovery project DP0558539.

!The method I use is due to Vinter and Kwong (1981) and Delfour (1986, 1980, 1984).
I refer to the book by Bensoussan et al. (1992) for a systematic presentation.

*The model by Boucekkine et al. (2005) was also studied by Fabbri and Gozzi (sub-
mitted) using dynamic programming.



(2004) and an advertising model with delay effects by Gozzi and Marinelli
(2004), Gozzi et al. (preprint), Faggian and Gozzi (2004).

I recall® that dynamic programming consists of four steps: (i) write the
dynamic programming principle for the value function and its infinitesimal
version, the HJB equation, (ii) solve the HJB equation and prove that the
solution is the value function, (iii) prove a verification theorem which can
involve the value function and which gives the optimal control as a function
of the state finding the closed loop, (iv) solve the closed loop equation if
possible, obtained after inserting the closed loop in the state equation.

The difference between Fabbri et al. (to appear) and the present work
is the different study of the HJB equation. Fabbri et al. (to appear) solved
the HJB equation by approximation, introducing a sequence of more regular
problems that converges to the original one (Faggian, 2005a, b; Faggian
and Gozzi, 2004). Here I study the existence of viscosity solutions for the
HJB equation. Viscosity solutions in HJB equation allows one to avoid the
concavity assumption of the Hamiltonian and of the target. Problems with
multiple optimal solutions, * where the value function is not everywhere
differentiable, are also tractable. Moreover, I do not require that the control
and the state are de-coupled in the objective function (see Subsection 3.2).
A verification result represents a key step in dynamic programming because
it verifies whether a given admissible control is optimal or not and gives a
way to construct optimal feedback controls.

On viscosity solution I have recalled that a crucial step in dynamic
programming is to solve the associated HJB equation. Such a solution is used
to find optimal controls in a closed-loop form. There are many definitions
of solutions of a partial differential equations and in particular of the HJB
equation related to optimal control problems. Which one shall we choose?
In the classical works Fleming and Rishel (1975) use a regular solution:
the solution of the HJB equation is a regular (C1) function which satisfies
the equation pointwise. However the solution of the HJB equation is often
neither C! nor differentiable. Crandall and Lions (1983) defined viscosity
solutions of the HJB equation in finite dimension. The idea is that the
solution can be less regular, for example continuous, and the solution uses
sub and super differential or test functions. Every regular solution of the HJB
equation is also a viscosity solution. Many HJB equations admit viscosity
solutions but no classical solutions. Under general hypotheses, in the finite
dimensional case, the HJB equation related to an optimal control problem
admits a unique viscosity solution which is exactly the value function of
the problem. Viscosity solutions can be used to check results and to solve
optimal control problems. The infinite dimensional case is more complex
and the literature is scarce.

3 A more detailed description of the method is in Fabbri et al. (to appear).
“I refer to Deissenberg et al. (2004) for a bibliography of such problems in economics.



The viscosity method, introduced in the study of the finite dimensional
HJ equation by Crandall and Lions (1983) was extended to the infinite di-
mensional case (Crandall and Lions, 1985, 1986a, b, 1990, 1991, 1994a, b).
Other variants of the concept of viscosity solutions of HJB equations in
Hilbert spaces are given by Ishii (1993) and Tataru (1992a, b, 1994).

In partial differential equation (PDE) with boundary control there is no
complete theory but some works on specific PDE adapting the ideas and
techniques of viscosity solutions for first order HJB equations (Cannarsa
et al., 1991, 1993; Cannarsa and Tessitore, 1994, 1996a, b; Gozzi et al.,
2002; Fabbri, submitted). Most of these works treat the case in which the
generator of the semigroup appearing in the state equation is self-adjoint.

Infinite dimensional HJB equations arising from delay differential equa-
tions (DDESs) with delay in the control present an unbounded term similar to
the one arising in boundary control problems (Fabbri and Gozzi, submitted,;
Fabbri et al., to appear, use classical and strong® solutions). These papers
do not cover the case presented here.

2 Demo-economic models

Linear delay differential equations (LDDEs) model many phenomena in epi-
demics (Hethcote and van den Driessche, 1995, 2000; Smith, 1983; Waltman,
1974) and in biomedicine (Bachar and Dorfmayr, 2004; Culshaw and Ruan,
2000; Luzyanina et al., 2004). A review on delay differential equations in
biosciences is in Bocharova and Rihanb (2000) and Baker et al. (1999).

2.1 Three examples

Three economic models will help us to understand which assumptions can
be the right one.

2.1.1 A vintage capital model with linear production function
(AK)

The growth model with vintage capital and linear production function pre-
sented by Boucekkine et al. (2005) is based on the following accumulation
for capital goods

k(s) = /:Rz'(T)dT

where i(7) is the investment at time 7. Capital goods are accumulated
for length R of time (scrapping time) and then dismissed. Investments are
differentiated with respect to their ages. The production function is linear:

y(s) = ak(s)

5 A strong solution is a suitable limit of classical solutions of approximating problems.




for some constant a > 0 where y(s) is the output at time s. At every time
s the planner splits the production into consumption ¢(s) and investment in
new capital i(s):

y(s) = c(s) +i(s),

then the state equation is
k(s) =i(s) —i(s — R), se€[0,+00)

which is a linear delay differential equation. The social planner maximizes
the function

oo c(s)t=° +oo ak(s) —i(s))=°
/0 e_psg)_o_ ds:/0 e_pS( A )1_((7)) ds (1)

Investment and consumption at time s must not be negative:

i(s) >0, c(s) >0, VseltT] (2)
The admissible set has the form:
A i) € L2 ([0, +00),R) : 0 < i(s) < ak(s) ae. in [0,+00)}.

where L2 ([0, +00),R) is the space of all functions from [0, +00) to R that

are Lebesgue measurable and square integrable on all bounded intervals.

2.1.2 An advertising model with delay effects

Gozzi et al. (preprint) and Gozzi and Marinelli (2004) in the stochastic case
and Faggian and Gozzi (2004) in the deterministic case (Feichtinger et al.,
1994, and references therein) studied the following advertising model.

Let t > 0 be an initial time, T > ¢ a terminal time (T < 400 here),
v(s), with 0 < t < s < T, the stock of advertising goodwill® of the product
to be launched. The dynamics is given by the following controlled delay
differential equation (DDE) with delay R > 0 where z is the spending in
advertising:

Y(s) = aoy(s +f rY(s+8&)day (&) + boz(s f 2(s+&)db1 (), 3
3
v(t) =2 7€) =0(E), 2(§) =0(§) VEE [t — R,

for s € [t,T], with the assumptions:

® qa is a constant factor of image deterioration in absence of advertising,
ap < 0;

5The advertising goodwill measurement reflects a “stock of information” from current
and past advertising that currently influences demand. It was first introduced by Nerlone
and Arrow (1962).



e a;(-) is the distribution of oblivion time, a;(-) € L*([~R,0]; R);
e by is a constant advertising efficiency factor, by > 0;

e by(-) is the density function of the time lag between the advertising
expenditure z and the corresponding effect on the goodwill level, by (+) €
L*([-R, 0] Ry);

e z is the level of goodwill at the beginning of the advertising campaign,
x> 0;

e 0(-) and §(-) are respectively the goodwill and the spending rate at the
beginning, 6(-) > 0, with #(0) = z, and §(-) > 0.

The objective function is

T
Tta:20) = (D) + [ o(e(e) ds (4)
where ¢g(+) and ho(-) are continuous functions.

2.1.3 A model for obsolescence and depreciation

Boucekkine et al. (in preparation) presented a model of obsolescence and
depreciation with linear production function. The production net of main-
tenance and repair costs y(t) satisfies the delay differential equation:

s = [ (@ < piaas 6)

where , n and § are real positive constants and n = e %7Q. The control
variable is given by the investment i(s), 0 < i(s) < y(s). The planner
maximizes the function

/+OO e Ps (y(S) — i(s))lia ds (6)
0

1—0

for a positive constant o and a discount factor p.
Boucekkine et al. (1997, 2001) treat these problems numerically.

2.2 Demographic applications

Boucekkine et al. (2004) consider a demographic model with an explicit age
structure. At any time ¢, h(v) is the human capital of the cohort born at v,
v < t. T(t) is the time spent at school so ¢t — T'(¢) is the last cohort which
entered the job market at t. A(t) is the maximal age attainable, ¢t — A(t) is



the last cohort still at work. The aggregate stock of human capital available
at time ¢ is:

t—T(t)
H(t) = / h(w)e™m(t — v)dv
t—A(t)

where n is the population growth rate, €™ the cohort size born at v, and
m(t — v) is the probability for an individual born at v to be alive at t¢.
Boucekkine et al. (2002) study the case in which A(t) and T'(¢) are constant.

3 The Problem

3.1 The delay state equation

From now on I consider a fixed delay R > 0. With notation from Bensoussan
et al. (1992), given T >t > 0 and z € L*([t — R, T],R) for every s € [t,T]
zs € L?([-R,0];R) is the function

(7)

def

{ z: [-R,0] > R
zs(r) = z(s+7r).

Given an admissible control u(-) € L?(¢,T), consider the delay differential
equation:

{ y(s) = N(ys) + B(us) + f(s) for s € [t,T] (8)
(y(t), ye,ur) = (¢°, ¢, w) € R x L*([—R,0;R) x L*([-R,0]; R)

where y; and u; are interpreted by means of Eq. (7).

N,B: C([-R,0,R) — R. 9)
In particular:
Hypothesis 3.1. N, B: C([-R,0],R) — R are continuous linear functions.

In the delay setting the initial data are a triple (¢°, ¢',w) where ¢ is
the state at the initial time ¢, ¢! is the history of the state and w the history
of the control up to time ¢ on the interval [t — R,t]. In the following f = 0.

Eq. (8) includes our three examples, namely:

e In Boucekkine et al. (2005), Fabbri and Gozzi (submitted), N = 0 and
B = 09 — g so the state equation is

k(s) = /iRz’(r)dr (10)



e In Gozzi et al. (preprint), Gozzi and Marinelli (2004) the definitions of
N and B are respectively

N:C([-R,0]) - R

N: v = agy(0) + [ 5 v(r)dan (r) D
B: C([-R,0)) — R
B: = boy(0) + [ 7 (r)dbn () 12
e In Boucekkine et al. (in preparation) N = 0 and
B: C(|-R,0)) — R 3

B: oy (2= n)y(0) — 00 [0, e ry(r)dr

Proposition 3.2. Given an initial condition (¢°, ¢',w) € R x L?(—R,0) x
L*(=R,0), a control u € L2 _[0,+00) and a function f € L*([0,T]R) there

loc

exists a unique solution y(-) of Eq. (8) in HL_[0,00). Moreover for all T >0
there exists a constant ¢(T') depending only on R,T,||N|| and || B|| such that

1Yl 01y < e(T) (\fﬁof + 10 12— o) T [wlr2(— R0y + lulr2(07) + ’f\m(o,T))-
(14)

Proof. In Bensoussan et al. (1992) Theorem 3.3 page 217 for the first part
and Theorem 3.3 page 217, Theorem 4.1 page. 222 and page 255 for the
second statement. O

3.2 The target functional

I consider a target functional to be maximized, of the form

T
/t Lo(s,y(s), u(s))ds + ho(y(T)) (15)
where
Lo: 0, T]xRxR—R

and
hUZR—)R

are continuous functions.

e In Boucekkine et al. (2005); Fabbri and Gozzi (submitted) the time
horizon is infinite and the objective functional was constant relative
risk-aversion (CRRA):

[ ) it )
0

1—0




e In Boucekkine et al. (in preparation) the functional is constant relative

risk-aversion: oo (y(s) — i( ))1_0
/ gi5) — us ds. (17)
0

l1—0

o In Faggian and Gozzi (2004) the functional is concave and of the form:

T
/t lo(s, () + no(s, 4(5))ds + mo(y(T)). (18)

The generality of the objective functional is one of the improvements due
to viscosity solutions. Fabbri et al. (to appear) considered only objective
functionals of the form

T
L[ e lo(c(s))ds + mo(y(T)) (19)

where Iy and mg are concave, and the utility function [y depends only on
consumption (that is the control) c.

3.3 Constraints

To define the optimization problem we specify the set of admissible trajec-
tories. In the examples a lower bound on the control variable is assumed. In
Boucekkine et al. (2005), Fabbri and Gozzi (submitted), Boucekkine et al.
(in preparation), the constraint u > 0 is assumed. Here the constraint is
more general:

w>T_(y) (20)

where I'_: R — (—o00, 0] is continuous.

In Boucekkine et al. (2005), Fabbri and Gozzi (submitted) the invest-
ment ¢ cannot be greater than the production ak(t), in Boucekkine et al. (in
preparation) ¢ < y. Here I impose

< Ty(y) (21)

where 'y : R — [0, +00) is a continuous function. In Boucekkine et al.
(2005), Fabbri and Gozzi (submitted) I'; (y) = Ay, in Boucekkine et al. (in
preparation) I'y (y) = y.

The three main components of an optimal control problem are the state
equation, the target functional and the constraints.

e The state equation is a general homogeneous linear DDE; in which the
derivative of the state y depends both on the history of the state ys
(where ys means the history of y in the interval [s — R, s]) and on the
history of the control us. ys and us are defined as in Eq. (7):

= —
{ys[ﬁﬂ] R 22)
ys(r) = y(s+r).



and the same for us;. The presence of the delay in the control yields
an unbounded term. In our state equation as reformulated in M? a
non-analytic semigroup appears. Fabbri (submitted) treats viscosity
solution of HJB equation with boundary term and with non-analytic
semigroup but only on a very specific transport partial differential
equation.

There are state-control constraints.

The target functional is of the form

T
/t Lo(s,y(s), u(s))ds + ho(y(T)) (23)

where Lo and hg are continuous. In Boucekkine et al. (2005), Fabbri
and Gozzi (submitted) and Fabbri (to appear) the utility function is
constant relative risk-aversion; in Fabbri et al. (to appear) it is concave.

4 The problem in Hilbert spaces

I recall how to rewrite the state equations of a control problem subject to a
DDE as a control problem subject to an ordinary differential equation (ODE)
in a suitable Hilbert space (Chapter 4 of Bensoussan et al., 1992).

I use the following notations:

y(+) is the solution of the delay differential Eq. (8).
(¢°, ¢!, w) is the initial datum in the delay differential Eq. (8).

x(-) is the trajectory in the Hilbert space M? = R x L?[—~R,0] and is
solution of the differential equation (28). z%(-) = y(-).

(a,b)p = ab is the product in R of two real numbers a,b € R.

(-,-) ;2 will indicate the scalar product in L?(—R,0): if ¢* € L? and
' € L? the scalar product is defined as

11\ ° 1
(00" o= [ 0wt (e)ds. (24)

The brackets (-,-) without index will indicate the scalar product in
M?: if ¢ = (¢°,¢') € M? and ¢ = (¢°, ') € M? the scalar product
is defined as

(@, 9) = o™ + (o191 - (25)

The brackets (-, )y, is the duality pairing between a space X and
the dual X’.



The symbol |y|x means the norm of the element y in the Banach space
X.

- |IT|| is the operator norm of the operator 7.

- CY([0,T] x M?) is the set of the continuously differentiable functions
©:[0,T] x M? — R.

If o € CL([0,T] x M?) 9yp(t, ) is the partial derivative with respect
to t and V(t,x) the differential with respect to the state variable
€ M2

Consider L the linear operator defined in Subsection 8. Under Hypothesis
3.1

Proposition 4.1. The operator A* defined as:

{ DAY = {(¢°,0') € M? : ¢' € WIA(=R,0) and ¢* = 6'(0)}
A*(¢°, 1) = (Lg', Dg')

is the generator of a Cy semigroup on the Hilbert space M? R
L*([-R,0}R)

Proof. See Bensoussan et al. (1992) Chapter 4. O

From the form of D(A*) the operator B is the linear continuous functional

{ B: D(A*) = R @7)

B: (% ¢') = B(p')
where D(A*) is endowed with the graph norm.” In the following B has this
second definition. The adjoints of A* and B are respectively A and B*.

Eq. (8) is included into the following ordinary differential equation in
the Hilbert space M?

d *
gaj(s) = Ax(s) + B*z(s)

z(t) = x.

(28)

Indeed Eq. (28) admits a unique solution z(-) over a suitable subset of
C([0,T); M?). This solution is a couple z(s) = (2°(s),z!(s)) € R x
L?(—R,0),® where 2°(s) is the unique absolutely continuous solution %(s)

"For x € D(A*) the graph norm |z|p 4« is defined as
|Z|pas) = |@[arz + [A 2|2
81 will write

x(s)U(<),t,a: = (:Cg(),t?z(s)v xi(),t,z(s))

to emphasize the dependence on the control and on initial data.

10



of Eq. (8) and z! a suitable transformation of the histories of the state y
and of the control u (Fabbri et al., to appear, and Appendix A).
In the next hypothesis I formalize this state-control constraint uw €

[T (), T+ ()):

Hypothesis 4.2. With a control u(-) and the related state trajectory x(-) =
(2°(-), 2%(+)) the state-control constraint is:

I_(2%(s)) < u(s) < T4 (a%(s)) Vs € [1,T) (29)
where I'_ and I'y are locally Lipschitz continuous functions

I't: R —[0,400)

I_:R— (—o0,0] (30)

and such that [I_(t)] < a + blt| and [I'+(t)] < a + b|t| for two positive
constants a and b.

The set of admissible controls is

Upe = {u() € LX(ET) « T_ (20, ,(5)) <uls) <To(2% ()} (31)

The target functional in Eq. (15) written in the new variables is

T
/t Lo (s, 2°(s),u(s))ds + ho(z°(T)).

Hence .
J(t,x,u(-)) = /t L(s,x(s),u(s))ds + h(z(T)) (32)
where
L:[0,T] x M> xR — R
{ L: (s,z,u) — Lo(s,2% u) (33)
M2
{ Z fH holico) (34)

and L and h are continuous functions. Moreover I ask that

Hypothesis 4.3. L and h are uniformly continuous and
|L(s,z,u) — L(s,y,u)| <o(|lz—y|) forall (s,u)€]0,T] xR (35)
where o is a modulus of continuity.’

The original optimization problem is equivalent to the optimal control
problem in M? with state equation (28) and target functional given by Eq.
(32).

A continuous positive function such that o(r) — 0 for r — 0%,

11



Lemma 4.4. Under Hypothesis (4.2) and given an initial datum
(¢°, ¢!, w) € R x L2(—=R,0) x L*(—=R,0) then Eq. (8) has a unique solu-
tion y(-) in H'(t,T). It is bounded in the interval [t,T] uniformly in the
control u(-) € Uy, and in the initial time t € [0,T). Let K be a constant
such that |y(s)| < K for any t € [0,T), any control u(-) € U, and any
set,T].

Proof. In Appendix A. O

Remark 4.5. Hypothesis (4.2) implies that u(s) < a + bK for all controls
mn Z/ft#«.

Lemma 4.6. Under Hypothesis (4.2) the solution x(s) of Fq. (28) satisfies

2(5) — 2]z 2= 0 (36)

uniformly in (t,x) and in the control u(-) € Uy 4.

Proof. In Appendix A. O

The value function of the problem is defined as

Vit,z) = (5)1615 J(t,z,u(:)) (37)

Proposition 4.7. The value function V: [0,T] x M? — R is continuous.

Proof. In Appendix A. O

5 Viscosity solutions for HJB equation
The HJB equation of the system is defined as

{ Jrw(t,x) + (Vw(t,x), Az) + H(t,z, Vw(t,z)) =0
w(T,x) = h(x)

where H is defined as:

def (39)

H:[0,T] x D(A*) - R
H(t,z,p) = Supuer_(z0),r, 20y {uB(p) + L(t,z,u)}

H is the Hamiltonian of the system.

12



5.1 Definition and preliminary lemma

Definition 5.1. A function ¢ € C([0,T] x M?) is a test function and
I write p € TEST if Vo(s,x) € D(A*) for all (s,z) € [0,T] x M? and
A*V: [0,T] x M? — R is continuous. This means that Vo € C([0,T] x
M?; D(A*)) where D(A*) is endowed with the graph norm.

Definition 5.2. w € C([0,T] x M?) is a viscosity subsolution of the HJB
equation (or simply a “subsolution”) if w(T,z) < h(z) for all x € M? and
for every ¢ € TEST and every local minimum point (t,x) of w— @,

Op(t, ) + (A"Vo(t,z),z) + H(t, z, Ve(t, x)) < 0. (40)
Definition 5.3. w € C([0,T] x M?) is a viscosity supersolution of the HJIB

equation (or simply a “supersolution”) if w(T,z) > h(z) for all z € M? and
for every ¢ € TEST and every local mazimum point (t,x) of w — ¢,

Op(t,x) + (A*Ve(t,x),z) + H(t,z,Vo(t,z)) > 0. (41)

Definition 5.4. w € C([0,7] x M?) is a wviscosity solution of the HJB
equation if it is both a supersolution and a subsolution.

Proposition 5.5. Given (t,z) € [0,T] x M? and ¢ € TEST there exists a

Lt
real continuous function O(s) such that O(s) 215 0 and such that for every
admissible control u(-) € Uy

P(5,0(5) = 2(hT) 5 1 2) — (A*Vip(t, 2), 7) —

s—t
S (B(Ve(t,x)), u(r))g dr
s—t

<O(s) (42)

(where x(s) is the trajectory starting from x at time t and subject to the
control u(-)).
Moreover if u(-) € Uy, is continuous in t

90(57 m(s)) — ‘:0(75, I‘) s—tt
s—1

s—tt

— Oip(t, x) + (A"Vo(t, ), x) + (B(Ve(t, ), u(t))g - (43)

Proof. In Appendix A. O

O(s) is independent of the control. This fact will be crucial when I prove
that the value function is a viscosity supersolution of the HJB equation.

13



Corollary 5.6. Given (t,x) € [0,T] x M? and ¢ € TEST and an admissible
control u(-) € Uy »
(s)) = p(t,z) =
/ Oup(r.2(r) + (A" ip(r a(r)), (1) + (B(Tiplr.a(r), u(r))g dr
(44)

where x(s) is the trajectory starting from x at time t and subject to the control
5.2 The value function as viscosity solution of HJB equation

Proposition 5.7. (Bellman’s optimality principle) The value function
V', defined in Eq. (37) satisfies:
V(t,z) = sup <V(s,w(s)) —I—/ L(r,x(r),u(r))dr) (45)
t

u(')eut,z‘

for all s > t where x(s) is the trajectory at time s starting from x subject to
control u(-) € Uy 4.

Proof. In Li and Yong (1995) Chapter 6. O

Theorem 5.8. The wvalue function V is a viscosity solution of the HJB
equation.

Proof. In Appendix A. O

I cannot give a uniqueness result for the viscosity solution of the HJB
equation yet. It will be an issue for future work.

6 A verification result

Lemma 6.1. Let f € C([0,T)). Exztend f to g on (—oo,+00) with g(t) =
g(T) fort > T and g(t) = g(0) for t < 0. Assume there is a p € L'(0,T;R)
such that

lim inf g(t—l—h)g()‘ < p(t) ae. te[0,T] (46)
h—0 h
Then
p t+h)—glt
g(ﬁ)—g(a)Z/ ligli(l)lfg(—'_ ) g()dt VOo<a<pg<T. (47)
Proof. In Yong and Zhou (1999) page 270. O

14



I first introduce a set related to a subset of the subdifferential of a function
in C([0,T] x M?). Tts definition is suggested by the definition of sub- and
super- solutions.

Definition 6.2. Given v € C([0,T] x M?) and (t,z) € [0,T] x M?, Ev(t, )
1s defined as

Ev(t,x) ={(¢,p) € R x D(A*) : J¢ € TEST, such that v — ¢
attains a local minimum in (¢, z),

Orp(t, z) = q, Vep(t, x) = p,
and v(t,x) = @(t,z)}
(48)

Moreover Ev(t,x) is a subset of the subdifferential of v.

Theorem 6.3. Let (t,x) € [0,T] x M? be an initial datum (x(t) = ). Let
u(-) € Usx and z(-) be the corresponding trajectory. Let ¢ € L'(t,T;R),
p € LY(t,T; D(A*)) be such that

(q(s),p(s)) € EV(t,z1y(s)) for almost all s € (¢,T) (49)

Moreover if u(-) satisfies
T
| A%l + (Bl ulo))+ a(s) ds >

T
Z/t —L(s,2(s),u(s)) ds, (50)

then u(-) is an optimal control at (t,x).

Proof. In Appendix A. O

A Appendix

I use the following notation of Bensoussan et al. (1992). Given N and B two
continuous linear functions

N,B: C([-R,0]) = R

of norms respectively || N|| and ||B]| (as in Hypothesis (3.1)), NV and B are

the applications
N,B: C.((-R,T);R) — L*(0,T)

N(): t = N(¢r) (51)
B(¢): t — B(¢t)
where ¢; has the meaning of Eq. (7), namely

¢ [-R,0] = R
{ de(r) < 2(t+ 7). (52)
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Theorem A.1. NV,B: C.((—R,T);R) — L%(0,T) have continuous linear
extensions L*(—R,T) — L*(0,T) of norms < ||N|| and < || B|.

Proof. In (Bensoussan et al., 1992) Theorem 3.3, page 217. O]

Definition A.2. Let a < b two real numbers, F(a,b) a set of functions from
[a,b] to R. For each u in F(a,b) and all s € [a,b], define the functions e u
and e u as

wclocson) =B ey = 3 LECT
0 t e (—oo, 3]
u(t) te(sbl.

Using the N and B notations, Eq. (8) is rewritten as

y(t) =Ny+Bu+ f (53)
(4(0), 5o, u0) = (¢°, ¢',w) € R x L*(=R,0) x L*(=R,0).

elu: (—oo,b) = R, efu(t) = {

Using € and eqs I decompose y(-) and u(-) as y = e}y + e} ¢! and u =
elu + eSw. I separate the solution y(t), t > 0 and the control u(t), t > 0
from the initial functions ¢! and w:

{ J(t) = NeQy + BeQu+ Ne ¢! + Belw + f (54)

y(0)=¢" €R

System (54) does not directly use the initial function ¢' and w but only the
sum of their images N'e® ¢! + Be® w. T introduce two operators

{ N: L%(—R,0) — L?(—R,0)
(Ng")(a) € We¢!)(—a) ae(—R.0)

and
{ B: L?(—R,0) — L%(—R,0)
(Bw)(a) @ (B w)(—a)  a € (~R,0)

The operators N and B are continuous (Bensoussan et al., 1992).

./\/'eg_d)l(t) + Begw(t) = (e_T_R(Nqbl + Bw))(~t) fort >0.

Calling
¢! = (N¢' + Bw) (55)
and 9 = ¢°, Eq. (54) and then Eq. (8) are rewritten as
{30~ A0+ BRI+ D040
y(0)=¢" €R
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where R x L?(—R,0) > ¢ o (€9,¢Y). Eq. (56) makes sense for all £ €

R x L?(—R,0) also when ¢! is not of the form (55). T have embedded the
original system (8) into a family of systems of the form (56).
I consider the case f = 0 from now on.

Definition A.3. The structural state x(t) at time t > 0 is defined by

2(t) < (y(t), N(%y)e + B(edu), + E(t)€Y) (57)

where Z(t) is the right translation operator defined as

(EMEN ) = (e3¢ (r—1)  re[-R.0]. (58)

Proof of Lemma 4.4. The existence of a solution follows from Proposition
3.2. From Eq. (56), the solution of Eq. (8) is also the solution of

{ y(S) = N(eiy)s + B(ef‘ru)s + (e;Rgl)(it) fOI‘ § Z 13 (59)
y(t) =¢° €R

where ¢! = (N¢! + Bw). Using Hypothesis (4.2), for every control u(-) €
Uy » and related trajectory y(-), the solution yps of the ordinary differential
equation

{ 9 (s) = INlyar(s) + | Bll(a + byar(s)) + (e3¢ (1) for s >0
yn(0) = [¢°] € R

(60)
satisfies |y(s)| < |ym(s —t)| for all s € [t,T] and yps is bounded on [0, 7.
0

ot

Proof of Lemma 4.6. I prove that |z(s) — x|y ==, 0 uniformly in u(-) €
— + . .

Uz, 50 it is enough to show that [2°(s)—2%|r =21, 0 uniformly in u(-) € Up x

and that |2!(s) — 2|2 = uniformly in u(-) € Uy ;. The first fact is a
corollary of the proof of Lemma 4.4 because |2°(s) — 2°| < yas(s —t) defined
in Eq. (60). Then, using the expression from Eq. (57):

|2 (s) — xl‘ﬂ < |2(s)2! ~ xl‘m + ‘N(egy)s‘m + ‘E(egr“)s}ﬂ <

- 1 J— 1
< |2(s)a' — 2t . +IN|(s —t)2K + || B||(s — t)2(a + Kb) (61)

where a and b are the constants of Hypothesis (4.2), K the constant of

Lemma 4.4 and Z(¢) is the right translation operator defined in Eq. (58).
1

Moreover ‘E(S)ZL’ — :El‘LQ 29,0 for the continuity of the translation

with respect to the L? norm. This limit does not depend on the control.
The other two terms of the right hand side of Eq. (61) are given by a
constant multiplied by (s — t)'/2 go to zero uniformly in the control. O
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Proof of Proposition 4.7. On [0,T] x M? 3 (t,,xn) —— (t,z), I have to
2

RxM
estimate the terms

[V(t,x) = V(t,z,)| and |V(tn,zn) — V(tn, )| (62)

The difficulties are similar. Using arguments similar to those of Lemma 4.4'°
there exists a M > 0 such that, for every admissible control,

|zn(s)] < M for every s € [t,,T], n € N

in particular |29 (s)| < M. Under Hypothesis 4.2 the restrictions of 'y and
I'_ in [-M, M] are Lipschitz continuous for some Lipschitz constant Z. If
V(t,x) > V(t,x,), I take an e-optimal control u®(-) for V (¢, ). The problem
is that u®(-) cannot be in the set Uy ,,,. I approximate the control in feedback
form:

[T () € [T (0e(), T (e (5))]
u(5) Y T (@nels) i w(s) € [P (wn(s), T (nc(s))]  (63)
D (@nels)) i 0(5) € [T (@ne()), T ()]

where z,,.(+) is the solution of

d *, €
Jone(s) = Azne(s) + Buz(s) (64)

Tne(t) = Ty,

By definition u®(s) is bounded, measurable, and in L%[0,T]. I call z.(-) the
solution of

d *, €
gxs(s) = Az.(s) + B*u®(s) (65)
xe(t) = x.
and y(-) ¥ 2.() — 2ne(-). By definition of s ()
[u(s) = u5, (s)] < Z]y°(s)] (66)

where y%(s) is the first component of y(s). Moreover y°(-) solves the following
delay differential equation (using the notation of Eq. (56)):

{ 7°(s) = (NeGy)(s) + (Bel (u(s) — up))(s) + e (a! — ;) (—s)

¥(t) = 20 — 3,

As in the proof of Lemma 4.4 and using Eq. (66) |y°(s)| < ya(s)| where ya,
is the solution of the ordinary differential equation

{ gn(s) = [N lyar(s) + IBllyar(s) + exlat — 2} |(—s)
ym(t) = |2° — ap)

19Using the fact that (e;*N¢' + Bw)(-) is continuous with respect to the initial data.
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I have

n

ym(s) = |x0—3391|€(”N”+”B”)(S_”+/t elINIHIBDG=) e R !l | (—7)d7 <
5 < Clla—aully (67
for all s € [t,T7,
149(5) — 2x2()| < Clla = zlla2 for all s € [1,T]

and
[u®(s) —u;,(s)| < ZC||lx — xp|| 2 forall s € ¢, T

Hence, by the uniform continuity of L
|L(s,22(5),u*(s)) = L(s,2n2(s), up(5)) < 0|z — znla2)  for all s € [t,T]
For the continuity of h (using o(-) for a generic modulus),
J(t 2, ut () = I (8 @n, ug () < o([|2 = 2nllar2)
and then
V(t,2) =Vt an)| = V(E,2) =Vt 2n) <e+o([z —zallae)

I conclude for the arbitrariness of €. O

Proof of Proposition 5.5. 1 write

plo2(s)) —oltx) _ o py o def Arp(El(s),€7(s)+

s—1
x(s)

D=2 4 (Telel(9) €7 - Vittn) LT (o

(et

where [t,T] x M? > £&(s) = (€!(s),£%(s)) is a point of the line segment
connecting (¢,z) and (s, z(s)). Thanks to Lemma 4.6, |z(s) — x| 2 =t

it
uniformly in u(-) € U, so [(s) — (¢, 2)|rxar2 =8, 0 uniformly in u(-) €
U; » and in particular

|€°(s) — | a2 =ty uniformly in u(-) € U » (69)
and then

S— +
1€(s) — (£ )| rpare < |s =t +[€7(s) — @|pz = 0

uniformly in u(-) € Uy . (70)
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By definition of the test function

V: [0,T] x M* — D(A*) and it is continuous. (71)
Then .
V(€' (5),67(s)) = Veo(t,2) [ pary =0 (72)

uniformly in u(-) € U .

The state equation (28) can be extended (Faggian, 2001/2002) to an
equation in D(A*)" of the form

{ x(s) = AW x(s) + B*u(s) (73)
z(t) ==
where A¥) is an extension of A and, from Lemma 4.4 and Remark 4.5,
|B*u(s)|p(a+y < |Blpcaryla +bK|. The solution of Eq. (73) in D(A*)" is
also (Pazy, 1983):

x(s) = e(s—HA® . +/ e(s*T)A(E)B*u(r)dr. (74)
t
Because z € X C D AE)Y a constant C depending on z is chosen so as, for
p g )

all admissible controls and all s € [t,T],

[z(s) — x\D(A*)/
s—t

<C. (75)

s—tT

By Egs. (72) and (75), |I1]] —— O uniform in u(-) € U;,. Thanks
to the convergence &(s) — (t,z) uniformly in u(-) € Uiy, Lt =
s—tt

Orp(E4(s),&7(s)) —— Oyp(t,x) uniformly in u(-) € U,. It remains to
show that

‘ (Ve(t, ), x(s) — x)

p— — (A*Vo(t,z),x) —

o fts <B(v90(t7 l‘)), u(r»R dr
s—1

— * B*u(r)d
= <V<p(t, ), <x(s)x —ABE) ftu(r)r>> < O(s)
s—1t s—1 D(A*)x D(A*)!
(76)
uniformly in u(-) € Uy z.
From Eq. (74) x(ss% in D(A*) is expressed explicitly as:
(s) —a (b0 1)y A es=nAY Bry(r)dr )

s—t s—t s—t
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I need to estimate:

x(s) —x AP () — [ B*u(r)dr _
S — t S — t D(A*)'
SAE) N els—mA® _q B*u(r)dr
e — 1)z t
— (s—t) —AB)(z) ( — ) (78)

D(A*)/

where the term (e&:%tl)x — AB)(g) % 0, because © € M? € D(AP))
D *Y/

(the convergence is uniform in u(-) € U, because it does not depend on

u(+)) and the second term is estimated, using Lemma 4.4, with

R L
<(a sup

s—1 re(t,s]

D(A*)l

(e(s—r)A(E) B 1) B‘D(A*)/

(79)

which goes to zero (the estimate is uniform in the control). As Vo(t,z) €
D(A*), the proof is complete.

Eq. (43), with u(-) continuous, is a simple corollary of the proof of the
first part. Indeed if u(-) is continuous

fts (B(Vo(t,z)),u(r))gdr .

s—1

(B(Ve(t, x)), u(t))r (80)

and the claim is proved. O

Proof of Theorem 5.8.

Subsolution:

Let (t,x) be a local minimum of V' — ¢ for ¢ € TEST. Assume that (V —
©)(t,x) =0 and u € [[_(2°),'y(2°)]. Consider a continuous control u(-) €
Uy, such that u(t) = u.tl z(s) is the trajectory starting from (¢,z) and
subject to u(-) € Uy 5. For s > t with s — ¢ small enough:

V(s z(s)) = ¢(s,2(s)) 2 V(t,2) = p(t, x) (81)

and thanks to the Bellman principle of optimality
Vt,z) > V(s,z(s)) —I—/ L(r,z(r),u(r))dr. (82)
t
Then

o(s,x(s)) — p(t,x) < V(s,z(s)) = V(t,z) < — /ts L(r,z(r),u(r))dr, (83)

1Tt exists: for example if u > 0 the control u(s) = ﬁlﬂr(mo(s)) until T4 (2°(s) > 0

and then equal to 0: because I'y is locally Lipschitz and sublinear, everything works.
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which implies, dividing by (s — 1),

(s, 2(s)) = p(t:) _ Jy L(ra(r), u(r))dr

s—t - s—t

(84)
Using Proposition 5.5,
Op(t,z) + (A*Vo(t, x), z) + (B(Ve(t, ), u(t))g < —L(t,z,u)  (85)
hence
Op(t,x) + (A*Vo(t,z), z) + ((B(Ve(t,x)), u)yg + L(t,z,u)) <0  (86)
Taking the sup,er_(z0)r, (;0y I obtain the subsolution inequality:
Op(t,x) + (A*Vo(t,x),z) + H(t,z,Ve(t,x)) <0 (87)

Supersolution:

Let (t,x) be a maximum for V —¢ and such that (V —¢)(t,2) = 0. Fore > 0
take u(-) € Uy, an e2-optimal strategy.'? z(s) is the trajectory starting from
(t,x) and subject to u(-) € Uy . For (s —t) small enough

V(t,x) = V(s x(s)) = o(t, 2) — ¢(s,2(s)) (88)

and from £? optimality

V(t,z) = V(s,z(s)) < e + /ts L(r,xz(r), u(r))dr (89)
gp(s,a:(i))_—t o(t,x) . —e2 fts Lir,_xt(r),u(r))dr (90)

For (s —t)=¢
o(t+e,x(t —1;5)) — p(t,x) > e ftt% —L(r, i(r), u(r))dr (1)

e—0

and from Proposition 5.5 a O(e) with O(¢) —— 0 1is taken independently
on the control u(-) € Uy 4, such that:

Ohp(t,x) + (A*Vo(t,x), z) +

n JIT (B(Ve(t,z)), u(r))g + Lr,a(r), u(r))dr

> —e+0(e). (92)
The supremum over u in the integral, when € — 0, gives

Opp(t,x) + (A*Ve(t,x),z) + H(t,z,Vo(t,z)) >0 (93)

12¢2_optimal means that J(¢,z,u(-)) > V(t,z) — &2
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Then V is a supersolution of the HJB equation. V is both a viscosity super-
solution and a viscosity subsolution of the HJB equation and, by definition,
it is a viscosity solution of the HJB equation. U

Proof of Theorem 6.3. The function

{\I/:[t,T}—JR{xRxRxR (94)

W s = ((A"p(s), 2(s))arz » (Bp(s), uls))g  4(s), L(s, z(s), u(s)))

is in L'(t,T;R*) from Lemma 4.4. The set of the right-Lebesgue point is
of full measure. I choose a point 5 in this set. I keep choosing 5 in a full
measure set if I assume that Eq. (49) is satisfied at 5. I set 7 := z(5) and
I consider a function ¢ = ¢>% € TEST such that V > ¢ in a neighborhood
of (gvj:% V(‘§7 {E) - 90(57 {Z') = 0 and (at)(ga)(g,{f)) - Q(§)7 VQO(E, j) - p(g)'
Then for 7 € (5,T] and (7 — §) small enough,

Vira(r) - V(E2) _ o) -~ p(.7)

T—38 T—38

(95)
for Proposition 5.5

> Oip(s, 1) + Js (BVe(,@), ulr))gdr

T—35
(96)
Because of the choice of 5 I know that
T (BV@(5,2),u(r)gdr s+ o
J = (BV(5,7), u(s))g - (97)

T—3S8

For almost every 5 in [t, T

V(r,z(1)) — V(5,2(5))

limlipf p— >
> (BVg(s, (_)) u(8))g +
+0up(5,2(8)) + (A"V(5,2(5)), 2(5)) =
= (Bp(3), u(8))r + ¢(5) + {A"Vp(5),z(5)) (98)

then Lemma 6.1 holds true and
V(T,2(T)) — V(t,z) >
> /tT (Bp(5),u(s))r + q(5) + (A"Vp(s),2(s)) ds = (99)
using Eq. (50)

T
> /t —L(r, (r), u(r))dr- (100)
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Hence
T
Vt,z) <V(T,z(T)) +/t L(r,z(r),u(r))dr =

T
:h(x(T))—i—/t L(r,x(r),u(r))dr (101)

then (z(-),u(-)) is an optimal pair. O
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