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Summary

This research deals with pressure waves in a gas trapped in thin layers or
narrow tubes. In these cases viscous and thermal effects can have a significant
effect on the propagation of waves. This so-called viscothermal wave propa-
gation is governed by a number of dimensionless parameters. The two most
important parameters are the shear wave number and the reduced frequency.
These parameters were used to put into perspective the models that were
presented in the literature. The analysis shows that the complete parame-
ter range is covered by three classes of models: the standard wave equation
model, the low reduced frequency model and the full linearized Navier Stokes
model. For the majority of practical situations the low reduced frequency
model is sufficient and the most efficient to describe viscothermal wave propa-
gation. The full linearized Navier Stokes model should only be used under
extreme conditions. The low reduced frequency model was experimentally
validated with a specially designed large-scale setup. A light and stiff solar
panel, located parallel to a fixed surface and performing a small amplitude
normal oscillation, was used. By assuming the panel to be rigid, attention
could be focused on the viscothermal model. The large scale of the setup en-
abled accurate measurements and detailed information to be obtained about
the pressure distribution in the layer. Analytical and experimental results
show good agreement: the low reduced frequency model is very well suited
to describe viscothermal wave propagation. In practical applications the
surfaces or walls are often flexible and there can be a strong interaction be-
tween the wave propagation and surface or wall motion. As a next step,
a new viscothermal finite element was developed, based on the low reduced
frequency model. The new element can be coupled to structural elements, en-
abling fully coupled acousto-elastic calculations for complex geometries. The
acousto-elastic model was experimentally validated for a flexible plate backed
by a thin air layer. The results show that the viscothermal effects lead to a
significant energy dissipation in the layer. Furthermore, the acousto-elastic
coupling was essential and had to be included in the analysis. Numerical
and experimental results show good agreement: a new reliable viscothermal
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acousto-elastic simulation tool has been developed. An additional series of
preliminary measurements indicate that obstructions in a layer may further
increase the energy dissipation. However, non-linear behaviour was observed
that could not be described with the linear viscothermal models. A simple
model was developed that explained the non-linear behaviour. Finally, the
developed techniques were successfully applied to a number of problems: the
behaviour of stacked solar panels attached to a satellite during launch, the
design of a new inkjet print head and the acoustic behaviour of double wall
panels.



Samenvatting

Dit onderzoek richt zich op het beschrijven van drukgolven die zich voort-
planten in een dunne laag gas of in een gas dat zich bevindt in een nauwe
buis. In deze gevallen kunnen viskeuze en thermische effecten een belang-
rijke invloed hebben op de voortplanting van deze golven. Het gedrag wordt
bepaald door een aantal dimensieloze kentallen. De twee belangrijkste ken-
tallen zijn het “shear wave” getal en de gereduceerde frequentie. Met deze
parameters zijn de modellen die in de literatuur gepresenteerd zijn in per-
spectief geplaatst. De analyse toont aan dat het volledige parameterge-
bied bestreken wordt door drie klassen modellen: het standaard golfvergelij-
kingsmodel, het lage gereduceerde frequentie model en het volledige geli-
neariseerde Navier Stokes model. Voor nagenoeg alle praktische situaties
is het lage gereduceerde frequentie model voldoende en het meest efficiënt
om golfvoortplanting inclusief viskeuze en thermische effecten te beschrijven.
Het volledige gelineariseerde Navier Stokes model hoeft alleen onder zeer
extreme omstandigheden gebruikt te worden. Het lage gereduceerde fre-
quentie model is experimenteel gevalideerd aan de hand van een speciaal
ontworpen testopstelling. Hiervoor is een licht en stijf zonnepaneel gebruikt
dat zich parallel aan een vaste wand bevindt. Het paneel voert een trilling
met een kleine amplitude uit loodrecht op de wand. Doordat het paneel
zich star gedraagt kan alle aandacht gericht worden op het golfvoortplan-
tingsmodel. De grote afmetingen van de opstelling maken metingen met een
hoge mate van nauwkeurigheid mogelijk en bovendien is gedetailleerde infor-
matie verkregen over de drukverdeling in de luchtspleet tussen paneel en vast
oppervlak. Analytische en experimentele resultaten komen goed overeen: het
lage gereduceerde frequentie model is erg geschikt om golfvoortplanting in-
clusief viskeuze en thermische effecten te beschrijven. In de praktijk heeft
men vaak te maken met flexibele oppervlakken of wanden. Er kan een sterke
interactie zijn tussen de golfvoortplanting en de elastische wandbeweging. Als
vervolg is daarom een nieuw akoestisch eindig element ontwikkeld, gebaseerd
op het lage gereduceerde frequentie model. Dit element is in staat om
golfvoortplanting inclusief thermische en viskeuze effecten te beschrijven. Het
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kan gekoppeld worden aan constructie elementen, waardoor volledig gekop-
pelde berekeningen voor complexe geometrieën mogelijk zijn. Het akoesto-
elastische eindige elementen model is gevalideerd aan de hand van experi-
menten met een ingeklemde plaat met daaronder een dunne luchtlaag. De
resultaten laten zien dat een aanzienlijke hoeveelheid energie gedissipeerd
kan worden door viskeuze effecten. Daarnaast is de koppeling erg belangrijk.
De numerieke en experimentele resultaten vertonen goede overeenkomst: er
is een nieuwe en betrouwbare berekeningsmethode ontwikkeld voor akoesto-
elastische problemen, inclusief viskeuze en thermische effecten. Oriënterende
metingen tonen aan dat obstructies in een dunne laag de energiedissipatie
verder kunnen doen toenemen. Dit gedrag is echter sterk niet-lineair van
karakter en kan derhalve niet voorspeld worden met de lineaire modellen. Er
is een eenvoudig model ontwikkeld dat het niet-lineaire gedrag verklaart. De
ontwikkelde technieken zijn tenslotte succesvol ingezet bij een aantal prakti-
sche toepassingen: het gedrag van opgevouwen zonnepanelen aan een satelliet
tijdens de lancering, het ontwerp van een inkjet printkop en het akoestisch
gedrag van dubbelwandige panelen.
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Chapter 1

Introduction

1.1 General introduction

1.1.1 Acoustics

According to Webster’s revised unabridged dictionary, acoustics is:
“the science of sounds, teaching their nature, phenomena and laws”.
Sound is generated by the motion of particles. It is a compression and
rarefaction of the medium (see Figure 1.1).

p

p
0

λw

Figure 1.1: Longitudinal sound waves

The particles transmit the vibration and in this way a wave propagates
through the medium. This type of behaviour can be illustrated with the
following simple example. Consider a row of people. A person at the end of
the row steps sideways and bumps into the person next to her or him and
then steps back. The second person then transmits this “disturbance” to
the third person. In this way a wave propagates down the line of people.
This example shows that it is important to distinguish between the particle
(person) velocity and the actual wave speed. The particles (persons) perform
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a small oscillation around their equilibrium position, while the wave propa-
gates through the medium 1. In air at atmospheric conditions the speed of
sound is approximately 340 m/s. Standard acoustic waves in air are longi-
tudinal waves: the direction of motion of the particles and the propagation
direction of the wave coincide. In other media or situations other types of
waves may exist.

Due to the compression and rarefaction the motion of the particles is
accompanied by pressure disturbances with amplitude p (see Figure 1.1).
The pressure disturbances associated with sound waves are usually small
disturbances upon a steady state, e.g. atmospheric, condition (in Figure
1.1 indicated by p0). Because sound is a mechanical phenomenon, it can-
not propagate in vacuum. In the latter case there simply is no medium to
transmit the mechanical vibrations.

The most important quantities that characterize a harmonic sound wave
are its speed of propagation, its wavelength and its amplitude. The speed of
propagation depends on the medium of interest and the ambient conditions.
The wavelength is the distance after which the pressure pattern is repeated
(see figure 1.1). The frequency of the wave is the number of cycles per second.
For standard acoustic wave propagation the frequency f and the wavelength
λw are related as:

λw =
c0

f
(1.1)

where c0 is the undisturbed (adiabatic) speed of sound. The wavelength thus
decreases with increasing frequency. The human ear is able to detect sound
in the frequency range between 20 Hz and 20 kHz. For air under atmospheric
conditions, this corresponds to wavelengths between roughly 1.7 cm and 17
m.

1.1.2 Standard acoustic wave propagation

The mathematical concept to describe the propagation of sound waves, based
on the so-called wave equation, has long been known. It is widely used to
describe for instance sound fields in large enclosures and radiation and scat-
tering phenomena. The basis of this acoustic equation is the more general set
of fluid dynamics equations: the Navier Stokes equations. This very compli-
cated set of non-linear equations can be drastically simplified for the acoustic
case. Small perturbations are introduced and mean flow is assumed to be
zero. There is no heat exchange between the medium and the surrounding
boundary: the process is assumed adiabatic. The medium is homogeneous:

1In the present study the mean flow is zero
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the properties of the medium are the same throughout the domain. This con-
dition is satisfied if the wavelength is large compared to the intermolecular
spacing, the so-called mean free path. Finally, the viscosity of the medium,
a measure for the “stickyness”, is neglected. Viscosity effects are typically
important in the vicinity of a wall, where the medium sticks to the sur-
face. Viscosity is thus usually neglected when describing sound propagation
in large enclosures and unconfined spaces. If these assumptions are used,
the Navier Stokes equations can be further simplified to a linearized set of
equations. In combination with the equation of continuity and the equation
of state, a partial differential equation in terms of the pressure perturba-
tion is obtained: the wave equation. This equation forms the basis for the
description of standard acoustic wave propagation.

1.1.3 Solution techniques for standard acoustic wave
propagation

The wave equation has been extensively studied and consequently a large
variety of solution methods is available. Several analytical techniques were
developed. During the last decades the computer has enabled the numerical
simulation of sound fields for complex geometries and boundary conditions
(see e.g. [1]). A popular numerical technique, the Finite Element Method
(FEM), is based on a volume modelling of the medium. This method is gen-
erally accepted and a large amount of knowledge and experience is available.
Finite element models have also been developed to describe the propagation
of sound in porous media and to describe the behaviour of absorbing walls.
The method is usually applied to confined spaces, although for instance “in-
finite finite” elements were developed for radiation problems.

Another popular numerical technique is the Boundary Element Method
(BEM). This method is based on a surface modelling of the boundaries of
the medium. In physical terms, the surface of for instance a vibrating panel
is covered with a distribution of acoustic monopoles (“acoustic sources”) or
dipoles. The strength distribution of these monopoles and dipoles then has to
be calculated. This method is especially suited for unconfined spaces because
the radiation conditions are automatically satisfied.

Both in FEM and BEM a sufficient number of elements has to be used
per wavelength to accurately describe a signal of interest. Since the wave-
length dramatically decreases with increasing frequency, the required number
of elements shows a strong increase. Furthermore the detailed information,
provided by the deterministic FEM and BEM approaches, is not very mean-
ingful in the high frequency range. For the high frequency range, Statistical
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Energy Analysis was developed. Essentially, this technique is based on aver-
aging and energy flows.

Finally, multigrid techniques and multilevel integration techniques are
used in acoustical problems. For FEM and BEM, the computational efforts
show a strong increase with problem size. Multilevel algorithms are more
efficient by using the economy of scales. The multigrid techniques are based
on a volume modelling, the equivalent of FEM, while the multilevel integra-
tion techniques are based on a boundary integral approach, the equivalent of
BEM.

It can be concluded that a variety of generally accepted models is avail-
able to deal with standard acoustic wave propagation. For a more detailed
discussion the reader is referred to [2].

1.1.4 Viscothermal wave propagation

This is the first important aspect of the present thesis. The key issue is that
the viscous and thermal effects are now included in the analysis.

Figure 1.2: Sound waves in thin layers or narrow tubes

Consider the propagation of sound in a thin layer or a narrow tube (see
Figure 1.2). At the wall, there is a no-slip condition for the medium: it
sticks to the surface. For a thin layer or a narrow tube, this can lead to
significant boundary layer effects, where viscosity is important. Furthermore,
thermal effects can play an important role. For a mathematical description of
viscothermal wave propagation, the Navier Stokes equations and the energy
equation are used as a starting point. This time the viscous and thermal
effects are retained in the analysis. The following basic assumptions are
used: no mean flow, small perturbations and a homogeneous medium. The
Navier Stokes equations can be simplified using these basic assumptions.

In the literature a seemingly wide variety of models is presented, each
with their own additional assumptions. An overview of viscothermal models
for the propagation of sound in tubes was presented by Tijdeman [3]. By
using dimensionless parameters, the models were put into perspective. For
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layer geometries, however, the viscothermal modelling is less well developed,
as will be demonstrated in chapter 2.

1.1.5 Solution techniques for viscothermal wave prop-
agation

For the propagation of sound in tubes, several analytical and numerical tech-
niques are available (see also chapter 2). For layer geometries a number of
analytical techniques were developed. These methods however are restricted
to very simple geometries and boundary conditions. Recently, a boundary
element formulation for viscothermal wave propagation in thin layers was
presented by Karra, Ben Tahar, Marquette and Chau [4] and Karra and Ben
Tahar [5]. This model is based on a full linearized Navier Stokes model and
is not very efficient for viscothermal wave propagation in layers, as will be
shown in chapter 2. To the author’s knowledge no general, efficient solution
technique is available for viscothermal wave propagation in thin layers.

1.1.6 Acousto-elasticity

This is the second important aspect of the present thesis. Consider a layer
of gas in a narrow tube with flexible walls or a thin layer of gas trapped
between flexible surfaces (see Figure 1.3).

Figure 1.3: Sound waves in thin layers with flexible surfaces or narrow tubes
with flexible walls

On the one hand, the pressure field inside the layer or tube puts the flex-
ible surfaces or walls into motion. On the other hand, the motion of the
surfaces or walls has to be followed by the medium in the layer or tube.
Hence the wall motion affects the pressure distribution in the layer or the
tube and vice versa. This indicates that there is a mutual interaction between
the pressure field and the elastic deformation: acousto-elasticity. Especially
for thin layers or narrow tubes, this interaction can be very important. The
behaviour of the coupled system can be completely different from the be-
haviour of the two uncoupled subsystems. This illustrates the need for a
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fully coupled analysis where the motion of the structure and the medium are
to be coupled on the interface.

1.1.7 Solution techniques for acousto-elastic problems

The modelling of the dynamical behaviour of flexible structures (in vacuum)
is very well developed. Several models are available to deal with a large
variety of problems. The description of the interaction for the standard
acoustic case is also well established. Finite element and boundary element
techniques are widely used to deal with fully coupled acousto-elastic calcula-
tions. Reduction techniques, like component mode synthesis, were developed
to reduce the computing time.

For the viscothermal case, however, no general, efficient acousto-elastic
model is available. The boundary element model, presented by Karra and
Ben Tahar [5] is able to deal with coupled calculations for rotatory symmetric
problems. Their viscothermal model however is not very efficient (see chapter
2) and in addition a finite element technique is usually more beneficial for
small enclosed spaces.

1.1.8 Applications

There is a wide range of applications for the present research. Traditionally,
viscothermal models have been used to describe the behaviour of spheri-
cal resonators, the propagation of sound waves in tubes, the behaviour of
miniaturized transducers and the squeeze film damping between plates (see
chapter 3). In the present study the viscothermal models will also be used
to describe some other applications: the behaviour of a folded stack of solar
panels during launch, the design of an inkjet print head and the acoustic
behaviour of double wall panels (see chapter 6).

1.2 Formulation of the problem

Development, implementation, validation and application of a model for the
description of viscothermal wave propagation, including acousto-elastic in-
teraction.

1.3 Outline

As far as the development of new models is concerned, attention will be fo-
cused on the viscothermal models, since the structural models are already
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very well developed. In chapter 2 an overview is presented for viscothermal
wave propagation. Based on a parameter approach, as presented by Tijdeman
[3] for tubes, the various models are put into perspective. The models are all
written in a general form and therefore apply to different co-ordinate systems
(e.g. spherical, cylindrical or cartesian). The low reduced frequency model
of Tijdeman is extended to thin layers for the present study. It is stressed
that the models that are described in chapter 2 are not new. However, for
the present investigation all models were rewritten into the aforementioned
dimenionless form. Based on a parameter analysis, the most efficient model
is identified: the low reduced frequency model. Therefore chapter 2 also
serves as a justification for the emphasis that is placed on the low reduced
frequency model. In order to demonstrate the wide range of applicability
of the low reduced frequency model, a number of examples from the litera-
ture is discussed in chapter 3. In this chapter an overview of fundamental
solutions and general applications is given. Because the models are written
in terms of dimensionless parameters and solutions for various co-ordinate
systems are given, this chapter also serves as a solution overview. Chapter
4 concerns an experimental validation of the low reduced frequency model.
A special large-scale setup with an oscillating solar panel was designed for
this purpose. As a next step, in chapter 5 a new finite element model is de-
veloped for fully coupled acousto-elastic calculations including viscothermal
effects. A number of convergence tests were carried out and the model was
experimentally validated with a special test setup. In chapter 6 the newly
developed techniques are used in a number of applications: the behaviour of
stacked solar panels during launch, the design of an inkjet print head and the
acoustic behaviour of double wall panels. A preliminary study was carried
out to investigate the influence of obstructions in a thin layer. Finally, the
conclusions are presented in chapter 7.
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Chapter 2

Linear viscothermal wave
propagation

2.1 Introduction

The propagation of sound waves with viscothermal effects has been inves-
tigated in several scientific disciplines. The propagation of sound waves in
tubes was investigated already by Kirchhoff and Rayleigh [6]. In tribology,
the Reynolds equation is used to calculate the pressure distribution in fluid
films trapped between moving surfaces. Reynolds’ theory assumes that the
inertial effects are negligible: it is based on a so-called creeping flow assump-
tion. Increasing machine speeds and the use of gas bearings initiated research
on the role of inertia [7, 8, 9, 10, 11, 12, 13, 14, 15]. In fluid mechanics the
progagation of sound waves in tubes and in particular the steady streaming
phenomenon have been extensively discussed [16, 17, 18, 19]. Two early pa-
pers on thin film theory in acoustics were presented by Maidanik [20] and
Ungar and Carbonell [21]. A large number of investigations have been car-
ried out since then. Consequently, a seemingly endless variety of models is
available now to deal with viscothermal effects in acoustic wave propagation.

The variety of models is deceiving. The models that were presented in
acoustics can be grouped into three basic categories. Key words in the char-
acterization of these models are: pressure gradient across layer thickness or
tube cross section, and the incorporation of effects such as compressibility
and thermal conductivity.

The most extensive type of model clearly must be based on a solution of
the full set of basic equations. This means that, for instance, all the terms
in the linearized Navier Stokes equations are taken into account. The second
type of model incorporates a pressure gradient. However, not all the terms



10 Linear viscothermal wave propagation

in the basic equations are retained. In some models, for instance, thermal
effects are neglected. The simplest model, the low reduced frequency model,
assumes a constant pressure across the layer thickness or tube cross section.
The effects of inertia, viscosity, compressibility and thermal conductivity are
accounted for. This leads to a very straightforward and useful model.

The main aim of this chapter is to provide a framework for putting models
for viscothermal wave propagation into perspective. It is not the intention
of the author to present a list of all papers related to viscothermal wave
propagation. Wave propagation is considered from a standard acoustical
point of view. Non-linear effects are therefore neglected. For an extensive
overview of non-linear effects and viscothermal wave propagation the reader
is referred to Makarov and Ochmann [22, 23, 24] and Too and Lee [25].
Makarov and Ochmann present an overview of the literature, based on more
than 300 references.

The present analysis is based on the use of dimensionless parameters. It
is an extension of the work on the propagation of sound waves in cylindri-
cal tubes, as presented by Tijdeman [3]. The three groups of models are all
rewritten in a dimensionless form. As a consequence, a number of dimension-
less parameters appear in the equations. With the help of these parameters
the range of validity for each group is indicated. Furthermore, for each type
of model a short list of related literature is given. The list offers information
about parameter ranges and applications. Based on this information, one
can easily determine which model should be used for a given application.
Finally, the problem of acousto-elastic coupling, i.e. the mutual interaction
between vibrating flexible surfaces and thin layers of gas or fluid, is addressed
for each type of model.
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2.2 Basic equations

2.2.1 Derivation of equations

The basic equations governing the propagation of sound waves are the lin-
earized Navier Stokes equations, the equation of continuity, the equation of
state for an ideal gas and the energy equation. In the absence of mean flow
the equations can be written as:

ρ0
∂v

∂t
= −∇p +

(
4

3
µ + η

)
∇

(
∇ · v

)
− µ∇ ×

(
∇ × v

)

ρ0

(
∇ · v

)
+

∂ρ

∂t
= 0

p = ρR0T (2.1)

ρ0Cp

∂T

∂t
= λ∆ T +

∂p

∂t

where v, p, ρ, T , µ, η, R0, ρ0, λ, Cp and t denote respectively the velocity
vector, pressure, density, temperature, viscosity, bulk viscosity 1, gas con-
stant, mean density, thermal conductivity, specific heat at constant pressure
and time. The operators ∇ and ∆ are the gradient and the Laplace operator
respectively. The following assumptions are used:

• no internal heat generation,

• homogeneous medium: the dimensions and the wavelength have to
be large compared to the mean free path. For air under standard
atmospheric conditions this assumption breaks down for lengths smaller
than 10−7 m or frequencies higher than 109 Hz,

• no mean flow,

• small, sinusoidal perturbations,

• laminar flow 2.

1For monatomic gases η = 0, for air η = 0.6µ
2For the transition to turbulence for oscillating pipe flows, see e.g. [19] and [26].
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Dimensionless small harmonic perturbations are introduced according to:

v = c0veiωt p = p0

[
1 + peiωt

]

T = T0 [1 + Teiωt] ρ = ρ0

[
1 + ρeiωt

]
(2.2)

where c0, T0, p0, ω and i are the undisturbed speed of sound, the mean
temperature, mean pressure, angular frequency and the imaginary unit. The
gradient and the Laplace operators are non-dimensionalized with a length
scale l. This length scale can for example represent the layer thickness or
the tube radius. An overview of length scales and operators for various
geometries is given in Appendix B. At this stage one can write:

∇ = l∇

∆ = l2∆ (2.3)

After further linearization the basic equations can be written in the following
dimensionless form 3:

iv = − 1

kγ
∇p +

1

s2

(
4

3
+ ξ

)
∇ (∇ · v) − 1

s2
∇ × (∇ × v)

∇ · v + ikρ = 0

p = ρ + T (2.4)

iT =
1

s2σ2
∆T + i

[
γ − 1

γ

]
p

The following dimensionless parameters were introduced 4:

shear wave number s = l

√
ρ0ω

µ

reduced frequency k =
ωl

c0

3R0 = Cp − Cv
4The shear wave number is an unsteady Reynolds number
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ratio of specific heats γ =
Cp

Cv

(2.5)

square root of the Prandtl number σ =

√
µCp

λ

viscosity ratio ξ =
η

µ

where Cv is the specific heat at constant volume. The dimensionless equations
indicate that the viscothermal wave propagation is governed by a number of
dimensionless parameters. These parameters can be used to characterize
different flow regimes. Furthermore, they enable solutions given in the liter-
ature to be put into perspective: assumptions or restrictions of models can
be quantified in terms of these parameters.

The parameters γ and σ depend solely on the material properties of the
gas. The most important parameters are the shear wave number and the
reduced frequency. The shear wave number is a measure for the ratio be-
tween the inertial effects and the viscous effects in the gas: it is an unsteady
Reynolds number. For large shear wave numbers the inertial effects domi-
nate, whereas for low shear wave numbers the viscous effects are dominant.
In physical terms the shear wave number represents the ratio between the
length scale, e.g. the layer thickness or tube radius, and the boundary layer
thickness. The reduced frequency represents the ratio between the length
scale and the acoustic wave length. For very low values of the reduced fre-
quency, the acoustic wave length is very large compared to the length scale
l. The parameters presented in this section are essential for the choice of an
appropriate model for a specific situation.

2.2.2 Boundary conditions

In order to solve the set of equations boundary conditions must be imposed.
The quantities of interest here are the (dimensionless amplitudes of the)
velocity, temperature, pressure and density. Boundary conditions for the
density are usually not imposed, and will therefore not be considered here.

Velocity

At a gas-wall interface a continuity of velocity is assumed in most cases.
Continuity of velocity usually implies that the tangential velocity is zero: a
no-slip condition is imposed. The normal velocity is equal to the velocity of
the wall. In this way the acousto-elastic coupling between vibrating struc-
tures and viscothermal gases is established. For rarefied gases investigations
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indicate that it is more appropriate to use a jump in velocity with corre-
sponding momentum accommodation coefficients 5 [27, 28]. For gases under
atmospheric conditions a simple continuity of velocity condition suffices.

Temperature

The most common boundary conditions are isothermal walls or adiabatic
walls. For an isothermal wall the temperature perturbation is zero, whereas
for an adiabatic wall the gradient of the temperature normal to the wall
vanishes. When the product of the specific heat per unit volume and the
thermal conductivity of the wall material substantially exceeds the corre-
sponding product for the gas, the assumption of isothermal walls is usually
accurate (see e.g. [29]).

Again, for rarefied gases it is more appropriate to use a jump condition
[27, 28]. This condition allows for a jump in temperature across the gas-wall
interface with a thermal accommodation coefficient. In the literature some
models were presented to model walls with finite heat conduction properties,
see e.g. [30].

A very interesting consequence of thermal effects is the phenomenon of
thermally driven vibrations. As a boundary condition, one could for instance
impose a varying temperature across the length of a tube. This temperature
gradient drives pressure pulsations in the gas. This effect will not be ad-
dressed here: for a detailed discussion the reader is referred to the literature
[31, 32, 33, 34, 35, 36, 37, 38].

Pressure

At the ends of a tube or layer boundary conditions can be imposed for the
pressure, for instance a pressure release. In the present investigation end
effects are neglected. For a more detailed discussion on this subject the
reader is referred to the literature [39, 40, 41, 42, 43, 44].

2.2.3 Geometries and co-ordinate systems

The basic equations were given in terms of gradient and Laplace operators. In
Appendix B an overview of length scales, dimensionless co-ordinates, gradient
operators and Laplace operators is given for a number of geometries.

5In this case one assumes a jump condition at the interface, e.g. a velocity slip or
temperature jump. For the temperature the boundary equation then becomes: T − Tw =
−L∇T · n, where Tw is the wall temperature, L is related to the thermal accomodation
coefficients and n is the outward normal.
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2.3 Full linearized Navier Stokes model

2.3.1 Derivation of equations

The most extensive type of model is that obtained by solving the complete
set of basic equations. The derivation in this section is based on the paper
by Bruneau, Herzog, Kergomard and Polack [45]. Their formulation however
was rewritten in terms of dimensionless quantities for the present study. In
order to solve this problem, the velocity is written as the sum of a rotational
velocity vv, due to viscous effects, and a solenoidal velocity vl:

v = vv + vl (2.6)

where these satisfy:

∇ · vv = 0 ; ∇ × vl = 0 (2.7)

The following relationship was used in this derivation:

∇ × (∇ × vv) ≡ ∇ (∇ · vv) − (∇ · ∇) vv = −∆vv (2.8)

Inserting these expressions into the basic equations and taking the rotation
and divergence gives the following set of dimensionless equations:

ivl −
1

s2

(
4

3
+ ξ

)
∆vl = − 1

kγ
∇p

∇ · vl + ikρ = 0

ivv −
1

s2
∆vv = 0 (2.9)

p = ρ + T

iT =
1

s2σ2
∆T + i

[
γ − 1

γ

]
p

After some algebraic manipulations the following equation can be derived in
terms of the temperature perturbation:

i

s2σ2

[
1 +

iγk2

s2

(
4

3
+ ξ

)]
∆∆T +

[
1 +

ik2

s2

[(
4

3
+ ξ

)
+

γ

σ2

]]
∆T + k2T = 0

(2.10)
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It can easily be verified that both vl and p also satisfy this equation. Note
that if ξ = 0 in this equation, i.e. the bulk viscosity is neglected, a di-
mensionless equation is obtained that was already derived by Kirchhoff and
Rayleigh [6].

2.3.2 Solution strategy

The equation for the temperature perturbation can be written in a factorized
form:

[
∆ + ka

2
] [

∆ + kh
2
]
T = 0 (2.11)

where ka and kh are the acoustic and entropic wave numbers respectively:

ka
2 =

2k2

C1 +
√

C1
2 − 4C2

; kh
2 =

2k2

C1 −
√

C1
2 − 4C2

(2.12)

where:

C1 =

[
1 +

ik2

s2

[(
4

3
+ ξ

)
+

γ

σ2

]]
; C2 =

ik2

s2σ2

[
1 +

iγk2

s2

(
4

3
+ ξ

)]
(2.13)

The solution for the temperature perturbation can be written as:

T = AaTa + AhTh (2.14)

where Ta and Th are referred to as the acoustic and the entropic tempera-
ture. The constants Aa and Ah remain to be determined from the boundary
conditions. The quantities Ta and Th are the solutions of:

[
∆ + ka

2
]
Ta = 0 ;

[
∆ + kh

2
]
Th = 0 (2.15)

Once the solution for the temperature is known, the values for the velocity
vl and the pressure p can be expressed in terms of Aa, Ah, Ta and Th. One
obtains:

p =

[
γ

γ − 1

] [
Aa

[
1 − ika

2

s2

1

σ2

]
Ta + Ah

[
1 − ikh

2

s2

1

σ2

]
Th

]

vl = vla + vlh = αaAa∇Ta + αhAh∇Th (2.16)

αa =
i

kγ

[
γ

γ − 1

]



1 − ika
2

s2

1

σ2

1 − ika
2

s2

(
4

3
+ ξ

)


 ; αh =

i

kγ

[
γ

γ − 1

]



1 − ikh
2

s2

1

σ2

1 − ikh
2

s2

(
4

3
+ ξ

)
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The rotational velocity vv has to be solved from a vector wave equation with
wave number kv:

[
∆ + kv

2
]
vv = 0 ; kv

2 = −is2 (2.17)

The rotational velocity is related to the effects of viscosity, since the wave
number is a function of the shear wave number.

In order to solve the full model, solutions must be found to two scalar
wave equations for the temperature perturbation and a vector wave equation
for the rotational velocity. With the appropriate boundary conditions the
complete solution can then be obtained. An analytical solution for this type
of model can only be found for simple geometries and boundary conditions
(see sections 2.3.4 and 2.3.5 and chapter 3). For more complex geometries
one has to resort to numerical techniques.

2.3.3 Acoustic and entropic wave numbers

The expressions for ka and kh are rather complex. In the literature they
are often approximated, see e.g. [45]. With the help of the dimensionless
parameters this approximation can be quantified. A Taylor expansion of the
denominator of the wave numbers in terms of k/s gives:

ka
2 =

k2


1 + i

(
k

s

)2 [(
4

3
+ ξ

)
+

γ − 1

σ2

]
−
(

k

s

)4 (
γ − 1

σ2

) [
1

σ2
−
(

4

3
+ ξ

)]


kh
2 =

−is2σ2


1−i (γ − 1)

(
k

s

)2 [
1

σ2
−
(

4

3
+ ξ

)]


(2.18)

These expressions are valid for k/s ≪ 1: the acoustic wavelength is very
large compared to the boundary layer thickness. This assumption seems very
reasonable. However, it has important implications that actually eliminate
the need for a full model, as will also be illustrated in section 2.6. If we set
k/s = 0 the expressions reduce to:

ka
2 = k2 ; kh

2 = −is2σ2 (2.19)

This result shows that the wave number ka is related to acoustic effects.
The wave number kh is related to entropy effects, since the product sσ does
not contain the viscosity µ. However, this separation is only possible for
k/s ≪ 1. When the acoustic wavelength is of the same order of magnitude as
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the boundary layer thickness, the complete expressions for the wave numbers
ka and kh must be used. In this situation a separation is not possible.

Note that for s ≫ 1 the wave numbers kh and kv become very large. The
solutions for Th and vv approach zero. The value of ka is not affected, since
it is not a function of the shear wave number. As a consequence, the full
linearized Navier Stokes model reduces to the standard wave equation.

2.3.4 Acousto-elastic coupling

The motion of the gas can be coupled to the motion of a flexible structure,
usually by demanding a continuity of velocity across the interface. In ge-
neral this leads to a very complicated set of equations. The full linearized
Navier Stokes model was used in a number of applications, such as sphe-
rical resonators or miniaturized transducers, to calculate the acousto-elastic
behaviour of systems.

Spherical resonators are used to determine the acoustical properties of
gases with a high degree of accuracy. Mehl investigated the effect of shell
motion, hereby neglecting viscothermal effects in the gas [46]. Moldover,
Mehl and Greenspan [29] used a full linearized Navier Stokes model for the
description of the acoustic field inside the resonator. A boundary impedance
condition was imposed for the radial velocity in order to account for the effect
of shell motion. The models developed by Mehl were used to calculate this
shell impedance.

In some types of miniaturized transducers a vibrating membrane is backed
by a rigid electrode, thus entrapping a thin layer of gas. Plantier and Bruneau
[47], Bruneau, Bruneau and Hamery [48], Hamery, Bruneau and Bruneau [49]
developed analytical models to describe the interaction between (circular)
membranes and thin gas layers. Because of the complexity of the problem,
their calculations are restricted to geometries with rotatory symmetry. In
order to overcome this problem, recently Karra, Tahar and Chau [4, 5] pre-
sented a boundary element formulation for the propagation of sound waves
in viscothermal gases. Although their paper only concerns an uncoupled test
case, the algorithm is able to deal with fully coupled problems [50]. Their
method therefore now offers the possibility to model more complex geome-
tries.

In chapter 3 the spherical resonator and the miniaturized transducers are
discussed in more detail.
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2.3.5 Literature

In Table 2.1 a list of related literature is presented. The list contains infor-
mation concerning applications and acousto-elastic coupling. For layer ge-
ometries the parameter ranges in the calculations and experiments are given.
These values will also be used in section 2.6. For an overview of parameter
values for tubes the reader is referred to Tijdeman [3].
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Authors Ref Year Application Coupling Remarks

Moldover, Mehl, Greenspan [29] 1986 spherical resonator full analytical model

Bruneau, Polack, Herzog, [51] 1990 spherical resonator no analytical model
Kergomard cylindrical tubes

Plantier, Bruneau [47] 1990 circular membrane full analytical model
2.3 · 10−9 ≤ k ≤ 2.3 · 10−3(•)
2.9 · 10−6 ≤ k/s ≤ 2.9 · 10−3(•)

Bruneau [52] 1994 membrane no analytical model

Hamery, Bruneau, [49] 1994 circular membrane no analytical model
Bruneau 4.6 · 10−5 ≤ k ≤ 4.6 · 10−5(•)

9.0 · 10−4 ≤ k/s ≤ 2.8 · 10−2(•)

Bruneau, Herzog, [45] 1989 spherical resonator no analytical models
Kergomard, Polack cylindrical tube

plane wall

Bruneau, Bruneau, [53] 1987 tubes no analytical model
Herzog, Kergomard

Karra, Tahar [4] 1996 circular membrane no boundary element model
Marquette, Chau 7.9 · 10−3 ≤ k ≤ 1.4 · 10−2(•)

8.5 · 10−3 ≤ k/s ≤ 1.1 · 10−2(•)

Karra, Tahar [5] 1997 circular membrane no boundary element model
Case I (h0 = 0.5 mm):
1.0 ≤ k ≤ 1.4(•)
9.9 · 10−3 ≤ k/s ≤ 1.1 · 10−2(•)
Case II (h0 = 1 µm):
7.9 · 10−3 ≤ k ≤ 1.4 · 10−2(•)
2.7 · 10−2 ≤ k/s ≤ 3.6 · 10−2(•)

Scarton, Rouleau [26] 1973 tubes no

Tijdeman [3] 1975 tubes no

Liang, Scarton [54] 1994 tubes no

Table 2.1: Literature full linearized Navier Stokes models. (•): calculations
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2.4 Simplified Navier Stokes models

In this class of models the effects of compressibility or thermal conductivity
are neglected compared with the full model described in section 2.3. In
this section two models will be discussed in more detail. The two models
were rewritten in a dimensionless form for this purpose. Other models are
also available, but all simplified Navier Stokes models are inconsistent. An
overview is presented in section 2.4.4.

2.4.1 Trochidis model

Trochidis [55, 56] introduces the following assumption in addition to the basic
assumptions described in section 2.2.1:

• the gas is incompressible: ∇ · v = 0

The dimensionless basic equations (2.4) now reduce to 6:

iv = − 1

kγ
∇p − 1

s2
∇ × (∇ × v)

∇ · v = 0 (2.20)

Combining these equations gives:

∆p = 0

[
∆ − is2

]
v =

s2

kγ
∇p (2.21)

The equation for the pressure is perhaps strange at first sight. Is does not
incorporate any viscothermal terms: it is a regular wave equation for in-
compressible gas behaviour. It seems that the pressure can be completely
determined from this equation. However, the boundary conditions must be
satisfied. At a gas-wall interface the velocity must be continuous. Usually
this means that the tangential velocity is zero and the normal velocity equals
the velocity of the wall. With equation (2.21) the boundary condition for the
velocity can be expressed in terms of pressure gradients. In this way, viscous
effects are introduced into the model.

Clearly, the full linearized Navier Stokes model reduces to the Trochidis
model for incompressible behaviour. The role of the compressibility depends,
among other things, on for example the frequency and the global dimensions.

6The 2D formulation from Trochidis was extended to 3D for the present analysis.
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As an example, consider the squeeze film damping between two plates, as de-
scribed by Trochidis. The effects of compressibility become important when
the acoustic wavelength is of the same order of magnitude as the plate di-
mensions. This means that the incompressible model of Trochidis can only
be used for frequencies for which the acoustic wavelength is very large com-
pared to the plate dimensions. In a squeeze film problem, the layer thickness
is very small compared with the plate dimensions. In other words: the
acoustic wavelength is also very large compared to the layer thickness. The
pressure will thus not vary much across the layer thickness. The Trochidis
model however incorporates a pressure gradient across the layer thickness.
This is a weakness of the model: the assumption of incompressible behaviour
on the one hand and the incorporation of a pressure gradient across the layer
on the other hand are rather inconsistent for a squeeze film problem.

2.4.2 Möser model

Möser [57] extended the Trochidis model in order to account for the com-
pressibility of the gas. However, only the compressibility term in the equation
of continuity is considered: the compressibility terms in the linearized Navier
Stokes equations are neglected. Furthermore, the process is assumed to be
adiabatic. Möser in fact introduces the following assumptions in addition to
the basic assumptions described in section 2.2.1:

• incompressible linearized Navier Stokes equations

• adiabatic process

The basic equations (2.4) now reduce to 7:

iv = − 1

kγ
∇p − 1

s2
∇ × (∇ × v)

∇ · v + ikρ = 0 (2.22)

p = γρ

Combining these equations gives:

∆p +




k2

1 + i

(
k

s

)2




p = 0

7The 2D formulation from Möser was extended to 3D for the present analysis.
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∆ (∇ × v) − is2 (∇ × v) = 0 (2.23)

In a further analysis, Möser assumes that the acoustic wavelength is very
large compared to the boundary layer thickness: k/s ≪ 1. The wave number
in equation (2.23) then reduces to k2 and thus the equation reduces to the
standard wave equation. In this model the viscous effects are also incorpo-
rated through the boundary conditions, if the wave number is approximated
by k2.

This model is not very consistent, since the compressibility terms are not
fully accounted for. Furthermore, the thermal effects can play an important
role. There are indeed several examples where thermal effects do have a sig-
nificant influence. For a more sophisticated model that incorporates pressure
gradients, the thermal effects should be accounted for as well.

2.4.3 Acousto-elastic coupling

In acoustics the simplified Navier Stokes models were mainly used to cal-
culate the squeeze film damping between flexible plates. In the analysis of
Trochidis only one-way coupling is considered: the uncoupled deflections of
the plates were imposed as boundary conditions for the gas. However, recent
experiments and calculations [58, 59] indicate that thin gas layers can have
a significant effect on the coupled vibrational behaviour of a plate-gas layer
system. The eigenfrequencies of the plate are substantially affected by the
presence of the layer, whereas the viscothermal effects induce considerable
damping. The full coupling was accounted for in the analysis of Möser. It
has to be noted that the models as presented by Trochidis and Möser concern
2-dimensional problems.

The interaction between viscous fluids and flexible structures was also
investigated from a more mathematical point of view. Schulkes [60] presented
a finite element method to describe the interaction between a viscous fluid
and a flexible structure. He assumed the fluid to be incompressible. For more
literature related to this topic the reader is referred to Schulkes [60, 61].

2.4.4 Literature

In Table 2.2 a list of papers concerning simplified Navier Stokes models is
presented. Experiments were carried out by several authors. The parameter
ranges for the layer geometries are also given in the Table.
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Authors Ref Year Application Coupling Remarks

Trochidis [55] 1982 squeeze film one-way incompressible
Case I (air):
4.6 · 10−4 ≤ k ≤ 8.8 · 10−2(◦)(•)
2.8 · 10−4 ≤ k/s ≤ 2.3 · 10−3(◦)(•)
Case II (water):
5.3 · 10−4 ≤ k ≤ 4.0 · 10−2(◦)(•)
1.7 · 10−5 ≤ k/s ≤ 1.3 · 10−4(◦)(•)

Möser [57] 1980 squeeze film full incompressible Navier Stokes
2.3 · 10−5 ≤ k ≤ 2.9 · 10−1(•)
9.0 · 10−5 ≤ k/s ≤ 5.1 · 10−3(•)

Schulkes [60] 1990 general full incompressible

Chow, Pinnington [62] 1987 squeeze film one-way bulk viscosity terms neglected
(gas) thermal effects neglected

Case I (atmospheric air):
2.3 · 10−4 ≤ k ≤ 7.3 · 10−2(◦)(•)
2.9 · 10−4 ≤ k/s ≤ 2.9 · 10−3(◦)(•)
Case II (air, decompression chamber):
3.5 · 10−4 ≤ k ≤ 3.5 · 10−2(◦)(•)
2.9 · 10−4 ≤ k/s ≤ 4.9 · 10−3(◦)(•)

Chow, Pinnington [63] 1989 squeeze film one-way bulk viscosity terms neglected
(fluid) thermal effects neglected

5.2 · 10−5 ≤ k ≤ 1.3 · 10−1(◦)(•)
2.4 · 10−5 ≤ k/s ≤ 2.4 · 10−4(◦)(•)

Table 2.2: Literature simplified Navier Stokes models. (◦): experiments (•): calculations
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2.5 Low reduced frequency model

2.5.1 Derivation of equations

In the low reduced frequency models some simplifications are introduced that
lead to a relatively simple but very useful model for tubes and layers. In this
theory the propagation directions of the waves and the other directions are
separated. The following assumptions are introduced in addition to the basic
assumptions described in section 2.2.1:

• the acoustic wavelength is large compared to the length scale l : k ≪ 1

• the acoustic wavelength is large compared to the boundary layer thick-
ness: k/s ≪ 1

If one introduces these assumptions into the basic equations (2.4), presented
in section 2.2.1, one is left with:

ivpd = − 1

kγ
∇

pdp +
1

s2
∆cd

v
pd

0 = − 1

kγ
∇

cdp

∇ · v + ikρ = 0 (2.24)

p = ρ + T

iT =
1

s2σ2
∆cdT + i

[
γ − 1

γ

]
p

where ∇
pd, ∆pd and v

pd represent the gradient operator, the Laplace op-
erator and the velocity vector containing components for the propagation
directions only. The operators ∇

cd, ∆cd and v
cd contain terms for the other

directions, i.e. the cross-sectional or thickness directions. Expressions for
these operators for various geometries are given in Appendix B 8. The cross-
sectional co-ordinates are denoted by x

cd and the propagation co-ordinates
are denoted by x

pd.

8Note that a low reduced frequency model does not make sense for a spherical geometry.
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2.5.2 Solution strategy

The second equation of (2.24) indicates that the pressure is a function of the
propagation co-ordinates only: the pressure is constant on a cross section
or across the layer thickness. Hence, the low reduced frequency models are
sometimes referred to as constant pressure models. Using the fact that the
pressure does not vary with the cd-co-ordinates, the temperature perturba-
tion can be solved from a Poisson type of equation. The general solution for
adiabatic or isothermal walls can formally be obtained by Green’s function9.
At this stage one can write:

T
(
sσ, xpd, xcd

)
= −

[
γ − 1

γ

]
p
(
x

pd
)
C
(
sσ, xcd

)
(2.25)

For simple geometries, solution of the function C is very straightforward10.
For more complex geometries numerical techniques can be used. In the lit-
erature several approximation techniques have been developed to describe
the propagation of sound waves in tubes with arbitrary cross sections, e.g.
[64, 65, 66]. Once the solution for the temperature is obtained, the solutions
for the velocity and the density can be expressed in a similar way:

v
pd
(
s, xpd, xcd

)
= − i

kγ
A
(
s, xcd

)
∇

pdp
(
x

pd
)

ρ
(
sσ, xpd, xcd

)
= p

(
x

pd
) [

1 +

[
γ − 1

γ

]
C
(
sσ, xcd

)]−1

(2.26)

Note that, due to the fact that A and C are functions of the cd-co-ordinates,
the velocity, temperature and density are not constant in these directions.
The functions A and C determine the shape of the velocity, temperature
and density profiles. For isothermal walls the functions A and C are directly
related, whereas for adiabatic walls the function C reduces to a very simple
form. One has:

isothermal walls : C
(
sσ, xcd

)
= A

(
sσ, xcd

)

adiabatic walls : C
(
sσ, xcd

)
= −1 (2.27)

9It is also possible to include a finite thermal conductivity of the wall, see e.g. section
2.2.2 and [45]. The low reduced frequency model has to be coupled to a model that
describes the thermal behaviour of the wall.

10The function C is a function only of the cd-co-ordinates for constant cross-sections.
For varying cross sections, the value of C depends also on the pd-co-ordinates.
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The expressions for ρ, T and v
pd are now inserted into the equation of

continuity. After integration with respect to the cd-co-ordinates and some
rearranging one obtains:

∆pdp
(
x

pd
)
− k2Γ2p

(
x

pd
)

= −ikn(sσ)Γ2ℜ (2.28)

where:

Γ =

√
γ

n (sσ)B (s)

n (sσ) =

[
1 +

[
γ − 1

γ

]
D (sσ)

]
−1

B (s) =
1

Acd

∫

Acd
A
(
s, xcd

)
dAcd (2.29)

D (sσ) =
1

Acd

∫

Acd
C
(
sσ, xcd

)
dAcd

ℜ =
1

Acd

∫

∂Acd
v · end∂Acd

where Acd is the cross-sectional area, ∂Acd is the corresponding boundary
and en is the outward normal on ∂Acd. For simple boundary conditions, the
function D can be obtained from:

isothermal walls : D (sσ) = B (sσ)

adiabatic walls : D (sσ) = −1 (2.30)

The function Γ is the propagation constant. The propagation of sound waves
is affected by thermal effects, accounted for in the function n (sσ), and viscous
effects, accounted for in the function B (s). On the right hand side of equation
(2.28) a source term is present due to the squeeze motion of the walls. In
Tables B.1, B.2, B.3 and B.4 in Appendix B the expressions are listed for
various geometries and isothermal wall conditions for the functions A and
B. The Tables also contain the asymptotic values of the functions for low
and high values of the corresponding argument. It can easily be shown that
for low values of the shear wave number 11 the low reduced frequency model
reduces to a linearized form of the Reynolds equation. For high shear wave
numbers the low reduced frequency model reduces to a modified form of the
wave equation. The modification is due to the fact that the low reduced
frequency model is associated with a constant pressure in the cd-directions.

11Considering σ as a constant.
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2.5.3 Physical interpretation

Velocity profile

The shape of the velocity profile is completely determined by the function A.
This function is thus well suited to illustrate the transition from inertially
dominated flow to viscously dominated flow. As an example, consider the
layer geometry. In Figure 2.1 the magnitude of the function A is given as
a function of the layer thickness for shear wave numbers 1, 5, 10 and 100.
The magnitude of the function A is directly related to the magnitude of
the in-plane velocities for a layer geometry. Please note that the expression
for the velocity is complex: there are phase differences between the points.
Consequently not all points pass their equilibrium position at the same time.

100

1051

|A(s, z)|

z

1.510.50

1

0.5

0

-0.5

-1

Figure 2.1: Shape of velocity profile (magnitude)

For low shear wave numbers the viscous forces dominate and a parabolic
velocity profile is obtained, see also Tables B.3 and B.4. For high shear wave
numbers the inertial forces dominate and a flat velocity profile is obtained.

Temperature profile

For isothermal walls the shape of the temperature profile is identical to the
shape of the velocity profile. However, the temperature is not a function of
the shear wave number s but of the product sσ: its value does not depend
on the viscosity µ. For high values of sσ, adiabatic conditions are obtained,
whereas for low values of sσ, isothermal conditions are obtained.
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Polytropic constant

According to equation (2.26) the density and the pressure are related. If this
expression is integrated with respect to the cd-co-ordinates one obtains:

ρ = p

[
1 +

[
γ − 1

γ

]
D (sσ)

]
−1

(2.31)

The same result would have been obtained if, instead of using the energy
equation and the equation of state, a polytropic law had been used:

p

ρ n(sσ)
= constant (2.32)

where n(sσ) is the polytropic constant that relates density and pressure, see
equation (2.29). Note however that this only holds in integrated sense: rela-
tion (2.31) was obtained by integration with respect to the cd-co-ordinates.
As an example, the magnitude and the phase angle for the layer geometry
are given as a function of sσ in Figure 2.2. For low values n(sσ) reduces to
1, i.e. isothermal conditions. For high values of sσ it takes the value of γ
corresponding to adiabatic conditions.
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Figure 2.2: Magnitude and phase angle of polytropic constant for air
(γ = 1.4)

2.5.4 Acousto-elastic coupling

The low reduced frequency model results in a relatively simple equation for
the pressure. Because of the simplicity of the gas model, it is relatively easy
to incorporate the full acousto-elastic coupling. Several investigations are
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available which deal with fully coupled calculations, most of them for the
squeeze film problem.

Fox and Whitton [67] and Önsay [68, 69] presented models to describe the
interaction between a vibrating strip and a gas layer. The model of Önsay
was based on a transfer matrix approach: an efficient model for the strip
problem. Fox and Whitton, and Önsay, carried out experiments, showing
substantial frequency shifts and significant damping.

Recently, Beltman, Van der Hoogt, Spiering and Tijdeman [70, 59, 71,
58, 72] presented a finite element model for fully coupled calculations for
the squeeze film problem. A new viscothermal acoustic finite element was
developed, based on the low reduced frequency model. This element can
be coupled to structural elements, enabling fully coupled calculations for
complex geometries. Furthermore, the layer thickness can be chosen for each
element. This enables calculations for problems with varying layer thickness.
The finite element model was validated with experiments on an airtight box
with a flexible coverplate. In this case there was a strong interaction between
the vibrating, flexible plate and the closed air layer. Eigenfrequency and
damping of the plate were measured as a function of the thickness of the air
layer. Substantial frequency shifts and large damping values were observed.
In chapter 5 a more detailed discussion is given of these results.

2.5.5 Literature

In Table 2.3 the recent literature on the low reduced frequency models is
summarized. For layer geometries the ranges of dimensionless parameters
are also given.
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Authors Ref Year Application Coupling Remarks

Fox, Whitton [67] 1980 squeeze film full analytical model
(strip) Case I (atmospheric air):

1.8 · 10−3 ≤ k ≤ 1.8 · 10−1(◦)(•)
k/s ∼= 4.0 · 10−4(◦)(•)
Case II (air, decompression chamber):
1.2 · 10−4 ≤ k ≤ 4.6 · 10−4(◦)(•)
9.2 · 10−5 ≤ k/s ≤ 4.1 · 10−3(◦)(•)
Case III (CO2, decompression chamber):
2.3 · 10−4 ≤ k ≤ 3.1 · 10−4(◦)(•)
1.0 · 10−4 ≤ k/s ≤ 3.8 · 10−3(◦)(•)

Önsay [68] 1993 squeeze film full transfer matrix approach
(strip) 9.2 · 10−6 ≤ k ≤ 4.6 · 10−3(◦)(•)

9.0 · 10−5 ≤ k/s ≤ 9.0 · 10−4(◦)(•)

Önsay [69] 1994 squeeze film full step in layer geometry
(strip) 9.2 · 10−5 ≤ k ≤ 4.6 · 10−3(◦)(•)
(strip) 9.0 · 10−5 ≤ k/s ≤ 9.0 · 10−4(◦)(•)

Lotton, Husńık, Bruneau, [52] 1994 circular membrane full equivalent network model

Bruneau, S̆kvor

Bruneau, Bruneau, [73] 1994 circular membrane full equivalent network model

S̆kvor, Lotton

Tijdeman [3] 1975 tubes no parameter overview

Beltman, Van der Hoogt, [59] 1997 squeeze film full finite element model
Spiering, Tijdeman (plate) 4.6 · 10−4 ≤ k ≤ 1.4 · 10−1(◦)(•)

2.0 · 10−4 ≤ k/s ≤ 4.9 · 10−4(◦)(•)

Beltman, Van der Hoogt, [70] 1997 solar panels no analytical model
Spiering, Tijdeman 1.8 · 10−5 ≤ k ≤ 6.0 · 10−2(◦)(•)

2.9 · 10−5 ≤ k/s ≤ 9.0 · 10−5(◦)(•)

Table 2.3: Literature low reduced frequency models. (◦): experiments (•): calculations
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2.6 Dimensionless parameters

2.6.1 Validity of models

In the sections 2.3, 2.4 and 2.5 three types of models were discussed for
the modelling of viscothermal wave propagation. The most simple type of
model, the low reduced frequency model, is show to be valid for k ≪ 1
and k/s ≪ 1. As pointed out in section 2.4, the validity of the simplified
Navier Stokes models is difficult to quantify. These models incorporate some
additional effects compared to the low reduced frequency models. However,
a parameter analysis shows that if a more sophisticated model is desired, in
fact all the terms have to be accounted for. The complete parameter range
is covered by the low reduced frequency model and the full linearized Navier
Stokes model. Summarizing the ranges of validity for the linear viscothermal
models and the general wave equation:

• s ≫ 1
wave equation (Wave)

• k ≪ 1 and k/s ≪ 1
low reduced frequency (Low)

• k ≪ 1 and k/s ≪ 1 and s ≪ 1
low reduced frequency, Reynolds equation (Low-Rey)

• k ≪ 1 and k/s ≪ 1 and s ≫ 1
low reduced frequency, modified wave equation (Low-wave)

• arbitrary k and s
full linearized Navier Stokes (Full) 12

A graphical representation of these ranges of validity is given in Figure 2.3.
It is stressed that in each area the most efficient model is given. One could
for instance use the full model for all situations, but clearly for k ≪ 1 and
k/s ≪ 1 the low reduced frequency model is far more efficient.

For the case of arbitrary k but k/s ≪ 1 the simplified wave numbers,
as described in section 2.3.3 could be used. However, assuming k/s ≪ 1
immediately suggests that another model, i.e. the low reduced, modified
wave or wave, would be more efficient (see Figure 2.3). This assumption,
which is often used by authors who use a full linearized Navier Stokes model,

12The full linearized Navier Stokes with simplified wave numbers is valid for k/s ≪ 1.
It can easily be seen in the graph that this is not an efficient model. Hence, it is not
included.
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Figure 2.3: Parameter overview of models

at the same time eliminates the actual need for the full model. Only for the
most general case of arbitrary k and k/s should the full model be used. Note
that for s ≫ 1 the general wave equation can be used.

2.6.2 Practical implications

The key quantities of interest for a good choice of the appropriate model are
obviously k and k/s. In physical terms these quantities represent the ratio
between the acoustic wavelength and the length scale l, and the ratio between
the boundary layer thickness and the acoustic wavelength respectively. An
interesting point is the analysis of these terms. For s ≤ 1 and k/s ≥ 1 for
instance the full model should be used. The question now arises whether or
not these conditions are of any practical interest. With the dimensionless
parameters one can write:

s = l

√
ρ0ω

µ

k

s
=

√
µω

ρ0c2
0

(2.33)

For gases under atmospheric conditions, the speed of sound is of the order
of magnitude of 5 · 102 m/s, the density is of the order of 1 kg/m3 and the
viscosity is of the order of 10−5 Ns/m2. By varying the frequency or the
length scale, the shear wave number can vary from low to very high values.
Expression (2.33) shows that the frequency is the only variable quantity in
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k/s: it does not depend on the length scale l. For gases under atmospheric
conditions, k/s exceeds unity only for frequencies higher than 109 Hz. How-
ever, for these high frequencies the medium can no longer be regarded as
homogeneous and one of the basic assumptions described in section 2.2.1, is
violated.

This can be illustrated with the following simple example. Using expres-
sion (2.33), the basic conditions l > 10−7 m and f < 109 Hz can be expressed
in terms of k/s and s:

f < 109 Hz :

(
k

s

)
<

√
2πµ

ρ0c2
0

· 109

l > 10−7 m : s >
ρ0c0

µ
· 10−7

(
k

s

)
(2.34)

For air under atmospheric conditions this gives:

(
k

s

)
< 0.3π ; s > 2.24

(
k

s

)
(2.35)

Thus, the full linearized Navier Stokes model is not even valid in the major
range where it should be of use for air under atmospheric conditions.

For fluids this reasoning also holds. The quantity k/s contains the ratio
between the viscosity and the density. For fluids the viscosity is higher, but
compared to gases the ratio between viscosity and density is of the same
order of magnitude. Furthermore, the speed of sound in fluids is generally
higher. This implies that for fluids the condition k/s ≪ 1 will also usually
be satisfied. If this condition is not satisfied one has to ensure that the basic
assumptions are not violated.

This simple analysis shows that the practical importance of the full model
is very limited. Only under extreme conditions, e.g. at low temperatures or
low pressures, one encounters situations were the full model should be used13.
However, one has to ensure that the basic assumptions are not violated in
these cases. This leads to the perhaps surprising conclusion that for gases
under atmospheric conditions the full linearized Navier Stokes model is not
valid in the parameter range where it should be of use. Most viscothermal
problems can be handled with the low reduced frequency models. In fact, a
number of papers indicate the necessity of a full model because of the high
frequencies involved, whereas a low reduced frequency model would have
been sufficient [47, 49, 4]. Some examples will be presented in chapter 3.

13For these cases situations are encountered where the jump conditions must be applied
at the boundaries, see section 2.2.2
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2.6.3 Overview of the literature for layers

The dimensionless parameters are used to analyse the literature for the layer
geometry. The overview is based on the references presented in Tables 2.1,
2.2 and 2.3. For this purpose, the values of the dimensionless parameters
at which the calculations and experiments were performed were determined
from the data given in the references [47, 49, 4, 55, 57, 62, 63, 67, 68, 69, 59,
71]

s

k

104103102101110−110−210−310−4

101

1
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10−2

10−3

10−4

10−5

Figure 2.4: Dimensionless parameters in the literature. Calculations ( ),
experiments (−−)

The graph clearly shows that for all investigations the low reduced fre-
quency models, modified wave equation models or general wave equation
models would have been sufficient. None of the present cases required a
more sophisticated model, such as the full linearized Navier Stokes model.
The conclusion to be drawn from this Figure is that, although a variety of
models has been developed, this was not necessary when taking a critical look
at the dimensionless parameters. Some investigations mentioned in Tables
2.1 and 2.2 could have been carried out with much simpler models. Analysis
of the values of the parameters, listed in the Tables, also immediately reveals
that the conditions for the use of simpler models are satisfied.
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2.7 Conclusions

The conclusions to be drawn from the present investigation are as follows:

• viscothermal wave propagation is governed by a number of dimension-
less parameters. The most important parameters are the shear wave
number, s, and the reduced frequency, k;

• the viscothermal models presented in the literature, can be grouped
into three categories: full linearized Navier Stokes models, simplified
Navier Stokes models and low reduced frequency models. The range of
validity of the models is governed by the values of k and k/s;

• the full linearized Navier Stokes model should only be used under ex-
treme conditions. For gases under atmospheric conditions, this model
is not even valid in the range of use because the basic assumptions are
violated;

• the assumption of small k/s, as often used in the literature concerning
full models, actually eliminates the need for a full model;

• the simplified Navier Stokes models are redundant: the complete pa-
rameter range is covered by the other models;

• the low reduced frequency model can be used for most problems. Be-
cause of the simplicity of this model, models are already available that
include the full acousto-elastic coupling for complex geometries. The
model is valid for k ≪ 1 and k/s ≪ 1;

• in the literature a variety of models was presented for the squeeze film
damping problem. Several authors stated that for miniaturized trans-
ducers, the full model had to be used because of the high frequencies
involved. An analysis of the parameters learns that for all literature
concerning squeeze film problems, treated in this chapter, a simple low
reduced frequency model is sufficient and the most efficient.



Chapter 3

Fundamental solutions

3.1 Introduction

In chapter 2 an overview of theories for viscothermal wave propagation was
presented. As a next step, the theory is applied to present solutions for the
behaviour of spherical resonators, the propagation of sound in tubes, the
behaviour of miniaturized transducers and squeeze film damping between
flexible plates or membranes. Analytical solutions for the full model were
obtained for a spherical geometry, a circular tube geometry and a layer ge-
ometry. The results of these models are compared with results from simpler
models, like the low reduced frequency model. All solutions are written in
terms of dimensionless parameters. The use of these parameters leads to
some interesting observations.

The author would like to stress that it is not his intention to give an
extensive and very detailed description of all the aspects for each applica-
tion. The present range of applications covers the general application field of
linear viscothermal models. Furthermore, solutions are presented for a range
of geometries. Thus, the main aim of this chapter is to present an applica-
tion overview and a solution overview of linear viscothermal models. The
theory and the solutions are quite general and can easily be applied to other
situations, because the expressions are all written in terms of dimensionless
parameters.
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3.2 Spherical resonator

3.2.1 Introduction

Spherical resonators are used to determine the properties of gases, such as
the speed of sound, with a high degree of accuracy, see e.g. Moldover, Mehl
and Greenspan [29]. In Figure 3.1 a schematic drawing is presented of a
spherical resonator.
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Figure 3.1: Schematic drawing of a spherical resonator

The sphere consists of two parts that are bolted together. The acoustic
eigenfrequencies of the enclosed volume are used to determine the properties
of the gas under different conditions. Because of the spherical geometry, an
analytical solution can be obtained for the full linearized Navier Stokes model
as will be described in sections 3.2.2 to 3.2.5. However, the resonator contains
a number of small disturbances: vent holes, transducers, transducer holes and
a source. Although both parts of the shell are firmly bolted together, a small
seam can remain between the two parts. In order to account for the presence
of these disturbances, some suggestions to extend the model are introduced
in section 3.2.6. Finally, an example with Argon as a gas will be presented
in section 3.2.7.

The derivation of the equations is based on the work by Moldover, Mehl
and Greenspan [29]. The spherical resonator was also described by Bruneau,
Polack, Herzog and Kergomard [51], Bruneau, Herzog, Kergomard and Po-
lack [45] and Mehl [46, 74, 75]. The models were rewritten in terms of
dimensionless quantities for the present study.
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3.2.2 Basic equations

In order to solve the full linearized Navier Stokes model, two scalar wave
equations and one vector wave equation have to be solved (see chapter 2). In
a spherical co-ordinate system (r, θ, φ):

[
∆ + ka

2
]
Ta = 0 ;

[
∆ + kh

2
]
Th = 0 ;

[
∆ + kv

2
]
vv = 0 (3.1)

3.2.3 Solution of the scalar wave equations

The solution of the scalar wave equations can be obtained by a straightfor-
ward separation of variables:

Ta = jn (kar)Ymn (θ, φ) ; Th = jn (khr)Ymn (θ, φ) (3.2)

where Ymn (θ, φ) is a spherical harmonic function and jn (kar) is a spherical
Bessel function. The spherical Bessel function is related to the fractional
Bessel function according to [76]:

jn (kar) =
1√
r
Jn+ 1

2

(kar) (3.3)

The solution for the temperature is:

T = Aajn (kar) Ymn (θ, φ) + Ahjn (khr)Ymn (θ, φ) (3.4)

The solenoidal velocity can be obtained from:

vl = vla + vlh = αaAa∇Ta + αhAh∇Th (3.5)

This gives:

vl =

[
αaAa

∂jn (kar)

∂r
+ αhAh

∂jn (khr)

∂r

]
Ymn (θ, φ)er

+ [αaAajn (kar) + αhAhjn (khr)]
1

r

∂Ymn (θ, φ)

∂θ
eθ (3.6)

+ [αaAajn (kar) + αhAhjn (khr)]
1

rsin(θ)

∂Ymn (θ, φ)

∂φ
eφ

The pressure is:

p =

[
γ

γ − 1

] [
Aa

[
1 − ika

2

s2σ2

]
jn (kar) + Ah

[
1 − ikh

2

s2σ2

]
jn (khr)

]
Ymn (θ, φ)

(3.7)
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3.2.4 Solution of the vector wave equation

The solution for the vector wave equation can be obtained from the solution
of the scalar wave equation. For the present case the solution is, see Morse
and Feshbach [77]:

vv = W1∇ × [errjn (kvr)Ymn (θ, φ)]

+ W2∇ × ∇ × [errjn (kvr)Ymn (θ, φ)] (3.8)

where W1 and W2 are constants that remain to be determined from the
boundary conditions. After some algebra one obtains:

vv = W1 [−rjn (kvr)]
1

rsin(θ)

∂Ymn (θ, φ)

∂φ
eθ

+ W1 [rjn (kvr)]
1

r

∂Ymn (θ, φ)

∂θ
eφ

+ W2

[
n(n + 1)

r
jn (kvr)

]
Ymn (θ, φ)er (3.9)

+ W2

[
∂

∂r
(rjn (kvr))

]
1

r

∂Ymn (θ, φ)

∂θ
eθ

+ W2

[
∂

∂r
(rjn (kvr))

]
1

rsin(θ)

∂Ymn (θ, φ)

∂φ
eφ

3.2.5 Rigid sphere with isothermal walls

The boundary conditions for the present case for r = 1 are:

T = 0 ; v = vl + vv = 0 (3.10)

The following equation for the spherical resonator is obtained:

[
1 − αh

αa

]



n(n + 1)

1 +
1

jn (kv)

∂jn (kvr)

∂r

∣∣∣∣∣
r=1




= (3.11)

1

jn (ka)

∂jn (kar)

∂r

∣∣∣∣∣
r=1

−
(

αh

αa

)
1

jn (kh)

∂jn (khr)

∂r

∣∣∣∣∣
r=1

The eigenfrequencies of the gas in the resonator can be calculated from this
equation. In experiments, a frequency response function is measured. The
frequency response of the resonator is calculated by expressing the internal
acoustic field in terms of the acoustic eigenmodes. The participation factors
can then be calculated, see e.g. [29].
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3.2.6 Model extensions

Shell motion

As a boundary condition, a zero velocity was imposed for the gas at the
shell wall. The shell however can deform under the applied pressure. Mehl
[46] developed a model which describes the shell behaviour in terms of an
impedance. The effect of shell motion can thus be incorporated in the model
by imposing the shell impedance as a boundary condition for the radial ve-
locity and the pressure at the shell wall.

Holes in the shell

The holes will affect the acoustic field inside the resonator. One can dis-
tinguish several types of holes, depending on the type of termination. For
vent holes, the circular tube is terminated by a radiation or pressure release
condition. For the transducer holes, the tube is terminated by the effective
impedance of the transducer itself. The propagation of sound waves in a
circular tube is governed by the dimensionless parameters. With these pa-
rameters, the most efficient model can be identified. The acoustic impedance
of the tube with its termination can be calculated and thus the impedance at
the entrance of the tube is known. As a consequence, there is a non-uniform
boundary impedance condition for the gas in the resonator.

Seam

A small gap at the junction between the two hemispheres can affect the acous-
tical properties of the resonator. In this case one deals with the propagation
of sound waves between parallel surfaces. Again, based on the dimensionless
parameters for this layer geometry one can easily identify the model that
should be used. The effective impedance of the gap between the hemispheres
can then be calculated.

3.2.7 Example: eigenfrequencies of spherical resonator

The properties of the Argon gas and the spherical resonator are (according
to the case described by Moldover, Mehl and Greenspan [29]):

c0 = 319 m/s ; ρ0 = 1.60 kg/m3

Cp = 528 J/kgK ; γ =
5

3
(3.12)

λ = 16.7 · 10−3 W/mK ; µ = 22.7 · 10−6 Ns/m2

ξ = 0 ; R = 0.0635 m
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The bulk viscosity is zero and the ratio of specific heats is equal to 5
3

for
a monatomic (ideal) gas like argon. The eigenfrequencies of the resonator
were calculated with a simple numerical procedure (see Appendix C). The
eigenfrequencies can be divided into groups. For each value of n there are
several solutions to the equation. The solutions are denoted here as “ns”,
where n is the order of the spherical Bessel function and s is the s-th root.
The roots are arranged in ascending order. The results for the n = 0, n = 1
and n = 2 modes are given in Table 3.1.

“ns” Eigenfrequency (Hz)
wave equation full model

01 0 0
02 3593 3592 + 0.802i
03 6177 6175 + 1.073i
04 8718 8717 + 1.305i
11 1664 1663 + 1.587i
12 4750 4748 + 1.054i
13 7360 7359 + 1.246i
14 9918 9916 + 1.449i
21 2630 2628 + 1.988i
22 5817 5816 + 1.363i
23 8482 8481 + 1.460i
24 11069 11067 + 1.623i

Table 3.1: Eigenfrequencies spherical resonator

The Table shows that the eigenfrequencies for the full model are complex.
The imaginary part however is very small compared to the real part. The
real part of the frequency is almost equal to the frequency that is obtained
with the wave equation. The viscous and thermal effects only seem to have
a small effect on the acoustical eigenfrequencies of the resonator. However,
the shifts in frequency have to be related to the accuracy of the experiment.
In fact, according to the literature a frequency shift of several Hz can be
denoted as “significant”. The resonance half width, which is equal to the
imaginary part of the eigenfrequency, is measured in the experiments. The
viscous and thermal effects partly determine the imaginary component of the
frequency. For a good model, however, the motion of the shell wall must be
included for example by using the impedance approach.
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3.3 Circular tubes

3.3.1 Introduction

The propagation of sound waves in tubes was already investigated by Kirch-
hoff and Rayleigh, see e.g. [6]. A large amount of literature is available
on this subject, dealing with full linearized Navier Stokes models, simpli-
fied models and low reduced frequency models. For an overview of models
in terms of dimensionless parameters the reader is referred to Tijdeman [3],
whose paper was also one of the first in which numerical results for the fun-
damental mode (m=0) were presented which took into account the influence
of thermal effects. The theory, presented in chapter 2, will now be applied
to describe the propagation of sound waves in circular tubes. A solution
for the full linearized Navier Stokes model is given. Extending the work of
Tijdeman, the present solution includes circumferential harmonic waves of
integer order m and the effects of bulk viscosity. The results for the case of
m = 0 and zero bulk viscosity are compared with the results presented by
Tijdeman.

3.3.2 Full linearized Navier Stokes model

Basic equations

In order to solve the full linearized Navier Stokes model, two scalar wave
equations and one vector wave equation have to be solved (see chapter 2). In
a cylindrical co-ordinate system (r, θ, x):

[
∆ + ka

2
]
Ta = 0 ;

[
∆ + kh

2
]
Th = 0 ;

[
∆ + kv

2
]
vv = 0 (3.13)

Solution of the scalar wave equation

The solution of the scalar wave equations can be obtained by a straightfor-
ward separation of variables:

Ta = Jm (karr) fm (θ, x) ; Th = Jm (khrr) fm (θ, x) (3.14)

where:
fm (θ, x) =

[
C1e

−imθ + C2e
imθ
] [

C3e
−Γx + C4e

Γx
]

kar =
√

ka
2 + k2Γ2 ; khr =

√
kh

2 + k2Γ2 (3.15)

The function fm (θ, x) consists of circumferential harmonics of integer order
m that are travelling in the +x and the −x-directions. The quantity Γ is the
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propagation constant. The solution for the temperature is:

T = AaJm (karr) fm (θ, x) + AhJm (khrr) fm (θ, x) (3.16)

The solenoidal velocity can be obtained from:

vl = vla + vlh = αaAa∇Ta + Ahαh∇Th (3.17)

This gives:

vl =

[
αaAa

∂Jm (karr)

∂r
+ αhAh

∂Jm (khrr)

∂r

]
fm (θ, x) er

+ [αaAaJm (karr) + αhAhJm (khrr)]
1

r

∂fm (θ, x)

∂θ
eθ

+ [αaAaJm (karr) + αhAhJm (khrr)] k
∂fm (θ, x)

∂x
ex

(3.18)

The pressure is:

p =

[
γ

γ − 1

] [
Aa

[
1 − ika

2

s2σ2

]
Jm (karr) + Ah

[
1 − ikh

2

s2σ2

]
Jm (khrr)

]
fm (θ, x)

(3.19)

Solution of the vector wave equation

The solution of the vector wave equation is, see Morse and Feshbach [77]:

vv = W1∇ × [exJm (kvrr) fm (θ, x)]

+ W2∇ × ∇ × [exJm (kvrr) fm (θ, x)] (3.20)

where W1 and W2 are constants that remain to be determined from the
boundary conditions, and:

kvr =
√

kv
2 + k2Γ2 (3.21)

After some algebra one obtains:

vv = W1 [Jm (kvrr)]
1

r

∂fm (θ, x)

∂θ
er − W1

[
Jm (kvrr)

∂r

]
fm (θ, x) eθ

+ W2

[(
kv

2 + k2Γ2
)
Jm (kvrr)

]
fm (θ, x) ex

+ W2 [Jm (kvrr)] k
1

r

∂2fm (θ, x)

∂θ∂x
eθ

+ W2

[
∂Jm (kvrr)

∂r

]
k
∂fm (θ, x)

∂x
ex (3.22)
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Dispersion equation

For a rigid tube with isothermal walls, the following boundary conditions
apply for r = 1:

T = 0 ; v = vv + vl = 0 (3.23)

After some algebraic manipulations one obtains the following dispersion equa-
tion:

[
1 − αh

αa

]
kv

2

kv
2 + k2Γ2




m2

1

Jm (kvr)

∂Jm (kvrr)

∂r

∣∣∣∣∣
1

+
k2Γ2

kv
2

1

Jm (kvr)

∂Jm (kvrr)

∂r

∣∣∣∣∣
1




1

Jm (kar)

∂Jm (karr)

∂r

∣∣∣∣∣
1

− αh

αa

∂Jm (khrr)

∂r

∣∣∣∣∣
1

Jm (khr)
(3.24)

For given values of the dimensionless parameters and the order m, the value
of the (complex) propagation constant Γ can be solved from this equation.

3.3.3 Low reduced frequency model

For a circular tube with isothermal walls, the low reduced frequency solution
for the pressure (see chapter 2 and Appendix B) is:

p = C1e
−Γx + C2e

Γx (3.25)

Γ =

√
γ

n (sσ) B (s)
(3.26)

where:

n (sσ) =

[
1 +

[
γ − 1

γ

]
B (sσ)

]
−1

B (s) =
J2

(
si
√

i
)

J0

(
si
√

i
) (3.27)

The propagation of waves is governed by the value of the propagation con-
stant Γ. There are two waves: one travelling in the negative x-direction and
one travelling in the positive x-direction. Note that the pressure is constant
across the cross section of the tube in the low reduced frequency model.
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3.3.4 Example: propagation constant

m = 0

Consider the case m = 0, i.e. there is no pressure variation in the circumfer-
ential direction. The full linearized Navier Stokes model was used to calculate
the value of the propagation constant for different values of k and s. When
k ≪ 1 and k/s ≪ 1 the solution of the full model should converge to the
low reduced frequency solution for Γ. Note that the propagation constant
does not depend on the value of the reduced frequency k in the low reduced
frequency model.

The calculated values for ξ = 0 and ξ = 0.6 for air under atmospheric
conditions (γ = 1.4 and σ =

√
0.71) are given in Figures 3.2, 3.3, 3.4 and 3.5.

The basic assumptions are only valid for k/s < 0.3π and s > 2.24 k/s. In the
Figures the curves are truncated at the point where these basic assumptions
are violated. For each value of k and k/s there are several solutions of the
dispersion equation, corresponding to different radial wavenumbers. In all
Figures the first root is given. The results for the case ξ = 0 are identical
to the results presented by Tijdeman [3]. The Figures show that the bulk
viscosity only has a small influence on the value of the propagation constant
for low shear wave numbers. For small values of k/s the solution of the
full linearized Navier Stokes model converges to the low reduced frequency
solution for Γ. Thus, for air under atmospeheric conditions the low reduced
frequency model is accurate. Under more extreme conditions, however, the
results could be less accurate and the full linearized Navier Stokes model
must be used.

m = 1

In this case there is a harmonic variation of the pressure in the circumferential
direction. The low reduced frequency model is not able to describe this
“spiralizing” type of wave because the pressure is assumed to be constant
on a cross-section. In the acoustic non-dissipative case there is a cut-on
frequency. For frequencies below the cut-on frequency the solution for Γ
is purely real and the wave will die out exponentially in the axial direction.
When the frequency exceeds the cut-on frequency, the solution for Γ is purely
imaginary and the wave starts to propagate. The cut-on frequency increases
with increasing radial wavenumber. The lowest cut-on frequency is calculated
from k = 1.84. For air under atmospheric conditions the basic assumptions
require k/s < 0.3π. Thus, the shear wave number must be larger than
2, which suggests that viscothermal effects will usually only be of minor
importance for these waves. The solution for higher order circumferential
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modes including viscothermal effects can be calculated with the full linearized
Navier Stokes model. A detailed analysis of this topic, however, is not within
the scope of the present study, see e.g. [78, 54, 79, 53, 80].
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Figure 3.2: Real part of Γ for ξ = 0, m = 0 (first root), k/s =
0.025π, 0.05π, 0.1π, 0.15π, 0.2π, 0.3π and the low reduced frequency solution
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Figure 3.3: Imaginary part of Γ for ξ = 0, m = 0 (first root), k/s =
0.025π, 0.05π, 0.1π, 0.15π, 0.2π, 0.3π and the low reduced frequency solution
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Figure 3.4: Real part of Γ for ξ = 0.6, m = 0 (first root), k/s =
0.025π, 0.05π, 0.1π, 0.15π, 0.2π, 0.3π and the low reduced frequency solution
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Figure 3.5: Imaginary part of Γ for ξ = 0.6, m = 0 (first root), k/s =
0.025π, 0.05π, 0.1π, 0.15π, 0.2π, 0.3π and the low reduced frequency solution
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3.4 Miniaturized transducer

Consider a vibrating membrane, backed by a rigid electrode (see Figure 3.6).
The membrane and the electrode entrap a thin layer of air. The air layer is
surrounded by a large reservoir at the periphery.

Membrane
Backing 0

r
2h

R

z

electrode

��������
��������
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��������
��������
��������
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m
v

Figure 3.6: Miniaturized transducer

The displacement of the membrane is zero at the edges, i.e. at r = R. The
layer thickness is 2h0. Because the layer is surrounded by a large reservoir
the condition p = 0 is imposed at r = R. The membrane is excited by a plane
wave with magnitude pi at z = h0. Only the rotatory symmetric case will be
considered in the present analysis. Typical operating ranges for this type of
transducer are a layer thickness of the order of 10−5 m, a radius R = 10−2 m
and a frequency range of up to 100 kHz.

3.4.1 Full linearized Navier Stokes solution

The basic equations for the problem are two scalar wave equations, one vector
wave equation and the equation of motion for the membrane:

[
∆ + ka

2
]
Ta = 0 ;

[
∆ + kh

2
]
Th = 0

[
∆ + kv

2
]
vv = 0 ;

[
∆r +

k2Ω
2

k2
r

]
vm = −i

Ω2εk

γk2
r

[p − pi] (3.28)
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where ka, kh and kv are the acoustic, entropic and rotational wave numbers,
(see expressions (2.12) and (2.17)), vm is the dimensionless membrane veloc-
ity in the z-direction and pi is the dimensionless external incident pressure.
The parameters kr, Ω (a dimensionless frequency), ε (a coupling parameter)
and the operators ∆ and ∆r are defined as:

Ω2 =
ω2R2tmρm

Tm

; kr =
ωR

c0

; ε =
ρ0h0

ρmtm

∆ = k2 ∂2

∂r2
+ k21

r

∂

∂r
+

∂2

∂z2
; ∆r = k2 ∂2

∂r2
+ k21

r

∂

∂r
(3.29)

where tm, Tm and ρm represent the thickness, the tension and the density of
the membrane.

Solution of the scalar wave equation

After extensive algebra the following expressions for the temperatures are
found:

Ta =
∑

q=1,2,···

J0

(
kq

k
r

)
[Baq sin (kaqz) + Aaq cos (kaqz)]

Th =
∑

q=1,2,···

J0

(
kq

k
r

)
[Bhq sin (khqz) + Ahq cos (khqz)] (3.30)

The solenoidal velocity can be obtained from 1:

vl = vla + vlh = αa∇Ta + αh∇Th (3.31)

This gives:

vl =
∑

q=1,2,···

−kq

k
J1

(
kq

k
r

)
αa [Baq sin (kaqz) + Aaq cos (kaqz)]er

+
∑

q=1,2,···

−kq

k
J1

(
kq

k
r

)
αh [Bhq sin (khqz) + Ahq cos (khqz)] er

+
∑

q=1,2,···

J0

(
kq

k
r

)
αa [Baq cos (kaqz) − Aaq sin (kaqz)] ez (3.32)

+
∑

q=1,2,···

J0

(
kq

k
r

)
αh [Bhq cos (khqz) − Ahq sin (khqz)] ez

(3.33)

1The constants Aa and Ah are contained in Aaq, Baq, Ahq and Bhq



52 Fundamental solutions

where the different wave numbers are given by:

k2
aq = k2

a − k2
q ; k2

hq = k2
h − k2

q ; k2
vq = k2

v − k2
q (3.34)

The values of kq are the roots of the following equation:

J0

(
kq

k
kr

)
= 0 (3.35)

The pressure is:

p =

[
γ

γ − 1

] [[
1 − ika

2

s2

1

σ2

]
Ta +

[
1 − ikh

2

s2

1

σ2

]
Th

]

Solution of the vector wave equation

The rotational velocity is given by:

vv =
∑

q=1,2,···

kvq

kq

J1

(
kq

k
r

)
[Avq sin (kvqz) − Bvq cos (kvqz)] er (3.36)

+
∑

q=1,2,···

J0

(
kq

k
r

)
[Bvq sin (kvqz) + Avq cos (kvqz)] ez

Solution of the problem

There are 6 constants that remain to be determined: Aaq, Ahq, Avq, Baq, Bhq

and Bvq. The following conditions can be used to determine the values of
these constants:

• T = 0 for z = ±1

• p = 0 for r = kr

• [vl + vv] · er = 0 for z = ±1

• [vl + vv] · ez = vm for z = 1

The velocity of the membrane is:

vm = −i
Ω2εk

γk2
r

pik
2
r

k2Ω2



J0

(
Ω
kr

r
)

J0 (Ω)
− 1


 (3.37)

− i
Ω2εk

γk2
r

∑

q=1,2···

J0

(
kq

k
r
)

[
k2Ω2

k2
r

− kq
2
] {Λa [Aaq cos (kaqz) + Baq sin (kaqz)]}

− i
Ω2εk

γk2
r

∑

q=1,2···

J0

(
kq

k
r
)

[
k2Ω2

k2
r

− kq
2
] {Λh [Ahq cos (khqz) + Bhq sin (khqz)]}
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where the following symbols were used:

Λa =

[
γ

γ − 1

] [
1 − ika

2

s2

1

σ2

]
; Λh =

[
γ

γ − 1

] [
1 − ikh

2

s2

1

σ2

]
(3.38)

3.4.2 Low reduced frequency solution

The low reduced frequency problem results in two coupled scalar equations:

[
∆r − k2Γ2

]
p = −1

2
ikn(sσ)Γ2vm ;

[
∆r +

k2Ω
2

k2
r

]
vm = −i

Ω2εk

γk2
r

[p − pi]

(3.39)
The solution is:

p =
∑

q=1,2···

AqJ0

(
kq

k
r

)

vm =
∑

q=1,2···

BqJ0

(
kq

k
r

)
(3.40)

where the participation factors Aq and Bq are given by:

Aq =
ikn(sσ)Γ2

2
[
k2

q + k2Γ2
]Bq (3.41)

Bq = −i
Ω2εk

γk2
r

−2pi

kqkr

[
k2Ω2

k2
r

− k2
q + kn(sσ)Γ2

2[k2
q+k2Γ2]

Ω2εk
γk2

r

]
J1

(
kq

k
kr

)

3.4.3 Example: membrane impedance

As a test case, the impedance of the system is calculated. This test case was
described by Plantier and Bruneau [47]. They used a full linearized Navier
Stokes model with simplified wave numbers. In the present analysis, however,
the full expressions for the wave numbers are used, since the simplification of
the wave numbers actually eliminates the need for a full model (see chapter
2). The real and the imaginary parts of the impedance are defined in terms
of the incident pressure pi and the average membrane velocity 〈vm〉:

Zr = 10 ·10 log




(
Re

(
Z
))2

Z
2
0


 ; Zi = 10 ·10 log




(
Im

(
Z
))2

Z
2
0


 (3.42)

〈vm〉 =
1

πR2

∫ R

0
vm 2πr dr ; Z =

pi

〈vm〉
; Z0 = 1 · 104 Ns/m
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The following properties were used:

R = 1.37 · 10−2 m ; ρm = 4.5 · 103 kg/m3 ; Tm = 6.2 · 103 N/m

tm = 12.7 · 10−6 m ; 2h0 = 25.4 · 10−6 m ; ρ0 = 1.2 kg/m3

λ = 25.6 · 10−3 W/mK ; Cv = 716 J/kgK ; Cp = 1004 J/kgK

c0 = 340 m/s ; µ = 18.2 · 10−6 Ns/m2 ; ξ = 0.6 (3.43)

The results for the full linearized Navier Stokes model and the low reduced
frequency model are plotted in Figure 3.7.
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Figure 3.7: Impedance for full model (⋄, +) and low reduced frequency model
( )

It is evident from Figure 3.7 that both models give the same results for
the impedance of the membrane. The other quantities, like velocity and
pressure, are also nearly identical. The pressure, for example, does not vary
much across the layer thickness: the maximum deviation in the profile is
less than 0.1% for frequencies up to 100 kHz. The assumption of constant
pressure is reasonable. This is not too surprising when analysing the values
of the dimensionless parameters. The conditions k ≪ 1 and k/s ≪ 1 hold for
the entire frequency range up to 100 kHz: k < 10−1 and k/s < 10−2. This
indicates that the low reduced frequency model will give reliable results, even
in the high frequency range.

In fact, to the author’s knowledge, all problems concerning miniaturized
transducers that were presented in the literature could have been solved with
the simple low reduced frequency model. None of these cases required the use
of the full model. For gases under atmospheric conditions the low reduced
frequency model is sufficient and clearly the most efficient.
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3.5 Squeeze film damping between plates

As a fourth application, a squeeze film damping problem is analysed. Con-
sider a flexible plate, located parallel to a fixed surface (see Figure 3.8). A
thin layer of air is trapped between the vibrating plate and the rigid surface.
This problem was solved by Trochidis using a simplified Navier Stokes model.
An uncoupled approach was used: the vibrational behaviour of the plate was
imposed as a boundary condition for the fluid. The results of this model will
now be compared with the results from a low reduced frequency model.

2h x

z
Flexible plate

Air layer

Fixed surface0

pv
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Figure 3.8: Squeeze film damping problem

The plate properties are: thickness tp, density ρp and Young’s modulus
Ep. The problem to be considered is two-dimensional: there is no variation
in the y-direction. The deflection of the plate is imposed as a boundary
condition for the fluid. The velocity, imposed by Trochidis, can be written
as:

vp = c0vp cos (kpx) eiωt (3.44)

where vp is the dimensionless amplitude of the velocity (a constant) and kp

is the wave number. According to Trochidis, the wave number is:

kp =
c0

ω

[
ω2ρptp

Dp

] 1

4


1 +

ρ0

ρptp

[
Dp

ω2ρptp

] 1

4




1

5

; Dp =
Eptp

3

12
(3.45)

The second term in the expression for kp accounts for the fact that the free
wave number of the plate is affected by the gas or fluid loading on the upper
side of the plate. This term can be significant when the plate is loaded with
a heavy fluid. For gases, the term can usually be neglected. For the present
case the correction in wave number is only 0.1%. Therefore the wave number
is simplified to:

kp =
c0

ω

[
ω2ρptp

Dp

] 1

4

(3.46)
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3.5.1 Simplified Navier Stokes solution

Basic equations

The equations for incompressible behaviour are:

∆p = 0

[
∆ − is2

]
v =

s2

kγ
∇p (3.47)

Solution of the equations

Using separation of variables, one obtains:

p =
[
C1e

−kp1z + C2e
kp1z

]
cos (kpx)

v = −s2

γ

kp

kp1
2 − kp2

2

[
C1e

−kp1z + C2e
kp1z

]
sin (kpx) ex

+
[
C3e

−kp2z + C4e
kp2z

]
sin (kpx) ex (3.48)

+
s2

γ

kp

kp1
2 − kp2

2

[
C1e

−kp1z + C2e
kp1z

]
cos (kpx) ez

+
kp1

kp2

[
C3e

−kp2z + C4e
kp2z

]
cos (kpx)ez

where the wave numbers kp1 and kp2 are given by: 2

kp1 = kkp ; kp2 =
√

is2 + k2kp
2 (3.49)

The four constants C1, C2, C3 and C4 are determined from the following
boundary conditions:

• v · ex = 0 for z = ±1

• v · ez = 0 for z = −1

• v · ez = vp cos (kpx) for z = 1

2Trochidis approximates the wave number kp2 by s
√

i
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3.5.2 Low reduced frequency solution

The equation to be solved is:

k2 ∂2p

∂x2
− k2Γ2p = −ikn(sσ)Γ2 1

2
vp cos (kpx) (3.50)

The solution for an infinite plate is simply:

p =
in (sσ) Γ2

2k
[
kp

2 + Γ2
]vp cos (kpx) (3.51)

Note that compressibility effects are accounted for in this expression.

3.5.3 Example: loss factor

Trochidis used the loss factor of the system to compare analytical and ex-
perimental results. In order to calculate the loss factor, the different forms
of energy in the system have to be identified. In the case of compressible
behaviour three terms are of interest: the dissipated energy per cycle, Ediss,
the maximum energy stored in the plate, Ep, and the potential energy stored
in the air layer, Elay. For this problem these quantities can be written as:

Ediss = −πp0c0

ω

∫

A
Re
(
p v∗

p

)
dA

Ep =
1

2
Dpc

2
0

∫

A

[
∂2vp

∂x2

]2

dA (3.52)

E lay =
1

2

p2
0

ρ0c0
2

∫

A

∫ h0

z=−h0

[Re (p)]2 dz dA

where A denotes the surface area of the plate and ∗ denotes a complex con-
jugate. The loss factor is then obtained from:

ζ =
Ediss

2π
[
Ep + Elay

] (3.53)

The following values were used for the present testcase:

Ep = 70 · 109 N/m2 ; tp = 1 · 10−3 m ; ρp = 2710 kg/m3

λ = 25.6 · 10−3 W/mK ; ρ0 = 1.2 kg/m3 ; Cv = 716 J/kgK

µ = 18.2 · 10−6 Ns/m2 ; Cp = 1004 J/kgK ; c0 = 340 m/s

2h0 = 1.5 · 10−3 m (3.54)
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Figure 3.9: Loss factor versus frequency: Trochidis model (⋄), low reduced
frequency model ( ), incompressible low reduced frequency model (−−)

The loss factor as a function of frequency is given in Figure 3.9. Results are
plotted for the Trochidis model, the low reduced frequency model and the
low reduced frequency model for incompressible behaviour.

The Figure clearly shows that the Trochidis model and the low reduced
frequency model for incompressible behaviour give the same results. The loss
factor shows a decrease with increasing frequency for these incompressible
models. The low reduced frequency solution including compressibility effects
however shows an increasing loss factor for high frequencies.

The increase can be attributed to a coincidence effect. For the present
case the acoustic wavelength and the bending wavelength are equal for a
frequency just above 10 kHz. For this frequency, energy is radiated efficiently
into the layer. Both Ediss and Elay exhibit a peak at this frequency. The
final result is a peak in the loss factor. Note that incompressible models are
not able to describe the coincidence phenomenon.

The two incompressible models give the same result for the loss factor.
For the entire frequency range, the conditions k ≪ 1 and k/s ≪ 1 hold:
k < 1 and k/s < 10−2. Therefore the low reduced frequency assumptions
are valid. Again, there is no need to use a more complicated model: the low
reduced frequency model is sufficient and the most efficient.



Chapter 4

The low reduced frequency
model

4.1 Introduction

This chapter deals with the air loads on a rigid rectangular plate oscillating
normal to a fixed surface (see Figure 4.1). We consider a rigid, rectangular
plate, suspended by springs attached to the corners of the plate. The plate is
mounted parallel to a fixed surface and performs a small harmonic oscillation
normal to that surface. The distance between the plate and the fixed surface,
h(t), is given by the real part of:

h (t) = h0

[
2 + heiωt

]
(4.1)

where 2h0 is the mean distance between the plate and the fixed surface, h
is the dimensionless amplitude of the oscillation, ω is the angular frequency
and t refers to time.
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Figure 4.1: Oscillating plate
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The plate is assumed to be rigid. Hence, any uncertainty with respect to
the dynamical behaviour of the plate is excluded. The forces acting on the
plate due to the pressure distribution in the gap will affect the eigenfrequency
and the damping of the system. The airloads can thus be determined by
measuring the eigenfrequency and the damping of the system.

For the behaviour of the air in the gap between the plate and the fixed
surface an analytical solution is presented, based on a low reduced frequency
model. As a first check, the results from the analytical solution are compared
with the results from a standard finite element technique, based on the wave
equation. In these calculations the air is represented as a compressible, in-
viscid medium. The analytical solution is validated with specially designed
experiments.

Most of the experiments described in the literature are carried out at
relatively high frequencies. In order to obtain low shear wave numbers, very
small gaps widths were used. For these gap widths low damping levels in the
frequency range of interest were found. However, such a small gap width is
difficult to control and consequently the accuracy of the results is often not
very clear. A further drawback is the fact that the amplitude of oscillation
has to be kept very small in order to avoid non-linearities. Finally, most
experiments were carried out with relatively heavy structural materials. For
such materials the air loads have a small influence on the dynamical behaviour
of the system. Consequently the frequency shifts and the damping values are
not very large.

The experimental setup, presented in this chapter, was specially designed
to avoid many of these problems. With the help of the aforementioned di-
mensionless parameters a large scale setup was constructed. Typical prop-
erties of the setup are: plate dimensions 0.98 x 0.98 m2, plate mass 2.54 kg,
gap widths from 3 to 650 mm. The eigenfrequency of the single degree of
freedom mass-spring system in vacuum is 9.73 Hz. The frequency range of
interest is the range from 1 to 10 Hz. The plate is excited in the centre by an
electrodynamic shaker. Because of the fact that the panel is very light, the
frequency shift and the amount of damping are very large. The large scale of
the setup makes it possible to measure the pressure distribution in the gap.
This provides new information regarding the accuracy of the models and the
boundary conditions.
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4.2 Analytical calculations

4.2.1 Pressure distribution

The low reduced frequency equation for this geometry is (see chapter 2 and
Appendix B):

∂2p

∂x2
+

∂2p

∂y2
− Γ2p = n(sσ)Γ21

2
h (4.2)

where the functions B(s) and n(sσ) are given by:

B(s) =
tanh

(
s
√

i
)

s
√

i
− 1 ; n (sσ) =

[
1 +

[
γ − 1

γ

]
B (sσ)

]
−1

(4.3)

The boundary conditions are:

p = 0 for x = ±kx ; p = 0 for y = ±akx (4.4)

where kx is a wave number and a is the aspect ratio of the plate:

kx =
ωlx
c0

; a =
ly
lx

(4.5)

The applied boundary condition is p = 0 (see Figure 4.2). This is a simplifi-
cation, since the pressure distribution outside the gap will be affected by the
pressure distribution in the gap and vice versa. For narrow gaps, however,
the magnitude of the pressure perturbation in the gap is very large com-
pared to the magnitude of the pressure perturbation outside the gap. Hence,
the boundary condition p = 0 is a realistic assumption. This is confirmed
by straightforward potential flow calculations, a comparison with finite ele-
ment results and experimental results. A more extensive discussion on this
boundary condition is given in the sections 4.3 and 4.5.3.

Plate

Fixed surface p=0 p=0Air gap
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Figure 4.2: Boundary conditions for the analytical model

The solution for the pressure is:

p(x, y) =
2n(sσ)Γ2k2

xh

π

∑

q=1,3,5···

(−1)
q−1

2

qD2



cosh

(
D 1

kx
x
)

cosh (D)
− 1


 cos

(
qπ

2

1

akx

y
)

(4.6)
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where:

D =

√[
qπ

2

1

a

]2
− k2

xΓ
2 (4.7)

The force on the plate is obtained by integration:

Fgap ≡
∫ kx

x=−kx

∫ akx

y=−akx

p (x, y) dxdy

=
16n(sσ)Γ2k4

xah

π2

∑

q=1,3,5···

1

q2

1

D2

[
tanh (D)

D
− 1

]
(4.8)

4.2.2 Mobility function

The plate is assumed to be rigid, moves only in the z-direction and remains
parallel to the fixed surface. The system can therefore be regarded as a
single degree of freedom system. When the pressure distribution in the air
outside the gap is neglected, the forces acting on the plate are F ex, the
harmonic excitation force generated by an electrodynamic shaker, F gap, the
force acting on the lower side of the plate due to the pressure distribution
in the gap between the plate and the fixed surface and F springs, the spring
forces. The plate is suspended by 8 springs, two at each corner. Each spring
has a stiffness κ. The forces are written as:

F ex = lxlyp0Fexe
iωt ; F gap = lxlyp0Fgape

iωt ; F springs = 8κh0heiωt (4.9)

The equation of motion for the plate:

−ω2mh0h = lxlyp0 [Fex + Fgap] − 8κh0h (4.10)

where m is the mass of the plate The transfer function H(ω) relates the force
and the displacement for harmonic signals according to:

H (ω) =
h0h

lxlyp0Fex

(4.11)

For a system with viscous damping it is more convenient to use the mobility
function, representing the transfer function between velocity and force. The
mobility function is obtained by multiplying H(ω) with iω. Inserting the
expressions for the air load (see (4.8)) finally gives:

Y (ω) =
iω

−ω2m − lxlyp0

h0


16n(sσ)k2

xΓ
2

π2

∑

q=1,3,5···

1

q2

1

D2

[
tanh (D)

D
− 1

]
+ 8κ

(4.12)
The eigenfrequency and the damping coefficient of the system are extracted
from a Nyquist plot of the mobility function.



4.2 Analytical calculations 63

4.2.3 Physical interpretation

When the influence of the surrounding air is neglected and the structural
damping is assumed to be negligible (this is confirmed in the tests described
in section 4.4.1), the plate-spring system can be regarded as an undamped
single degree of freedom system with mass m and stiffness 8κ . The surround-
ing air however will affect the dynamical behaviour of the plate. Usually the
air load is split up into an added mass, an added stiffness and an added
damping. An analysis of the load term in the mobility function however
reveals that this concept is ambiguous for this situation. The expression
for the resulting air load is a general, complex function of the angular fre-
quency. The imaginary part of the force could be used to extract the amount
of added damping. Added mass and added stiffness however are, like in the
experiments, not directly separable. In the calculations one could define an
artificial separation. For instance, the added stiffness could be related to
the effects of compressibility. For this choice the amount of added mass is
obtained by assuming the air to be incompressible. The added stiffness is
then determined from the difference between compressible and incompress-
ible behaviour. However, the added stiffness then strongly depends on the
frequency. This indicates that a split-up of the air load is rather arbitrary.
Hence, the physical interpretation of the results will be based on a direct
analysis of the force expression. Four quantities that influence the force are
the gap width, the viscosity, the aspect ratio and the compressibility.

Gap width

One of the most important quantities that governs the air load is the gap
width, 2h0. The force shows a strong increase with decreasing gap width. In
physical terms, this is associated with the amount of pumping in the gap.
The motion of the air is mainly perpendicular to the motion of the plate (see
Figure 4.3). It can easily be understood that this pumping effect increases
with decreasing gap width.

Fixed surface

Plate
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Figure 4.3: Pumping effect
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Viscosity

A very interesting point is the role of the viscosity. The viscosity affects both
the real and the imaginary part of the propagation constant Γ. The damping
depends on the viscosity, as expected. However, the eigenfrequency of the
system is also affected by the viscosity. In this investigation the phase reso-
nance frequency is used: the eigenfrequency of the corresponding undamped
system. Therefore the eigenfrequency is, by definition, not influenced by the
damping. The eigenfrequency shift due to viscosity may thus seem surpris-
ing. Simply speaking one would expect the viscosity to affect the damping,
but not the eigenfrequency. The change in frequency can be attributed to
the change in the velocity profile in the gap. For low shear wave numbers
there is a parabolic profile, whereas for high shear wave numbers the velocity
profile is flat (see section 2.5.3). It is therefore important that, for a correct
estimation of the eigenfrequency, the viscosity is taken into account.

Compressibility

In the calculations one can easily eliminate the effects of the compressibility.
For incompressible behaviour, the function D (see expression (4.7)), reduces
to:

Dinc =
qπ

2

1

a
(4.13)

Compressibility effects are important when:

|kxΓ| ∼=
(

π

2

)(
1

a

)
(4.14)

This can be rewritten to: ∣∣∣∣∣
ωly

ceff(ω)

∣∣∣∣∣
∼= π

2
(4.15)

where ceff(ω) is an effective speed of sound:

ceff(ω) =
ic0

Γ
(4.16)

The effective speed of sound is affected by viscous effects and thermal effects.
In physical terms, expression (4.15) now simply states that compressibility
effects are important when the effective acoustic wavelength is of the same
order of magnitude as the plate length.
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4.3 Standard acoustic finite element calcula-

tions

As a first check, the results from the analytical solution with the results from
a standard finite element technique, based on the wave equation. In these
calculations the air is represented as a compressible, inviscid medium. The
finite element calculations were carried out for the experimental setup (see
section 4.4.1) with the program ANSYS [81]. A rectangular solar panel is
suspended by 8 springs, two at each corner. The panel has a mass m and
(equivalent) Young’s modulus E; each spring has a stiffness κ. The thickness
of the panel is 0.022 m. The plate is modelled as an elastic body. The
deformation of the plate however is shown to be small in the frequency range
of interest (see also section 4.4.4). This frequency range is far below the first
elastic eigenfrequency of the panel. The gap width between the plate and the
fixed surface can be varied between 2 and 650 mm. The following properties
are taken according to the measurements 1:

m = 2.540 kg ; κ = 1186 N/m

lx = 0.49 m ; ly = 0.49 m (4.17)

E = 2.61 · 109 N/m2

The properties of the surrounding air at standard atmospheric conditions:

ρ0 = 1.2 kg/m3 ; c0 = 343 m/s (4.18)

The panel is modelled with three-dimensional 8-node solid elements, type
SOLID45. The degrees of freedom at each node are the displacements. In
ANSYS the air is represented as a compressible, inviscid medium. The
behaviour of the air is therefore governed by the wave equation. Three-
dimensional 8-node acoustic elements, type FLUID30 , were used. For the
acoustic elements, the pressure perturbation is the degree of freedom at each
node. With the use of symmetry the mesh is reduced to 1/4 of the system (see
Figure 4.4). In the numerical calculations, the two springs at each corner are
replaced by a single spring with a double stiffness. The boundary condition
for the pressure on the planes of symmetry and the fixed surface is that the
pressure gradient normal to the wall should vanish. In physical terms, this
condition states that the velocity of the air normal to the surface is equal to
zero. This condition is automatically satisfied in the ANSYS program when
no other boundary conditions are specified.

1The mass of the panel includes the mass of some instrumentation. Young’s modulus
is an equivalent quantity for the layered honeycomb panel.
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Figure 4.4: Finite element mesh

The boundary condition for the other air boundaries is p = 0. This is
a simplification of the Sommerfeld radiation condition, which states that all
waves are outgoing. The condition p = 0 however will give reliable results
when the dimensions of the surrounding air domain are sufficiently large
(without introducing standing waves). As a test case, the added mass was
calculated for an oscillating plate in an infinite air domain for a number of
mesh dimensions. The results showed that for an air domain of 1.49 x 1.49
(in-plane) x 1.425 m3 (perpendicular to the plate), the added mass differs
only by 3.8% from the value given in the literature [82]. This justifies the
use of the boundary condition p = 0 for the finite element calculations. Note
that the influence of the air on the upper side of the panel is also accounted
for in the finite element model. The accuracy of the p = 0 condition, used in
the analytical model at the edges of the panel, can be investigated with this
model where also (part of) the surrounding air is taken into account. The
results for the pressure distribution will be compared with experimental and
analytical results.

4.4 Experiments

4.4.1 Experimental setup

In order to measure the effects of the surrounding air, a relatively light and
stiff plate must be used. A solar panel is very well suited for this purpose.
The measurements were carried out using a square ECS panel (courtesy of
Fokker Space & Systems) of 0.98 x 0.98 m2. The panel consists of 2 carbon
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skin plates separated by a honeycomb structure of thin aluminium sheet.
The plate is suspended by 8 springs, 2 located at each corner (see figure 4.5).
The panel is excited by an electrodynamical shaker, attached to the centre
of the plate. The fixed surface is a rectangular rigid plate of 2.20 x 1.80 m2

supported by three screw jacks. Figure 4.5 shows a schematic drawing of the
experimental setup.

frame

bottom
panel

screw
jack

lower
spring

solar panel exciter

rod

upper spring

Figure 4.5: Experimental setup

In total there are 4 accelerometers mounted on the panel. The signal
from one accelerometer is used as feedback for the shaker to keep the dis-
placement amplitude constant. In this way a measurement can be carried out
at a constant displacement amplitude. This enables easy linearity measure-
ments. The other 3 accelerometers are used to verify the assumption of rigid
behaviour of the panel. These transducers, a1, a2 and a3, are mounted on
the diagonal of the panel (see figure 4.6). A laser distance sensor is mounted
in the fixed surface to provide extra information about the gap width and
the amplitude of oscillation.

Three pressure transducers are mounted in the fixed surface under the
plate. These transducers, p1, p2 and p3, are used to compare analytical
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and numerical data with experimental pressure data. The transducer p3
is mounted at the edge of the gap. In this way the validity of the p = 0
boundary condition is investigated (see Figure 4.6).

yy

p1 x

a3

a2

a1

0.490

xp2 p3

0.245

Figure 4.6: Instrumentation, dimensions in m.

The undamped eigenfrequency fn (phase resonance frequency), the cor-
responding damping coefficient, the accelerations and the atmospheric con-
ditions are registered. The properties of interest are 2:

m = 2.540 kg ; R0 = 287 J/kgK

lx = 0.49 m ; ly = 0.49 m

Cp = 1004 J/kgK ; Cv = 716 J/kgK (4.19)

ρ0 = 1.2 kg/m3 ; c0 = 343 m/s

λ = 25.6 · 10−3 W/mK ; µ = 18.2 · 10−6 Ns/m2

κ = 1186 N/m ; T0 = 290 K

4.4.2 Dimensionless parameters

The experimental setup is characterized by the value of the dimensionless
parameters. The main parameter governing the motion of the air in the
gap is the shear wave number. For large gaps the viscosity of the air can
be neglected, whereas for small gaps viscous effects become dominant. The
distance between the panel and the fixed surface, 2h0, can be varied from 2 to
650 mm. For this range of gap widths the shear wave number varies between
0.64 and 667. As σ is a constant for air, the product sσ varies between 0.4 and
520. This implies that for narrow gaps the process in the gap is isothermal,
while for large gaps it occurs adiabatically. These considerations indicate
that even for a relatively large gap, e.g. 2 mm, the shear wave number is

2For these conditions σ ∼=
√

0.71
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very low. It should be noted that by varying the gap width not only the
value of the shear wave number is affected. Another important parameter,
the reduced frequency k, varies between 10−5 and 0.06; the condition k ≪ 1
is therefore satisfied.

4.4.3 Validation of the measurement procedure

The experimental setup was used to measure the shift in eigenfrequency
and the damping originating from the pressure distribution in the gap. The
measurement procedure was validated by adding a known mass to the panel
and to demonstrate that this extra mass can be determined accurately with
the present measuring technique. The shift in phase resonance frequency was
measured and used to determine the added mass. The measurement results
for two different gap widths are listed in Table 4.1. The Table shows that the
added mass was measured within 3% of the actual, manually added, mass.
Hence, it can be concluded that the setup is suited for the measurements in
this investigation.

Measured added mass (kg)
Added mass (kg) 2h0 = 650 mm 2h0 = 35 mm

0.0604 0.0605 0.0603
0.1208 0.1181 0.1220
0.1816 0.1766 0.1848
0.2420 0.2348 0.2436

Table 4.1: Validation procedure, measurement results

4.4.4 Accuracy of the measurements

The accuracy of the experiments is affected by several mechanisms. In order
to determine the accuracy of the results, a number of tests were carried out.

Parasitic oscillations

Parasitic oscillations will affect the dynamical behaviour of the system. In
order to determine whether any parasitic motions were present, accelerations
of the panel and the frame were measured in several directions. Two parasitic
oscillations, an in-plane motion of the plate and a frame vibration, were
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identified. Some simple structural modifications were applied such that the
parasitic motions were eliminated.

Deformation of the panel

Another oscillation that might affect the accuracy of the results is the de-
formation of the panel. The first elastic eigenfrequency of the panel in air is
49 Hz. In order to consider the panel as rigid, the frequency range of inter-
est should be far below 49 Hz. The stiffness of the springs is such that the
first eigenfrequency of the plate-spring system in vacuum is 9.73 Hz. Due to
the influence of the surrounding air, the eigenfrequency will decrease com-
pared to the situation in vacuum. The frequency range of interest therefore
was chosen 1 to 10 Hz, and the panel was assumed to be rigid. During the
experiments, the deformation of the plate was measured. With three ac-
celerometers mounted on the plate, the accelerations were measured to check
that the plate was indeed behaving in a rigid way.

The influence of the deformation of the panel was taken into account in the
finite element calculations. In these calculations the panel was modelled as an
elastic body. The results indicate that the influence of the elasticity is small.
For a gap width of 150 mm the difference in eigenfrequency between a rigid
model and a flexible finite element model was less than 0.3 Hz. The difference
decreased as the gap width decreased. Thus, the influence of the elasticity
was small. This was confirmed by the accelerometer data: accelerations of
the points differ mutually by 4% at most, which justifies the assumption of
rigidity.

Compliance of the fixed surface

The compliance of the fixed surface was measured using the accelerometers.
The measurements show that the amplitude of oscillation for the fixed surface
is less than 1% of the amplitude of oscillation of the panel. The fixed surface
was therefore regarded as rigid and fixed.

Tilting of the fixed surface

In order to determine the influence of tilting, measurements were carried out
for small tilting angles. For gap widths of 35, 10 and 6 mm. tilting angles
of 1.2, 0.2 and 0.2 degrees respectively were used. For the panel of interest,
with a length of 0.98 m, this corresponds to a variation in gap width of 20,
4 and 4 mm respectively. The results show that the added mass and the
added damping differred less than 5% for these tilting angles. Because of the
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fact that global quantities (eigenfrequency and damping) were measured, the
sensitivity for small tilting angles was limited.

Curvature of the panel and the fixed surface

The most important quantity that governs the accuracy of the experimental
results is the gap width. Due to the shape of both the panel and the fixed
surface the accuracy is affected.

The deformation of the fixed surface due to its own weight was calculated
with a finite element model. A simple static calculation showed that the
deformation due to this dead load is smaller than 0.06 mm. The eigenfre-
quencies of the fixed surface were calculated from a dynamic analysis. All
eigenfrequencies were substantially higher than the frequency range of inter-
est.

For a certain gap width the distance between the panel and the fixed
surface was measured at 49 points between the panel and the fixed surface.
The gap width was not constant but varied with position: ± 0.8 mm. This
could mainly be attributed to the planarity of the fixed surface. With a least
squares technique the accuracy was improved. The gap width data was used
to find the position of the fixed surface that would lead to the best constant
gap width in a least squares sense. The gap width was then correspondingly
adjusted in three points for each measurement. Due to this correction, the
error introduced by the planarity of the surfaces could be reduced to ± 0.4
mm in gap width.

The influence of the remaining curvature profile was investigated by means
of a special finite element model in the program B2000 3. In this model the
viscothermal and acousto-elastic effects are accounted for. Viscothermal ele-
ments can be coupled to structural elements. The gap width can be specified
for each viscothermal element and elements with different gap widths can
be coupled. In the calculations the measured curvature profile was used to
specify the gap width for each element. The eigenfrequency of the system
was calcululated. The results indicate that the remaining curvature of the
surfaces has a very small influence: for gap widths between 3 and 35 mm the
difference in eigenfrequency between a flat and a curved model is less than
1%. Regarding these considerations, the measurements could be carried out
with a satisfying accuracy, especially compared to previous papers in this
area.

3A detailed description of this model is given in chapter 5
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Non-linear effects

The theory used in the present investigation is based on linearized equations.
In the experiments the amplitude of oscillation of the panel therefore must
be small compared to the gap width. In order to determine whether any
non-linear effects are present a number of experiments were carried out with
different amplitudes of oscillation. For several gap widths measurements were
performed at several amplitude levels. In all situations, the eigenfrequency
and the damping were not affected by the amplitude of motion.

Flow around plate edges

The flow around the plate edges was visualized with smoke tests. In the
frequency and amplitude ranges of interest, no irregularities or disturbances
in the flow pattern were observed.

Reproducibility

The measurement series was repeated a number of times to investigate the
reproducibility of the experiments. The results show that the reproducibility
was very good. Data of the measurement series are given in Appendix D.

4.4.5 Experimental results

Typical results for the transfer function are presented in Figure 4.7. This
Figure shows that the shift in eigenfrequency is relatively large. If one con-
verts this frequency shift to an added mass for a gap of 3 mm, the amount
of added mass amounts to about 22 kg, while the mass of the panel is only
2.5 kg! The sharp increase in damping is illustrated by the flattening of the
transfer function. The pumping effect induces high viscous losses, which re-
sults in damping of the panel. For a gap of 3 mm, the dimensionless damping
coefficient ξ is 35%: the panel is almost critically damped. The experimental
results are summarized in Table 4.2. For each gap width the eigenfrequency,
the damping coefficient and the dimensionless parameters are listed.
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Figure 4.7: Amplitude of transfer function H(ω)

4.5 Comparison between theory and experi-

ments

4.5.1 Eigenfrequency

The measured and the calculated eigenfrequencies are depicted in Figure
4.8. Because of the fact that due to a change in gap width 2h0, a number
of dimensionless parameters change in value, the Figure is not plotted in a
non-dimensional form. Figure 4.8 shows that there is a strong decrease in
eigenfrequency with decreasing gap width. The results from both the finite
element calculations and the low reduced frequency solution show fair agree-
ment with the experimental results. For very small gaps the finite element
calculations overestimate the eigenfrequency because the viscosity of the air
is neglected.

4.5.2 Damping coefficient

The corresponding dimensionless damping coefficients are depicted in Fig-
ure 4.9. This figure shows that there is a strong increase in damping with
decreasing gap width. The results from the low reduced frequency solution
show good agreement with the experimental results. It is evident that the
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2h0 fn ξ s k p1
h0h

p2
h0h

p3
h0h

(mm) (Hz) (%)
(

Pa
mm

) (
Pa
mm

) (
Pa
mm

)

650 8.555 0.20 612 5.15 · 10−2 — — —
150 8.303 0.12 139 11.5 · 10−3 — — —
80 7.994 0.20 73.0 5.90 · 10−3 — — —
50 7.635 0.32 44.5 3.53 · 10−3 — — —
35 7.277 0.52 30.4 2.36 · 10−3 6.5 5.8 1.19
25 6.871 0.84 21.1 1.57 · 10−3 8.0 7.0 1.23
15 6.139 1.83 12.0 0.85 · 10−3 10.1 8.6 1.01
12 5.767 2.60 9.25 0.64 · 10−3 12.1 10.3 1.00
10 5.441 3.51 7.50 0.51 · 10−4 11.8 9.8 0.82
8 5.050 5.04 5.80 3.74 · 10−4 14.8 12.2 0.93
6 4.533 8.24 4.11 2.52 · 10−4 14.5 11.8 0.75
5 4.217 11.59 3.31 1.95 · 10−4 15.1 12.5 0.58
4 3.839 18.78 2.52 1.42 · 10−4 16.3 13.1 0.70

3.5 3.599 24.55 2.14 1.17 · 10−4 17.1 13.9 0.60
3 3.337 35.71 1.77 0.93 · 10−4 21.7 17.3 0.50

Table 4.2: Experimental results
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Figure 4.8: Eigenfrequency. Low reduced frequency model ( ), experiments
(⋄), finite element model (+)
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damping coefficients for the finite element calculations are zero, because the
dissipative effects are neglected.
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Figure 4.9: Damping coefficient. Low reduced frequency model ( ), experi-
ments (⋄)

4.5.3 Pressure

The pressure in the layer was measured at three points as a function of the gap
width 2h0 (see Figure 4.6). Since the pressure in the layer is also frequency
dependent, the amplitude of the pressure was measured at the eigenfrequency
for each gap width. The maximum pressure was scaled with the displacement
amplitude h0h. The results from the calculations and the measurements are
given in Figures 4.10, 4.11 and 4.12. In order to investigate the influence of
viscous and thermal effects the analytical low reduced frequency results are
also given where viscous and thermal effects were eliminatedby setting Γ = i
and n(sσ) = γ.

For p1 and p2, the pressure shows a strong increase with decreasing gap
width. All models predict this increase, but the viscothermal model and the
experimental model both show a very strong increase with decreasing gap
width. Viscothermal effects thus have a significant influence on the pressure
distribution for small gap widths 4.

The results for p3 indicate that the pressure is not zero at the edges of the
panel. For larger gap widths the pressure at the edge is significant compared
to the maximum pressure in the layer. For small gaps however the influence

4Note that the pressure point for 2h0 = 3 mm is significant since it is the result of more
measurements with good reproducibility
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Figure 4.10: Scaled pressure p1. Low reduced frequency model ( ), inviscid
and adiabatic low reduced frequency model (−−) , experiments (⋄), ANSYS
finite element model (+)
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Figure 4.11: Scaled pressure p2. Low reduced frequency model ( ), inviscid
and adiabatic low reduced frequency model (−−) , experiments (⋄), ANSYS
finite element model (+)

of the non-zero boundary pressure is small. Since the low reduced frequency
model is used for small gaps, it can be concluded that the boundary condition
p = 0 is acceptable regarding the balance between simplicity and accuracy.
If a more detailed prediction of the pressure at the edges is required, the low
reduced frequency model must be coupled to an acoustic model describing
the behaviour of the surrounding air. The standard acoustic finite element
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Figure 4.12: Scaled pressure p3. Experiments (⋄), ANSYS finite element
model (+)

model is able to predict the pressure at the edge to a reasonable degree of
accuracy. In the next chapter a finite element model is presented for the
low reduced frequency model. This model could be coupled to a standard
acoustic model describing the behaviour of the surrounding air.
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4.6 Panel rotating around central axis

Experiments and calculations were also carried out for a solar panel rotating
around a central axis (see Figure 4.13).

Fixed surface p=0

Torsion spring
Plate

Air gap p=0
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Figure 4.13: Panel rotating around y = 0

The panel is located parallel to a fixed surface and performs a small
angular oscillation around y = 0. It is suspended by a torsion spring 5. The
distance between the plate and the fixed surface is:

h(x, y, t) = h0

[
2 + α

(
akx

k

)
yeiωt

]
(4.20)

where α is the amplitude of the angular oscillation and:

kx =
ωlx
c0

; a =
ly
lx

(4.21)

For this single degree of freedom system, eigenfrequency and damping were
calculated and measured. The same procedure was used as for the translating
panel. For the sake of brevity, only the main procedure and the main results
will be presented.

4.6.1 Analytical calculations

The low reduced frequency equation for this situation is:

∂2p

∂x2
+

∂2p

∂y2
− Γ2p = n(sσ)Γ2 1

2
α

(
akx

k

)
y (4.22)

where the functions B(s) and n(sσ) are given by:

B(s) =
tanh

(
s
√

i
)

s
√

i
− 1 ; n (sσ) =

[
1 +

[
γ − 1

γ

]
B (sσ)

]
−1

(4.23)

5In the experiments these are springs at a certain distance from the axis of rotation
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Figure 4.14: Experimental setup rotating panel

The boundary conditions are:

p = 0 for x = ±kx ; p = 0 for y = ±akx (4.24)

The solution for the pressure is:

p(x, y) =
2n(sσ)aΓ2k3

xα

πk

∑

q=2,4,6···

(−1)
q−1

2

qD2



cosh

(
D 1

kx
x
)

cosh (D)
− 1


 sin

(
qπ

2

1

akx

y
)

(4.25)
where:

D =

√[
qπ

2

1

a

]2
− k2

xΓ
2 (4.26)

Clearly, the force exerted on the plate is zero for the rotating panel because
of the asymmetric pressure distribution. With the pressure distribution, the
net moment acting on the plate around y = 0 was calculated and inserted
into the equation of motion. The mobility function was then constructed and
eigenfrequency and damping were extracted.

4.6.2 Experiments

The experiments were carried out with a solar panel of 1.67 x 1.29 m2. The
mass moment of inertia of the panel and the instrumentation was 1.64 kgm2.
The panel was suspended by 8 springs, 2 located in each of the four points
at the edges of the panel (see Figure 4.14).

The eigenfrequency of the panel-spring system in vacuum was 2.96 Hz.
Due to the influence of the air, the eigenfrequency will be reduced. The fre-
quency range of interest therefore is 1 to 3 Hz. Accelerometers were mounted
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on the panel to verify the rigidity of the panel. In the mentioned frequency
range the deformation of the panel was negligible. The panel was excited
with an electrodynamic shaker. The fixed surface was a rectangular rigid
plate of 2.2 x 1.8 m2, which was mounted on a frame parallel to the panel.
The distance between the plate and the fixed surface was varied between 3
and 50 mm. The shear wave number for this configuration varies between 1.9
and 55. This implies that for thin layers the viscous forces are of the same
order of magnitude as the inertial forces. The properties of the air were taken
according to expression (4.19). The remaining properties of interest are:

I = 1.64 kgm2 ; κ = 245 N/m

lx = 0.835 m ; ly = 0.645 m

lspr = 0.538 m (4.27)

where I denotes the mass moment of inertia of the pane, κ is the stiffness
of a single spring and lspr denotes the distance between the springs and the
axis of rotation. The measured eigenfrequency and damping coefficient are
listed in Appendix D.

4.6.3 Comparison between theory and experiments

The experimental results and the analytical results are illustrated in Figures
4.15 and 4.16.
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Figure 4.15: Eigenfrequency. Low reduced frequency model ( ), experi-
ments (⋄)

Figure 4.15 shows that the eigenfrequency of the system decreases with
decreasing gap width. For the rotating panel, the shift in eigenfrequency can
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Figure 4.16: Damping coefficient. Low reduced frequency model ( ), exper-
iments (⋄)

be interpreted as an added mass moment of inertia. For the panel under
consideration, the mass moment of ineria is 1.64 kgm2. For a gap width of
3 mm the added mass moment of inertia due to the pressure in the layer is
5.5 kgm2. The damping shows a strong increase with decreasing gap width.
Calculations and experiments show fair agreement.

4.7 Panel rotating around arbitrary axis

Analytical solutions were obtained for a normal translation of the panel and
a central rotation. Because of the linearity of the problem, these solutions
can now be used to calculate the behaviour of a rigid panel rotating around
an arbitrary axis. Consider for instance a panel rotating around y = ya

(see Figure 4.17). The motion can be decomposed into a translation and a
rotation around y = 0. In the Figure the resulting forces and moments are
also shown. In a similar way, the response for a rotation around an arbitrary
axis can be obtained.
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Figure 4.17: Panel rotating around arbitrary axis

4.8 Conclusions

The conclusions to be drawn from this investigation are:

• a special experimental setup was designed to validate the low reduced
frequency model. With the use of the dimensionless parameters a new
large-scale setup was developed. Substantial frequency shifts, very large
damping values and pressures in the layer were measured with satis-
factory accuracy;

• calculations and experiments show fair agreement: the low reduced
frequency model is a satisfactory means to describe viscothermal wave
propagation. The eigenfrequency and damping of the system and the
pressure in the layer could be predicted accurately using the low re-
duced frequency model.



Chapter 5

Acousto-elasticity:
viscothermal finite elements

5.1 Introduction

In chapter 2 an overview was presented of models for viscothermal wave
propagation. It was demonstrated that the low reduced frequency model is
a very simple and useful model. In chapter 4 this model was experimentally
validated for a vibrating rigid surface. In view of practical applications,
however, it is important to develop models that include the acousto-elastic
interaction between flexible surfaces and viscothermal gas layers. Analytical
solutions can only be obtained for simple geometries with simple boundary
conditions.

This chapter describes the development, implementation and analytical
and experimental validation of a new finite element model. The finite ele-
ment model enables the modelling of more complex geometries and boundary
conditions. In chapter 6 this model will be used for a number of practical
applications.

5.2 Finite element formulation

The starting point for the new acoustic finite element is the low reduced
frequency equation (see equation (2.28)):

∆pdp
(
x

pd
)
− k2Γ2p

(
x

pd
)

= −ikn(sσ)Γ2ℜ (5.1)

In dimensional form, dropping the (xpd) notation:

∆
pd

p − ω2Γ2

c2
0

p = −ikn(sσ)Γ2ρ0c
2
0

l2γ
ℜ (5.2)
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This equation is multiplied by a weighting function ww and integrated over

the volume. The volume integral can be split up in an integration over A
cd

and A
pd

. For layer geometries A
cd

is the thickness of the layer and A
pd

is

the total area of the squeezing surfaces. For tube geometries, A
cd

is the

cross-sectional area of the tube and A
pd

is the axial direction. This means
that, depending on the type of geometry, integration over A

cd
(layers) or

A
pd

(tubes) actually is a line integration. In Appendix B a more detailed
description is given for each geometry.

∫

A
cd

∫

A
pd

ww

[
∆

pd
p − ω2Γ2

c2
0

p +
ikn(sσ)Γ2ρ0c

2
0

l2γ
ℜ
]
dA

pd
dA

cd
= 0 (5.3)

The integrand is not a function of the cd-co-ordinates. The integration over

A
cd

is carried out to enable coupling between elements with different cross-
sectional areas and to enable coupling with standard acoustic finite elements,
see section 5.3. Using Green’s theorem and partial integration:

A
cd
∫

∂A
pd

ww∇pd
p · en d∂A

pd − A
cd
∫

A
pd
∇pd

ww · ∇pd
p dA

pd
+

− ω2Γ2

c2
0

A
cd
∫

A
pd

wwp dA
pd

+

+
ikn(sσ)Γ2ρ0c

2
0

γl2
A

cd
∫

A
pd

wwℜ dA
pd

= 0 (5.4)

where ∂A
pd

is the boundary of A
pd

. Inserting the expression for ℜ, see
expression (2.29), and relating the acoustic velocity v on the interface to the
structural displacement us, (v = iω

c0
u

s), gives:

A
cd
∫

∂A
pd

ww∇pd
p · en d∂A

pd − A
cd
∫

A
pd
∇pd

ww · ∇pd
p dA

pd
+

− ω2Γ2

c2
0

A
cd
∫

A
pd

wwp dA
pd

+ (5.5)

− ρ0ω
2n(sσ)Γ2

γl

A
cd

Acd

∫

A
pd

∫

∂Acd
ww

us · en d∂Acd dA
pd

= 0

The pressure in each element is expressed in terms of the interpolation func-
tions [Na] and the nodal pressures {P}. The structural displacement is also
written in terms of interpolation functions:

p = [Na] {P} ; u
s = [Ns] {U} (5.6)

Following Galerkin’s approach, the weighting functions are chosen equal to
the interpolation functions. For an acoustic hard wall, the normal derivative
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of the pressure is zero. In the case of a prescribed pressure the weighting
function is chosen equal to zero. The first term only contributes for an
impedance-like boundary condition. However, one has to bear in mind that
the pressure is constant across the gap width or cross section, while the in-
plane velocities (layer geometry) or the axial velocity (tube geometry) vary.
An impedance can therefore only be defined in an integrated sense. The term
with the normal derivative of the pressure is set equal to zero in the present
study. This finally leads to the following set of equations:

−ω2 [Ma(s)] {P} + [Ka] {P} = ω2 [M c(s)] {U} (5.7)

where [Ma (s)] denotes the acoustic mass matrix, [Ka] is the acoustic stiffness
matrix, {P} is the vector with the nodal pressure degrees of freedom, {U} is
the vector with the nodal structural degrees of freedom and [Mc (s)] is the
coupling matrix. Their elements are given by:

[Ma (s)] = −Γ2

c2
0

A
cd
∫

A
pd

[Na]T · [Na] dA
pd

(5.8)

[Ka] = A
cd
∫

A
pd

[
∇

pd
Na
]T

·
[
∇

pd
Na
]

dA
pd

(5.9)

[M c (s)] = −ρ0n(sσ)Γ2

γl

A
cd

Acd

∫

A
pd

∫

∂Acd
[Na]T · [en · Ns] d∂Acd dA

pd
(5.10)

Because the propagation constant Γ is complex and depends on the shear
wave number, the acoustic mass matrix is also complex and shear wave num-
ber, e.g. frequency, dependent. In fact, the mass matrix is equal to the corre-
sponding standard acoustic mass matrix, only it is premultiplied by −Γ2/c2

0

instead of 1/c2
0. The finite element model for the structure, in the absence of

structural damping, can be written in the following standard formulation:

−ω2 [Ms] {U} + [Ks] {U} = [Kc] {P} +
{
F ext

}
(5.11)

where [Ms] denotes the structural mass matrix, [Ks] is the stiffness matrix,
[Kc] is the coupling matrix resulting from the pressure on the interface and
{F ext} is the external nodal force vector. The principle of virtual work gives
the following expression for the coupling matrix [Kc] :

[Kc (s)] =
∂A

cd

∂Acd

∫

A
pd

∫

∂Acd
[en · Ns]T · [Na] d∂Acd dA

pd
(5.12)

The acousto-elastic interaction is established by demanding continuity of
normal velocity across the interface. This now gives the following coupled
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system of equations:

−ω2

[
[Ms] [0]

[M c(s)] [Ma(s)]

]{
{U}
{P}

}
+

[
[Ks] − [Kc]
[0] [Ka]

]{
{U}
{P}

}
=

{
{F ext}
{0}

}

(5.13)
This system contains the mass matrices and the stiffness matrices of the
structural part and the acoustic part. The coupling is established by the two
coupling matrices, [M c(s)] and [Kc], which are related as:

[M c(s)] = −ρ0n(sσ)Γ2

γl

∂Acd

∂A
cd

A
cd

Acd
[Kc]T (5.14)

The coupling matrix [Kc] is equal to the standard acoustic coupling matrix
for this situation. The matrix [M c(s)] only differs from the standard coupling
matrix due to the premultiplication factor.

5.2.1 Eigenfrequency calculations

The coupled system of equations is complex and asymmetric. Some of the
matrices involved are shear wave number, e.g. frequency, dependent. Be-
cause an eigenvalue solver for complex, asymmetric and frequency dependent
matrices was not yet available, an iterative approach was adopted [83]. The
iterative process starts with a first estimate of the expected eigenfrequency.
The acoustic matrices were calculated and the coupled system was assembled.
For this system of equations, the eigenfrequencies were calculated. A solver
for complex, asymmetric eigenvalue problems was used in this step. This
solver was implemented in B2000 by Grooteman [84]. The eigenfrequency
closest to the expected frequency (in an absolute sense since they are complex
numbers) was used to construct the matrices for the second iteration step.
This process was then repeated. In order for the process to converge, a good
first estimate was required. In the present investigation the acousto-elastic
coupling was investigated by varying the gap width (see section 5.4.5). The
first calculation was carried out for a large gap width. For this gap width
the damping was very low and the eigenfrequencies could be estimated by
simple wave equation and plate models. Successive calculations were carried
out for decreasing gap widths. The value that had already been obtained
for a slightly larger gap width was used as a first estimate of the eigenfre-
quency. In this way a good initial value of the complex eigenfrequency could
be provided.
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5.2.2 Frequency response calculations

A frequency response calculation can be carried out by solving the coupled set
of equations (5.13) for a given excitation and frequency. The frequency de-
pendence of the matrices complicates such a frequency response calculation.
However, the special structure of the matrices allows for a very straight-
forward and elegant way of reducing the computational efforts: component
mode synthesis. The coupled viscothermal response can be expressed in
terms of the uncoupled inviscid, adiabatic acoustic modes and the uncou-
pled structural modes. Consider the acousto-elastic model for the inviscid,
adiabatic case:

−ω2

[
[Ms] [0][
M̃ c

] [
M̃a

]
]{

{U}
{P}

}
+

[
[Ks] − [Kc]
[0] [Ka]

]{
{U}
{P}

}
=

{
{F ext}
{0}

}

(5.15)

where
[
M̃ c

]
and

[
M̃a

]
are the matrices for the inviscid, adiabatic case. These

matrices are obtained by simply setting Γ = i and n(sσ) = γ in the expres-
sions for the low reduced frequency model. The uncoupled acoustic modes
for this situation are calculated from (

[
K̃a

]
= [Ka]):

−ω2
[
M̃a(s)

]
{P} + [Ka] {P} = 0 (5.16)

The eigenmodes are stored (columnwise) in the matrix
[
Φ̃a
]

and the acoustic
eigenvalues, i.e. the squares of the angular frequencies, are stored in the
matrix

[
Ω̃a
]
. The modes are normalized with respect to the acoustic mass

matrix: [
Φ̃a
]T [

M̃a
] [

Φ̃a
]

= [I] ;
[
Φ̃a
]T

[Ka]
[
Φ̃a
]

=
[
Ω̃a
]

(5.17)

Calculation of the acoustic eigenmodes and eigenfrequencies is very straight-
forward and efficient. For layer geometries the problem is 2-dimensional,
while for tube geometries the problem is only 1-dimensional. All matrices
involved are real valued. The uncoupled structural modes are obtained from:

−ω2 [Ms] {U} + [Ks] {U} = 0 (5.18)

The structural eigenmodes are stored (columnwise) in the matrix [Φs] and
the structural eigenvalues, i.e. the squares of the angular frequencies, are
stored in the matrix [Ωs]. The modes are normalized with respect to the
structural mass matrix:

[Φs]T [Ms] [Φs] = [I] ; [Φs]T [Ks] [Φs] = [Ωs] (5.19)
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Now consider the viscothermal acousto-elastic problem. The coupled viscothermal
response is expressed in terms of uncoupled acoustic modes,

[
Φ̃a
]
, and struc-

tural modes, [Φs]:

{U} = [Φs] {ηs}
{P} =

[
Φ̃a
]
{ηa} (5.20)

Inserting these expressions into the acousto-elastic model, premultiplying the

structural part by [Φs]T and the acoustic part by
[
Φ̃a
]T

, finally gives:

−ω2

[
[I] [0][

M̂ c(s)
]

−Γ2 [I]

]{
{ηs}
{ηa}

}
+


 [Ωs]

[
K̂c
]

[0]
[
Ω̃a
]


{

{ηs}
{ηa}

}
=

{ {
F̂ ext

}

{0}

}

(5.21)
where:

[
M̂ c(s)

]
= −n(sσ)Γ2

γ

[
Φ̃a
]T [

M̃ c
]
[Φs]

[
K̂c
]

= − [Φs]T [Kc]
[
Φ̃a
]

(5.22)
{
F̂ ext

}
= [Φs]T

{
F ext

}

The response of the viscothermal model can thus be expressed in terms of the
uncoupled structural modes and the uncoupled inviscid, adiabatic acoustic
modes. Once these modes are calculated, the viscothermal response can be
determined with this component mode approach. The complex and frequency
dependent premultiplication factors will include viscous and thermal effects in
the analysis. The number of participation factors in {ηs} and {ηs} is usually
much smaller than the number of degrees of freedom in {U} and {P}. The
component mode technique thus offers an attractive way to calculate the
viscothermal acousto-elastic response.

5.3 Implementation in B2000

The finite element models were implemented in the package B2000 [85], a
transparent finite element program in which new code and elements can
be implemented in an easy way. Several structural elements are available
in the standard version of B2000. A large number of extra features were
added by the National Aerospace Laboratories NLR. Standard acoustic finite
elements and interface elements for instance were implemented in B2000 by
Grooteman [84]. These interface elements will be used in the present analysis
to establish the coupling between the viscothermal layer elements and the
standard structural elements.
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5.3.1 Layer elements

Linear 4-noded (Q4.VISC) and quadratic 8-noded layer elements (Q8.VISC)
were implemented. The viscothermal elements are equipped with a number of
key options which can be used to activate or deactivate for instance viscosity
or thermal conductivity. The elements can thus degenerate to modified wave
equation elements or elements for the linearized Reynolds equation.

5.3.2 Tube elements

Linear 2-noded (T2.VISC) and quadratic 3-noded tube elements (T3.VISC)
were implemented. The viscothermal tube elements are also equipped with a
number of key options to control viscous and thermal effects. The elements
can have a rectangular or a circular cross section.

If one is interested in the viscothermal acoustic response of a tube system,
the finite element approach is not very efficient. Since the tube problem is
only a 1-dimensional problem, the transfer function for a given tube geometry
can easily be obtained. By assuming continuity of pressure and conservation
of mass on the connections between tubes, the behaviour of more complicated
systems can be calculated analytically. Even for acousto-elastic problems an
analytical, transfer matrix based approach is usually the most efficient.

The finite element model is of use in the general case when the acousto-
elastic interaction between a viscothermal gas and a structure of arbitrary
shape has to be calculated. The finite element model can for instance be used
to describe the behaviour of a flexible material with pores of tubular shape.
The present study mainly focusses on thin gas layers. Interface elements for
tube geometries were not implemented in B2000 within the framework of the
present study.

5.3.3 Convergence tests

The implemented elements were validated by comparing the results to an-
alytical results for a number of test cases. The convergence as a function
of the number of elements was investigated. The configurations for the test
cases are illustrated in Figure 5.1.

Eigenfrequency calculations and frequency response calculations were car-
ried out for a rectangular layer of Q4.VISC and a layer of Q8.VISC elements.
In order to investigate the coupling of elements with different layer thick-
nesses, eigenfrequency calculations were carried out for a line of elements
with a stepwise varying layer thickness (indicated by layer 1 and layer 2 in
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the Figure). Finally, the viscothermal elements were coupled to standard
acoustic finite elements (HE8.ACOU and HE20.ACOU).

Eigenfrequency calculations were carried out for T2.VISC and T3.VISC
elements. Furthermore, elements with different cross sections were coupled
(indicated by area 1 and area 2 in the Figure). Finally, the coupling with
standard acoustic finite elements was investigated.

A more detailed description of the test cases, the analytical solutions and
the finite element results is presented in Appendix E. For all the tests the
numerical values converged to the analytical values in the proper way. It can
be concluded that the finite elements were functioning correctly.

5.4 Experimental validation

5.4.1 Experimental setup

To validate the viscothermal model including acousto-elastic interaction, ex-
periments were carried out on an airtight box with a flexible coverplate (see
Figure 5.2). This experiment was described in a paper by Dowell, Gorman
and Smith [86]. Their analysis however concerned large gap widths and did
not include viscothermal effects. The setup is very simple and useful to
illustrate the different mechanisms at work.

The coverplate is an aluminium plate, 0.49 x 0.245 m2, with a thickness
of 1 mm. The plate is clamped at the edges. The box itself is also made of
aluminium to avoid unwanted effects due to differences in thermal expansion
of the materials. The gap width, 2h0, can be varied between 1 and 50 mm
by displacement of the bottom. The material and geometrical properties of
the aluminium plate are:

Ep = 70 · 109 N/m2 ; ρp = 2710 kg/m3

νp = 0.3 ; tp = 1 mm (5.23)

The properties of the air in the gap under standard atmospheric conditions
were given in expression (4.19). The plate is excited by an electrodynamic
shaker with a random signal in the frequency range up to 512 Hz. The
point of excitation was chosen in such a way that it did not coincide with a
node of one of the eigenmodes in this frequency range. The input force was
measured with a force transducer. One accelerometer was mounted on the
bottom and a number of accelerometers was mounted on the plate to measure
the response of the system. All signals were amplified and led to a front
end. The data was transferred to a workstation where a modal analysis was
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Q4.VISC Q8.VISC

Q4.VISC (layer 1) Q4.VISC (layer 2) Q8.VISC (layer 1) Q8.VISC (layer 2)

Q4.VISC

HE8.ACOU HE20.ACOU

Q8.VISC

T2.VISC T3.VISC

T2.VISC (area 1) T2.VISC (area 2) T3.VISC (area 2)T3.VISC (area 1)

HE8.ACOU

T2.VISC T3.VISC

HE20.ACOU

Figure 5.1: Configurations for convergence tests
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Figure 5.2: Airtight box with flexible coverplate; dimensions in mm

conducted: eigenfrequencies, damping and the mode shapes were determined
for a number of gap widths.

5.4.2 Accuracy of the experiments

Eigenfrequencies in absence of the bottom

As a first check of the model, the eigenfrequencies of the plate in the absence
of the bottom were measured. In this case one measures the eigenfrequen-
cies of a clamped rectangular plate in an infinite air domain. The structural
modes, i.e. the modes of the plate in vacuum, can be calculated analytically.
In order to account for the influence of the surrounding air, an added mass
was calculated according to the formula given by Blevins [87]. This small
amount of added mass causes a small decrease in eigenfrequency. The calcu-
lated (in air and vacuum) and measured frequencies are listed in Table 5.1.
In this Table ’qr’ represents the number of half wavelengths in the x- and
the y-direction respectively. There is fair agreement between the calculations
and the experiments. A further discussion on the structural modes will be
presented in section 5.4.4.

Damping in the absence of the bottom plate

The damping of the plate in the absence of the bottom plate was measured
and found to be of the order of magnitude of 0.7% for the first seven modes.
This damping is relatively high compared to common structural damping
levels. However, in the present setup damping was also introduced by means
of clamping and acoustic radiation. In order to gain insight in these phenom-
ena, a simple experiment was carried out. The eigenfrequencies and damping
values of the free plate in an infinite air domain were measured. Due to the
fact that there is no clamping in this case, the modal behaviour of the plate
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Mode Eigenfrequency (Hz)
qr Measurements Analytical Analytical

(air) (vacuum)

11 96.2 95.9 100.6
21 130.1 130.4 130.4
31 181.8 182.6 183.4
12 247.4 261.7 261.7
41 253.8 259.7 259.7
22 280.8 291.2 291.2
32 322.6 341.0 341.0

Table 5.1: Eigenfrequencies of clamped plate in air

will change. However, an impression of the order of magnitude of the ra-
diation damping at least can be obtained. The experimentally determined
frequencies showed good agreement with finite element results. The damping
for the first seven modes varied between 0.2 and 0.7%. The clamping of the
plate does seem to have only a small influence. If one assumes that the radia-
tion damping is relatively low, which was comfirmed by several calculations,
the measured damping can be attributed to structural damping. Compared
to the viscothermal damping levels that were measured for low gap widths,
however, the structural damping and the damping due to acoustic radiation
can be neglected.

Boundary conditions

Attention was paid to the clamping conditions of the plate. The experimental
results in Table 5.1 showed fair agreement with the calculations. In the
experiments the bolts were securely fastened. In order to determine the
influence of the torque, measurements were carried out for small variations
in the torque. No variations in frequencies were observed due to a change in
applied torque.

Linearity

In the experiments the plate was excited with a constant force. In order to
check whether the system was behaving in a linear way, experiments were
carried out with different excitation levels. The eigenfrequencies and the
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damping values were not affected by the amplitude of excitation. This justi-
fies the use of linear theory.

Motion of the bottom plate

In the calculations it was assumed that the box and the bottom plate were
rigid and fixed. Since the gap width is a very important parameter in the
model, the motion of the bottom plate was measured with accelerometers for
a number of gap widths. In all cases the amplitude of the bottom plate was
very low, i.e. less than 3% of the amplitude of the flexible coverplate. The
bottom plate was therefore regarded as rigid and fixed.

Variation of the gap width

In the experiments the gap width was varied from 1 to 50 mm. Due to
the fact that the thick bottom plate was not able to tilt inside the box, the
in-plane variation in the gap width was small.

5.4.3 Acoustic modes

The acoustic modes are the modes of the air layer when the plate is assumed
rigid and fixed (zero velocity). The acoustic modes are calculated from the
low reduced frequency model by omitting the squeeze term:

∂2p

∂x2
+

∂2p

∂y2
− ω2Γ2

c2
0

p = 0 (5.24)

The edges of the air layer are closed. The corresponding boundary condition
is that the particle velocity is zero. The low reduced frequency model gives
the following boundary condition in terms of the pressure:

∂p

∂n
= 0 for x = ±lx and y = ±ly (5.25)

where n is the outward normal. Straightforward separation of variables gives
an equation for the acoustic eigenfrequencies:

ω =
iπc0

2Γ

√√√√
(

q

lx

)2

+

(
r

ly

)2

q = 0, 1, 2 · · · r = 0, 1, 2 · · · (5.26)

Since the propagation constant Γ is a function of the shear wave number the
right hand side of (5.26) depends on the frequency and the gap width. The
complex eigenfrequencies can now be solved from this equation by a simple
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iterative solving procedure. As starting values, the eigenfrequencies for the
inviscid, adiabatic case were used: Γ = i. In Table 5.2 the analytical results
and the results from finite element calculations are listed for a gap width of
1 mm. The calculations were carried out with 20 x 20 linear viscous acoustic
finite elements. The table shows good agreement between the analytical
results and the finite element results. The eigenfrequency of the first acoustic
mode without viscous or thermal effects is 347 Hz. For low shear wave
numbers the viscous and thermal effects therefore have a significant influence
on the propagation of waves in the air layer.

Mode Eigenfrequency (Hz)
qr Analytical Finite elements

10 317.1+32.3i 317.4+32.4i
01 651.4+44.8i 652.1+44.8i
20 651.4+44.8i 654.1+45.0i
11 730.9+47.2i 731.6+47.3i

Table 5.2: Eigenfrequencies of acoustic modes (2h0 = 1 mm)

5.4.4 Structural modes

The eigenfrequencies of the plate in vacuum were calculated with a mesh
of 20 x 20 linear plate elements and compared with analytical results. The
results are listed in Table 5.3. The Table shows fair agreement between the
numerical and the analytical results. For the higher modes the results show a
small deviation due to the number of elements. The first seven mode shapes
for the plate in vacuum are given in Figure 5.3. They serve as a reference
when the mode shapes change as a function of the gap width.

5.4.5 Acousto-elastic modes

In the case of a thin plate backed by a cavity with air, the acousto-elastic
coupling can be very strong. In this section this phenomenon will be demon-
strated. For this purpose the first seven eigenfrequencies of the plate will be
calculated as a function of the gap width. The eigenfrequencies, damping
values and mode shapes are traced in the calculations for gap widths from
300 downto 1 mm. For gaps below 50 mm a comparison is made with the
experimental results.
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Mode Eigenfrequency (Hz)
qr Analytical Finite elements

11 100.6 100.9
21 130.4 131.1
31 183.4 186.9
12 261.7 266.1
41 259.7 270.8
22 291.2 295.2
32 341.0 346.8

Table 5.3: Eigenfrequencies of structural modes

mode 11 mode 21 mode 31

mode 12 mode 41 mode 22

mode 32

Figure 5.3: Structural modes

The mode shapes and the eigenfrequencies for a gap width of 300 mm are
very close to the mode shapes and the eigenfrequencies in vacuum. When the
gap width decreases, eigenfrequencies and mode shapes are strongly affected.
By tracing the modes from 300 down to 1 mm, the complete evolution of the
different modes can be visualized.

The choice for the first seven modes was based on the fact that these
modes remain isolated. This means that these modes may show a shift in
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frequency or even mutual cross-overs, but they remain isolated from the
higher (i.e. 8th and higher) modes. The first acoustic eigenfrequency in the
absence of viscous or thermal effects is 347 Hz (see section 5.4.3). Due to the
viscous effects this frequency will decrease with decreasing gap width, but
the structural frequencies are always lower. Hence, the first seven modes of
interest are all structurally dominated modes.

In order to trace the modes from 300 down to 1 mm two types of calcu-
lations were carried out. The first type of calculation used standard acoustic
finite elements without viscous or thermal effects. These elements were used
for the calculations for gap widths between 50 and 300 mm. For these gap
widths the shear wave number is very large in the frequency range of interest,
so viscous and thermal effects can be neglected. Furthermore the assumption
of constant pressure across the gap width breaks down for high reduced fre-
quencies. Note that the damping for these elements is always zero. A mesh
consisting of 20 x 20 plate elements, 20 x 20 linear interface elements and 20
x 20 x 6 acoustic finite elements was used.

The second type of calculation was based on the use of viscous acoustic
finite elements. These elements were used for gap widths below 50 mm. A
mesh consisting of 20 x 20 linear plate elements, 20 x 20 linear interface
elements and 20 x 20 linear viscothermal acoustic finite elements was used to
perform these calculations. As a check on the accuracy of the finite element
model for the experimental setup, the uncoupled modes for the plate and
the air layer were calculated and compared to analytical solutions in sections
5.4.3 and 5.4.5 respectively.

The influence of the air on the upper side of the plate is not taken into
account in the calculations. In section 5.4.2 it was demonstrated that the
air on the upper side of the panel causes a slight decrease in eigenfrequency.
For low gap widths however this effect can be neglected compared to the
shift in frequency due to the pressure in the layer. The air on the upper
side introduces an energy loss due to radiation damping. However, in section
5.4.2 it was shown that the radiation damping and the structural damping
are very low compared to the viscothermal damping for small gap widths.

Eigenfrequency

In Figure 5.4 the eigenfrequency is depicted versus the gap width 1. The
labels for the different modes are based on the original modes in vacuum (see
Table 5.3). The experimental results and the finite element results show fair
agreement. For the lower modes the results are very good. For the higher

1The eigenvalue calculation results in complex valued angular frequencies: ω = ωr+iωi.
For viscous damping the undamped natural frequency is then calculated from: ωn = |ω|
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modes the finite element results start to be less accurate. This can mainly
be attributed to the behaviour of the plate elements, as can be seen in the
results for the structural modes. But in general the agreement is satisfying
for all modes under consideration. At a gap width of 50 mm the transition
from the results with standard acoustic elements to the results with viscous
finite elements is good. There seems to be a slight bend in the curve, but the
difference in frequency between both calculations is less than 0.7% for this
gap width.

The Figure shows a very large shift in eigenfrequency for the different
modes. The coupled eigenfrequencies differ considerably from the uncoupled
structural eigenfrequencies. This means that in the case of narrow gaps it is
essential to take into account the acousto-elastic coupling. Different kinds of
behaviour can be observed. The second mode, for instance, shows a steady
decrease with decreasing gap width. The first mode however first increases
and then decreases with decreasing gap width. At a gap width of about 100
mm the eigenfrequencies cross. In order to analyse this in more detail, several
calculations were carried out in this region. The results clearly indicate that
there is indeed a cross-over. The 31 mode also exhibits cross-over behaviour
with other modes. This was confirmed by the measurements.

Damping

In Figure 5.5 the dimensionless damping coefficient is depicted versus the
gap width for the first and second modes 2. For small gaps the damping
increases by up to 25%. This high level of damping can be attributed to the
viscous effects in the air layer. The second mode is an asymmetric mode that
induces a strong pumping of air in the layer. The corresponding high rate of
shear results in significant viscous losses. Thermal effects have a very small
influence on the damping, as was already demonstrated by Fox and Whitton
[67]. The structural damping and the damping due to acoustic radiation are
low compared to the viscothermal damping mechanisms for small gap widths.
The Figure shows fair agreement between calculations and experiments. This
indicates that the energy dissipation in the layer is correctly described with
the new finite element model.

The present investigation allows a detailed comparison between theory
and experiments. Because of the systematic approach that was used to de-
velop and validate the models, the different aspects can be addressed in detail.
The specially developed experiments offer a good insight in the phenomena

2The eigenvalue calculation results in complex valued angular frequencies: ω = ωr+iωi.
For viscous damping the dimensionless damping coefficient is then calculated from: ξ =
ωi

|ω| × 100 %
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and allow a qualitative and quantitative comparison with calculations. In
the present test case with the closed box and a thin flexible plate the fre-
quency shifts were substantial. Furthermore, the damping values were very
high. The agreement between theory and experiment is good, even on a
linear scale.

Mode shapes

The mode shapes were calculated and measured for a number of gap widths.
In Figure 5.6 the calculated mode shapes are depicted for gap widths of
300, 50 and 10 mm. The labels of the modes in this Figure are based on
the corresponding mode shapes in vacuum. The modes shapes are almost
real; the phase differences between the displacements measured on different
locations of the plate are very small. The Figures indicate that the shape
of the asymmetric modes is not affected by the gap width. The symmetric
modes however show a dramatic change in shape. For small gaps, the 11
mode starts to resemble the 31 mode. A physical interpretation for these
phenomena will be given in the next section.
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5.4.6 Physical interpretation

The shifts in eigenfrequency and the changes in mode shape can be explained
in terms of (generalized) added mass and (generalized) added stiffness.

Added mass

Due to the squeeze motion of the plate the air is put into motion. This motion
of the air is experienced by the plate as an added mass. For the closed cavity,
the motion of the air is related to the pumping mechanism. For asymmetric
modes, the air is pumped back and forth very efficiently. This pumping effect
increases as the gap width decreases. Therefore the added mass increases and
the frequency decreases with decreasing gap width.

Added stiffness

The increase in frequency that was observed for some modes can be attributed
to an added stiffness effect. For the symmetric modes, the deformation of
the coverplate is accompanied by a significant change in cavity volume (see
Figure 5.7). This change in volume causes a pressure disturbance in the
cavity. In the frequency range of interest, the acoustic wavelength is large
compared to the cavity dimensions. Since the pressure disturbance is in
phase with the motion of the plate, the plate experiences an added stiffness
effect. As the pressure disturbance increases with decreasing gap width, the
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Mode h0 = 10 mm h0 = 50 mm h0 = 300 mm

11

21

31

12

41

22

32

Figure 5.6: Acousto-elastic modes shapes

eigenfrequency will increase. Asymmetric modes do not induce a change in
cavity volume: they do not experience an added stiffness effect. Due to the
stiffness effect the shape of the symmetric modes also changes. The general
trend is that mode shapes tend to a shape for narrow gaps for which the net
volume change is zero (see Figure 5.6). This means that the added stiffness
effect will vanish, and the added mass effect takes over (see Figure 5.4). This
explains the shape of the curves of the eigenfrequencies versus the gap width.
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Figure 5.7: Change in cavity volume for the first and the second mode

5.4.7 Dimensionless parameters

The dimensionless parameters are a function of the geometry, the material
properties and the frequency. In the experimental setup the gap width is
varied from 50 down to 1 mm, while the frequency varies between 50 and
350 Hz.

The ratio between the inertial forces and the viscous forces is given by
the shear wave number. For the experimental setup, the shear wave number
varies from 4.5 to 600. This means that for small gap widths and low frequen-
cies the effects of viscosity have to be taken into account. In the frequency
range of interest, the effects of viscosity are very small for gap widths larger
than 50 mm. The use of standard acoustic elements is therefore justified for
these larger gap widths.

For low values of the shear wave number, as σ is a constant for air, the
thermal conductivity can play an important role. For the experimental setup
these thermal effects are relatively small. However, one has to be careful not
to generalize this statement. For very small gap widths or other materials
for instance the effects can be very significant. Then the process in the layer
has to be regarded as isothermal, rather than isentropic.

In the low reduced frequency theory the acoustic wavelength must be
large compared to both the gap width and the boundary layer thickness. For
the experimental setup and gap widths smaller than 50 mm: k < 0.3 and
k/s < 10−3. This means that the use of the low reduced frequency model is
justified for small gap widths.
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5.5 Conclusions

Based on the research presented in this chapter, the following conclusions
can be drawn:

• new viscothermal finite elements were developed, based on the low
reduced frequency model. Layer elements and tube elements were im-
plemented in the finite element package B2000;

• viscothermal elements with different cross sections or layer thicknesses
can be coupled. The viscothermal elements can also be coupled to
standard acoustic finite elements;

• the viscothermal layer elements can be coupled to structural elements
with the standard interface elements. The new acousto-elastic finite el-
ement model can be used to calculate the response of complex systems;

• convergence tests confirm that the elements function properly;

• eigenfrequency calculations for the frequency-dependent acousto-elastic
system can be performed using an iterative approach;

• frequency response calculations can be performed efficiently with a
straightforward component mode technique, using the structural modes
and the acoustic modes for the inviscid, adiabatic case;

• experimental verification shows that the acousto-elastic interaction be-
tween a viscothermal air layer and a vibrating flexible plate is correctly
described by the finite element model. The behaviour of the system
is strongly affected by the presence of the air layer. Eigenfrequencies,
damping values and mode shapes change as a function of the layer thick-
ness. It is therefore important to include the acousto-elastic coupling;

• a significant amount of energy can be dissipated in the layer by means
of viscous shear. This may result in substantial damping values for an
adjacent structure. The amount of damping is related to the pump-
ing effect in the layer and thus on the coupled vibration mode of the
structure.



Chapter 6

Engineering applications

6.1 Solar panels during launch

During the launch of a spacecraft the solar panels are stowed alongside the
structure (see Figure 6.1) 1.
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Figure 6.1: SOHO wing in stowed position, side view

The panels are connected by hinges and held together by spacers and
hold-down brackets. In space, the array is deployed by cutting kevlar cables
with a thermal knife. Springs inside the joints will then open the wing. The
solar panels are relatively large, light and stiff. In Figure 6.2 a sketch is
presented of a deployed solar array.

During the launch phase the spacecraft and the panels are exposed to
severe vibrations. Any damage to the wing or the satellite can lead to crit-
ical failures. A structural failure may jeopardize the satellite mission. It
is therefore important to have a good understanding of the behaviour and
the characteristics of the folded pack of solar panels. Before a spacecraft is
launched, several qualification tests are carried out to ensure that the panels

1SOHO= SOlar and Heliospheric Observatory
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Figure 6.2: Deployed SOHO wing, top view, dimensions in m

can withstand the expected load. For this purpose, the stack of panels is
attached to a vibration Table (see Figure 6.3).

Excitation axis

Figure 6.3: Test setup for z-axis excitation

Tests are usually carried out for out-of-plane (z-direction) and in-plane (x
and y-directions) excitation. In the frequency range of interest, e.g. 5-100 Hz,
a sine sweep vibration is performed. Eigenfrequencies, damping coefficients
and acceleration, strain and force levels are measured. In addition, random
vibration tests are carried out.

The vibration tests indicate that the thin layers of air that are trapped
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between the panels have a significant influence on the dynamical behaviour
of the system. In general the air layers cause a decrease in eigenfrequency.
The influence of the surrounding air is small compared to the influence of
the thin layers. Significant damping levels of 3 to 4% were measured in the
experiments.

Standard finite element calculations can be carried out to compute the
behaviour of such a structure in a vacuum. Several investigations deal with
the modelling of the air influence on the behaviour of solar panels, see [88,
89, 90, 91, 92]. At Fokker Space a special finite element model was developed
to describe the influence of the thin air layers [93]. However, in none of the
aforementioned investigations viscothermal effects were accounted for. Since
the problem concerns the behaviour of thin layers at low frequencies, the
new numerical techniques were used in a preliminary study to describe the
behaviour of a stack of solar panels. The results from the new viscothermal
model in B2000 are compared to the results from a standard finite element
technique in ANSYS, based on the wave equation.

6.1.1 Simple test problem

As a starting point, the “ARAFOM model 1” wing was used. A full ARAFOM
wing consists of 4 panels, and has the following dimensions 2.25 x 2.736 x
0.022 m3. The panel spacing for this type of solar array is 12 mm. Each
panel consists of a honeycomb core with skin layers that are made up of
several cross-ply layers. The panels contain local reinforcements around the
hold-down points. For the present study the model is simplified by using a
two-panel configuration and assuming isotropic and homogeneous material
behaviour. Equivalent material properties were calculated for this purpose.
The modelling of the hold-down elements and the spacers between the pan-
els is important because they have a significant influence on the vibrational
behaviour of the system. By introducing the aforementioned simplifications,
one can concentrate on the modelling of the air. The test configuration is
given in Figure 6.4. The material and geometrical properties of the panels,
the spacers, the hold down elements and the brackets are given in Table 6.1,
where E is Young’s modulus, I is the area moment of inertia, J is the equiv-
alent torsion constant and m′ is the mass per unit length. The thickness of
each panel is 0.022 m. In the model only the air layer between the panel is
modelled. The influence of the surrounding air is neglected.
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Figure 6.4: ARAFOM model problem, top view (left), front view (right),
dimensions in m, panel thickness is 0.022 m

E (Pa) I (m4) J (m4) A (m2) m′ (kg/m)

solar panel 52.90 · 1012 −− −− −− −−
spacer 108 · 109 0.87 · 10−9 3.50 · 10−6 1.0 · 10−4 7.283

hold-down 108 · 109 2.50 · 10−9 10.0 · 10−6 1.0 · 10−4 2.544
bracket 70 · 109 39.0 · 10−9 0.12 · 10−6 1.0 · 10−4 5.088

Table 6.1: Material and geometrical data test configuration

6.1.2 Finite element calculations

The panels were modelled using 18 x 15 plate elements. In B2000 the ro-
tation around the z-axis was suppressed for these elements. Each spacer
was modelled with a line of 6 beam elements, each hold-down structure was
modelled with a line of 6 beam elements and each bracket was also mod-
elled with a line of 6 beam elements. The lower ends of the brackets were
fully clamped. The beam elements in the finite element models account for
bending, extension and torsion. The air was modelled in different ways. In
ANSYS, the air was modelled using 3-dimensional acoustic volume elements.
These elements are based on the standard wave equation and therefore do
not include viscothermal effects. Compressibility however is accounted for.
Incompressible behaviour in ANSYS can be artificially simulated by taking
the speed of sound to be very large. Three elements were used across the
layer thickness. The air model in B2000 was based on the low reduced fre-
quency model. The new viscothermal elements were used to calculate the
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pressure distribution in the layer. At the edges of the air layer a pressure
release condition (p = 0) was imposed. Thus, the influence of the surround-
ing air is neglected. Calculations indicate that this is justified, both from
a frequency and a damping point of view. An overview of element types is
given in Table 6.2.

In ANSYS and B2000 the air elements were coupled to the structural
elements. In ANSYS a key option has to be activated for acoustic elements
not adjacent to the structure. In B2000 interface elements were used to
establish the coupling.

ANSYS B2000

panels SHELL63 Q4.ST
spacer BEAM3 B2
hold-down BEAM3 B2
bracket BEAM3 B2
air FLUID30 Q4.VISC

Table 6.2: Element types for the finite element models

6.1.3 Results for vacuum

The eigenfrequencies for the structure in vacuum are listed in Table 6.3. The
modes can be classified as in-phase and out-of-phase modes (see Figure 6.5).
Mode 5 is a local mode.
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Figure 6.5: Out-of-phase modes and in-phase modes

In the fifth column of Table 6.3 the displacement ratio, calculated using
ANSYS, is given. The displacement ratio is defined as the ratio between the
maximum deflection of the lower panel and the maximum deflection of the
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upper panel. A ratio larger than 1 means that the lower panel is relatively
active, while for a ratio smaller than 1 the lower panel is relatively inactive.

Mode Type Frequencies (Hz) Ratio
ANSYS B2000 ANSYS

1 Out 44.14 44.65 0.51
2 In 47.89 48.62 1.96
3 In 48.64 49.38 0.47
4 Out 49.53 50.11 0.12
5 Local 51.01 51.67 2.86
6 Out 51.37 52.14 1.89
7 Out 51.88 52.61 0.56
8 In 53.21 54.05 2.70
9 Out 53.95 54.53 0.39
10 In 55.20 55.86 2.63
11 Out 60.67 61.27 0.31
12 Out 60.69 61.31 0.40
13 In 62.08 62.77 2.70
14 In 63.31 64.07 3.03

Table 6.3: Eigenfrequencies ARAFOM test problem in vacuum

The results of the two finite element models show good agreement. This
is a requirement for making any judgements about the influence of the air
later in the investigation. The small differences are caused by the different
type of plate elements.

6.1.4 Results for air

The eigenfrequencies of the system in air are listed in Table 6.4. The re-
sults from calculations with ANSYS and B2000 are given. Again, the modes
can be classified as in-phase and out-of-phase modes. The results of B2000
calculations with and without viscothermal effect are given in Table 6.5 2.

Table 6.4 shows that the order of the modes has changed. The lower
modes are now all low frequency out-of-phase modes. This is not surprising,

2The eigenvalue calculation results in complex valued frequencies: ω = ωr + iωi. For
viscous damping the natural frequency is then calculated from: ωn = |ω|. The dimension-
less damping coefficient is: ξ = ωi

|ω| × 100%
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Mode Type Frequencies (Hz) Ratio
ANSYS B2000 ANSYS

Compr Incompr Inviscid Compr
Adiabatic

1 Out 21.13 21.27 21.55 0.92
2 Out 23.84 24.13 24.80 0.93
3 Out 23.98 24.25 24.60 0.91
4 Out 25.74 25.95 26.50 0.92
5 Out 29.81 30.10 30.46 0.91
6 Out 30.94 31.10 31.60 0.95
7 Out 33.06 33.29 33.55 0.94
8 Out 34.21 34.37 34.69 0.95
9 In 47.48 47.49 48.26 1.10
10 Out 48.28 48.88 49.17 1.04
11 In 48.87 49.16 49.70 0.97
12 In 50.41 50.44 51.14 0.93
13 In 52.93 52.93 53.85 1.05
14 In 54.92 54.92 55.66 1.02

Table 6.4: Eigenfrequencies ARAFOM test problem in air

since out-of-phase vibrations introduce a significant pumping effect. For the
layer with open ends, the added stiffness is very small. Consequently, the
large amount of added mass for the out-of-phase modes causes a drastic
decrease in frequency. In practical situations, however, the importance of
these modes is limited. In the vibration tests for the SOHO configuration for
instance, described in section 6.1, these modes were not detected in the sine
vibration test because they were not excited by the base excitation.

Secondly, the Table shows that the in-phase modes are affected little by
the presence of the air layer. For the in-phase modes there is no strong
pumping effect. The pumping for in-phase modes originates from the fact
that the panels vibrate with different amplitudes. These effects however are
relatively small. Table 6.4 shows that the displacement ratio between the
panels is almost equal to 1 for all modes. It is interesting to analyse the
values of the displacement ratio in vacuum. Table 6.3 shows that the ratio
in vacuum varies between 0.3 and 3. Thus, in vacuum the deflections of
both panels can be quite different. This indicates that the air layer provides
coupling between the two panels, and forces them to vibrate with the same
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Mode Type Frequencies (Hz) Damping (%)
B2000 B2000 B2000
inviscid full full

adiabatic

1 Out 21.55 21.22 1.68
2 Out 24.80 24.40 1.74
3 Out 24.60 24.40 1.73
4 Out 26.50 26.13 1.50
5 Out 30.46 30.09 1.32
6 Out 31.60 31.25 1.18
7 Out 33.55 33.18 1.17
8 Out 34.69 34.33 1.10
9 In 48.26 48.31 0.09
10 Out 49.17 48.69 0.99
11 In 49.70 48.73 0.87
12 In 51.14 51.13 0.02
13 In 53.85 53.85 0.00
14 In 55.66 55.66 0.00

Table 6.5: Influence of viscothermal effects

amplitude. Hence, the pumping effects for these modes is small. These
considerations are very helpful when analysing the results of the different
models. The validity of the various assumptions for the test problem under
consideration will now be discussed.

Compressibility

The influence of the compressibility can be analysed by simply comparing
the ANSYS results for compressible and incompressible behaviour in Table
6.4. The values indicate that the compressibility effects are very small, es-
pecially for the in-phase modes. A parameter that can be used to estimate
the influence of compressibility is the ratio between the plate dimensions and
the acoustic wavelength. For the present test case, the acoustic wavelength is
typically large compared to the plate dimensions while the ends of the layer
are open. Compressibility effects are therefore small.
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Constant pressure across the gap width

The influence of the assumption of constant pressure across the gap width
can be analysed by comparing the ANSYS results for compressible behaviour
and the B2000 results for inviscid, adiabatic behaviour in Table 6.4. In
ANSYS three linear elements were used across the gap width. Regarding
the deviations in the vacuum frequencies, there is no significant difference
between the two results. This indicates that the assumption of constant
pressure is reasonable.

Viscothermal effects

The influence of viscothermal effects can be deduced from Table 6.5. The
shear wave number for the present configuration varies between 15 and 25,
which indicates that viscothermal effects could be important. The frequencies
of all the modes are affected very little by the viscothermal effects, especially
for the in-phase modes. The in-phase modes do not introduce large velocities
and pressures in the air and thus the air effects remain small for these modes.
There is a significant amount of damping for the out-of-phase modes. These
modes introduce a strong pumping of the air, resulting in significant viscous
losses. However, these modes are very difficult to excite in the tests.

It can be concluded that viscothermal effects have very little influence
in the present test case. The frequencies are not affected and the damping
levels for the important in-phase modes remain low.
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6.1.5 Practical considerations

In the previous section, it was demonstrated that the introduction of several
assumptions is justified for the test problem. Compressibility and viscother-
mal effects are small, and the pressure can be assumed to be constant across
the gap width.

The damping levels that were found in the sine vibration tests cannot be
explained by these calculations. There are probably other important effects
in the SOHO tests that were not accounted for in the current finite element
models. In the tests, for instance, cables are present between the panels.
These cables are tied together and obstruct the air flow in the layer. The
influence of barriers in the air layer will be investigated in section 6.4. In
this section it is demonstrated that barriers can have a very large influence
on the energy dissipation in a thin layer.

Finally, the simple test configuration consists of two panels with one air
layer. There are several configurations in use with more than two panels.
The behaviour of such systems with multiple air layers is more complicated.
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6.2 Inkjet print head

The newly developed techniques were used in the design of inkjet print heads.
In cooperation with Océ Technologies B.V. projects were defined in order to
develop a theoretical model for the description of the dynamical behaviour
of a print head. This section briefly discusses the techniques that were used
and gives an impression of the results that were obtained. Some literature is
available on inkjet print heads, see e.g. [94, 95, 96, 97], mostly dealing with
the propagation of waves in a single flexible channel using analytical models.

Epoxy

Channel plate

Piezo

Nozzle

Reservoir

Channel

Figure 6.6: Inkjet print head

An inkjet print head consists of a channel plate with a large number of
parallel ink channels (see Figure 6.6). A nozzle is attached to one side of
the channel. The other side of the channel is connected to the ink reservoir.
Piezo-elements on top of the channels are used for activation. A pressure dis-
turbance in the channel is created by means of electric piezo-activation. The
piezo expands and consequently a pressure disturbance is introduced. Pres-
sure waves start travelling into the channel and the nozzle. By deactivating
the piezo at the right moment, the pressure can increase to a level at which
a drop will be released from the nozzle. Clearly, the aim of the print head is
to deliver a drop of ink of the right size at the right time at the right place.
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In order to achieve this goal, it is essential to have a good understanding of
the propagation of waves in the channel and the nozzle, the influence of the
elasticity of the walls and the cross-talk between the channels. The present
analysis only concerns linear theory and is therefore not able to describe the
forming and the release of the drop itself. The linear calculations however
provide a good insight into the phenomenon and are very useful in the design
process.

The cross-sectional dimensions of the channel and the nozzle are very
small, i.e. length scales of the order of 100 µm. The frequencies of interest
are very high. The properties of some inks are such that in the operational
range of the print head, viscous effects can play an important role in the
wave propagation. Furthermore, the channels are surrounded by flexible
materials. The flexibility of the walls can have a significant influence on the
response of the system. The elasticity can also introduce cross-talk between
channels, which can disturb the printing process. If cross-talk cannot be
eliminated, the activation of the piezos has to be adjusted in such a way that
the cross-talk is actively compensated for. It is clear that in the latter case a
model is needed that is able to describe the interaction between the channels.
These considerations indicate that viscous effects and acousto-elastic effects
are important design quantities for the print head.

6.2.1 Simple 2D test problem

Consider a simple 2D geometry with a channel and a nozzle (see Figure 6.7).
The channel is supported at the top and bottom by two flexible layers with
thicknesses tt and tb respectively. The modulus of elasticity of the layers is
indicated by Et and Eb, respectively.

Nozzle
p=0

2ln

p=0
Reservoir

n

2lx

x

n

x

2h0

2h

Figure 6.7: Simple 2D test problem

The channel has a length 2lx and a height 2h0. The ink is supplied to the
channel by a large reservoir on the right side. On the left side, the channel
is connected to the nozzle. The nozzle has a length 2ln and a height 2hn.
In the test problem, the following material and geometrical properties were



6.2 Inkjet print head 117

used:

ρ0 = 1200 kg/m3 ; µ = 15 · 10−3 Ns/m2

c0 = 1200 m/s ; (6.1)

Et = 70 · 109 N/m2 ; Eb = 70 · 109 N/m2

tt = 1 · 10−3 m ; tb = 0.25 · 10−3 m

lx = 3.5 · 10−3 m ; ln = 100 · 10−6 m

h0 = 100 · 10−6 m ; hn = 17 · 10−6 m

The ratio of specific heats γ is set equal to 1, so that the polytropic constant
n(sσ) automatically takes the value of 1. At the nozzle exit and the reser-
voir side of the channel the pressure perturbation is set equal to zero. The
excitation is introduced by means of a piezo-electric material on top of the
channel. The steady state and the transient response of the system due to
this excitation will now be described by a number of simple models. The ve-
locity at the centre of the nozzle exit is calculated, because this is a quantity
that can also be determined experimentally (see section 6.2.2). With this
simple 2D model the effects of viscosity, wall elasticity, and the use of finite
elements are illustrated. These techniques are then used in section 6.2.2 for
the design of a new print head.

Model with rigid walls

0h he

p=0
p=0

ωi   t

Figure 6.8: Model with rigid walls

In the model with rigid walls the walls of the nozzle and the nozzle are all
rigid. The top wall of the channel performs a small normal oscillation with
amplitude h0h. The other walls are fixed. The differential equations for this
situation are (see chapter 2 and Appendix B):

channel :
∂2p

∂x2
− Γ2p =

1

2
n (sσ) Γ2h

nozzle :
∂2p

∂x2
− Γ2

np = 0 (6.2)
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where the subscript n refers to the nozzle. The boundary conditions at the
exit of the nozzle and the reservoir side of the channel are p = 0. By assuming
mass conservation and continuity of pressure on the interface between the
nozzle and the channel, the problem can be solved. Once the presssure
distribution is known, the dimensionless velocity at the centre of the nozzle
can be calculated from (see chapter 2 and Appendix B for a layer geometry):

vxn = − i

γ


 1

cosh
(
s
√

i
) − 1


 ∂p

∂x
(6.3)

Model with spring walls

h he

k
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Figure 6.9: Model with spring walls

In this 2-dimensional model the top and bottom walls of the nozzle are rigid
and fixed. The walls of the channels are supported at the top and bottom
by an elastic foundation of massless springs. The stiffness per unit area of
the springs at the top and the bottom of the channel is:

kt =
Et

tt
; kb =

Eb

tb
(6.4)

where Et and Eb represent Young’s modulus for the top and bottom mate-
rials and tt and tb represent the thicknesses of the supporting layers. The
upper ends of the top springs perform a harmonic displacement oscillation.
The lower ends of the bottom springs are fixed. The differential equations
governing the behaviour of this model are:

channel :
∂2p

∂x2
− Γ2p =

1

2
n (sσ) Γ2 [ht − hb]

nozzle :
∂2p

∂x2
− Γ2

np = 0
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top springs : ht = h +
p

γkt

(6.5)

bottom springs : hb = − p

γkb

where the dimensionless stiffnesses are given by:

kt =
h0

ρ0c2
0

kt ; kb =
h0

ρ0c2
0

kb (6.6)

In physical terms, the dimensionless stiffness represents the ratio between
the stiffness of the springs and the stiffness of the ink layer. If the ink acts
like a one-dimensional spring, the stiffness is equal to ρ0c

2
0/h0. Combining

the equations leads to the following two equations to be solved:

channel :
∂2p

∂x2
− Γ2

[
1 +

1

2

n(sσ)

γ

(
1

kt

+
1

kb

)]
p =

1

2
n(sσ)Γ2h

nozzle :
∂2p

∂x2
− Γ2

np = 0 (6.7)

Again, by demanding conservation of mass and continuity of pressure, the
coupling between the channel and the nozzle is established. With the bound-
ary conditions at the nozzle exit and the reservoir side of the channel the
solution is obtained. The dimensionless velocity can then be calculated.

Expression (6.7) shows that the propagation of waves in the channel is
affected by the flexibility of the walls. If the spring stiffnesses are very large
compared to the fluid stiffness, i.e. kt ≪ 1 and kb ≪ 1, the model evidently
reduces to the rigid wall model. The viscothermal and elastic effects can also
be interpreted in terms of an effective speed of sound:

ceff =
c0i

Γ

1√
1 + 1

2
n(sσ)

γ

(
1
kt

+ 1
kb

) (6.8)

This expression shows that the flexibility of the walls reduces the effective
speed of sound.

Model with finite elements

A schematic drawing of the finite element model is given in Figure 6.10.
The nozzle and the channel are modelled with the new viscothermal

Q4.VISC elements. The top and the bottom supporting layers are modelled
with 3-dimensional HE8.S elements. These structural elements are coupled
to the viscothermal elements with INT.8 interface elements. Frequency re-
sponse calculations were carried out for a prescribed displacement. In the
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Figure 6.10: Model with finite elements

current version of B2000 a displacement could not be prescribed. This prob-
lem was solved by connecting massless rod elements, type R2, to the top
nodes of the structural volume elements. The top ends of the rods were
fixed. The rods have a very large stiffness that dominates the structural
contribution from the HE8.S elements. By imposing the correct force on the
lower nodes of the rods, the corresponding displacement could be prescribed.

The velocity at the nozzle exit was extracted from the pressure results,
since the pressure is the only degree of freedom for the viscothermal ele-
ments. The pressure at the nozzle exit is zero. In the finite element analysis
linear elements were used. The velocity at the nozzle exit can therefore be
approximated by:

vxn
∼= − i

γ


 1

cosh
(
s
√

i
) − 1


 γω

ρ0c0

nexn

2ln
pe+1 (6.9)

where nexn is the number of elements in the nozzle and pe+1 is the pressure
in the nodal point just to the right of the nozzle exit.

Frequency response results

The velocity at the nozzle exit is divided by the amplitude of the displacement
for this linear system. The transfer function H (ω) is:

H (ω) =
vxn (ω)

h0h (ω)
(6.10)

The amplitude of the transfer function is given as a function of the fre-
quency in Figure 6.11.

Figure 6.11 shows that for this type of ink the viscosity has a significant
effect on the propagation of waves (compare the results for the rigid inviscid
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Figure 6.11: Frequency response simple 2D test problem

case and the rigid case). For the present test case the shear wave number
varied between 6 and 11. For these low shear wave numbers the viscosity is
very important. The eigenfrequency of the system is an important param-
eter for the print head since it is related to the velocity of the waves and
thus determines the most efficient activation strategy of the piezo. Damping
causes a decay of pressure waves in time. If a drop has been released from
the nozzle, the pressure must decrease to a low level before the piezo can be
activated again, otherwise the jetting history can affect the printing process.
In the last part of this section this will be illustrated with the transient time
response of the system.

The flexibility of the walls can affect wave propagation. When the walls
are very flexible, the speed of the waves decreases and the transfer function
is affected. In a realistic print head the flexibility is an aspect of serious
concern. The finite element calculations with a massless piezo show good
agreement with the results of the spring model.

Figure 6.11 shows that for the present problem the mass of the piezo
has a large influence on the amplitude of the transfer function. In this test
case the excitation forces the whole piezo to move up and down. However,
the imposed displacement excitation is not very realistic for the print head
under consideration. In reality the piezo is activated electrically and under
the applied voltage it will deform and introduce a pressure disturbance in the
channel. The piezo is embedded in the print head and will not vibrate as a
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whole. This is confirmed by measurements. Thus, in practical situations the
mass of the piezo will not have a large effect on the response of the system.

Transient results

The transient response of the channel can be calculated by means of Fourier
transforms. Suppose the top of the piezo is subjected to a displacement
history h0h(t). The Fourier transform of the displacement history, h0h (ω),
is given by:

h0h (ω) =
∫

∞

−∞

h0h (t) e−iωtdt (6.11)

The velocity at the nozzle exit in the frequency domain, vxn (ω), is obtained
by simply multiplying the excitation spectrum with the transfer function
H (ω):

vxn (ω) = H (ω)h0h (ω) (6.12)

The transient response is obtained through the inverse Fourier transform:

vxn (t) =
1

2π

∫
∞

−∞

vxn (ω) eiωtdω (6.13)

The transient response was calculated with the analytical rigid wall model
and the analytical model where the walls were represented by springs. The
excitation signal is:

h0h(t) =





0 : t < 0
10 · 10−9 : 0 < t < 1 · 10−5

0 : t > 1 · 10−5
(6.14)

A fast Fourier algorithm was used to calculate the Fourier transforms. A
time span from -0.2 ms to 0.2 ms was used, with a total of 212 points. The
time responses of the rigid wall model and the flexible spring model are given
in Figure 6.12.

Due to the activation of the piezo, a pressure disturbance is introduced
in the channel. Waves start propagating, reflecting off the open ends at the
reservoir side of the channel and the nozzle exit. By deactivating the piezo at
the right moment, the pressure in the channel and the velocity in the nozzle
can increase to a level at which a drop will be released. A good timing in
the activation signal is very important in the printing process. It is evident
that the speed of the waves, and thus the viscosity of the fluid, are important
factors.

The Figure shows a decay of the ink velocity at the nozzle exit in time.
The decay is caused by the dissipation of energy by means of viscous shear.
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Figure 6.12: Transient response rigid wall and spring wall model 2D test
problem rigid walls ( ), spring walls (−−)

The decay rate is important for the jetting process, since the ink has to come
to rest before another drop can be released. Finally, the flexibility of the
walls has a significant influence on the transient response of the system.

6.2.2 Design of a print head

Calculations

The simplest way to include cross-talk is by means of static influence coef-
ficients. In other words: what volume change 3 does a unit pressure in one
channel induce in the other channels? For this purpose, finite element cal-
culations were carried out for the cross section of a print head (see Figure
6.13).

With the finite element model, the area change of each channel cross-
section due to a unit static pressure in one channel was calculated. In this
way a matrix with static influence coefficients was filled. The calculations
show that the area change decreases as a function of the distance to the
activated channel, as expected.

The total model of the print head consists of a matrix set of equations.
The propagation of waves in the nozzle and the channel is described by the

3The volume change drives the pressure pulsations, see chapter 2 and Appendix B
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Channel

Epoxy

Piezo

Figure 6.13: Finite element model inkjet

low reduced frequency model for a tube with a rectangular cross section (see
chapter 2 and Appendix B.3). The nozzle and the channel are coupled by
assuming conservation of mass and continuity of pressure on the interface.
The model where the walls of the channel are supported by massless springs,
representing the stiffness of the surrounding materials, is used to calculate
the propagation of waves. The cross-talk between the channels is introduced
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by means of static influence coefficients. The results of this model will now
be compared with experimental results.

Experiments

Measurements were carried out at Océ Technologies B.V. Because of the small
dimensions of a print head, it is very difficult to obtain experimental data.
A quantity that can be determined with a reasonable degree of accuracy is
the velocity at the nozzle exit. The velocity was determined using a Laser
Doppler interferometer. The setup is shown in Figure 6.14.

Channel

Double layer piezo

Lens

Laser

Oscilloscope

Laser Doppler

Labview

interferometer

Switchboard

Amplifier

analyser
Spectrum

Figure 6.14: Experimental setup inkjet

The laser was pointed at the nozzle meniscus and used to measure the
velocity4 of the meniscus. In the experiments, a low activation level for the
piezo was used since no drops were to be released. By varying the electric
activation of the piezo, the linearity of the process was ensured. The velocity
of the meniscus was determined as a function of the frequency with a fre-
quency sweep. In order to investigate cross-talk, the nozzle velocity of each
channel was measured while activating one single channel.

Results

Figures 6.15, 6.16 and 6.17 show the transient time response of the channels,
both measured and calculated. The nozzle velocity is non-dimensionalized
with a reference velocity vref . The time is non-dimensionalized with a refer-
ence time tref . One single channel was activated and the velocity at the nozzle

4The Laser Doppler interferometer actually measures a weighted average over a small
area. The weighting is related to the intensity distribution and the area is determined by
the width of the beam.
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exit of the activated channel (Figure 6.15), the first neighbour channel (Fig-
ure 6.16) and the second neighbour channel (Figure 6.17) were determined.
The first neighbour channel is the channel adjacent to the activated chan-
nel. The second neighbour channel is the channel next to the first neighbour
channel, i.e. there is one channel in between the second neighbour channel
and the activated channel.

The Figures show fair agreement between calculated and measured re-
sults, both in a qualitative and quantitative sense. The frequency of the
signal, the amplitude and the decay rate are predicted well by the model.
The cross-talk between the channels is also correctly described by the simple
model. One of the main advantages of the current model is its simplicity:
only the most important effects are included in the model. Because the model
is an analytical model, it is very well suited for parameter studies and design
purposes.
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Figure 6.15: Transient response of activated channel: nozzle velocity versus
time. Calculations ( ), experiments (⋄)
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Figure 6.16: Transient response of first neighbour channel: nozzle velocity
versus time. Calculations ( ), experiments (⋄)
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Figure 6.17: Transient response of second neighbour channel: nozzle velocity
versus time. Calculations ( ), experiments (⋄)
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6.3 Double wall panels

6.3.1 Configuration

Consider two rooms separated by a double wall panel (see Figure 6.18).
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Figure 6.18: Double wall configuration, dimensions in m

In room A an excitation is present due to a prescribed (acoustic) force5

at a point, causing a pressure field to be generated. The walls of room A are
hard, except for the side that is coupled to the double wall panel. The panel
will transmit a part of the incident energy into room B. At the far end of
room B, a specific acoustic impedance, Zn, of 1 is prescribed:

Zn ≡ p0

ρ0c2
0

p

v · en

= 1 (6.15)

For normal incident waves, all energy will be absorbed at the boundary. The
transmitted sound field will not be a plane wave near the radiating panel.
At a certain distance from the panel, however, the wave will have acquired
a planar character. Consequently, all transmitted energy will be absorbed
at the impedance boundary. There are two ways in which energy can be
dissipated in the current model: absorption at the impedance boundary of
room B and viscothermal dissipation in the separating layer of the double

5This is a prescribed value in the right hand side vector of the viscothermal finite
element model.
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wall panel. Two different characteristics of the double wall configuration are
analysed in the present investigation: the energy dissipation in the layer and
the sound transmission through the double wall panel.

The amount of energy that is dissipated per cycle in the layer can be
calculated from the net incident energy from room A and the radiated energy
into room B:

Ein =
π

ω
p0c0

∫

At

Re {p v
∗ · en} dAt

Erad =
π

ω
p0c0

∫

Ab

Re {p v
∗ · en} dAb

Ediss = Ein − Erad (6.16)

where At and Ab represent the areas of the top and bottom panels respectively
and ∗ denotes a complex conjugate.

The dissipation factor DF, the relative amount of dissipated energy, is:

DF =
Ediss

Ein

= 1 − Erad

Ein

(6.17)

If the viscothermal effects in the layer are neglected, the dissipation factor
is evidently equal to zero. In this case there is no mechanism for energy
dissipation in the layer and consequently all incident energy is transmitted
to room B.

The sound transmission is expressed in terms of the transmission loss,
TL. The transmission loss is calculated from:

TL = 10 log
PPA

PPB

(6.18)

where PPA and PPB are the average quadratic pressures in room A and
across the absorbing boundary of room B respectively. The dissipation factor
and the transmission loss were calculated in the frequency range from 10 to
300 Hz for various configurations. The layer thickness, 2h0, and the thickness
ratio between both plates of the double wall panel were varied. The total
thickness of both plates was kept equal to 3 mm. The material properties of
both aluminium plates were as follows:

Ep = 70 · 109 N/m2 ; νp = 0.3 ; ρp = 2710 kg/m3 (6.19)

6.3.2 Finite element calculations

The finite element mesh for the calculations is shown in Figure 6.19. The
following element types were used in the calculations:
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Figure 6.19: Finite element mesh for the double wall configuration

• rooms A and B: standard 8 node acoustic elements HE8.ACOU

• plates: 4 node plate elements Q4.ST

• viscothermal layer: 4 node viscothermal elements Q4.VISC

• interfaces: 8 node interface elements INT.8

• impedance boundary: 4 node impedance elements Q4.IMP

Note that the problem under consideration is 2-dimensional. The finite ele-
ment calculations were carried out with 3-dimensional elements. By taking
a mesh with a small depth and by imposing the appropriate boundary con-
ditions the 2-dimensional situation was simulated. Only 1 element was used
in the depth direction.

6.3.3 Dissipation factor

The modes of the coupled system can be divided into in-phase modes and
out-of-phase modes. The in-phase modes can easily be recognized in the
dissipation factor graphs because of their sharps peaks. The eigenfrequencies
of the in-phase modes are not very much affected by the presence of the air
layer. Hence, the eigenfrequency does not vary with varying layer thickness
for these modes (see Figures 6.23, 6.24 and 6.25). When the plate thickness
is varied, the eigenfrequencies of the in-phase modes do vary, as expected
(see Figures 6.20, 6.21 and 6.22).
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The broad peaks in the graphs are the out-of-phase modes. The eigen-
frequencies of these modes are significantly affected by the presence of the
thin air layer (see Figures 6.23, 6.24 and 6.25). Since the eigenfrequencies
are important for the behaviour of the system, the example illustrates the
need for a coupled analysis.

The graphs show that a significant amount of the incident energy is dis-
sipated by viscothermal effects in the layer. This energy dissipation in the
layer is related to the pumping of air. In order to create a pumping effect, the
layer thickness and the ratio of plate thicknesses have to be chosen carefully.
If the layer thickness is chosen to be very large, the viscothermal effects
are very small. If the layer thickness is very small, the coupling between
the two panels is so strong that no pumping effect is created. If the plate
thicknesses are equal, there is no pumping effect for in-phase modes. If the
plate thicknesses differ greatly, the behaviour of the coupled system will be
dominated by one of the plates and consequently no pumping effect occurs.
These considerations show that in order to create a pumping effect, a small
gap width must be chosen while the plates are left to vibrate independently.
Considering the fact that the air layer provides coupling between the panels,
there might be an optimum configuration for a given situation. The present
example shows that even the behaviour of this relatively simple configuration
is a complex system of interacting factors.
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Figure 6.20: DF versus frequency for tp1 = 1.5 mm, tp2 = 1.5 mm, 2h0 = 1
mm
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Figure 6.21: DF versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 1 mm
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Figure 6.22: DF versus frequency for tp1 = 0.75 mm, tp2 = 2.25 mm, 2h0 =
1 mm
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Figure 6.23: DF versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 0.5
mm
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Figure 6.24: DF versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 1 mm
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Figure 6.25: DF versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 2 mm
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6.3.4 Transmission loss

The transmission loss is shown versus the frequency in Figures 6.26 to 6.31.
The graphs contain the results for the viscothermal case and the inviscid,
adiabatic case 6. In this way the influence of the viscothermal effects can
easily be seen.

All Figures show that the influence of viscothermal effects is very small.
Only around the eigenfrequencies there are minor differences between the
results of the calculations. It can be concluded that viscothermal effects only
have a very small influence on the transmission loss. This is not very surpris-
ing, since in this low frequency range the transmission loss is mainly governed
by the mechanical characteristics of the panels. Damping affects or controls
the transmission loss around the eigenfrequencies and above the coincidence
frequencies of the system, i.e. the frequencies at which the structural and
the acoustic wavelengths coincide (see e.g. [98]).

Although there is no energy dissipation in the layer, there can be a high
transmission loss. It is important to distinguish between the transmission
loss and the dissipation factor. The dissipation factor relates the net inci-
dent energy and the net radiated energy. The transmission loss is based on
the energy levels in the two rooms. A high energy level in a room does not
imply a high net incident energy: the plate must be excited by the pressure
field. Consider for instance the case tp1 = 1 mm, tp2 = 2 mm and 2h0 = 1 mm
(see Figure 6.21 and Figure 6.27). The dissipation factor shows a maximum
value around 200 Hz. This means that almost all of the net incident energy
is dissipated in the layer. The transmission loss is also high around this fre-
quency, but the viscothermal effects have little influence on the transmission
loss. At this frequency the energy level in the first room is high, but only a
small portion of this energy is injected into the first plate because the pres-
sure field does not excite the plate very well. In the present example the
room dimensions and the frequency range are such that the pressure field in
room A is nearly uniform.

6Inviscid and adiabatic: Γ = i and n(sσ) = γ.
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Figure 6.26: TL versus frequency for tp1 = 1.5 mm, tp2 = 1.5 mm, 2h0 = 1
mm, viscothermal ( ), inviscid and adiabatic (−−)
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Figure 6.27: TL versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 1 mm,
viscothermal ( ), inviscid and adiabatic (−−)
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Figure 6.28: TL versus frequency for tp1 = 0.75 mm, tp2 = 2.25 mm, 2h0 =
1 mm, viscothermal ( ), inviscid and adiabatic (−−)
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Figure 6.29: TL versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 0.5
mm, viscothermal ( ), inviscid and adiabatic (−−)
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Figure 6.30: TL versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 1 mm,
viscothermal ( ), inviscid and adiabatic (−−)
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Figure 6.31: TL versus frequency for tp1 = 1 mm, tp2 = 2 mm, 2h0 = 2 mm,
viscothermal ( ), inviscid and adiabatic (−−)
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6.3.5 Practical implications

The calculations indicate that a significant amount of energy can be dissi-
pated in the layer. If energy is injected into the top plate and the properties
are adjusted in the right way, a large part of this energy can be dissipated.
This implies that double wall panels with thin gas layers can be used for
damping purposes in order to reduce vibrations in which the top panel is
excited by for instance a point force or a structural member attached to the
plate.

In practical situations the two plates are often connected by structural
parts: the connectors. The spacing of the connectors is important and de-
serves attention. Roughly speaking, the spacing and design of the connectors
should be such that a sufficient pumping effect can be created by the plate
vibrations. Trochidis [55] performed measurements on the damping charac-
teristics of double wall panels with various connector spacings. He observed
a maximum damping when the connector spacing was equal to a whole num-
ber of structural wavelengths. The type of connection was also found to be
important. Some types of connections allowed a larger relative motion of the
plates, and higher damping values were measured in these cases. With the
newly developed techniques these phenomena can now be studied in more
detail.

Finally, the dissipation capabilities depend on the type of excitation. For
a point excitation, significant dissipation can be obtained. For a distributed
load with a constant amplitude, however, the performance will be less good,
because the important modes are not well excited in this case.

The presented study is a first step in the analysis of the behaviour of
double wall panels. As a next step investigations on the optimization of
double wall configurations were carried out by Basten [99] at the University
of Twente, under contract of the Dutch Technology Foundation. The tools
that were developed and validated within the framework of the present study
were successfully used in that research.
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6.4 Barriers in a thin layer

The calculations and measurements presented so far in this report concerned
layers with a constant thickness. In many practical applications, however,
a part of the gap is blocked by obstructions. In the case of solar panels for
instance, there are two bundles of wiring that block a large part of the gap
(see Figure 6.32). Chow and Pinnington [63] suggested to use obstructions
or materials in the layer to further increase the damping capabilities. They
used porous materials in the layer for this purpose (foam and felt).

Cable bundle

Cable bundle

Figure 6.32: Cable bundles in the air layer between solar panels, top view

The main aim of the present investigation is to gain insight into the conse-
quences of obstructions in the layer. Some investigations were presented con-
cerning the viscothermal acousto-elastic behaviour for a non-constant layer
thickness, see e.g. Önsay [69]. Önsay studied the frequency response of a
strip backed by a thin gas layer with a stepwise varying layer thickness. In his
investigation however damping and linearity were not specifically addressed.
In the present study special attention will be paid to these aspects.

6.4.1 Experimental setup

The setup with the oscillating solar panel described in chapter 4 was also
used for the present investigation. Barriers were placed inside the layer to
study the influence of obstructions. In Figure 6.33 a setup is shown with 4
rectangular barriers in a box form. In all cases, the gap width 2h0, was equal
to 12 mm: the panel spacing that is used in most solar panel configurations.
The height of the barriers, 2hb, was varied. Barriers of 10.66, 10.33, 10.00,
9.00 and 8.00 mm were used. Eigenfrequency and damping of the system
were determined for each configuration for a displacement amplitude h0h
of 0.3 mm. Furthermore, the linearity of the system was investigated by
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carrying out measurements at excitation amplitudes h0h ranging from 0.15
mm to 0.5 mm for barriers of 10.66, 10.33 and 10.00 mm.
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Figure 6.33: Barrier setup, top view (left), side view (right), dimensions in
m.

6.4.2 Finite element calculations

The eigenfrequency and the damping coefficient of the system were calcu-
lated with the finite element program B2000. The layer was modelled with
the new viscothermal Q4.VISC elements. The layer thickness can be spec-
ified per element. In this way the barriers could easily be modelled. The
viscothermal elements were coupled to the structural Q4.ST elements with
interface elements, type INT.8. At the edges of the air layer the pressure
disturbance was set to zero: p = 0. The springs were modelled with rod
elements, type R2.

The mesh density was increased around the barriers, because of the pres-
sure gradients around the barriers. Three elements were used across the
width of a barrier. Four elements with a spacing ratio of 1.5 were used to
model the air between the barrier and the outer edge of the plate. Two times
five elements with a spacing ratio of 1.5 were used in each direction for the
area inside the barriers. The mesh is illustrated in Figure 6.34.
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Figure 6.34: Finite element mesh for the calculations with barriers

6.4.3 Results

Linearity

The eigenfrequency of the system was not significantly affected by the am-
plitude of motion (see Appendix D). The damping however increased dra-
matically with increasing displacement amplitude. The damping versus am-
plitude is plotted in Figures 6.35, 6.36 and 6.37 for the three barrier heights.
In all cases the damping shows a nearly linear increase with amplitude. The
damping predicted by the finite element calculations is very low compared
to the damping levels that were measured at high amplitudes. If the mea-
sured damping coefficient is extrapolated to a zero displacement amplitude,
the same damping coefficient is obtained as was calculated using the finite
element model. It can be concluded that non-linearities are present that
have a large influence on the damping of the system. This is an important
observation. In the literature, several investigations deal with the behaviour
of layers with non-constant thickness. The linearity of the problem however
was never addressed. A physical interpretation of the phenomenon is given
in section 6.4.4.

Eigenfrequency versus barrier height

In Figure 6.38 the eigenfrequency is plotted versus the barrier height.
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Figure 6.35: Damping versus amplitude, barrier height=10.66 mm. Experi-
ments (⋄), FEM (+)
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Figure 6.36: Damping versus amplitude, barrier height=10.33 mm. Experi-
ments (⋄), FEM (+)
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Figure 6.37: Damping versus amplitude, barrier height=10.00 mm. Experi-
ments (⋄), FEM (+)

The eigenfrequency of the system was not affected very much by the am-
plitude of motion. The finite element results and the experimental results for
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Figure 6.38: Frequency versus barrier height. Experiments (⋄), FEM (+)

the eigenfrequency can therefore be compared. Both calculations and experi-
ments show a decrease in eigenfrequency with increasing barrier height. The
experimental frequencies are always lower than the calculated frequencies.
This can mainly be attributed to the fact that the influence of the surround-
ing air is neglected. The shift in eigenfrequency as a function of barrier height
is not very large and therefore the added mass remains small. The added
mass due to the surrounding air thus has a relatively large influence.

Damping versus barrier height

In Figure 6.39 the damping is plotted versus the the barrier height. The
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Figure 6.39: Damping versus barrier height. Experiments (⋄), FEM (+)
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damping shows a strong increase with increasing barrier height. By using
simple obstructions in the layer, the damping values can be increased from
3% to 40%. It was demonstrated that non-linearities are very important
in the experiments. The experimental results for an amplitude of 0.3 mm
(clearly in the non-linear regime) and the calculated results (obtained with a
linear model) should therefore be compared and interpreted with care. Both
calculations and experiments predict an increase of damping with increasing
barrier height.

6.4.4 Interpretation

The experimental results show that the eigenfrequency of the system hardly
varies with the displacement amplitude h0h. The damping however does show
a linear increase with displacement amplitude. Evidently, this behaviour can-
not be explained by the linear viscothermal models. There must be another
non-linear dissipative mechanism in addition to the linear dissipative vis-
cothermal effects.

Smoke was used to visualize the flow around the barriers. For large barrier
heights, a vortex developed behind the barrier during the outflow stage (see
Figure 6.40).

Figure 6.40: Forming of vortex behind the barrier (side view)

The acoustic response of open tubes was studied by Disselhorst and Van
Wijngaarden [43], and Peters, Hirschberg, Reijen and Wijnands [44]. In
their experiments, non-linear effects were observed related to unsteady flow
separation and the forming of vortices at the tube end. This non-linear
dissipation mechanism was found to be important for small acoustic Strouhal
numbers:

Sr =
ωR

vx

(6.20)

where ω is the angular frequency, R is the radius of the tube and vx is the
amplitude of the axial velocity at the tube end. For low acoustic Strouhal
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numbers, the dissipated energy per cycle can be calculated from [44]:

Evortex =
2ρ0v

3
xcdπR2

3ω
(6.21)

where cd is a parameter that is determined by the geometry of the pipe
end. For a thin-walled unflanged pipe this factor is equal to 2, whereas for a
flanged pipe it takes the value 13

9
.

The theory that was developed for tubes will now be used to estimate the
additional energy dissipation of this mechanism for the present layer geom-
etry. It must be remembered that this is a qualitative analysis, based on an
order of magnitude estimation, aimed at the identification of the dissipation
mechanism. A detailed quantitative study of the non-linear separation for
the geometry under consideration would require a significant amount of work
and is not within the scope of the present study.

The velocity in the thin layer that remains between the barrier and the
panel can be estimated by using the equation of continuity for incompressible
behaviour. The amplitude of the velocity is:

v ∼= ωh0hlxblyb

[2h0 − 2hb] [lxb + lyb]
(6.22)

where lxb and lyb denote the length of the barriers in the x-direction and the
y-direction respectively. For the present investigation lxb = 0.43 m and lyb =
0.43 m (see Figure 6.33). For the three barriers of interest, the velocities
vary between 0.4 and 12 m/s. The Reynolds number, Re = ρ0v [h0 − hb] /µ,
is about 100 for the present situation. The expansion ratio, h0/ [h0 − hb],
varies between 6 and 9. For the present layer geometry the acoustic Strouhal
number can be estimated by:

Sr =
ω [h0 − hb]

v
(6.23)

The dimensionless velocity amplitude v was determined by using the equa-
tion of continuity for incompressible behaviour. This gives using expression
(6.22)7:

Sr ∼= 2 [h0 − hb]
2 [lxb + lyb]

h0hlxblyb

(6.24)

It can easily be verified that Sr ≪ 1. Analoguous to expression (6.21),
using the appropriate total flow area, the dissipated amount of energy was

7A more accurate estimation of the velocity can be provided by using the finite element
results, but this degree of accuracy is not relevant in the present qualitative analysis
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estimated from:

Evortex
∼= 2ρ0v

3cd [2h0 − 2hb] [4lxb + 4lyb]

3ω
(6.25)

Thus:

Evortex
∼= 8

3
ρ0cd

l3xbl
3
yb

[lxb + lyb]
2

[h0h]3 ω2

[2h0 − 2hb]
2 (6.26)

The question remains whether the amount of energy that is dissipated by
this mechanism is significant compared to the “standard” viscothermal dis-
sipation. In the present study it is assumed that the dissipation mechanisms
are not correlated: the dissipated energies are simply superimposed. For
the single degree of freedom system with stiffness 8κ and viscous damping
coefficient ξ0, the dissipated energy per cycle is given by:

Ediss = 2π8κξ0 [h0h]2 (6.27)

where κ is the stiffness of one spring and ξ0 denotes the viscous damping
coeffient due to “standard” viscothermal effects only. The value of ξ0 can
be calculated with the finite element model. It can also be deduced from
the experimental results by extrapolating the measured damping values to a
zero displacement amplitude. As stated before, the extrapolated values and
the calculated values show good agreement (see Figures 6.35, 6.36 and 6.37).
An estimation shows that the energy that is dissipated by the mechanism is
of the same order of magnitude as the “standard” viscothermal dissipation.
This order of magnitude estimate suggests that it is the vortex mechanism
that introduces the strong non-linear damping behaviour.

In the experiments it is not possible to distinguish between the “stan-
dard” linear viscothermal dissipation and the dissipation due to the non-
linear mechanism. All the dissipated energy is interpreted in terms of a
damping coefficient ξ according to the definition given in expression (6.27).
The damping level found in the experiments can simply be calculated from:

ξ =
Ediss + Evortex

2π8κ [h0h]2
∼= ξ0 +

8

3

ρ0cd

16πκ

l3xbl
3
yb

[lxb + lyb]
2

[h0h] ω2

[2h0 − 2hb]
2 (6.28)

This expression shows that the damping linearly increases with amplitude
h0h if all other parameters remain constant. In the experiments the damping
coefficient showed a linear increase with amplitude and the frequency hardly
varied with amplitude. This type of behaviour is in accordance with the
vortex mechanism.

In the literature, several investigations were presented concerning the
acoustic behaviour of open pipes and the flow over backward facing steps.
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Recently, and investigation was presented by Hofmans [100], dealing with a
numerical and experimental study on the flow through a square-edge nozzle
at low Mach number. The techniques described in this investigation would
allow a more quantitative approach of the present problem, involving a 3D
geometry with a driven flow. From a practical point of view, it is interest-
ing to investigate if the non-linear mechanism can be used to increase the
damping performance.

The present study only concerns a qualitative analysis, based on an or-
der of magnitude estimation, aimed at the identification of the dissipation
mechanism. It can be concluded that the observations and this simple qual-
itative analysis support the assumption that the flow separation introduces
a non-linear damping behaviour.
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Conclusions

The general conclusions are:

• an overview was presented of linear viscothermal wave propagation
models. Using dimensionless parameters, the models were compared
and the ranges of validity were indicated. The analysis showed that
the low reduced frequency model is not only adequate but also the
most efficient for describing viscothermal wave propagation;

• the low reduced frequency model was validated with specially designed
experiments. The experiments enabled accurate measurements and
provided new detailed information. The agreement between theory
and experiment was good;

• a new viscothermal acoustic finite element was developed, based on
the low reduced frequency model. The new element can be coupled
to structural elements, enabling fully coupled calculations for complex
geometries. The finite element model was validated with experiments.
Calculations and experiments showed fair agreement. Thus, a new and
efficient simulation tool has been developed for describing of viscother-
mal wave propagation, including acousto-elastic interaction;

• the new tools were succesfully used in a number of practical applica-
tions: the behaviour of an array of folded solar panels during launch,
the design of an inkjet print head and the behaviour of double wall
panels.
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Appendix A

Nomenclature

A function describing velocity and temperature profiles
Aq, Bq participation factors
Aaq, Baq, Ahq, Bhq constants

A
cd

cross-sectional area
Acd dimensionless cross-sectional area
∂Acd dimensionless area of cross-section boundary

A
pd

propagation direction area

∂A
pd

area of propagation direction boundary
B(s) function accounting for viscous or thermal effects

a = ly
lx

aspect ratio

C function describing the temperature profile
C1, C2, C3, C4 constants
Cp specific heat at constant pressure
Cv specific heat at constant volume
c0 undisturbed speed of sound
cd non-linear dissipation factor
ceff effective speed of sound
D function describing the temperature profile
DF dissipation factor

Dp =
Ept3p
12

bending stiffness
Ep Young’s modulus of plate material
Et Young’s modulus of top layer
Eb Young’s modulus of bottom layer
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Ediss dissipated energy per cycle
Ein incident energy per cycle
Elay energy stored in the air layer
Ep energy stored in plate
Erad radiated energy per cycle
Evortex dissipated energy per cycle by vortex mechanism
en unit normal vector
er unit vector in the r-direction
ex unit vector in the x-direction
ey unit vector in the y-direction
ez unit vector in the z-direction
eθ unit vector in the θ-direction
eφ unit vector in the φ-direction
F ex excitation force
F gap force due to the pressure distribution in the gap
F gap spring force
fm function describing wave propagation in tubes
H transfer function
h0 half-layer thickness
hb dimensionless displacement of top springs, half-barrier height
hn half-nozzle height
ht dimensionless displacement of bottom springs
I area moment of inertia
i =

√
−1 imaginary unit

J torsion constant
jn spherical Bessel function of order n
Jm Bessel function of the first kind, order m
k = ωl

c0
reduced frequency

ka acoustic wave number
kaq = k2

a − k2
q wave number

kar =
√

k2
a + k2Γ2 wave number

kb stiffness of bottom spring
kb dimensionless stiffness of bottom spring
kh entropic wave number
khq = k2

h − k2
q wave number

khr =
√

k2
h + k2Γ2 wave number

kp plate elastic wave number
kp1 = kkp wave number

kp2 =
√

is2 + k2k2
p wave number
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kq wave number
kr = ωR

c0
wave number in the r-direction

kt stiffness of top spring
kt dimensionless stiffness of top spring
kx = ωlx

c0
wave number in the x-direction

kv rotational wave number
kvq = k2

v − k2
q wave number

l characteristic length scale
ln half length of nozzle
lx half length in the x-direction
lxb half barrier length in the x-direction
ly half length in the y-direction
lyb half barrier length in the y-direction
lz half length in the z-direction
m mass, order of circumferential harmonic waves
m′ mass per unit length
n(sσ) polytropic constant
p = p0 [1 + peiωt] pressure
p0 mean pressure
p dimensionless pressure amplitude
pi = p0 [1 + pie

iωt] incident pressure on membrane
pi dimensionless incident pressure amplitude
p1 pressure in point 1
p2 pressure in point 2
p3 pressure in point 3
PPA average quadratic pressure in room A
PPB average quadratic pressure across absorbing boundary of room B
R radius
ℜ squeeze term
R0 gas constant
r radial co-ordinate
r dimensionless radial co-ordinate
Sr acoustic Strouhal number

s = l
√

ρ0ω
µ

shear wave number

T = T0 [1 + Teiωt] temperature
T0 mean temperature
T dimensionless temperature amplitude
Ta acoustic temperature
Th entropic temperature
Tm membrane tension
TL transmission loss
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t time
tb thickness of bottom layer
tm membrane thickness
tp plate thickness
tp1 thickness plate 1
tp2 thickness plate 2
tref reference time
tt thickness of top layer
v = c0veiωt velocity vector
v dimensionless amplitude of the velocity vector
v dimensionless amplitude of the velocity
vl solenoidal velocity vector
vla acoustic part of solenoidal velocity vector
vlh entropic part of solenoidal velocity vector
vv rotational velocity vector
vm = c0vmeiωt membrane velocity
< vm > average membrane velocity
vm dimensionless membrane velocity
vp plate velocity
vp dimensionless plate velocity
vr dimensionless velocity component in the r-direction
vref reference velocity
vx dimensionless velocity component in the x-direction
vxn nozzle velocity in the x-direction
vxn dimensionless nozzle velocity in the x-direction
vy dimensionless velocity component in the y-direction
vz dimensionless velocity component in the z-direction
vθ dimensionless velocity component in the θ-direction
vφ dimensionless velocity component in the φ-direction
v

cd velocity vector in the cd-directions
v

pd velocity vector in the pd-directions
W1, W2 constants
x = lxx x-co-ordinate
x dimensionless x-co-ordinate
x spatial co-ordinates
x

cd cross-sectional co-ordinates
x

pd propagation co-ordinates
y = lyy y-co-ordinate
Y mobility function
Ymn spherical harmonic function
y dimensionless y-co-ordinate
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z = h0z z-co-ordinate
Z membrane impedance
Z0 reference level for the impedance
Zi imaginary part of membrane impedance
Zn specific normal acoustic impedance
Zr real part of membrane impedance
z dimensionless z-co-ordinate

α rotation angle
Γ propagation constant

γ = Cp

Cv
ratio of specific heats

ε = ρ0h0

ρptp
ratio of mass per unit area

η bulk viscosity
θ co-ordinate in the θ-direction
θ dimensionless co-ordinate in the θ-direction
Λa constant
Λh constant
λ thermal conductivity
µ dynamic viscosity
ξ viscosity ratio, dimensionless damping coefficient
ξ0 dimensionless damping coefficient for linear viscothermal damping
νp Poisson’s ratio of plate material
ρ = ρ0 [1 + ρeiωt] density
ρ0 mean density of air
ρ dimensionless density amplitude
ρm density of membrane material
ρp density of plate material

σ =
√

µCp

λ
square root of the Prandtl number

Φ viscous dissipation function
φ co-ordinate in the φ-direction
φ dimensionless co-ordinate in the φ-direction
Ω dimensionless frequency
ω angular frequency



164 Nomenclature

∇ gradient operator
∇ dimensionless gradient operator
∇

cd dimensionless gradient operator in the cd-directions
∇

pd dimensionless gradient operator in the pd-directions
∆ Laplace operator
∆ dimensionless Laplace operator
∆cd dimensionless Laplace operator in the cd-directions
∆r dimensionless Laplace operator in the r-direction
ζ loss factor
∗ complex conjugate

[Ka] acoustic stiffness matrix[
K̂a

]
acoustic stiffness matrix for the inviscid, adiabatic case

[Kc] coupling matrix
[Ks] structural stiffness matrix
[Ma(s)] acoustic mass matrix[
M̂a

]
acoustic mass matrix for the inviscid, adiabatic case

[M c(s)] coupling matrix[
M̂ c

]
coupling matrix for the inviscid, adiabatic case

[Ms] structural mass matrix
[Na] acoustic interpolation functions
[Ns] structural interpolation functions[
Φ̂a
]

matrix with uncoupled acoustic modes for the inviscid, adiabatic case

[Φs] matrix with uncoupled structural modes[
Ω̂a
]

diagonal acoustic eigenvalue matrix for the inviscid, adiabatic case

[Ωs] diagonal structural eigenvalue matrix

{F ext} external force vector{
F̂ ext

}
external force vector for the inviscid, adiabatic case

{P} vector with pressure degrees of freedom
{U} vector with structural degrees of freedom
{ηa} vector with generalized acoustic co-ordinates
{ηs} vector with generalized structural co-ordinates
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Geometries, co-ordinate
systems and functions

B.1 Sphere

R r

θ

φ

Figure B.1: Geometry of sphere

The basic geometrical dimensions and operators are:

l = R ; x = (r, θ, φ)

r =
r

R
; θ = θ ; φ = φ

∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin (θ)

∂

∂φ
(B.1)

∆ =
1

r2

∂

∂r

[
r2 ∂

∂r

]
+

1

r2 sin (θ)

∂

∂θ

[
sin (θ)

∂

∂θ

]
+

1

r2 sin (θ)

∂2

∂φ2
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B.2 Circular tube

R

θ

r

x

Figure B.2: Geometry of circular tube

The basic geometrical dimensions and operators are:

l = R ; x = (r, θ, x)

r =
r

R
; θ = θ ; x =

ωx

c0

∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ exk

∂

∂x
(B.2)

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ k2 ∂2

∂x2

The operators for the low reduced frequency model are:

x
cd = (r, θ) ; x

pd = (x)

∇
cd = er

∂

∂r
+ eθ

1

r

∂

∂θ
; ∇

pd = exk
∂

∂x
(B.3)

∆cd =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
; ∆pd = k2 ∂2

∂x2

The functions that are used in the low reduced frequency model are given in
Table B.1.
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Total Low s High s

A
J0

(
sri

√
i
)

J0

(
si
√

i
) − 1 −1

4
is2

[
1 − r2

]
−1

B
J2

(
si
√

i
)

J0

(
si
√

i
) −1

8
is2 −1

ℜ 1

π

∫ 2π

θ=0
vr(x, 1, θ)dθ

Table B.1: Expressions for circular tube
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B.3 Rectangular tube

yl
y

x l
z

zl

zl

y

Figure B.3: Geometry of rectangular tube

The basic geometrical dimensions and operators are:

l = ly ; x = (x, y, z) ; a =
lz
ly

x =
ωx

c0
; y =

y

ly
; z =

z

ly

∇ = exk
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(B.4)

∆ = k2 ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The operators for the low reduced frequency model are:

x
cd = (y, z) ; x

pd = (x)

∇
cd = exk

∂

∂x
; ∇

pd = ey

∂

∂y
+ ez

∂

∂z
(B.5)

∆cd =
∂2

∂y2
+

∂2

∂z2
; ∆pd = k2 ∂2

∂x2

The functions that are used in the low reduced frequency model are given in
table B.2.
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R
e
cta

n
g
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la

r
tu

b
e

1
6
9

Total Low s High s

A Q1

∞∑

q=1,3...

−1
q−1

2

qQ2
2

[
cosh (Q2z)

cosh (Q2)
− 1

]
cos

(
qπy

2

)
Q1

∞∑

q=1,3...

−1
q−1

2

qQ̂2
2




cosh
(
Q̂2z

)

cosh
(
Q̂2

) − 1


 cos

(
qπy

2

)
−1

Q1 =
ia2s24

π
; Q2 = a

√(
qπ

2

)2

+ is2 Q1 =
ia2s24

π
; Q̂2 = a

qπ

2

B Q1

∞∑

q=1,3...

−1
q−1

2

q2Q2
2

[
tanh (aQ2)

aQ2

− 1

]
Q1

∞∑

q=1,3...

−1
q−1

2

q2Q̂2
2



tanh

(
aQ̂2

)

aQ̂2

− 1


 −1

Q1 =
ia2s28

π2
; Q2 = a

√(
qπ

2

)2

+ is2 Q1 =
ia2s28

π2
; Q̂2 = a

qπ

2

ℜ 1

4

∫ 1

z=−1
[vy(x, 1, z) − vy(x,−1, z)] dz +

1

4

1

a

∫ 1

y=−1
[vz(x, y, 1) − vz(x, y,−1)] dy

Table B.2: Expressions for rectangular tube
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B.4 Circular layer
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Figure B.4: Geometry of the circular layer

The basic geometrical dimensions and operators are:

l = h0 ; x = (r, θ, z)

r =
ωr

c0

; θ = θ ; z =
z

h0

∇ = erk
∂

∂r
+ eθk

1

r

∂

∂θ
+ ez

∂

∂z
(B.6)

∆ = k2 ∂2

∂r2
+ k2 1

r

∂

∂r
+ k2 1

r2

∂2

∂θ2
+

∂2

∂z2

The operators for the low reduced frequency model are:

x
cd = (z) ; x

pd = (r, θ)

∇
cd = ez

∂

∂z
; ∇

pd = erk
∂

∂r
+ eθk

1

r

∂

∂θ
(B.7)

∆cd =
∂2

∂z2
; ∆pd = k2 ∂2

∂r2
+ k2 1

r

∂

∂r
+ k2 1

r2

∂2

∂θ2

The functions that are used in the low reduced frequency model are given in
table B.3.
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Total Low s High s

A
cosh

(
sz
√

i
)

cosh
(
s
√

i
) − 1

1

2
is2

[
1

3
z2 − 1

]
−1

B
tanh

(
s
√

i
)

s
√

i
− 1 −1

3
is2 −1

ℜ 1

2
[vz(x, y, 1) − vz(x, y,−1)]

Table B.3: Expressions for the circular layer
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B.5 Rectangular layer
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Figure B.5: Geometry of the rectangular layer

The basic geometrical dimensions and operators are:

l = h0 ; x = (x, y, z) ; a =
ly
lx

x =
ωx

c0
; y =

ωy

c0
; z =

z

h0

∇ = exk
∂

∂x
+ eyk

∂

∂y
+ ez

∂

∂z
(B.8)

∆ = k2 ∂2

∂x2
+ k2 ∂2

∂y2
+

∂2

∂z2

(B.9)

The operators for the low reduced frequency model are:

x
cd = (z) ; x

pd = (x, y)

∇
cd = ez

∂

∂z
; ∇

pd = exk
∂

∂x
+ eyk

∂

∂y
(B.10)

∆cd =
∂2

∂z2
; ∆pd = k2 ∂2

∂x2
+ k2 ∂2

∂y2

The functions that are used in the low reduced frequency model are given in
table B.4.
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Total Low s High s

A
cosh

(
sz
√

i
)

cosh
(
s
√

i
) − 1

1

2
is2

[
1

3
z2 − 1

]
−1

B
tanh

(
s
√

i
)

s
√

i
− 1 −1

3
is2 −1

ℜ 1

2
[vz(x, y, 1) − vz(x, y,−1)]

Table B.4: Expressions for the rectangular layer
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Appendix C

Numerical solution procedures

C.1 The spherical resonator

As an example, the eigenfrequencies of a spherical resonator are calculated.
The equation of interest is:

[
1 − αh

αa

]



n(n + 1)

1 +
1

jn (kv)

∂jn (kvr)

∂r

∣∣∣∣∣
1




= (C.1)

1

jn (ka)

∂jn (kar)

∂r

∣∣∣∣∣
1

−
(

αh

αa

)
1

jn (kh)

∂jn (khr)

∂r

∣∣∣∣∣
1

The partial derivatives of the spherical Bessel functions are:

∂jn (kar)

∂r
= ka

[
jn−1 (kar) −

(
n + 1

kar

)
jn (kar)

]
(C.2)

The equation for the eigenfrequencies can now be written as:

[
1 − αh

αa

]



n(n + 1)

1 + kv

{
jn−1 (kv)

jn (kv)
−
(

n + 1

kv

)}




= (C.3)

ka

[
jn−1 (ka)

jn (ka)
−
(

n + 1

ka

)]
− αh

αa

kh

[
jn−1 (kh)

jn (kh)
−
(

n + 1

kh

)]

For very large values of the imaginary part of the argument, the value of the
spherical Bessel functions becomes very large. This causes problems in the
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numerical solution of the equation. The spherical Bessel functions can be
written as:

j0 (kar) =
sin (kar)

kar

j1 (kar) =
sin (kar)

(kar)
2 − cos (kar)

(kar)

j2 (kar) =

(
3

(kar)
3 − 1

kar

)
sin (kar) −

3

(kar)
2 cos (kar) (C.4)

jn+1 (kar) =
(

2n + 1

kar

)
jn (kar) − jn−1 (kar)

In order to avoid problems for large values of the imaginary part of the ar-
gument, the appropriate component was removed from the ratio of Bessel
functions by dividing both the numerator and the denonimator by this ex-
ponential component. The eigenfrequencies were obtained using a simple
function minimization procedure in the program MatLab. However, the so-
lution procedure required some care. For the present test case, the ratio
between the real and the imaginary parts of the frequency is of the order
of 103 to 106. The minimization procedure in MatLab is able to minimize
a scalar function of multiple variables. The real part of the function to be
minimized is mainly related to the real part of the frequency, whereas the
imaginary part of the function is mainly determined by the imaginary com-
ponent of the frequency. As for the frequency, the real and the imaginary
parts of the function are of a different order of magnitude. Minimizing the
absolute value of the function is therefore not a good approach, since this
approach is relatively insensitive to changes in the imaginary part of the fre-
quency. Therefore another strategy was adopted. First, the (square of the)
real part of the function was minimized with the real part of the frequency as
the minimization variable. In the second step, the (square of the) imaginary
part of the function was minimized with the imaginary frequency component
as variable. This process was then repeated until convergence was obtained.

Although very simple, this approach proved to be successful. For various
starting values the same final result was obtained. A good starting value
could be provided by using the eigenfrequencies calculated from the wave
equation. The eigenfrequencies from the wave equation are obtained by set-
ting ka equal to k and taking the limit for kh → ∞ and kv → ∞. This
gives:

∂jn (k)

∂r
= 0 (C.5)

For each value of n there are several solutions to this equation.
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C.2 Circular tubes

The dispersion equation to be solved for given values of m, k and s is:

[
1 − αh

αa

]
kv

2

kv
2 + k2Γ2




m2

1

Jm (kvr)

∂Jm (kvrr)

∂r

∣∣∣∣∣
1

+
k2Γ2

kv
2

1

Jm (kvr)

∂Jm (kvrr)

∂r

∣∣∣∣∣
1




=
1

Jm (kar)

∂Jm (karr)

∂r

∣∣∣∣∣
1

− αh

αa

∂Jm (khrr)

∂r

∣∣∣∣∣
1

Jm (khr)
(C.6)

The partial derivatives of the Bessel functions are:

∂Jm (kar)

∂r
= ka

[
Jm−1 (kar) −

(
m

kar

)
Jm (kar)

]
(C.7)

The dispersion equation can be written as:

[
1 − αh

αa

]
kv

2

kv
2 + k2Γ2




m2

kvr

[
Jm−1 (kvrr)

Jm (kvrr)
− m

kvr

] +
k2Γ2

kv
2 kvr

[
Jm−1 (kvrr)

Jm (kvrr)
− m

kvr

]



= kar

[
Jm−1 (karr)

Jm (karr)
− m

kar

]
− αh

αa

khr

[
Jm−1 (khrr)

Jm (khrr)
− m

khr

]
(C.8)

This equation was solved with a standard function minimization procedure
in the program MatLab. The absolute value of the function was minimized
with respect to the real and the imaginary parts of the propagation constant.
Good starting values were obtained by performing a series of calculations.
For a given value of k, the propagation constant was calculated for a high
shear wave number s. For this high value of s, the low reduced frequency
solution for Γ was used as a starting value. Next, a calculation was varied out
for a somewhat smaller value of s. The value for Γ, obtained in the previous
calculation for the higher value of s, was now used as the starting value. In
this way the values of Γ were determined for decreasing values of s. Given
the well chosen starting values, the process converged quickly.
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Appendix D

Experimental data

D.1 Oscillating rigid panel

2h0 fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

3 3.340 35.48 −− −− −− −− 18.0 75.75
3.5 3.590 24.60 −− −− −− −− 19.0 76.15
4 3.816 18.76 −− −− −− −− 18.5 75.53
5 4.215 11.50 −− −− −− −− 20.0 75.60
6 4.535 8.16 −− −− −− −− 21.0 75.72
8 5.055 5.04 −− −− −− −− 21.0 75.56
10 5.426 3.48 −− −− −− −− 18.0 76.28
12 5.766 2.59 −− −− −− −− 20.5 75.48
15 6.137 1.82 −− −− −− −− 22.0 75.63
25 6.859 0.83 −− −− −− −− 20.0 76.10
35 7.270 0.51 −− −− −− −− 21.5 76.11
50 7.633 0.31 −− −− −− −− 18.0 76.70
80 7.988 0.19 −− −− −− −− 18.0 75.51
150 8.301 0.12 −− −− −− −− 19.0 76.48
650 8.554 0.18 −− −− −− −− 21.5 76.13

Table D.1: Oscillating rigid panel: data series 1

D.2 Rotating rigid panel
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2h0 fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

3 3.332 35.48 4.67 3.74 0.09 0.22 18.0 76.43
3.5 3.606 24.39 4.22 3.44 0.25 0.25 19.0 76.28
4 3.848 18.71 4.03 3.24 0.25 0.25 22.0 75.80
5 4.215 11.65 3.61 2.94 0.24 0.24 18.0 76.06
6 4.523 8.24 3.70 3.01 0.26 0.26 21.5 76.66
8 5.043 5.05 3.50 2.88 0.23 0.23 20.5 76.66
10 5.445 3.53 3.24 2.68 0.27 0.27 22.5 76.64
12 5.770 2.61 3.11 2.62 0.25 0.25 21.0 76.23
15 6.137 1.83 2.86 2.42 0.28 0.28 22.0 76.16
25 6.879 0.85 2.23 1.94 0.28 0.28 22.0 75.97
35 7.281 0.52 1.80 1.61 0.28 0.28 21.0 75.80
50 7.637 0.33 −− −− −− −− 22.0 75.80
80 7.996 0.21 −− −− −− −− 21.5 75.87
150 8.305 0.12 −− −− −− −− 19.5 76.44
650 8.559 0.13 −− −− −− −− 24.5 76.18

Table D.2: Oscillating rigid panel: data series 2
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2h0 fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

3 3.340 36.19 4.76 3.79 0.15 0.22 19.5 76.33
3.5 3.602 24.39 4.20 3.40 0.10 0.25 17.0 76.06
4 3.852 18.71 4.00 3.25 0.22 0.25 21.5 75.80
5 4.223 11.65 3.81 3.17 0.14 0.25 20.5 76.10
6 4.539 8.24 3.71 3.05 0.20 0.26 22.5 76.66
8 5.051 5.05 3.46 2.85 0.22 0.24 22.5 76.70
10 5.453 3.46 3.25 2.71 0.22 0.28 24.0 76.64
12 5.766 2.61 3.07 2.62 0.26 0.26 21.5 76.20
15 6.145 1.83 2.81 2.41 0.29 0.28 22.5 76.00
25 6.875 0.85 2.20 1.92 0.34 0.28 20.0 75.76
35 7.281 0.52 1.84 1.63 0.35 0.28 21.5 75.80
50 7.637 0.33 −− −− −− −− 22.0 75.81
80 7.996 0.21 −− −− −− −− 21.5 75.87
150 8.305 0.12 −− −− −− −− 20.5 76.50
650 8.552 0.13 −− −− −− −− 24.5 76.38

Table D.3: Oscillating rigid panel: data series 3

2h0 fn ξ
(mm) (Hz) (%)

3 1.421 49.0
4 1.506 31.0
6 1.712 13.0
8 1.851 7.60
10 1.967 5.10
15 2.164 2.60
20 2.280 1.70
25 2.363 1.20
35 2.471 0.77
50 2.560 0.52

Table D.4: Rotating rigid panel: average values of 3 series
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D.3 Oscillating rigid panel with barriers

2hb fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

10 5.223 23.56 3.47 3.13 0.18 0.31 22.5 76.83
9 5.445 10.77 3.12 2.73 0.20 0.23 24.5 76.78
8 5.527 6.62 3.13 2.72 0.22 0.24 22.0 76.86

Table D.5: Oscillating rigid panel with 4 barriers: data series 1

2hb fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

10 5.219 23.67 3.45 3.09 0.20 0.32 22.5 76.84
9 5.438 10.77 3.13 2.78 0.24 0.23 21.5 76.74
8 5.531 6.60 3.12 2.71 0.23 0.24 22.5 76.86

Table D.6: Oscillating rigid panel with 4 barriers: data series 2

2hb fn ξ p1 p2 p3 h0h T0 p0

(mm) (Hz) (%) (Pa) (Pa) (Pa) (mm) (◦C) (Pa)

10 5.215 23.70 3.45 3.09 0.19 0.28 21.0 76.88
9 5.434 10.84 3.14 2.76 0.21 0.24 22.0 76.74
8 5.539 6.56 3.11 2.75 0.25 0.24 22.5 76.81

Table D.7: Oscillating rigid panel with 4 barriers: data series 3
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h0h fn ξ
(mm) (Hz) (%)

0.125 4.92 38.51
0.150 4.92 41.65
0.200 4.94 43.78
0.250 4.93 46.30
0.300 4.96 48.16
0.350 4.99 50.15
0.400 4.96 52.38
0.450 4.96 55.30
0.500 4.94 58.72

h0h fn ξ
(mm) (Hz) (%)

0.150 5.17 25.23
0.225 5.18 29.16
0.300 5.20 31.59
0.375 5.15 33.74
0.450 5.16 36.65
0.525 5.13 39.34

h0h fn ξ
(mm) (Hz) (%)

0.150 5.26 17.63
0.225 5.27 20.75
0.300 5.26 23.38
0.375 5.24 25.69
0.450 5.24 28.17
0.525 5.24 30.53

Table D.8: Oscillating rigid panel with 4 barriers: linearity for 2hb =
10.66 mm (left), 2hb = 10.33 mm (middle) and 2hb = 10.00 mm (right)
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Appendix E

Convergence tests

E.1 Layer elements

E.1.1 Frequency response calculations

Consider a rigid plate, located parallel to a fixed surface and performing a
small normal oscillation (see chapter 4). For this situation the displacement
amplitude for all the points on the panel is equal: h(x, y) = h. The edges of
the layer are open, i.e. a p = 0 condition is imposed. The analytical solution
for this case was given in section 4.2.1. The pressure distribution was also
calculated with linear 4-noded and quadratic 8-noded viscothermal finite el-
ements. The number of elements was varied in order to investigate whether
the numerical results converged to the analytical values. The properties of
the air in the gap under standard atmospheric conditions and the dimensions
of the plate are the same as for the setup in chapter 4 (see expression (4.19)).
The results are listed in Tables E.1 and E.2. In these Tables nx and ny rep-
resent the numbers of grid points in the x- and the y-directions respectively.
For each calculation, the L1 norm 1 of the difference between the numerical
and analytical results is given for all calculated nodes and the centre node
only. When the grid size is reduced by a factor of two, the corresponding
error norm should reduce with a factor of 4 for linear elements and a factor of
16 for quadratic elements. This ratio is also given in the Table. The results
indicate that the numerical results converge to the analytical values. It can
be concluded that the viscothermal finite element gives good results.

1L1 = 1

nmax

∑nmax

n=1
|vnum

n − vana
n |
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E.1.2 Eigenfrequency calculations

The acoustic eigenfrequencies of a rectangular layer are calculated with the
viscothermal finite elements. The results are compared with analytical re-
sults. At the edges a p = 0 condition is imposed. The eigenfrequencies are
calculated by separation of variables. In the case of a varying layer thickness,
continuity of pressure and conservation of mass are imposed on the interface.
The analytical and numerical results are listed in Tables E.3 and E.4.

Q4.VISC Q8.VISC

Figure E.1: Configurations for convergence tests of the layer elements

nx ny L1 L1c Ratio Ratioc

5 5 1.29089 1.70957
9 9 0.25819 0.39617 4.99 4.31
17 17 0.05763 0.09747 4.48 4.06
33 33 0.01359 0.02429 4.24 4.01
65 65 0.00332 0.00611 4.09 3.98

Table E.1: Convergence for Q4.VISC elements. (h0 = 1.5 · 10−3 m, lx =
0.49 m, ly = 0.49 m, f = 50 Hz, h = 1/(4π2f 2h0) )
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nx ny L1 L1c Ratio Ratioc

9 9 0.107222 0.065359
17 17 0.006812 0.003803 15.74 17.19

Table E.2: Convergence for Q8.VISC elements (h0 = 1.5·10−3 m, lx = 0.49 m,
ly = 0.49 m, f = 50 Hz, h = 1/(4π2f 2h0) )
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Q4.VISC Q8.VISC

Figure E.2: Configurations for convergence tests of the layer elements

nx ny Q4.VISC Q8.VISC

Mode 11 analytical: 232.050+8.602i
9 9 233.571+8.629i 232.115+8.603i
17 17 232.430+8.609i 232.054+8.602i
33 33 232.145+8.604i 232.051+8.602i
65 65 232.074+8.602i 232.051+8.602i

Mode 21 analytical: 369.604+10.757i
9 9 377.854+1.087i 370.803+10.774i
17 17 371.656+1.078i 369.683+10.758i
33 33 370.117+1.076i 369.610+10.757i
65 65 369.733+1.075i 369.605+10.757i

Mode 22 analytical: 468.990+12.070i
9 9 481.272+12.222i 471.597+12.102i
17 17 472.047+12.108i 469.120+12.071i
33 33 469.753+12.079i 468.998+12.070i
65 65 469.181+12.072i 468.991+12.070i

Table E.3: Convergence for Q4.VISC and Q8.VISC elements. (h0 = 1.5 ·
10−3 m, lx = 0.5 m, ly = 0.5 m)
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Q4.VISC (layer 1) Q4.VISC (layer 2) Q8.VISC (layer 1) Q8.VISC (layer 2)

Figure E.3: Configurations for convergence tests of the layer elements

nx Q4.VISC Q8.VISC

Mode 1 analytical: 119.815+4.842i
17 120.161+4.838i 119.820+4.842i
33 119.901+4.841i 119.815+4.842i
65 119.837+4.842i 119.815+4.842i
129 119.820+4.842i 119.815+4.842i

Mode 2 analytical: 209.068+6.608i
17 210.475+6.623i 209.167+6.607i
33 209.421+6.611i 209.074+6.608i
65 209.156+6.608i 209.068+6.608i
129 209.090+6.608i 209.068+6.608i

Mode 3 analytical: 331.040+9.176i
17 338.411+9.240i 332.079+9.171i
33 332.882+9.192i 331.111+9.176i
65 331.501+9.180i 331.045+9.176i
129 331.155+9.177i 331.040+9.176i

Mode 4 analytical: 455.249+9.474i
17 471.160+9.252i 458.275+9.399i
33 459.318+9.418i 455.492+9.467i
65 456.272+9.460i 455.265+9.474i
129 455.505+9.471i 455.250+9.474i

Table E.4: Convergence for Q4.VISC and Q8.VISC elements (varying layer
thickness: h01 = 1.5 · 10−3 m, lx1 = 0.5 m, ly1 = 0.005 m, h02 = 3 · 10−3 m,
lx2 = 0.25 m, ly2 = 0.005 m)
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Q4.VISC

HE8.ACOU HE20.ACOU

Q8.VISC

Figure E.4: Configurations for convergence tests of the layer elements

nx HE8.ACOU/Q4.VISC HE20.ACOU/Q8.VISC

Mode 1 analytical 1D: 104.915+0.911i
17 105.143+0.916i 104.915+0.911i
33 104.969+0.912i 104.910+0.910i
65 104.923+0.910i 104.906+0.910i
129 104.906+0.910i 104.897+0.909i

Mode 2 analytical 1D : 233.158+1.077i
17 235.248+1.112i 233.318+1.082i
33 233.676+1.087i 233.156+1.079i
65 233.272+1.081i 233.134+1.079i
129 233.156+1.081i 233.110+1.081i

Mode 3 analytical 1D : 337.734+2.320i
17 343.369+2.384i 338.388+2.348i
33 339.091+2.336i 337.694+2.320i
65 337.964+2.322i 337.564+2.317i
129 337.582+2.317i 337.401+2.314i

Mode 4 analytical 1D : 444.182+1.611i
17 460.199+1.706i 447.267+1.616i
33 448.181+1.631i 444.396+1.609i
65 445.158+1.612i 444.160+1.605i
129 444.381+1.604i 444.112+1.599i

Table E.5: Convergence for Q4.VISC/HE8.ACOU and
Q8.VISC/HE20.ACOU elements (lx1 = 0.5 m, ly1 = 0.005 m,
lz1 = 0.005 m,h02 = 3 · 10−3 m, lx2 = 0.25 m, ly2 = 0.005 m)
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E.1.3 Acousto-elasticity

Consider a rectangular simply supported plate backed by a thin gas layer.
The behaviour of the plate is decribed using the Kirchhoff equation:
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where vp is the velocity of the plate in the z-direction, Ep is Young’s modulus,
ρp is the density and νp is Poisson’s ratio of the plate material. Introducing
dimensionless quantities:
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(E.2)

The pressure distribution in the layer is described with the low reduced fre-
quency model. The acousto-elastic behaviour of the system is described by
the following set of equations:
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For a simply supported panel, the mode shapes are:

vp = Bqr sin
(

qπ

2

[
x

lx
+ 1

])
sin

(
rπ

2

[
y

ly
+ 1

])
q = 1, 2, · · · r = 1, 2, · · ·

p = Cqr sin
(

qπ

2

[
x

lx
+ 1

])
sin

(
rπ

2

[
y

ly
+ 1

])
(E.4)

Inserting these expressions finally gives the following set of equations:
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where the matrix elements are given by:
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The structural modes, the acoustic modes and the acousto-elastic modes are
obtained from:

structural modes : A11 = 0

acoustic modes : A22 = 0 (E.7)

acousto − elastic modes : A11A22 − A21A12 = 0

The eigenfrequencies were solved with a simple minimization procedure in
Matlab, setting the absolute value equal to zero. This proved to be a fast
and stable approach. The results are given in Tables E.6, E.7 and E.8

nx ny Q4.VISC

Mode 11 analytical: 468.990+12.070i
9 9 472.047+12.108i
17 17 469.753+12.079i
20 20 469.479+12.076i
33 33 469.181+12.072i

Mode 21 analytical: 745.366+15.119i
9 9 761.933+15.282i
17 17 749.487+15.160i
20 20 748.002+15.145i
33 33 746.395+15.129i

Mode 22 analytical: 944.909+16.977i
9 9 969.562+17.192i
17 17 951.046+17.030i
20 20 948.835+17.011i
33 33 946.442+16.990i

Table E.6: Convergence for Q4.VISC elements. (h0 = 1.5 · 10−3 m, lx =
0.25 m, ly = 0.25 m)
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nx ny Q4.VISC

Mode 11 analytical: 19.326
9 9 19.640
17 17 19.403
20 20 19.375
33 33 19.344

Mode 21 analytical: 48.317
9 9 51.405
17 17 49.054
20 20 48.785
33 33 48.496

Mode 22 analytical: 77.307
9 9 82.506
17 17 78.556
20 20 78.100
33 33 77.609

Table E.7: Convergence for Q4.ST elements. (lx = 0.25 m, ly = 0.25 m,
Ep = 70 · 109 N/m2, ρp = 2710 kg/m3, νp = 0.3, tp = 1 · 10−3 m)
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nx ny Q4.VISC

Mode 11 analytical: 10.711+1.094i
9 9 10.937+1.096i
17 17 10.766+1.094i
20 20 10.746+1.094i

Mode 21 analytical: 35.604+1.150i
9 9 38.285+1.157i
17 17 36.244+1.152i
20 20 36.011+1.151i

Mode 22 analytical: 62.851+1.096i
9 9 67.679+1.093i
17 17 64.101+1.095i
20 20 63.588+1.095i

Table E.8: Convergence for Q4.VIS, INT.8 and Q4.ST elements. (h0 =
1.5 · 10−3 m, lx = 0.25 m, ly = 0.25 m, Ep = 70 · 109 N/m2, ρp = 2710 kg/m3,
νp = 0.3, tp = 1 · 10−3 m)
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E.2 Tube elements

E.2.1 Eigenfrequency calculations

Eigenfrequency calculations were carried out for various configurations. In
all cases both ends of the (composed) tube were terminated by a p = 0 con-
dition. The results for a line of T2.VISC elements and a line of T3.VISC
elements are given in Table E.9 and Table E.10. The results for a line, com-
posed of two different segments of T2.VISC elements or T3.VISC elements
with different cross-sectional areas are given in Tables E.11, E.12 and E.13.
Finally, the viscothermal tube elements were coupled to standard acoustic
volume elements. The results for these calculations are given in Table E.14
and Table E.15

The analytical solution can easily be obtained for these 1-dimensional
problems and will not be discussed in detail here. In the case of different
segments, continuity of pressure and conservation of mass on the interface
is assumed. Please note that in the test cases with the standard acoustic
volume elements, the solution does not have to converge fully to the analyt-
ical solution, since the finite elements are based on a 3-dimensional volume
approach. For a small cross section of the tube, however, the differences are
small.

The Tables show good agreement between the analytical and numerical
results. It can be concluded that the viscothermal elements give good results.
Furthermore, viscothermal elements with different cross sections can easily
be coupled. Finally, the viscothermal elements can be coupled to standard
acoustic volume elements.
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T2.VISC T3.VISC

Figure E.5: Configurations for convergence tests of the tube elements

nx T2.VISC T3.VISC

Mode 1 analytical: 155.947+14.126i
17 156.208+14.138i 155.950+14.127i
33 156.012+14.129i 155.947+14.126i
65 155.963+14.127i 155.947+14.126i
129 155.951+14.127i 155.947+14.126i

Mode 2 analytical: 320.095+19.953i
17 322.219+20.017i 320.180+19.956i
33 320.625+19.969i 320.101+19.953i
65 320.227+19.957i 320.096+19.953i
129 320.128+19.954i 320.095+19.953i

Mode 3 analytical: 485.609+24.428i
17 492.834+ 24.604i 486.231+24.443i
33 487.410+ 24.472i 485.650+24.429i
65 486.059+ 24.439i 485.612+24.428i
129 485.722+ 24.431i 485.610+24.428i

Mode 4 analytical: 651.829+28.202i
17 669.051+28.564i 654.329+28.255i
33 656.115+28.292i 652.000+28.206i
65 652.899+28.225i 651.840+28.202i
129 652.096+28.208i 651.830+28.202i

Table E.9: Convergence for T2.VISC and T3.VISC elements (circular cross
section: R = 1.5 · 10−3 m, lx = 0.5 m)



E.2 Tube elements 197

T2.VISC T3.VISC

Figure E.6: Configurations for convergence tests of the tube elements

nx T2.VISC T3.VISC

Mode 1 analytical: 157.689+12.190i
17 157.952+12.200i 157.692+12.190i
33 157.754+12.192i 157.689+12.190i
65 157.705+12.190i 157.689+12.190i
129 157.693+12.190i 157.689+12.190i

Mode 2 analytical: 322.573+17.292i
17 324.706+17.348i 322.658+17.294i
33 323.105+17.306i 322.579+17.292i
65 322.706+17.296i 322.574+17.292i
129 322.606+17.293i 322.574+17.292i

Mode 3 analytical: 488.650+21.209i
17 495.897+21.364i 489.274+21.223i
33 490.457+21.248i 488.691+21.210i
65 489.101+21.219i 488.653+21.209i
129 488.763+21.212i 488.651+21.209i

Mode 4 analytical: 655.343+24.512i
17 672.610+24.829i 657.850+24.559i
33 659.641+24.592i 655.515+24.516i
65 656.416+24.532i 655.355+24.513i
129 655.611+24.517i 655.344+24.512i

Table E.10: Convergence for T2.VISC and T3.VISC elements (rectangular
cross section: lx = 0.5 m, ly = 1.5 · 10−3 m, lz = 2 · 10−3 m)
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T2.VISC (area 1) T2.VISC (area 2) T3.VISC (area 2)T3.VISC (area 1)

Figure E.7: Configurations for convergence tests of the tube elements

nx T2.VISC T3.VISC

Mode 1 analytical: 125.677+9.722i
17 126.104+9.703i 125.685+9.721i
33 125.784+9.717i 125.678+9.722i
65 125.704+9.720i 125.678+9.722i
129 125.684+9.721i 125.677+9.722i

Mode 2 analytical: 192.606+12.081i
17 193.722+12.132i 192.677+12.082i
33 192.886+12.093i 192.611+12.081i
65 192.676+12.084i 192.606+12.081i
129 192.624+12.081i 192.606+12.081i

Mode 3 analytical: 321.198+18.892i
17 329.056+19.076i 322.331+18.902i
33 323.158+18.938i 321.275+18.893i
65 321.688+18.903i 321.203+18.892i
129 321.321+18.895i 321.198+18.892i

Mode 4 analytical: 457.004+18.900i
17 473.486+17.859i 460.360+18.527i
33 461.316+18.637i 457.281+18.868i
65 458.094+18.834i 457.023+18.898i
129 457.278+18.883i 457.006+18.900i

Table E.11: Convergence for T2.VISC and T3.VISC elements (circular cross
sections: R1 = 1.5 · 10−3 m, lx1 = 0.5 m, R2 = 3 · 10−3 m, lx2 = 0.25 m)
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T2.VISC (area 1) T2.VISC (area 2) T3.VISC (area 2)T3.VISC (area 1)

Figure E.8: Configurations for convergence tests of the tube elements

nx T2.VISC T3.VISC

Mode 1 analytical: 126.851+8.375i
17 127.275+8.360i 126.858+8.375i
33 126.957+8.372i 126.851+8.375i
65 126.877+8.374i 126.851+8.375i
129 126.857+8.375i 126.851+8.375i

Mode 2 analytical: 194.131+10.476i
17 195.253+10.522i 194.202+10.478i
33 194.412+10.488i 194.135+10.477i
65 194.201+10.480i 194.131+10.477i
129 194.148+10.477i 194.131+10.477i

Mode 3 analytical: 323.539+16.371i
17 331.419+16.533i 324.673+16.381i
33 325.505+16.412i 323.617+16.373i
65 324.030+16.382i 323.544+16.372i
129 323.662+16.374i 323.540+16.372i

Mode 4 analytical: 459.263+16.341i
17 475.618+15.456i 462.575+16.028i
33 463.541+16.120i 459.536+16.319i
65 460.344+16.289i 459.281+16.344i
129 459.534+16.331i 459.264+16.345i

Table E.12: Convergence for T2.VISC and T3.VISC elements (rectangular
cross sections: lx1 = 0.5 m, ly1 = 1.5 · 10−3 m, lz1 = 2 · 10−3 m, lx2 = 0.25 m,
ly2 = 3 · 10−3 m, lz2 = 4 · 10−3 m)
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T2.VISC (area 1) T2.VISC (area 2) T3.VISC (area 2)T3.VISC (area 1)

Figure E.9: Configurations for convergence tests of the tube elements

nx T2.VISC T3.VISC

Mode 1 analytical: 133.032+9.686i
17 133.523+9.650i 133.042+9.684i
33 133.155+9.677i 133.033+9.686i
65 133.063+9.684i 133.032+9.686i
129 133.040+9.685i 133.032+9.686i

Mode 2 analytical: 186.311+11.015i
17 187.275+11.088i 186.367+11.018i
33 186.553+11.034i 186.315+11.016i
65 186.372+11.020i 186.311+11.016i
129 186.326+11.017i 186.311+11.016i

Mode 3 analytical: 320.860+19.218i
17 328.983+19.426i 322.036+19.237i
33 322.885+19.270i 320.940+19.220i
65 321.366+19.231i 320.865+19.219i
129 320.986+19.222i 320.860+19.218i

Mode 4 analytical: 464.901+18.728i
17 481.973+16.825i 468.645+18.051i
33 469.474+18.258i 465.213+18.677i
65 466.062+18.615i 464.921+18.728i
129 465.192+18.702i 464.902+18.731i

Table E.13: Convergence for T2.VISC and T3.VISC elements (circular and
rectangular cross sections: R = 1.5 · 10−3 m, lx1 = 0.5 m, lx2 = 0.25 m,
ly2 = 3 · 10−3 m, lz2 = 4 · 10−3 m)



E.2 Tube elements 201

HE8.ACOU

T2.VISC T3.VISC

HE20.ACOU

Figure E.10: Configurations for convergence tests of the tube elements

nx HE8.ACOU/T2.VISC HE20.ACOU/T3.VISC

Mode 1 analytical 1D: 95.877+1.145i
17 96.060+1.150i 95.876+1.144i
33 95.920+1.146i 95.872+1.144i
65 95.881+1.144i 95.866+1.143i
129 95.866+1.142i 95.855+1.140i

Mode 2 analytical 1D: 241.578+1.533i
17 244.142+1.616i 241.779+1.544i
33 242.210+1.556i 241.570+1.538i
65 241.712+1.544i 241.536+1.542i
129 241.564+1.545i 241.493+1.550i

Mode 3 analytical 1D: 333.617+6.465i
17 337.944+6.552i 333.959+6.504i
33 334.574+6.484i 333.425+6.457i
65 333.608+6.458i 333.177+6.444i
129 333.134+6.440i 332.759+6.424i

Mode 4 analytical 1D: 434.907+1.962i
17 451.333+2.007i 438.203+1.941i
33 438.990+1.965i 435.127+1.954i
65 435.902+1.953i 434.879+1.945i
129 435.109+1.941i 434.824+1.929i

Table E.14: Convergence for HE8.ACOU/T2.VISC and
HE20.ACOU/T3.VISC elements (rectangular and circular cross sec-
tions: lx1 = 0.5 m, ly1 = 2.5 · 10−3 m, lz1 = 2.5 · 10−3 m, ny1 = 3, nz1 = 3
(HE8.AOU), ny1 = 5, nz1 = 5 (HE20.ACOU), R2 = 3 ·10−3 m, lx2 = 0.25 m)
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HE8.ACOU

T2.VISC T3.VISC

HE20.ACOU

Figure E.11: Configurations for convergence tests of the tube elements

nx HE8.ACOU/T2.VISC HE20.ACOU/T3.VISC

Mode 1 analytical 1D: 101.489+1.386i
17 101.697+1.393i 101.485+1.385i
33 101.534+1.386i 101.477+1.384i
65 101.486+1.384i 101.464+1.381i
129 101.461+1.380i 101.439+1.377i

Mode 2 analytical 1D: 235.483+1.719i
17 237.689+1.786i 235.641+1.730i
33 236.015+1.739i 235.454+1.726i
65 235.570+1.731i 235.402+1.731i
129 235.416+1.735i 235.324+1.742i

Mode 3 analytical 1D: 335.544+4.516i
17 340.692+4.618i 335.998+4.560i
33 336.661+4.540i 335.280+4.511i
65 335.483+4.512i 334.941+4.498i
129 334.870+4.495i 334.369+4.479i

Mode 4 analytical 1D: 440.339+2.429i
17 456.434+2.545i 443.471+2.424i
33 444.335+2.449i 440.525+2.418i
65 441.283+2.419i 440.258+2.402i
129 440.470+2.396i 440.153+2.374i

Table E.15: Convergence for HE8.ACOU/T2.VISC and
HE20.ACOU/T3.VISC elements (rectangular cross sections: lx1 = 0.5 m,
ly1 = 0.0025 m, lz1 = 0.0025 m, ny1 = 3, ny1 = 3 (HE8.ACOU), nz1 = 5,
nz1 = 5 (HE20.ACOU), ly2 = 3 · 10−3 m, lz2 = 4 · 10−3 m, lx2 = 0.25 m)


