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We consider peeling of an elastic sheet away from an elastic substrate through propaga-
tion of a fluid-filled crack along the interface between the two. The peeling is driven by
a bending moment applied to the sheet and is resisted by viscous flow towards the crack
tip and by the toughness of any bonding between the sheet and the substrate. Travelling-
wave solutions are determined using lubrication theory coupled to the full equations of
elasticity and fracture. The propagation speed v scales like M3/µĒ2d5 = Bdκ3/144µ,
where d is the sheet’s thickness, B = Ēd3/12 its stiffness, Ē = E/(1 − ν2) its plane-
strain modulus, µ the fluid viscosity, M the applied bending moment and κ = M/B
the sheet’s curvature due to bending; and the pre-factor depends on the dimensionless
toughness. If the toughness is small then there is a region of dry shear failure ahead
of the fluid-filled region. The expressions for the propagation speed have been used to
derive new similarity solutions for the spread of an axisymmetric fluid-filled blister in
a variety of regimes: constant-flux injection resisted by elastohydrodynamics in the tip
leads to spread proportional to t4/13, t4/17 and t7/19 for peeling-by-bending, gravitational
spreading, and peeling-by-pulling, respectively.

1. Introduction

Viscous intrusion of fluid beneath an elastic sheet is controlled by the dynamics at the
front, where the sheet is peeled away from the underlying substrate. Such coupling of
the dynamics of viscous flow and sheet deformation has many and diverse applications.
These include the geological formation and growth of laccoliths by magmatic intrusion at
shallow depths (e.g. Michaut 2011; Bunger & Cruden 2011), the dilation of elastic-walled
Hele-Shaw cells (Pihler-Puzović et al. 2012, 2015; Lister et al. 2013; Ducloué et al. 2017),
cell adhesion and detachment (Hodges & Jensen 2002; Leong & Chiam 2010), peeling of
adhesive tape (McEwan & Taylor 1966), growth of liquid blisters (Chopin et al. 2008;
Peng et al. 2015), airway reopening (Jensen et al. 2002; Grotberg & Jensen 2004; Heil
& Hazel 2011) and the manufacture of flexible electronics and microelectromechanical
systems (Hosoi & Mahadevan 2004; Rogers et al. 2010; Gomez et al. 2017).

The simplest model for flow in a thin fluid layer of viscosity µ and thickness h(x, y, t)
beneath a stiff elastic sheet of uniform thickness d is obtained by substituting the pressure
p = B∇4h produced by bending stresses in the sheet into the Reynolds lubrication
equation (e.g. Leal 1992) to obtain

∂h

∂t
=

B

12µ
∇ · (h3∇∇4h), (1.1)
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where B = Ed3/12(1− ν2) is the bending stiffness of the sheet, E and ν are its Young’s
modulus and Poisson’s ratio, and ∇ is the gradient operator in the x, y-plane.

The sixth-order equation (1.1) does not support solutions with a forwards propagating
front at which h = 0 (Flitton & King 2004; Lister et al. 2013; Hewitt et al. 2015). In
that respect, it is like the fourth-order thin-film equation for lubrication flows driven
by a capillary pressure p = −σ∇2h, with surface tension σ, for which the so-called
contact-line problem is often resolved by introducing a slip length or a prewetting film
to model processes near the apparent contact line and regularize the equation (Hocking
1983; Hervet & de Gennes 1984). For a capillary-driven flow, the resulting contact-line
speed depends only very weakly (logarithmically) on the details of this regularization
(Bonn et al. 2009). However, for flow driven by elastic bending stresses, as described
in the interior by (1.1), the speed of any propagating front is controlled by the peeling
processes at the front, and the interior solution is then quasistatic with ∇p = 0 at leading
order.
Lister et al. (2013) considered the case where there is already a prewetting fluid film

of some small thickness h0 between the elastic sheet and the underlying substrate, as in
recent experiments on blister growth in a pre-filled elastic-walled Hele-Shaw cell (Pihler-
Puzović et al. 2012, 2015; Peng et al. 2015; Ducloué et al. 2017). A local travelling-
wave analysis near the front shows that the edge of the blister spreads at a speed v =
(B2h0κ

5)1/2/µ, where the curvature κ = h′′ at the edge of the blister is determined by
the quasistatic interior solution. Hewitt et al. (2015) considered an alternative situation
where a precursor phase of low-viscosity vapour at some fixed pressure −p0 occupies
the tip of the propagating front (see also Ball & Neufeld 2018; Wang & Detournay
2018). This description, known as ‘fluid lag’ in models of fluid-driven fracture (e.g. Lister
1990; Garagash & Detournay 2000; Detournay 2016), is motivated by the possibility of
exsolution or evaporation of gasses from the main fluid due to the low relative pressures
in the peeling tip. A local travelling-wave analysis shows that the frontal speed is given
by v = (B3κ7/p0)

1/2/µ, where the curvature κ is again determined by matching to the
interior solution.

In this paper we show that there is no need to invoke a prewetting film or precursor
phase to find physical boundary conditions for propagating solutions to (1.1). Instead,
we recognise that (1.1) was derived from a thin-sheet approximation to the equations
of elasticity, based on the overall x and y length scales being much larger than d. This
approximation breaks down within an O(d) distance from any front, and in this region the
full equations of elasticity should be used instead to determine the stress and deformation
fields. The full equations in this region lead to a local crack-propagation problem which
is driven by the bending moment applied from the interior solution and is resisted by the
combined effects of the viscous flow into the crack tip and the fracture toughness of any
bonding between the sheet and the substrate. We show that when viscosity is significant
the rate of propagation is given by v = Bκ3dF/µ, where F (kIc , kIIc) is a function of the
dimensionless fracture toughnesses, kIc and kIIc , which may be zero for the case of no
bonding.

If the viscous pressures are not significant, as in a dry crack, the problem reduces to
one in fracture mechanics, for which the propagation criterion is simply that the stress
intensity at the crack tip should exceed the fracture toughness. Motivated by obvious
applications to the processes of delamination and spalling, Zlatin & Khrapkov (1986),
Thouless et al. (1987) and Suo & Hutchinson (1990) calculated the stress intensities at
the tip of semi-infinite or finite cracks running parallel to the free surface of an elastic
solid in terms of the remote loading. Dyskin et al. (2000) and Bunger & Detournay (2005)
showed how Zlatin & Khrapkov’s stress intensities can be used in conjunction with beam
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Figure 1. A sketch of the geometry of the problem. A bending moment M peels an elastic sheet
of thickness d away from an elastic solid. The relative displacement of the sheet from the solid
is g in the x direction and h in the y direction, and the gap of width h is filled with viscous
fluid. On the right is a close-up of the crack tip.

or plate theory to describe toughness-controlled growth of an inviscid pressurized blister.
A key result is that the loading of the crack tip is dominated by the bending moment.
Zhang et al. (2002, 2005) calculated solutions for fluid-driven propagation of a penny-

shaped hydraulic fracture beneath a surface using the full elasticity equations for the
whole problem to avoid making any assumptions about the depth-to-radius ratio. The
problem considered here can be regarded as a near-tip asymptotic limit of their work,
which is particularly suited to shallow viscously-controlled fracture such as the laccolith
problem. Our aim is to determine simple expressions for the rate of propagation at the
tip that can then be used as boundary conditions for a general interior problem without
further extensive computations.
We begin in §2 by formulating a travelling-wave problem to describe propagation of

a fluid-filled crack, and then describe its numerical solutions in §3. Initially, we assume
that the crack propagates with fluid filling the crack tip, but discover that if the bond
between the sheet and the substrate is sufficiently weak, then there must be a region
of dry shear failure ahead of the fluid front. We extend the calculations to describe this
situation in §4. Having obtained a full set of solutions for the propagation speed of the
crack in terms of the applied bending moment, viscous resistance and toughness, we
illustrate their application in §5 to determine straightforwardly the rate of spread of an
axisymmetric fluid-filled blister in a number of different regimes.

2. Formulation of the problem

2.1. Physical and mathematical description

Consider a semi-infinite elastic solid, from which an elastic sheet of uniform thickness
d is being peeled off on one side by application of a constant bending moment M (see
figure 1). The thin gap, or crack, on the peeling side is filled with incompressible fluid of
viscosity µ. (The additional effects of fluid lag could also be included in the model, but
are omitted here for simplicity.)
We assume that the sheet and the solid are initially bonded together at their interface,

and that the strength of the bond can be described by fracture toughnesses KIc and KIIc

for tensile and shear failure respectively (mode I and mode II fracture). We assume that
the strength of the interface is less than the strength of either elastic solid so that the crack
produced by the applied bending moment propagates along the interface. Such interfacial
planes of weakness arise naturally in laminated materials, between sedimentary strata in
geology and in analogue experiments (e.g. Suo & Hutchinson 1990; Pollard & Johnson
1973; Kavanagh et al. 2017). To reduce the number of dimensionless parameters for
simplicity, we assume that the sheet has the same elastic properties as the solid, though
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our calculations could easily be generalized to dissimilar materials using the techniques
described in Suo & Hutchinson (1990).
We take axes as shown in figure 1, with the crack aligned along the x-axis and the

crack tip instantaneously at the origin. Let h(x) and g(x) be the normal and tangential
elastic displacements of the crack walls relative to each other. These displacements can
each be represented by a distribution of dislocations along the crack, of densities h′(x)
and g′(x) respectively, where primes denote d/dx. The dislocation densities can be shown
to require opposing tractions on the crack faces given by

[
σyy(x)
σxy(x)

]

= −Ē
∫

∞

0

K

(
x̃− x

d

)[
h′(x̃)
g′(x̃)

]
dx̃

d
, (2.1)

(e.g. Head 1953; Thouless et al. 1987; Yang & Li 1997), where Ē = E/(1 − ν2) is the
modulus for plane strain, and

K (ξ) = − 4

π





4−3ξ2

ξ(ξ2+4)3
3ξ2−4

2(ξ2+4)3

4−3ξ2

2(ξ2+4)3
ξ4+ξ2+4
ξ(ξ2+4)3



 . (2.2)

For the fluid-loaded crack of interest here, we have σyy = −p, where p(x) is the fluid
pressure, and σxy = 0. (The viscous shear stresses due to flow have the wrong symmetry
to contribute to the relative displacements, and are also much smaller than the fluid
pressures.) Thus (2.1) can be regarded as an integral equation relating the crack shape
to the fluid pressure.
We use lubrication theory to describe the viscous flow in the thin gap. Hence the fluid

pressure gradients drive a flux

q = − h3

12µ

dp

dx
. (2.3)

We look for a travelling-wave solution of the form h(x+ vt), propagating leftwards with
constant speed v. For such a solution, we deduce from mass conservation that q = −vh
and hence

dp

dx
=

12µv

h2
. (2.4)

The coupled equations (2.4) and (2.1) require boundary conditions for propagation at
the crack tip and for prescribing the applied bending moment.
The stress intensities KI and KII at the crack tip can be determined from the

asymptotic behaviour (Rice 1968)

h(x) ∼ KI

Ē

(
32x

π

)1/2

, g(x) ∼ KII

Ē

(
32x

π

)1/2

as x→ 0+ (2.5)

of the displacements near the tip. Assuming linear elastic fracture mechanics, the condi-
tion for crack propagation is that the stress intensity is equal to the fracture toughness
(Kanninen & Popelar 1985). We assume for now that the crack is propagating as a simple
mode-I (tensile) fracture, which requires KI = KIc .

For x ≫ d, the displacement of the sheet can be described asymptotically by beam
theory (Dyskin et al. 2000), which gives

p(x) =
Ēd3

12
h′′′′ and m(x) =

Ēd3

12
h′′, (2.6)

wherem(x) is the local bending moment. We are considering peeling driven by an applied
remote bending moment M , and so m(x) → M as x → ∞, which gives a boundary
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condition on h′′. Hence the gap h between the sheet and the solid widens rapidly to the
right like x2 and, from (2.4), the pressure gradient decreases rapidly like x−4, confirming
that the viscous resistance is dominated by the O(d) neighbourhood of the tip. Since
we are considering peeling-by-bending here rather than peeling-by-pulling (Lister et al.

2013), we assume that there isn’t any remote tension also being applied to the sheet (or
that it is much smaller thanM/d and thus negligible). Nevertheless, the upward curvature
h′′ of the sheet implies that its lower surface is in extension with strain dh′′/2 (and its
upper surface is in compression with strain −dh′′/2). The remote loading conditions are
thus equivalent to

Ēd3

12
h′′ ∼M, g′ ∼ d

2
h′′ as x→ ∞ (2.7a, b)

2.2. Nondimensionalization

We define dimensionless variables as follows:

x = d ξ, h(x) =
M

Ēd
H(ξ), g(x) =

M

Ēd
G(ξ) , (2.8)

p =
M

d2
P (ξ), KI =Md−3/2kI , KII =Md−3/2kII , V =

µĒ2d5v

M3
. (2.9)

With these scalings, the equations become
[
P
0

]

=

∫
∞

0

K (ξ̃ − ξ)

[
H ′(ξ̃)

G′(ξ̃)

]

dξ̃ (2.10)

H2P ′ = 12V or P (ξ) = −12V

∫
∞

ξ

dξ̃

H(ξ̃)2
(2.11a, b)

lim
ξ→∞

H ′′ = 12, lim
ξ→∞

G′ = 6 (2.12)

kI = χ lim
ξ→0

√

ξH ′, kII = χ lim
ξ→0

√

ξG′ , (2.13)

where χ = (π/8)1/2. (We chose not to absorb χ into our definitions of kI and kII in
order to maintain consistency with Zlatin & Khrapkov (1986) and Thouless et al. (1987);
Detournay and co-workers define K ′

ic = 2Kic/χ.)

2.3. Numerical solution

It was found convenient to solve (2.10)–(2.12) numerically for a given value of V , and
then infer the corresponding values of kI (V ) and kII (V ) from (2.13). The first of these
relationships could then be inverted, with kI = kIc , to give the speed V in terms of the
toughness kIc , which is the natural physical interpretation.
We discretized the equations by taking n + 1 points ξ0 = 0 < ξ1 < . . . < ξn at which

to represent H ′ and G′. Typically, n ≈ 500 and ξn ≈ 800. The choice of points and of
the interpolation of H ′ and G′ between the points both took account of the square-root
singularities at the tip. (The details are described in appendix A.) Given the 2(n + 1)
coefficients of the interpolating functions, the integrals in (2.10) and (2.11b) can all be
done analytically. We obtain n equations from equating the two expressions for P at n
midpoints ξi+1/2 ∈ [ξi, ξi+1], n equations from the condition σxy = 0 at those midpoints,
and two equations from the limiting behaviour (2.12). This system of equations was
solved by Newton’s method.
In order to apply the limits (2.12) to the information in ξ 6 ξn, we develop an
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asymptotic expansion using the beam approximation (2.6) for ξ ≫ 1. In the dimensionless
variables, P = H ′′′′/12, which we combine with (2.11a) to obtain

H ′′′′′ = 144V/H2 . (2.14)

But we know from (2.12) that H(ξ) = 6ξ2 + o(ξ2), as ξ → ∞, and so we can solve (2.14)
iteratively to find

1

12
H ′′(ξ) = 1− V

18ξ
− V 2

182
ln ξ

ξ2
+O(1/ξ2) , and G′ = H ′′/2 (2.15)

from (2.7b). These conditions can be used at ξn in place of (2.12). (The O(1/ξ2) correction
in (2.15) cannot be determined solely from the far-field behaviour.)

3. Results

For V = 0 the problem is static, there are no viscous pressures and (2.10)–(2.12)
simply describe a semi-infinite crack beneath a free surface that is loaded by a remote
bending moment. This problem was solved by Zlatin & Khrapkov (1986), who found
that (kI , kII ) = (1.932, 1.506), which agrees with, and provides a check on, our numerical
results.
Using the case V = 0 as a starting solution, we increased V , iterated the Newton scheme

to convergence, and then repeated to obtain a sequence of solutions for increasing values
of V . Two typical results for H ′, G′, and P with V = 0.1 and 0.65 are shown in figure 2,
along with the expected asymptotic behaviour for ξ ≪ 1 and ξ ≫ 1. (The behaviour of P
follows from P ′ = 12V/H2 and the behaviour of H.) We note that the larger value of V
requires a larger negative pressure in ξ ≪ 1 to suck fluid into the opening gap; the larger
negative pressure in the tip reduces the values of H ′ by pulling the crack walls together.
In particular, it reduces the stress intensity kI = χ limξ→0 ξ

1/2H ′(ξ). Alternatively put,
some of the applied remote bending moment is supported by the negative fluid pressures,
so that less stress is applied to the tip.

The variation of kI with V is shown in figure 3, confirming a monotonic decrease of
kI as the viscous pressure drop in the tip increases. It is perhaps not surprising that as
kI → 0 (negligible toughness) the speed V tends to a finite limit V0 ≈ 0.678 determined
entirely by the fluid-mechanical resistance to propagation. It is initially more surprising
that the approach to this limit is singular, with kI behaving locally like (V0 − V )0.316.
Some insight can be obtained by considering the behaviour ofH ′ near the tip as V → V0

(or kI → 0), as shown in figure 4. While H ′ ∼ (kI /χ)ξ
−1/2 as ξ → 0, as kI → 0 more and

more of the near-tip solution looks like H ′ ∼ Aξ−1/3 + O(ξ−4/3) for A ≈ 4.2, with the
kI ξ

−1/2 behaviour confined to a boundary layer near ξ = 0. This sort of boundary-layer
structure was discovered and analysed by Garagash & Detournay (2005) in the context
of finite or semi-infinite cracks propagating through an infinite elastic solid with a small
dimensionless fracture toughness. We can establish the connection as follows.

For a fluid-driven crack with kI = 0 it should be anticipated that the crack-tip opening
and pressure are governed by a viscous–elastic balance with H ∝ ξ2/3 and P ∝ ξ−1/3 as
ξ → 0 (Spence & Sharp 1985; Lister 1990; Desroches et al. 1994). Crucially, this balance
is locally determined in the tip, and is independent of more-remote loading or boundary
conditions. For ξ ≪ 1, the elasticity kernel (2.2) and integral (2.10) reduce to the much
simplified form

P (ξ) =
1

4π

∫
∞

0

H ′(ξ̃)

ξ̃ − ξ
dξ̃, (3.1)
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Figure 2. Numerical solutions for the dislocation densities H ′ and G′ and the pressure P for
speeds V = 0.1 and 0.65 (stress intensities kI = 1.83 and 0.69). The second row of figures uses

logarithmic scales to show the expected asymptotic behaviour (solid lines): H ′ ∼ (kI /χ)ξ
−1/2,

G′ ∼ (kII /χ)ξ
−1/2, P ∼ (3χ2V/k2

I ) ln ξ as ξ → 0, where χ = (π/8)1/2; and H ′ ∼ 12ξ, G′ → 6,
P → 0 as ξ → ∞.
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Figure 3. The mode-I stress intensity kI as a function of the speed V (filled symbols). Also
shown for discussion in §4 is the mode-II stress intensity kII (open symbols).

which is the same as that for a semi-infinite crack in an infinite solid. For the case kI = 0,
(3.1) and (2.11) have leading-order solutions

H0 = 6(3V 2
0 )

1/6ξ2/3 + o(ξ2/3), P0 = −
(
V0
3ξ

)1/3

+ o(ξ−1/3) (3.2)

With V0 = 0.678, (3.2) gives H ′ ∼ 4.22ξ−1/3 in agreement with figure 4.
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Figure 4. The near-tip behaviour of H ′ as kI decreases towards 0. The ξ−1/2 behaviour is
increasingly confined to a very thin region near ξ = 0, while more and more of the solution tends
towards H ′ ∼ ξ−1/3. We did not calculate H ′ directly for kI = 0, but show an extrapolation to
it.
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Figure 5. The numerical values of ku
I are plotted as points against the values of V . A linear

fit from the two smallest kI values is plotted as a solid line, a quadratic fit from the three
smallest kI values is plotted as a dashed line. They are almost indistinguishable at this scale.
The difference between the two fits at kI = 0 is only ≈ 0.002%, which provides an estimate of
the error in extrapolating to calculate V0 (not accounting for the discretization error due to n).

However, for kI > 0 (3.2) does not satisfy the tip condition (2.13). Garagash &
Detournay (2005) showed how (2.13) can be satisfied for 0 < kI ≪ 1 by introducing
a so-called ‘LEFM’ boundary-layer on the small scale ξ = O(k6

I
), where H = O(k4

I
),

and matching this inner solution to (3.2) as the leading-order outer solution. They also
found that the boundary-layer leads to O(k4−6s

I
) corrections to the outer solution, where

s ≈ 0.139 comes from solving a transcendental equation and u ≡ 4 − 6s ≈ 3.168. In
appendix B, we show how this correction term can be used to calculate an asymptotic
prediction V ≈ V0 − 0.0950ku

I
as kI → 0. Figure 5 shows that there is remarkably good

agreement with this linear prediction, even for relatively large values of kI .

4. Dry cracking ahead of the fluid front

Thus far, we have been assuming for simplicity that the crack propagates as a sim-
ple mode-I (tensile) fracture, with speed V determined by the dimensionless criterion
kI (V ) = kIc for tensile failure. However, owing to the asymmetry of the geometry about
y = 0, both the remote bending moment and the fluid-pressure loading result in some
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mode-II (shear) loading of the crack tip and not just in tensile loading. The failure
criterion for such mixed-mode loading of an interfacial crack is found experimentally to
be fairly well represented by the elliptical form

k2
I
+ λk2

II
= k2

Ic
, (4.1)

where kI and kII are the stress intensities (2.13) at the tip, λ1/2 = KIc/KIIc = kIc/kIIc
is the ratio of the fracture toughnesses for pure tensile loading and pure shear loading,
and λ is typically 0.1–0.2 (Jensen et al. 1990; Yuuki et al. 1994).

As V increases from 0 to the limiting speed 0.678 for the solutions calculated in §3,
kI decreases monotonically from the static value 1.932 (Zlatin & Khrapkov 1986) down
to 0 (see figure 3), and kII decreases slowly and monotonically from the static value
1.506 to about 1.385. Provided 1.3852λ < k2

Ic
< 1.9322 + 1.5062λ, there is thus a unique

value of V and solution from §3 that satisfies the failure criterion (4.1). However, if
kIIc = kIcλ

−1/2 < 1.385 even the fastest solution from §3 has kII > kIIc (and kI = 0);
the crack tip is under greater shear stress than it can withstand, and we would expect
the crack to propagate faster as a result. We infer that shear failure at the crack tip
must allow it to outrun the fluid front, such that there is a region of dry shear between
the crack tip and the fluid front. (This phenomenon should be distinguished from the
concept of ‘fluid lag’, which is caused by vapour in a low-pressure tip rather than dry
shear failure.) We now analyse this possibility.

4.1. Equations

Suppose the crack tip is at ξ = −L and the fluid front is at ξ = 0 in the frame
of a travelling-wave solution propagating to the left. Along the dry part of the crack,
−L < ξ < 0, the crack walls are in contact and so the normal displacement is zero,
H(ξ) = H ′(ξ) = 0. We assume here, for simplicity, that friction on the crack walls is
negligible and so the tangential displacement G(ξ) is such that the shear stress is zero,
σxy = 0. (Future work might explore the effects of different friction laws.) The elastic
equation (2.10) is thus unaltered except for replacing the lower limit in the integral by
−L. The lubrication equation (2.11) and far-field conditions (2.12) are likewise unaltered.

Now let

kI ≡ χ lim
ξ→−L

√

ξ + LH ′(ξ) , kII ≡ χ lim
ξ→−L

√

ξ + LG′(ξ) , kf
I
≡ χ lim

ξ→0

√

ξ H ′(ξ) ,

(4.2)
where χ = (π/8)1/2, so that kI and kII denote the usual stress intensities for a crack tip
at ξ = −L. Here H ′ = 0 in the dry part ξ < 0, and so kI = 0 follows automatically. The
criterion for crack-tip propagation at ξ = −L is thus kII = kIIc corresponding to simple
shear failure. The third stress intensity kf

I
denotes the strength of the singularity at ξ = 0

that would, in general, result from solving the elastic problem with P (ξ) prescribed in
ξ > 0 and H = 0 prescribed in ξ < 0. Here, however, the solid had already fractured at
ξ = 0 and has no strength to support a nonzero stress intensity. Hence the location and
speed of the fluid front must be such that kf

I
= 0.

The physical boundary conditions at the fluid front and the crack tip are thus kf
I
= 0

and kII = kIIc , and these two conditions determine the dry length L and speed V of the
solution. In practice, it is more convenient numerically to prescribe values of L and V ,
solve for the geometry to find the values of kf

I
(V, L) and kII (V, L), and then invert the

first relationship to impose the physical condition kf
I
= 0. Further details are given in

appendix A.3.
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Figure 6. Values of the stress intensities kf
I
at ξ = 0 and kII at ξ = −L as functions of the dry

crack length L ahead of the fluid front and the speed V of propagation. The desired physical
solutions are those with kf

I
= 0, which then implies a relationship between L and V .
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Figure 7. The relationships between speed V0, dry length L and stress intensity kII for solutions
with kf

I
= 0. These give a unique solution with kf

I
= 0 and kII = kIIc for 0 6 kIIc 6 1.385.

Negative values of kII < 0 (hollow squares) do not correspond to a physically attainable solution.

4.2. Results

In figure 6 we show the values of kf
I
and kII for varying L at fixed V and for varying

V at fixed L. The most significant observations are: (i) Increasing the length L of the
dry region relieves the shear loading of the crack tip; the stress intensity kII decreases
monotonically from the values 1.506–1.385 obtained for L = 0 down to zero for L ≈ 2.7,
and we can thus find solutions with kII = kIIc . (ii) Increasing the speed V decreases the

(unphysical) tensile stress intensity kf
I
at the fluid front, with kf

I
approaching zero (the

desired value for an already-fractured solid) in the same power-law way as seen previously
in figure 3 and analysed in appendix B.
For fixed L we extrapolate these results to find where kf

I
= 0 at some speed V0(L)

with a corresponding stress intensity kII (L). The relationships between V0, L and kII
corresponding to the solutions with kf

I
= 0 are shown in figure 7. As hoped, we obtain

a unique solution kII = kIIc for each value of kIIc in the range 0–1.385 not covered by
the solutions of §3. As might be expected, both L and V0 increase as the toughness of
the solid decreases, and reach finite limits as kIIc → 0. (The solutions with kII < 0 for
L & 2.7 are not physically attainable since they do not correspond to a stable equilibria,
nor can they be reached by the tip extending from zero.) The relationship between V0
and k2

II
is approximately linear with V0 → 1.15 as kII → 0.
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(0, 1.385)
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V = 0
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Fluid

filled

Figure 8. The failure criterion (4.1) for mixed-mode loading of the crack tip defines an ellipse

(kI /kIc)
2 + (kII /kIIc)

2 = 1 with semi-axes of lengths kic = Kicd
3/2/M . For large Kic (small

M) the ellipse does not intersect either solution curve (dashed) and there is no propagation; for
smaller Kic (larger M) the ellipse intersects one of the two solution curves (circles) and the crack
propagates either with a fluid-filled tip or with a preceding dry shear crack. The dimensionless
speed V depends on the point of intersection.

5. Summary and application to blisters

5.1. Summary of regimes

The results of §§3 and 4 allow us to find solutions for all values of the dimensionless
fracture toughnesses kIc and kIIc (see figure 5.1). First, from (4.1) and the static values of
kI and kII (Zlatin & Khrapkov 1986), we deduce that if (1.932/kIc)

2+(1.506/kIIc)
2 < 1

then the material is too tough and the crack will not propagate. Secondly, if kIIc < 1.385
then the material is sufficiently weak that the crack will propagate as described in §4
with a dry shear crack of length L(kIIc) preceding the fluid front, and with the speed set
by the condition kII (V ) = kIIc . Thirdly, if kIc and kIIc lie between the first and second
regimes then the crack will propagate as described in §3 with fluid filling the crack tip,
and with the speed set by the condition that kI (V ) and kII (V ) satisfy (4.1). Recall that
fluid lag was assumed negligible for simplicity, but could be included in future work.
(While we have assumed a failure criterion of the form (4.1), the method could easily be
generalized to any sensible criterion of the form G(kI , kII ) = Gc.)

Our calculations thus provide the dimensionless propagation speed V of the crack
as a function of the remote loading, viscous resistance and fracture toughness. These
solutions are near-tip asymptotics which describe the peeling process at the front of a
larger-scale problem that provides the remote bending stress. In order to facilitate use
of our results as an effective boundary condition for the larger-scale problem, without
having to repeat all the numerical computations, we provide the following empirical fits
for the relationships between speed and stress intensity from §§3 and 4:

V = 0.678− 0.095ku
I
+ 0.0038k

3u/2
I

(fluid-filled tip) (5.1a)

V = 0.0377 + 7.0(1.5− kII )− 12.3(1.5− kII )
2 (fluid-filled tip) (5.1b)

V = 1.15− 0.248k2
IIc

(dry tip) . (5.1c)

These equations provide very good approximations to the data, as shown in figure 9. The
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Figure 9. The empirical fits (5.1) (solid lines) are good approximations to the numerical
solutions (symbols), allowing use as effective boundary conditions.

dimensional speed v resulting from the bending moment M is obtained from

v =
M3V (kIc , kIIc)

µĒ2d5
, where kIc =

KIcd
3/2

M
, kIIc =

KIIcd
3/2

M
. (5.2)

Alternatively, we can write (5.2) in terms of the bending stiffness B = Ēd3/12 of the
sheet and the curvature κ =M/B behind the propagating front:

v =
Bd

144µ
κ3V . (5.3)

To illustrate how these equations can be used as boundary conditions of an interior
problem, we reconsider some of the axisymmetric blister problems described in Lister
et al. (2013), but with the propagation rate determined by viscous-controlled fracture
rather than by peeling from a pre-wetting film.

5.2. Application to axisymmetric propagation of blisters

Suppose an axisymmetric fluid blister of radius R(t) and thickness h(r, t) is formed
by injecting a volumetric flux Q of fluid at r = 0 below an elastic sheet of thickness
d ≪ R resting on an elastic solid. If h ≪ d then we can neglect stretching of the sheet
above the blister, and the fluid pressure far from the edge (R − r ≫ d) is given by the
combination p = B∇4h + ρg(h − z) of bending stresses and hydrostatic pressure. As
noted in the introduction, because the sixth-order equation (1.1) (and its generalization
to include gravity) does not support solutions with a propagating front, we expect an
interior solution where ∇p = 0 at leading order, which must be matched to a propagating
frontal solution.
Solution of p = const., with h(R) = h′(R) = 0 yields

h(r) = h(0)
f(R)− f(r)

f(R)− f(0)
, where f(r) = Im

ℓg I0(ωr/ℓg)

ω I1(ωR/ℓg)
, ω = eiπ/4 , (5.4)

I0(z) and I1(z) are modified Bessel functions, and ℓg = (B/ρg)1/4 is the ‘elastogravity’
length scale at which bending stresses and gravity have comparable effects. The variation
of these shapes with R/ℓg is shown in figure 10. From the general solution (5.4) one can
readily obtain expressions for the volume Qt and frontal curvature κ = h′′(R) and then
use (5.3) to solve numerically for R(t). However, it is more illuminating to consider the
limits R≪ ℓg and R≫ ℓg.
For R≪ ℓg bending stresses dominate the effects of gravity, and (5.4) can be simplified

to

h(r, t) =
3Qt

πR2(t)

(

1− r2

R2(t)

)2

. (5.5)
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Figure 10. The quasistatic interior solution (5.4) for the shape of a blister of radius R for

various values of R/ℓg (solid lines), where ℓg = (B/ρg)1/4 is the elastogravity length, with the
asymptotes as R/ℓg → 0,∞ (dashed).

Assuming that the toughness of any bonding between the sheet and the solid is negligible,
such that kIc = kIIc = 0, we obtain dR/dt from (5.3) with V = 1.15 and κ = 24Qt/πR4.
Integration yields

R(t) = 1.21

(
BdQ3

µ

)1/13

t4/13, (5.6)

h(0, t) = 0.66

(
µQ7

Bd

)1/13

t5/13. (5.7)

For R≫ ℓg the effects of gravity dominate and the blister is flat-topped (like a large-
Bond-number puddle) except within O(ℓg) of the edge where the bending stresses result
in a peripheral shape

h =
Qt

πR2

(

1− Im
exp[ω(R− r)/ℓg]

ω

)

(5.8)

with frontal curvature κ = Qt/πR2ℓ2g. Again assuming negligible toughness and purely
viscous control such that V = 1.15, we integrate to obtain

R(t) = 0.33

(
BdQ3

µℓ6g

)1/7

t4/7, (5.9)

h(0, t) = 2.88

(

µQℓ6g
Bd

)1/7

t−1/7. (5.10)

From (5.6)–(5.7) we find that M ∝ h′′(R) ∝ t−3/13 for R ≪ ℓg and from (5.9)–
(5.10) that M ∝ t−1/7 for R ≫ ℓg. It follows that if the toughness is not actually zero
then from (5.2) kIc and kIIc will increase with time, and the effects of toughness will
eventually become significant. The resultant transition period toward toughness control
has no analytical solution, but requires numerical solution using (5.5) or (5.8) to relate
M = Bκ to the radius R, and then (5.2) to find dR/dt. The numerical problem is
only an ordinary differential equation coupled to a few algebraic equations, and is easily
programmed.
The long-term limit beyond this transition period is controlled by toughness rather

than viscosity. In the toughness regime R increases with volume Qt in such a way that
a quasistatic equilibrium is maintained, wherein the static stress intensities due to M
(Zlatin & Khrapkov 1986) lie on the yield criterion (4.1). Thus M is given by the static
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yield criterion

M = d3/2[(1.932/KIc)
2 + (1.506/KIIc)

2]−1/2 , (5.11)

and both M and κ =M/B are constant. Using (5.5) or (5.8), we find that

R ∝
(

BQt

KIcd3/2

)1/4

(R≪ ℓg) or R ∝
(

BQt

ℓ2gKIcd3/2

)1/2

(R≫ ℓg) (5.12)

in agreement with detailed calculations by Bunger & Detournay (2005) and Bunger &
Cruden (2011).
A transition of a different kind occurs if h in (5.7) increases to O(d). In this case the

tension due to stretching of the sheet above the blister can no longer be neglected and one
should instead calculate the shape of the blister using the Föppl-von Karman equations
(see Jensen 1991; Lister et al. 2013). As h/d increases, this modifies the relationship giving
the peripheral bending moment M in terms of the volume Qt and radius R. Moreover,
it is found that the radial tension T increases to O(M/d) from O(Mh/d2) and so starts
to contribute at leading order to the effective far-field loading of the near-tip problem.
In particular, (2.12) needs to be modified to G′ → 6+Td/M as ξ → ∞, where the value
of Td/M is determined by the interior blister solution. While this introduces another
dimensionless parameter Td/M to the near-tip problem, and thus affects the numerical
value of the dimensionless speed V , it does not change the dimensional scaling of the
speed v in (5.2).
For d≪ h≪ R≪ ℓg, the interior solution can be found by neglecting bending stresses

and solving the membrane equations to obtain a roughly parabolic shape that approaches
r = R with a slope θ ∝ Qt/R3 and tension T ∝ Ēd(Qt/R3)2 (see Lister et al. 2013)
(This is the elastic analogue to the spherical-cap shape of a capillary drop with small
contact angle.) This peripheral slope is matched to a static bending boundary layer where
bending stresses re-enter the problem to give

h′ = θ
{
e(r−R)(T/B)1/2 − 1

}
. (5.13)

The bending boundary-layer width, (B/T )1/2 = O(d/θ), is much larger than the O(d)
length scale of the near-tip viscous solution. The near-tip solution is thus nested within
the boundary layer and forced by a bending momentM = 1

12 (BT )
1/2θ ∝ (B/d)(Qt/R3)2

and by the tension T ∝ Ēd(Qt/R3)2. (The ratio Td/M is a constant for h ≫ d.) We
substitute the scale of the bending moment into the dimensional scaling of (5.2) and
integrate to obtain

R ∝
(
ĒdQ6

µ

)1/19

t7/19 . (5.14)

Again M decreases, like t−6/19, and there would be an eventual transition to toughness
control.

5.3. Comparison with other spreading mechanisms

The examples given in the previous subsection show how straightforwardly to apply
the propagation speed (5.2) as a boundary condition to determine growth by fracture
of a fluid-driven blister in three different forcing regimes, in which the interior shape
is dominated by bending stresses, gravity or tension respectively. In each case there
is a transition from viscous control to toughness control for fixed-flux injection. These
solutions are also easy to generalize to the case where the volume of fluid is of the form
Qtα, for some α, perhaps due to fixed-pressure or fixed-volume injection.
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Bending Gravity Tension

Viscous-controlled tip (3α+ 1)/13 (3α+ 1)/17 (6α+ 1)/19
Toughness-controlled tip α/4 α/2 α/3
Prewetting film (5α+ 2)/22 (5α+ 2)/12 (5α+ 1)/16†

Vapour-filled tip (7α+ 2)/30 (5α+ 2)/16 (7α+ 1)/22†

Table 1. Spreading exponents β in R ∝ tβ for the axisymmetric spread of a blister of volume
Qtα, in regimes driven by bending stresses, gravity or tension in the interior, and resisted by
different mechanisms at the tip.
†Assuming the dominant viscous resistance is nested inside the bending boundary layer (5.13).

The same three forcing regimes were analysed by Lister et al. (2013) in the context
of a blister that spreads by peeling of an elastic sheet away from a pre-wetting film of
fluid between the sheet and the substrate. The interior solutions were the same, but the
peeling process results in a propagation speed v ∝ (B2h0κ

5)1/2/µ rather than (5.2).
Hewitt et al. (2015) analysed the three regimes in the context of a two-dimensional

blister that can spread because a low-viscosity precursor phase at a fixed pressure −p0
occupies the propagating front. If the extent of this fluid lag is much greater than O(d)
then one can use beam theory to calculate a frontal speed v ∝ (B3κ7/p0)

1/2/µ. This
has recently been confirmed in axisymmetric experiments by Ball & Neufeld (2018) and
extended to include toughness by Wang & Detournay (2018). If the extent of the fluid lag
is O(d), or less, then one should instead generalize the elastohydrodynamic description in
§2 to replace the lubrication equation (2.11) by P = −P0 in some lag region 0 < ξ < ξ0.
In the context of hydraulic or magma fracture the large confining pressure means the lag
length is very unlikely to be be much greater than the thickness d of the overburden,
and thus the generalized elastohydrodynamic description seems a more appropriate way
to address lag in these cases than beam theory.
In table 1 we show the various spreading exponents for the three forcing regimes and

the four spreading control mechanisms for the general case of fluid volume proportional to
tα. The exponents for each regime are quite similar in numerical value for α = 1 despite
the different mechanisms. This table is actually far from exhaustive when considering the
range of possible peeling regimes, and a fuller categorization is given by Peng (2017). We
note that the exponents for toughness control are the same as those for simpler models
with a prescribed interfacial energy of adhesion or with capillary adhesion (Peng 2017;
Ball & Neufeld 2018).

6. Conclusions

The peeling by fluid injection of an elastic sheet away from a substrate is often
regularized by invoking a thin prewetting film or a low-viscosity phase in the tip. In
this paper, we have instead analysed fluid-driven peeling without such precursors, by
considering an elastic sheet either bonded to, or simply laid on, an elastic substrate.
To resolve the ‘elastic contact-line problem’ that arises from a naive combination of
lubrication theory and beam theory, we recognized that the beam approximation breaks
down near the propagating tip, and instead the full equations of elasticity and fracture
should be combined with lubrication theory to determine the coupled pressures and
deformations in this region.
We have solved numerically the resultant local crack-propagation problem, which is

driven by the bending moment M applied from the interior solution and resisted by the
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combined effects of viscous flow into the crack tip and the toughness of any bonding
between sheet and substrate. This problem yielded a one-parameter family of solutions:
for strong bonding and small bending moment, the load is supported (quasi-) statically
by the toughness, and propagation is slow; for weak bonding and large bending moment,
the load is supported instead by the flow-induced viscous pressure-drop in the crack tip,
and the propagation rate is determined by the local elastohydrodynamics. The singular
asymptotic approach (figure 5) to a finite propagation rate for the case of no bonding is
given in appendix B.
Between the two limiting regimes, our calculations provide simple expressions (5.1)

and (5.2) to determine the dimensionless tip propagation speed V , which can then be
used as effective boundary conditions for an interior problem without further extensive
computations. The dimensional speed scales like M3/µĒ2d5 = Bdκ3/144µ, where d is
the sheet’s thickness, B = Ēd3/12 its stiffness, Ē = E/(1− ν2) its plane-strain modulus,
and κ the limiting curvature at the edge of the interior solution. The expressions for the
propagation speed have been used to derive new similarity solutions for the spread of a
fluid-filled blister in a variety of different regimes (see table 1).
A geological application of these results is to the propagation and growth of laccoliths,

which are large tabular near-surface magmatic intrusions that propagate along subsurface
bedding planes rather than breaching the surface (Michaut 2011; Bunger & Cruden 2011).
For the case of constant-rate injection into weak rock, with vapour occupying only a small
proportion of the tip, we find the radial extent increases like t4/13 up to the elastogravity
length scale (B/ρg)1/4 and t4/17 beyond it. In future work it would be interesting to
reappraise the geological data in comparison with these and other spreading regimes.
A novel feature of the solutions in §4 is the presence of a region of dry shear failure

ahead of the fluid front, with extent comparable to the O(d) thickness of the overlying
sheet. This possibility is a consequence of the mixed-mode loading of the crack tip which
arises from asymmetry between the finite-thickness sheet and the semi-infinite substrate.
Since the crack is confined to a planar interface, the shear loading of the tip cannot
be alleviated simply by kinking or curving away from the initial crack plane (cf., e.g.,
Cotterell & Rice 1980; Meriaux & Lister 2002). Geologically, evidence for such shear
failure might be sought in a dry joint ahead of the magmatic tip.
We have focused on the simplest problem that demonstrates our main point, that

the full equations of elasticity provide a way to resolve the apparent elastic contact-
line problem in beam theory. As a result, our solutions effectively have just a single
parameter describing the strength of any bonding. In the course of the analysis, a number
of extensions to the simple problem have been suggested for future work. These include
allowing some fluid lag, adding a significant tension to the remote bending moment,
having friction on any region of shear failure, and allowing the sheet and substrate to
have different elastic properties. While these complicate the problem, we anticipate that
the physical ideas elucidated in this paper will remain central.

DJS was supported by the Engineering and Physical Sciences Research Council under
the UROP scheme. TMJL was supported by a summer studentship from Trinity College,
Cambridge. All data accompanying this publication are directly available within the
publication.
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Appendix A. Numerical schemes

A.1. Fluid-filled crack

We discretized the problem (2.10)–(2.12) by taking n + 1 points ξi, i = 0, . . . , n, at
which to represent H ′ and G′. We used a set of points of the form

ξi = tan2(φ i/m), i = 1, . . . ,m < n (A 1)

ξi = (ξm/ξm−1)ξi−1, i = m+ 1, . . . , n , (A 2)

where φ and m were such that ξm = O(10) and ξn = O(103). This was chosen so that
points are concentrated in a square-root manner in the important region near the tip,
and spread out in a geometric progression in the far-field ξ ≫ 1, but it is otherwise fairly
arbitrary.

For each interval ξi−1 < ξ < ξi, we interpolated H ′ and G′ using

ξ1/2G′(ξ) = aiξ + bi, ξ1/2H ′(ξ) = ciξ + di, i = 1, . . . , t (A 3)

G′(ξ) = aiξ + bi, H ′(ξ) = ciξ + di, i = t+ 1, . . . , n (A 4)

The two sets of interpolating functions were chosen to represent the functional forms for
ξ ≪ 1 and ξ ≫ 1, but the division point t ≈ n/2 is fairly arbitrary. These interpolating
functions allow the integrals in (2.10) and (2.11) to be performed analytically. We also
need to extrapolate to ξ > ξn to complete the integrals, and continued to use a piecewise
linear representation of H ′ and G′ for simplicity, with slopes H ′′ and G′′ given by

an+1 =
G′′

∞
(ξn)

G′

∞
(ξn)

G′

n, cn+1 =
H ′′

∞
(ξn)

H ′′

∞
(ξn−1)

cn, (A 5)

where H ′′

∞
and G′

∞
are given by the asymptotic form (2.15).

We define a vector of 2(n+1) unknowns θ = [
√
ξ0H

′(ξ0), . . . ,
√
ξtH

′(ξt), H
′(ξt+1), . . . ,

H ′(ξn),
√
ξ0G

′(ξ0), . . . ,
√
ξtG

′(ξt), G
′(ξt+1), . . . , G

′(ξn)], from which one can easily deter-
mine the interpolation, and thence evaluate the two components of the elasticity integral
(2.10) at n intervening points ξ1/2, . . . , ξn−1/2. Using the linearity of these operations,
we can thus define a square matrix A such that

[P (ξ1/2), . . . , P (ξn−1/2), 0 , . . . , 0
︸ ︷︷ ︸

n

, G′(ξn), H
′′(ξn) ] = Aθ . (A 6)

One can obtain analytical expressions for H(ξ) by integrating the representation of
H ′, and then for P (ξ) by integrating H−2 in (2.11). Let p(θ) denote the vector of values
found by evaluating P (ξi−1/2), i = 1, . . . , n, in this way. Equating the two expressions
for P and using the asymptotic conditions (2.15), we obtain the equation

Aθ =
[
p(θ), 0 , . . . , 0

︸ ︷︷ ︸

n

, G′

∞
(ξn), H

′′

∞
(ξn)

]
. (A 7)

which can be solved by Newton’s method from quite arbitrary initial guesses. The accu-
racy of the numerical results was checked by varying the parameters of the discretization;
the main considerations are that n and ξn should be sufficiently large.

A.2. Linear perturbation problem

For the linear perturbation problem in appendix B, we anticipate a singularity of
the form ξs−1 in H̃ ′, with s = 0.139, and the weighting in the interpolation (A 3) was
changed to reflect this. (We still expect G̃′ to have a ξ−1/2 singularity.) Some of the
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integrals no longer have exact expressions, but can be carefully pre-calculated for the
relevant intervals by numerical integration.
The lubrication equation (B 8b) for the perturbation problem is linear in H̃. Therefore,

the function p̃(θ̃) appearing in the equation analogous to (A 7) is linear, and we can solve
this equation directly without recourse to Newton’s method.
The zero-toughness solution H0 was obtained by extrapolation with respect to kI for

each ξi > 0.002. (Figure 4 shows that, away from the boundary layer near ξ = 0, H ′(ξ)
for kI = 0.21 is already a good approximation to H ′

0.) For ξi < 0.002 the linear trend in
0.002 < ξ < 0.003 was simply extended to ξ = 0.

A.3. Dry cracking ahead of the fluid

To solve the problem in §4.1 of dry shear failure at ξ = −L preceding a fluid front at
ξ = 0, we adapted the scheme for §3 by adding more points to cover the interval −L 6

ξ < 0. The spacing of points for ξ < 0 was chosen such that there was a concentration of
points near −L and near 0.
We also adapted the interpolation ofG′ from (A3a) to reflect the (ξ+L)−1/2 singularity

at ξ = −L, while continuing to allow H ′ to have a ξ−1/2 singularity at ξ = 0 for the
solutions with kI 6= 0. Since H ′ = 0 in ξ < 0, we did not need to calculate P for ξ < 0
(although it is easily done): simply requiring that σxy = 0 at the intervening points in
ξ < 0 provides enough additional equations to determine G′ in −L 6 ξ < 0. The problem
can then be solved as before with Newton’s method.

Appendix B. Small toughness solution

In this appendix, we show how to predict the behaviour seen in figure 3 as kI → 0 (or
V → V0). Let H0, G0, P0 and V0 be the solution of (2.10)–(2.13) for kI = 0, with the
asymptotic behaviour (3.2) as ξ → 0. (The behaviour G′

0 ∼ (kII /χ)ξ
−1/2 is not relevant

to the following analysis.) We assume that for kI ≪ 1 and away from ξ = 0, we can set
up a perturbation expansion of the form

H(ξ) = H0(ξ) + ǫ(kI )H1(ξ) + . . .
G(ξ) = G0(ξ) + ǫ(kI )G1(ξ) + . . .
P (ξ) = P0(ξ) + ǫ(kI )P1(ξ) + . . .

V = V0 + ǫ(kI )V1 + . . . ,

(B 1)

with a small parameter ǫ.
Near ξ = 0 this expansion must break down, because H ∼ kI ξ

1/2 is much larger

than H0 ∼ V
1/3
0 ξ2/3. The balance kI ξ

1/2 ∼ V 1/3ξ2/3 suggests the rescaling, with some
convenient numerical factors,

ξ = κ6ψ−2ξ̂, H = κ4ψ−1Ĥ, P = ψκ−2P̂ , where ψ = 12V, κ = (32/π)1/2kI .
(B 2)

In the rescaled variables, equations (3.1), (2.11) and (2.13) become

P̂ (ξ̂) =
1

4π

∫
∞

0

Ĥ ′(ξ̃)

ξ̃ − ξ̂
, Ĥ2P̂ ′ = 1, Ĥ ∼ ξ̂1/2 as ξ̂ → 0, (B 3)

which are the same as the small-toughness boundary-layer equations derived and solved
numerically by Garagash & Detournay (2005) in the context of a different problem. They
showed that

Ĥ ∼ βξ̂2/3 + β1ξ̂
s as ξ̂ → ∞ (B 4)
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where β = 3(4/3)1/6, β1 = 0.03719 and s = 0.013867. Reverting to the outer variables,
we find that the matching condition for the outer solution is

H ∼ b1V
2s−1k4−6s

I
ξs + 6(3V 2)1/6ξ2/3 as ξ → 0, (B 5)

where b1 = 0.2439.
After comparing the expansion (B 1) with (B 5), we set ǫ = b1V

2s−1
0 k4−6s

I
and write

V 1/3 = V
1/3
0 (1 + ǫV1/3V0 + . . .). On substituting the expansion into (2.10)–(2.13) and

equating terms of order ǫ, we obtain the linear perturbation problem
[
P1

0

]

=

∫
∞

0

K (ξ − ξ̃)

[
H ′

1(ξ̃)

G′

1(ξ̃)

]

dξ̃, H2
0P

′

1 + 2H0H1P
′

0 = V1, (B 6)

H ′′

1 → 0 as ξ → ∞, H1 ∼ ξs +
V1
3V0

H0(ξ) + . . . as ξ → 0. (B 7a, b)

These equations determine the value of V1 through the condition that the perturbed
propagation speed is consistent with no perturbation to the far-field forcing H ′′ → 12.
For numerical solution, it is convenient to subtract V1/3V0 times the zero-toughness

solution to simplify (B 7b), and then rescale to obtain
[

P̃
0

]

=

∫
∞

0

K (ξ − ξ̃)

[
H̃ ′(ξ̃)

G̃′(ξ̃)

]

dξ̃, H2
0 P̃

′ + 2H0H̃P
′

0 = 0, (B 8)

H̃ ′′ → 12 as ξ → ∞, H̃ ∼ γξs + . . . as ξ → 0. (B 9)

where γ = −3V0/V1, and H̃ = γ[H1 − (V1/3V0)H0] etc.
Equations (B 8) and (B 9) were solved numerically as described in appendix A. We find

that γ = 6.91 and hence V1 = −14.0. The final asymptotic result

V ∼ V0 − (3b1/γ)V
2s
0 k4−6s

I
= 0.678− 0.0950k4−6s

I
as kI → 0

shows excellent agreement with the results from the full numerical calculations (figure
5), providing a check both on the numerical calculations and on the understanding of
the boundary-layer structure. The asymptotic result is also useful for moderately small
kI since it gives an excellent prediction of the speed of propagation without having to
resolve the very thin O(k6

I
) boundary-layer structure.
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