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Abstract In this work, we study a flat Friedmann–

Robertson–Walker universe filled with dark matter and vis-

cous new holographic dark energy. We present four possible

solutions of the model depending on the choice of the viscous

term. We obtain the evolution of the cosmological quantities

such as scale factor, deceleration parameter and transition

redshift to observe the effect of viscosity in the evolution. We

also emphasis upon the two independent geometrical diag-

nostics for our model, namely the statefinder and the Om

diagnostics. In the first case we study new holographic dark

energy model without viscous and obtain power-law expan-

sion of the universe which gives constant deceleration param-

eter and statefinder parameters. In the limit of the parameter,

the model approaches to �C DM model. In new holographic

dark energy model with viscous, the bulk viscous coefficient

is assumed as ζ = ζ0 + ζ1 H , where ζ0 and ζ1 are constants,

and H is the Hubble parameter. In this model, we obtain all

possible solutions with viscous term and analyze the expan-

sion history of the universe. We draw the evolution graphs

of the scale factor and deceleration parameter. It is observed

that the universe transits from deceleration to acceleration for

small values of ζ in late time. However, it accelerates very

fast from the beginning for large values of ζ . By illustrating

the evolutionary trajectories in r −s and r −q planes, we find

that our model behaves as an quintessence like for small val-

ues of viscous coefficient and a Chaplygin gas like for large

values of bulk viscous coefficient at early stage. However,

model has close resemblance to that of the �C DM cosmol-

ogy in late time. The Om has positive and negative curvatures

for phantom and quintessence models, respectively depend-

ing on ζ . Our study shows that the bulk viscosity plays very

important role in the expansion history of the universe.
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1 Introduction

The astrophysical data obtained from high redshift surveys of

supernovae [1–3], Wilkinson Microwave Anisotropy Probe

(WMAP) [4,5] and the large scale structure from Slogan

Digital Sky Survey (SDSS) [6,7] support the existence of

dark energy (DE). The DE is considered as an exotic energy

component with negative pressure. The cosmological anal-

ysis of these observations suggest that the universe consists

of about 70% DE, 30% dust matter (cold dark matter plus

baryons), and negligible radiation. It is the most accepted

idea that DE leads to the late-time accelerated expansion of

the universe. Nevertheless, the nature of such a DE is still

the source of debate. Many theoretical models have been

proposed to describe this late-time acceleration of the uni-

verse. The most obvious theoretical candidate for DE is the

cosmological constant [8], which has the equation of state

(EoS) ω� = −1. However, it suffers the so-called cosmo-

logical constant (CC) problem (the fine-tuning problem) and

the cosmic coincidence problem [9–11]. Both of these prob-

lems are related to the DE density.

In order to solve the cosmological constant problems,

many candidates such as quintessence [12,13], phantom [14],

tachyon field [15], quintom [16], holographic dark energy

[17,18], agegraphic dark energy [19,20] have been proposed

to explain the nature of DE phenomenon. Starobinsky [21]

and Kerner et al. [22] proposed an another way to explain

the accelerated expansion of the universe by modifying the

geometrical part of Einstein field equations which is known

as modified gravity theory.

In recent years, the considerable interest has been noticed

in the study of holographic dark energy (HDE) model to

explain the recent phase transition of the universe. The idea of

HDE is basically based on the holographic principle [23–25].

According to holographic principle a short distance (ultravi-

olet) cut-off � is related to the long distance (infrared) cut-off

L due to the limit set by the formation of a black hole [26]. Li
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[18] argued that the total energy in a region of size L should

not exceed the mass of a black hole of same size for a system

with ultraviolet (UV) cut-off �, thus L3ρ� ≤ L M2
pl , where

ρ� is the quantum zero-point energy density caused by UV

cot-off � and Mpl is the reduced Planck mass M−2
pl = 8πG.

The largest L allowed is the one saturating this inequality,

thus the HDE density is defined as ρ� = 3c2 M2
pl L−2, where

c is a numerical constant. The UV cut-off is related to the

vacuum energy, and the infrared (IR) cut-off is related to the

large scale structure of the universe, i.e., Hubble horizon,

particle horizon, event horizon, Ricci scalar, etc. The HDE

model suffers the choice of IR cut-off problem. In the Ref.

[17], it has been discussed that the HDE model with Hub-

ble horizon or particle horizon can not drive the accelerated

expansion of the universe. However, HDE model with event

horizon can drive the accelerated expansion of the universe

[18]. The drawback with event horizon is that it is a global

concept of spacetime and existence of universe, depends on

the future evolution of the universe. The HDE with event

horizon is also not compatible with the age of some old high

redshift objects [27]. Gao et al. [28] proposed IR cut-off as

a function of Ricci scalar. So, the length L is given by the

average radius of Ricci scalar curvature.

As the origin of the HDE is still unknown, Granda and

Oliveros [29] proposed a new IR cut-off for HDE, known

as new holographic dark energy (NHDE), which besides the

square of the Hubble scale also contains the time derivative

of the Hubble scale. The advantage is that this NHDE model

depends on local quantities and avoids the causality prob-

lem appearing with event horizon IR cut-off. The authors, in

their other paper [30], reconstructed the scalar field models

for HDE by using this new IR cut-off in flat Friedmann–

Robertson–Walker (FRW) universe with only DE content.

Karami and Fehri [31] generated the results of Ref. [29] for

non-flat FRW universe. Malekjani et al. [32] have studied

the statefinder diagnostic with new IR cut-off proposed in

[29] in a non-flat model. Sharif and Jawad [33] have investi-

gated interacting NHDE model in non-flat universe. Debnath

and Chattopadhyay [34] have considered flat FRW model

filled with mixture of dark matter and NHDE, and have stud-

ied the statefinder and Om diagnostics. Wang and Xu [35]

have obtained the constraints on HDE model with new IR

cut-off via the Markov Chain Monte Carlo method with the

combined constraints of current cosmological observations.

Oliveros and Acero [36] have studied NHDE model with a

non-linear interaction between the DE and dark matter (DM)

in flat FRW universe.

A large number of models within modified theories can

explain the DE phenomenon. It is therefore important to find

the ways to discriminate among various competing mod-

els. For this purpose, Sahni et al. [37] and Alam et al. [38]

introduced an important geometrical diagnostic, known as

statefinder pair {r, s} to remove the degeneracy of H0 and

q0 of different DE models. The statefinder diagnostic has

been extensively used in the literature to distinguish among

various models of DE and modified theories of gravity. The

various DE models have different evolutionary trajectories

in (r, s) plane.

In order to complement the statefinder [37,38], a new diag-

nostic called Om was proposed by Sahni et al. [39] in 2008,

which is used to distinguish among the energy densities of

various DE models. The advantage of Om over the statefinder

parameters is that, Om involves only the first order derivative

of scale factor. For the �C DM model Om diagnostic turns

out to be constant. We provide the mathematical expressions

of statefinder and Om diagnostic in the appropriate section.

Evolution of the universe involves a sequence of dissipa-

tive processes. These processes include bulk viscosity, shear

viscosity and heat transport. The theory of dissipation was

proposed by Eckart [40] and the full causal theory was devel-

oped by Israel and Stewart [41]. In the case of isotropic and

homogeneous model, the dissipative process is modeled as a

bulk viscosity, see Refs. [42–50]. Brevik et al. [51] discussed

the general account about viscous cosmology for early and

late time universe. Norman and Brevik [52] analyze charac-

teristic properties of two different viscous cosmology models

for the future universe. In other paper, Norman and Brevik

[53] derived a general formalism for bulk viscous and esti-

mated the bulk viscosity in the cosmic fluid. The HDE model

has been studied in some recent literatures [54,55] under the

influence of bulk viscosity. Feng and Li [56] have investigated

the viscous Ricci dark energy (RDE) model by assuming that

there is bulk viscosity in the linear barotropic fluid and RDE.

Singh and Kumar [57] have discussed the statefinder diag-

nosis of the viscous HDE cosmology. The main motive of

this work is to explain the acceleration with the help of bulk

viscosity for new holographic dark energy (NHDE) in GR

which has not been studied sofar.

The bulk viscosity introduces dissipation by only redefin-

ing the effective pressure, pe f f , according as pe f f = p −

3ζ H , where ζ is the bulk viscosity coefficient and H is

the Hubble parameter. In this paper, we are interested when

the universe is dominated by viscous HDE and dark mat-

ter with Granda–Oliveros IR cut-off to study the influence

of bulk viscosity to the cosmic evolution. We consider the

general form of bulk viscosity ζ = ζ0 + ζ1 H , where ζ0

and ζ1 are the constants and H is the Hubble’s param-

eter, see Refs. [42,43]. First, we discuss the non-viscous

NHDE model to find out the exact solution of the field equa-

tions. In the second case, we find out the exact solutions of

the field equations with constant and varying bulk viscous

term. We find the exact forms of scale factor, deceleration

parameter and transition redshift and discuss the evolution

through the graphs. We also discuss the geometrical diag-

nostics like statefinder parameter and Om diagnostic to dis-

criminate our model with �C DM . We plot the trajectories
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of these parameters and observe the effect of bulk viscous

coefficient.

The paper is organised as follows. In Sect. 2, we dis-

cuss the non-viscous HDE model with new IR cut-off. Sec-

tion 3 presents the viscous NHDE model and is divided into

Sects. 3.1 and 3.2. In Sects. 3.1 and 3.2 we present the solu-

tions with constant and time varying bulk viscous term. Sec-

tion 4 presents the summary of the results.

2 Non-viscous NHDE model

We consider a spatially homogeneous and isotropic flat

Friedmann–Robertson–Walker (FRW) space-time, specified

by the line element

ds2 = dt2 − a2(t)
[

dr2 + r2(dθ2 + sin2θdφ2)

]

, (1)

where a(t) is the scale factor, t is the cosmic time and (r, θ, φ)

are the comoving coordinates.

We consider that the Universe is filled with NHDE plus

pressureless dark matter (DM) (ignoring the contribution of

the baryonic matter here for simplicity). For Einstein field

equations Rμν − gμν R/2 = Tμν in the units where 8πG =

c = 1, we obtain the Friedmann equations for the metric (1)

as

3H2 = ρm + ρd , (2)

2Ḣ + 3H2 = −pd , (3)

where ρm and ρd are the energy density of DM and NHDE,

respectively, and pd is the pressure of the NHDE. A relation

between ρd and pd is given by equation of state (EoS) param-

eter ωd = pd/ρd . Here, H = ȧ/a is the Hubble parameter.

A dot denotes a derivative with respect to the cosmic time t .

As suggested by Granda and Oliveros in paper [29], the

energy density of HDE with the new IR cut-off is given by

ρd = 3(αH2 + β Ḣ), (4)

where α and β are the dimensionless parameters, which must

satisfy the restrictions imposed by the current observational

data.

Using (4), Eqs. (2) and (3) give

Ḣ +
3(1 + α ωd)

(2 + 3β ωd)
H2 = 0. (5)

The solution of (5) is given by

H =
1

c0 + 3(1+α ωd )
(2+3β ωd )

t
, (6)

where c0 is an integration constant. Equation (6) can be

rewritten as

H =
H0

{

1 + 3H0(1+α ωd )
(2+3β ωd )

(t − t0)
} , (7)

where H0 is the present value of the Hubble parameter at t =

t0, where NHDE starts to dominate. As we know H = ȧ/a,

Eq. (7) gives the solution for the scale factor which is given

by

a = a0

{

1 +
3(1 + α ωd)H0

(2 + 3β ωd)
(t − t0)

}

(2+3β ωd )

3(1+α ωd )

,

for α �= −1/ωd , β �= −2/3ωd , (8)

where a0 is the present value of the scale factor at a cosmic

time t = t0. Equation (8) shows the power-law a ∝ tm ,

where m is a constant, type expansion of the scale factor.

As we know that the universe will undergo with decelerated

expansion for m < 1, i.e., (2 + 3βωd) < (3 + 3αωd) in our

case whereas it accelerates for m > 1, i.e., (2 + 3βωd) >

(3 + 3αωd). For m = 1, i.e., (2 + 3βωd) = (3 + 3αωd),

the universe will show marginal inflation. In the absence of

NHDE, i.e., for α = β = 0, we get the dark matter dominated

scale factor, a = a0(1 + 3
2

H0(t − t0))
2/3.

Let us consider the deceleration parameter (DP) which

is very useful parameter to discuss the behaviour of the

universe. The sign (positive or negative) of DP explains

whether the universe decelerates or accelerates. It is defined

as q = − aä
ȧ2 . From (8), we get

q =
3(1 + αωd)

(2 + 3βωd)
− 1, (9)

which is a constant value throughout the evolution of the

universe. The universe will expand with decelerated rate for

q > 0, i.e., (2 + 3βωd) < (3 + 3αωd), accelerated rate for

q < 0, i.e., (2+3βωd) > (3+3αωd) and marginal inflation

for q = 0, i.e., (2+3βωd) = (3+3αωd). One can explicitly

observe the dependence of DP q on the model parameters

α, β and EoS parameter ωd under above constraints. Thus,

we can obtain a decelerated or accelerated expansion of the

universe depending on the suitable choices of these parame-

ters. In this case, the model does not show the phase transi-

tion due to power-law expansion or constant DP. The model

shows marginal inflation, q = 0 when ωd = 1/3(β − α).

Using Markov chain Monte Carlo method on latest observa-

tional data, Wang and Xu [35] have constrained the NHDE

model and obtained the best fit values of the parameters α =

0.8502+0.0984+0.1299
−0.0875−0.1064 and β = 0.4817+0.0842+0.1176

−0.0773−0.0955 with 1σ

and 2σ errors in flat model. In the best fit NHDE models, they

have obtained the EoS parameter ωd = −1.1414 ± 0.0608.

Putting these values of parameters (excluding the errors) in

Eq.(9), we get q = −0.7468, which shows that our NHDE

model is consistent with current observation data given in

[35].

In order to discriminate among the various DE models,

Sahni et al. [37] and Alam et al. [38] introduced a new geo-

metrical diagnostic pair for DE, which is known as statefinder

pair and is denoted as {r, s}. The statefinder probes the expan-
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sion dynamics of the universe through higher derivatives of

the scale factor and is a geometrical diagnosis in the sense

that it depends on the scale factor and hence describes the

spacetime. The statefinder pair is defined as

r =

...
a

aH3
and s =

r − 1

3(q − 1/2)
. (10)

Substituting the required values from (8) and (9) into (10),

we get

r = 1 −
9(1 + αωd)

(2 + 3βωd)
+

18(1 + αωd)2

(2 + 3βωd)2
, (11)

and

s =
2(1 + αωd)

2 + 3βωd

. (12)

From (11) and (12), we can observe that these statefinder

parameters are constant whose values depend on α, β and

ωd . As Sahni et al. [37] and Alam et al. [38] have observed

that Lambda cold dark matter (�CDM) model and standard

cold dark matter (SCDM) model have fixed point values of

statefinder parameter {r, s} = {1, 0} and {r, s} = {1, 1},

respectively. Putting the values of parameters [35] as men-

tioned above, we observe that this set of data do not favor the

NHDE model over the �CDM as well as SC DM model.

However, NHDE model behaves like SC DM model for

α = 3β/2. We can also observe that this model approaches

to {r, s} → {1, 0} in the limit of α → −1/ωd but there is

no such value of parameters which would clearly show the

�CDM.

3 Viscous NHDE model

In the previous section, we have observed that the non-

viscous NHDE model gives constant DP which is unable

to represent the phase transition. However, the observations

show that the phase transition plays a vital role in describing

the evolution of the universe. Therefore, it will be interest-

ing to study the NHDE model with viscous to investigate

whether a viscous NHDE model with Granda-Oliveros IR

cut-off would be able to find the phase transition.

In an isotropic and homogeneous FRW universe, the dis-

sipative effects arise due to the presence of bulk viscosity

in cosmic fluids as shear viscosity plays no role. DE with

bulk viscosity has a peculiar property to cause accelerated

expansion of phantom type in the late time evolution of the

universe [58–60]. It can also alleviate the problem like age

problem and coincidence problem.

Let us assume that the effective pressure of NHDE is a sum

of pressure of NHDE and bulk viscosity, i.e., the universe is

filled with bulk viscous NHDE plus pressureless dark matter

(DM) (ignoring the contribution of the baryonic matter here

for simplicity). Then, the field equations (2) and (3) modify

to

3H2 = ρm + ρd , (13)

2Ḣ + 3H2 = − p̃d , (14)

where p̃d = pd − 3Hζ is the effective pressure of NHDE.

This form of effective pressure was originally proposed by

Eckart [40] in the context of relativistic dissipative process

occurring in thermodynamic systems went out of local ther-

mal equilibrium. The term ζ is the bulk viscosity coefficient

[61–63]. On the thermodynamical grounds, ζ is convention-

ally chosen to be a positive quantity and generically depends

on the cosmic time t , or redshift z, or the scale factor a, or

the energy density ρd , or a more complicated combination

form. Maartens [64] assumed the bulk viscous coefficient as

ζ ∝ ρn , where n is a constant. In the Refs. [42–44], the most

general form of bulk viscosity has been considered with gen-

eralized equation of state. Following [42–44,65], we take the

bulk viscosity coefficient in the following form.

ζ = ζ0 + ζ1 H, (15)

where ζ0 and ζ1 are positive constants. The motivation for

considering this bulk viscosity has been discussed in Refs.

[42–44].

From the dynamical equations (13) and (14), we can

formulate a first order differential equation for the Hubble

parameter by using Eqs. (4) and (15) as,

Ḣ +
3(1 + αωd)

(2 + 3βωd)
H2 −

3ζ

(2 + 3βωd)
H = 0. (16)

It can be observed that Eq. (16) reduces to the non-viscous

equation (5) for ζ = 0 as discussed in previous section.

In the following subsections, we classify different viscous

NHDE models arises due to the constant and variable bulk

viscous coefficient. We analyze the behavior of the scale fac-

tor, DP, statefinder parameter and Om diagnostic of these

different cases.

3.1 NHDE Model with constant bulk viscosity

The simplest case of viscous NHDE model is to be taken

with constant bulk viscous coefficient. Therefore, assuming

ζ1 = 0 in Eq. (15), the bulk viscous coefficient reduces to

ζ = ζ0 = const. (17)

Using (17) into (16), we get

Ḣ +
3(1 + αωd)

(2 + 3βωd)
H2 −

3ζ0

(2 + 3βωd)
H = 0. (18)
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The solution of (18) in terms of cosmic time t can be given

by

H = e
3ζ0 t

(2+3βωd )

[

c1 +
(1 + αωd)

ζ0
e

3ζ0 t

(2+3βωd )

]−1

, (19)

where c1 is the constant of integration. From (19), we get the

evolution of the scale factor as

a = c2

[

c1 +
(1 + αωd)

ζ0
e

3ζ0 t

(2+3βωd )

]

(2+3βωd )

3(1+αωd )

, (20)

where c2 is an integration constant. The above scale factor

can be rewritten as

a =

[

1 +
H0(1 + αωd)

ζ0

{

e
3ζ0(t−t0)

(2+3βωd ) − 1

}]

(2+3βωd )

3(1+αωd )

,

for α �= −1/ωd , ζ0 �= 0 (21)

where t0 is the present cosmic time. Here, we get expo-

nential form of the scale factor which shows non-singular

solution. Equation (21) shows that in early stages of the

evolution, the scale factor can be approximated as a(t) ∼
[

1 + 3H0(1+αωd )
(2+3βωd )

(t − t0)
]

(2+3βωd )

3(1+αωd )
, and as (t − t0) → ∞, the

scale factor approaches to a form like that of the de Sitter

universe, i.e., a(t) → exp
[

3ζ0(t−t0)
(2+3βωd )

]

. Thus, we observe that

the universe starts with a finite volume followed by an early

decelerated epoch, then making a transition into the acceler-

ated epoch in the late time of the evolution.

From (21), we can obtain the Hubble parameter in terms

of scale factor a as

H(a) =
H0

(1 + αωd)

×

[

ζ0

H0
+ {(1 + αωd) −

ζ0

H0
} a

−
(3+3αωd )

(2+3βωd )

]

, (22)

where H0 is the present value of the Hubble parameter and

we have made the assumption that the present value of scale

factor is a0 = 1. The derivative of ȧ with respect to a can be

obtained as [65]

dȧ

da
=

H0

(1 + αwd)

[

ζ0

H0
−

{

(1 + αwd) −
ζ0

H0

}

×

(

(1 + 3(α − β)wd)

2 + 3βwd

)

a
−

3(1+αwd )

(2+3βwd )

]

. (23)

Equation (23) to zero, the transition scale factor aT can be

obtained as

aT =

[

(1 + 3(α − β)wd) {(1 + αwd)H0 − ζ0}

(2 + 3βwd)ζ0

]

(2+3βwd )

3(1+αwd )

.

(24)

The corresponding transition redshift zT , where a = (1 +

z)−1, is

 = 0.02

 = 0.15

 = 0.5

 = 1

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

t t0

a

Fig. 1 The scale factor evolution for different values of ζ0 > 0 with

H0 = 1, ωd = −0.5, α = 0.8502 and β = 0.4817

zT =

[

(1 + 3(α − β)wd ) {(1 + αwd )H0 − ζ0}

(2 + 3βwd )ζ0

]−
(2+3βwd )

3(1+αwd )

− 1.

(25)

From (24) or (25), we observe that for ζ0 =
{1+3(α−β)wd }H0

3
,

the transition from decelerated phase to accelerated phase

occurs at aT = 1 or zT = 0, which corresponds to the

present time of the universe. On taking the observed values of

α = 0.8502 and β = 0.4817 [35], H0 = 1 and ωd = −0.5 in

this expression of ζ0, we get ζ0 = 0.15. Figure 1 represents

the evolution of the scale factor a(t) with respect to time

(t − t0) for different values of ζ0 > 0. It is observed that the

transition from decelerated to accelerated phase takes place

in late time for small values of ζ0, i.e., in 0 < ζ0 < 0.15. The

transition from decelerated phase to accelerated one occurs at

aT = 1 for ζ0 = 0.15 which corresponds to the present time

of the universe. However, the transition takes place in early

stages of the evolution for large values of ζ0, i.e., ζ0 > 0.15.

Thus, as the value of ζ0 increases, the scale factor expands

more rapidly with exponential rate.

The result regarding the transition of the universe into the

accelerated epoch discussed above can be further verified by

studying the evolution of DP q. In this case, DP is given by

q =
3
{

(1 + αωd) −
ζ0

H0

}

(2 + 3βωd)
e
−

3ζ0(t−t0)

(2+3βωd ) − 1. (26)

Thus, we find a time-varying DP in the case of constant vis-

cous NHDE, which describes the phase transition of the evo-

lution of the universe. DP must change its sign at t = t0, i.e.,

the time at which the viscous NHDE begins to dominate.

This time can be achieved if [1+3(α−β)ωd ]H0 = 3ζ0. The

universe must decelerate for t < t0 and accelerate for t > t0
for any parametric values of α, β and ωd .

From (26), DP can be written in terms of scale factor as
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(a) (b)

Fig. 2 a The variation of q with a for different values of ζ0 with fixed ωd = −0.5, α = 0.8502 and β = 0.4817. b The variation of q with a for

different values of α and β with fixed ζ0 = 0.2 and ωd = −0.5

q =
{3(1 + αωd) − 3ζ0}

(2 + 3βωd)

×

⎡

⎢

⎢

⎣

(1 + αωd)
(

a
3+3αωd
2+3βωd − 1

)

ζ0 + (1 + αωd)

⎤

⎥

⎥

⎦

− 1. (27)

In terms of red shift z, the above equation becomes

q =
{3(1 + αωd) − 3ζ0}

(2 + 3βωd)

×

⎡

⎢

⎢

⎣

(1 + αωd)
(

(1 + z)
−

3+3αωd
2+3βωd − 1

)

ζ0 + (1 + αωd)

⎤

⎥

⎥

⎦

− 1.

(28)

When the bulk viscous parameter and all other parameters are

zero, the deceleration parameter q = 1/2, which corresponds

to a decelerating matter-dominated universe with null bulk

viscosity. However, when only the bulk viscous term ζ0 = 0,

the value of q is same as obtained in Eq. (9) for non-viscous

NHDE model.

The present value of q corresponds to z = 0 or a = 1 is,

q0 = q(a = 1) =
3(1 + αωd) − 3ζ0

(2 + 3βωd)
− 1. (29)

This equation shows that if 3ζ0 = [1 + 3(α − β)ωd ], the

deceleration parameter q0 = 0. This implies that the transi-

tion into the accelerating phase would occur at the present

time. The current DP q0 < 0 if 3ζ0 > [1 + 3(α − β)ωd ],

implying that the present universe is in the accelerating epoch

and it entered this epoch at an early stage. But q0 > 0 if

3ζ0 < [1 + 3(α − β)ωd ] implying that the present universe

is decelerating and it will be entering the accelerating phase

at a future time. The evolution of q with a is shown in Fig. 2

by taking fixed constant α and β (or ζ0), from which we can

see that the evolution of the universe is from deceleration to

acceleration. Figure 2a illustrates the evolutionary history of

DP for different value of ζ0 with ωd = −0.5, α = 0.8502

and β = 0.4817. On considering α = 0.8502, β = 0.4817

[35] and ωd = −0.5 in Eq. (29), we get ζ0 = 0.15 which

gives q0 = 0. Thus, the transition into accelerating phase

would occur at present time. If ζ0 > 0.15, q0 < 0, i.e., the

universe is in accelerating epoch and it entered this epoch at

an early stage. If ζ0 < 0.15, q0 > 0, i.e., the universe is in

decelerating epoch and it enters in an accelerating phase in

future. Thus, the larger the value ζ0 is, the earlier acceleration

occurs. The similar results for a fixed ζ0 also appear in Fig.

2b. The larger the values α and β is, the earlier q changes it

sign from q > 0 to q < 0 for a fixed ζ0. In both Fig. 2a, b,

we observe that q → −1 in late time of evolution.

Statefinder diagnostic

From above discussion we conclude that there is a transition

from decelerated phase to accelerated one in future for small

bulk viscous coefficient, 0 < ζ0 < 0.15. It takes place to

the present time for ζ = 0.15. However, the transition takes

place in past for ζ > 0.15. The behavior of scale factor and

deceleration parameter shows that the constant bulk viscous

coefficient plays the role of DE. In what follows, we will

present the statefinder diagnostic of the viscous NHDE model

. In this model, the statefinder parameters defined in (10) can

be obtained as

r = 1 +
9
(

ζ0

H0
− (1 + αωd)

) (

1 − 1+αωd

(2+3βωd )

)

(2 + 3βωd)
e
−

3ζ0(t−t0)

(2+3βωd )

+
9
(

ζ0

H0
− (1 + αωd)

)2

(2 + 3βωd)2
e
−

6ζ0(t−t0)

(2+3βωd ) , (30)

and

s =

2
(

ζ0
H0

−(1+αωd )

)(

1−
1+αωd

(2+3βωd )

)

(2+3βωd )
e
−

3ζ0(t−t0)

(2+3βωd ) +
2
(

ζ0
H0

−(1+αωd )

)2

(2+3βωd )2 e
−

6ζ0(t−t0)

(2+3βωd )

2
(

(1+αωd )−
ζ0
H0

)

(2+3βωd )
e
−

3ζ0(t−t0)

(2+3βωd ) − 1

.

(31)

Here, these values of statefinder parameter are time-

dependent and this is due to the bulk viscous coefficient ζ0.
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(a) (b)

Fig. 3 a The r − s trajectories are plotted in r − s plane for different

values of ζ0 > 0 with ωd = −0.5, α = 0.8502 and β = 0.4817. The

arrows represent the directions of the evolutions of statefinder diagnos-

tic pair with time. The curves are coinciding with each other for smaller

and larger values of ζ0. b The r − q trajectories are plotted in r − q

plane for different values of ζ0 > 0 with ωd = −0.5, α = 0.8502 and

β = 0.4817. The arrows represent the directions of the time evolution

pair {r, q} with time. The curves are coinciding with each other for

smaller and larger values of ζ0

In previous Sect. 2, we see that the diagnostic pair is constant

in the absence of viscous term. As we can observe from the

above two equations that in the limit of (t − t0) → ∞, the

model approaches to {r, s} → {1, 0} and for this limit we

get q → −1. We draw the trajectories of the statefinder pair

{r, s} in r − s plane for different values of constant ζ0 with

ωd = −0.5, H0 = t0 = 1, α = 0.8502 and β = 0.4817 as

shown in Fig. 3a. Here, we observe that the model approaches

to {r, s} → {1, 0} for all positive values of ζ0. In Fig. 3a, the

fixed points {r, s} = {1, 1} and {r, s} = {1, 0} are shown as

SC DM and �C DM models, respectively.

It is observed from figures that the statefinder diagnostic

of our model can discriminate from other DE models. For

example, in quiessence with constant EoS parameter [37,38]

and the Ricci dark energy (RDE) model [66], the trajec-

tory in r − s plane is a vertical segment, i.e. s is constant

during the evolution of the universe whereas the trajecto-

ries for the Chaplygin gas (CG) [67] and the quintessence

(inverse power-law) models (Q) [37,38] are similar to arcs

of a parabola (downward and upward) lying in the regions

s < 0, r > 1 and s > 0, r < 1, respectively. In modified

NHDE model [68], the trajectory in r −s is from left to right.

In holographic dark energy model with future event horizon

[69,70] its evolution starts from the point s = 2/3, r = 1

and ends at �C DM model fixed point in future.

In Fig. 3a, the plot reveals that the r − s plane can be

divided into two regions r < 1, s > 0 and r > 1, s < 0

which are showing the similar characteristics to Q and CG

models, respectively. The present model starts in both regions

r < 1, s > 0 and r > 1, s < 0, and end on the �C DM point

in the r − s plane in far future. The trajectories in the right

side of the vertical line correspond to the different values of

ζ0, i.e., ζ0 = 0.02, ζ0 = 0.10, ζ0 = 0.15 and ζ0 = 0.30

lying in the range 0 < ζ0 ≤ 0.57 whereas the trajectories

to the left side of the vertical line correspond to ζ0 > 0.57,

i.e., ζ0 = 0.60, ζ0 = 0.70, ζ0 = 0.80 and ζ0 = 1.00. This

reveals that smaller values of ζ0 give the model similar to

Q model and larger values correspond to the CG model.

We find that the evolutions are coinciding each other for all

different values of ζ0 in both regions.

We also study the evolutionary behaviour of constant vis-

cous NHDE model in r − q plane. For different values of

ζ0, as taken in {r, s}, the trajectories are shown in Fig. 3b for

wd = −0.5, H0 = t0 = 1, α = 0.8502 and β = 0.4817.

The SC DM model and steady state (SS) model corresponds

to fixed point {r, q} = {1, 0.5} and {r, q} = {1,−1}, respec-

tively. It can be seen that there is a sign change of q from

positive to negative which explain the recent phase transi-

tion. The trajectories show that viscous NHDE models com-

mence evolving from different points for different values of

ζ0 with respect to �C DM which starts from SC DM fixed

point. The viscous NHDE model always converges to SS

model as �C DM , Q and CG models in late-time evolution

of the universe. Thus, the constant viscous NHDE model is

compatible with Q and CG models.

The above discussion concludes the effect of viscous term

in NHDE model. Let us discuss the model in view point of

model parameters α and β. Figure 4a, b show the trajectories

in r −s and r −q planes, respectively, for the different values

of α and β with constant ωd = −0.5, H0 = t0 = 1 and

ζ0 = 0.02. The arrows in the diagram denote the evolution

directions of the statefinder trajectories and r −q trajectories.

From Fig. 4a, we observe that for this fixed value of ζ0 the

constant viscous NHDE model always correspond to the Q
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Fig. 4 a The r − s trajectories

are plotted in r − s plane for

different values of α and β with

ωd = −0.5 and ζ0 = 0.02. The

arrows represent the directions

of the evolutions of statefinder

diagnostic pair with time. b The

r − q trajectories are plotted in

r − q plane for different values

of α and β with ωd = −0.5 and

ζ0 = 0.02. The arrows represent

the directions of the time

evolution pair {r, q} with time

(a) (b)

model. It may start from the vicinity of SC DM model in

early time of evolution for some values of α and β, e.g.,

(α, β) = (0.8502, 0.55). In late-time of evolution the model

always converges to �C DM model for any values of (α, β).

The panel (b) of Fig. 4 shows the time evolution of the

r − q trajectories in r − q plane. The horizontal line at

r = 1 corresponds to the time evolution of the �C DM

model. The signature change from positive to negative in q

clearly explain the phase transition of the universe. The con-

stant viscous NHDE model may start from the vicinity of

the SC DM model ({r, q} = {1, 0.5}) for some values of α

and β (e.g., α = 0.8502, β = 0.55). However, the constant

viscous NHDE model approaches to the SS model as the

�C DM and Q models in future . Thus, the viscous NHDE

model is compatible with the �C DM and Q models with

variables model parameters and constant value of ζ0.

Thus, we conclude that our model corresponds to both Q

and CG models for the different values of viscous coefficient

ζ0 whereas for the different values of model parameters α

and β with respect to the fixed value of ζ0, our model only

corresponds to Q model. Hence, we can conclude that due

to the viscosity NHDE model is compatible with the Q and

CG models. By above analysis, we can say that the bulk

viscous coefficient and model parameters play the important

roles in the evolution of the universe, i.e., they both determine

the evolutionary behavior as well as the ultimate fate of the

universe.

Om diagnostic

In addition to statefinder {r, s}, another diagnostic model,

Om(z) is widely used to discriminate DE models. It is a new

geometrical diagnostic which combines Hubble parameter

H and redshift z. The Om(z) diagnostic [39] has been pro-

posed to differentiate �C DM to other DE models. Many

authors [71–73] have studied the DE models based on Om(z)

diagnostic. Its constant behaviour with respect to z represents

that DE is a cosmological constant (�C DM). The positive

slope of Om(z) with respect to z shows that the DE behaves

as phantom and negative slope shows that DE behaves like

quintessence. According to Ref. [39], Om(z) parameter for

spatially flat universe is defined as

Om(z) =

H2(z)

H2
0

− 1

(1 + z)3 − 1
, (32)

where H0 is the present value of the Hubble parameter. Since

the Om(z) involves only the first derivative of scale factor, so it

is easier to reconstruct it as compare to statefinder parameters.

It has been shown that the slope of Om(z) can distinguish

dynamical dark energy from the cosmological constant in a

robust manner, both with and without reference to the value

of the matter density.

On substituting the required value of H(z) from (22) in

(32), we get the value of Om(z) as

Om(z) =

[

ζ0

H0
+

{

1 + αωd −
ζ0

H0

}

(1 + z)
3(1+αωd )

2+3βωd

]2

− (1 + αωd )2

(1 + αωd )2[(1 + z)3 − 1]
.

(33)

For comparison, we plot Om(z) trajectory with respect to

z for different values of ζ0 > 0 (or α and β) with fixed α

and β (or ζ0), with H0 = 1 and ωd = −0.5 as shown in

Fig. 5. From Fig. 5a, we observe that for 0 < ζ0 ≤ 0.57,

the trajectory shows the negative slope, i.e., the DE behaves

like quintessence and for ζ0 > 0.57, the positive slope of the

Om trajectory is observed, i.e., the DE behaves as phantom.

For the late future stage of evolution when z = −1, we

get Om(z) = 1 −
ζ 2

0

H2
0 (1+αωd )2

, which is the constant value of

Om(z). Thus for z = −1, the DE will correspond to �C DM .

The Fig. 5b shows the Om(z) trajectory for different values

of model parameters α and β with fixed ζ0 = 0.02, ωd =

−0.5 and H0 = 1. This trajectory only shows the negative

curvature which imply that the DE behaves like quintessence.
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Fig. 5 a The Om(z)

evolutionary diagram of viscous

NHDE for different values of

ζ0 > 0 with fixed ωd = −0.5,

α = 0.8502 and β = 0.4817. b

The Om(z) evolutionary diagram

of viscous NHDE for different

values of α and β with fixed

ζ0 = 0.02 with ωd = −0.5

(a) (b)

From the above discussion with constant bulk viscous

coefficient, we find that the constant ζ0 ( or cosmological

parameters α and β ) play important roles in the evolution

of the universe, i.e., they both determine the evolutionary

behavior as well as the ultimate fate of the universe.

3.2 Solution for variable bulk viscosity coefficient

In this section, we consider two cases: (i) ζ0 = 0 and ζ1 �= 0,

and (ii) ζ0 �= 0 and ζ1 �= 0.

Case (i) ζ0 = 0 and ζ1 �= 0:

In this case, the bulk viscosity coefficient given in (15)

reduces to

ζ = ζ1 H, (34)

which shows that the bulk viscous coefficient is directly pro-

portional to Hubble parameter.

Using (34) into (16), we get

Ḣ +
3(1 − ζ1 + αωd)

(2 + 3βωd)
H2 = 0. (35)

The above equation is similar to the Eq.(5) obtained in the

case of non-viscous NHDE model in Sect. 2. The solution of

(35) for H in terms of t is given by

H =
1

c3 +
3(1−ζ1+αωd )

(2+3βωd )
t
, (36)

where c3 represents the constant of integration. The scale

factor can be obtained as

a = a0

[

1 +
3(1 − ζ1 + αωd)H0

(2 + 3βωd)
(t − t0)

]

(2+3βωd )

3(1−ζ1+αωd )

,

for ζ1 �= (1 + αωd), β �= −
2

3ωd

(37)

The scale factor varies as power-law expansion. Now, the DP

is

q =
3(1 − ζ1 + αωd)

(2 + 3βωd)
− 1. (38)

which is a constant value. Such form of ζ gives no transition

phase. The positive or negative sign of q depends on whether

3ζ1 < (1 + 3(α − β)ωd) or 3ζ1 > (1 + 3(α − β)ωd),

respectively.

Now, the statefinder parameter can be given as

r = 1 −
9(1 + αωd − ζ1)

(2 + 3βωd)
+

18(1 + αωd − ζ1)
2

(2 + 3βωd)2
, (39)

and

s =
2(1 + αωd − ζ1)

(2 + 3βωd)
. (40)

In this case the statefinder pair is constant. In the limit of

ζ1 → (1 + αωd), the statefinder pair {r, s} → {1, 0} and for

ζ1 =
(2α−3β)ωd

2
, this model behaves as SCDM, i.e., {r, s} =

{1, 1}.

Case (ii) ζ0 �= 0 and ζ1 �= 0:

Let us consider the more general form of the bulk viscous

coefficient, i.e., ζ = ζ0 + ζ1 H . Using (15) into (16), we get

Ḣ +
3(1 − ζ1 + αωd)

(2 + 3βωd)
H2 −

3ζ0

(2 + 3βωd)
H = 0. (41)

Solving the above equation, we get the Hubble parameter in

terms of t as

H = H0e
3ζ0(t−t0)

(2+3βωd )

×

[

1 +
H0(1 − ζ1 + αωd)

ζ0

{

e
3ζ0(t−t0)

(2+3βωd ) − 1

}]−1

,

(42)

where H0 is the present value of the Hubble parameter and

we have made the assumption that the present value of scale

factor is a0 = 1. The solution of (42) for the scale factor a

in terms of t is given by

a =

[

1 +
H0(1 − ζ1 + αωd)

ζ0

{

e
3ζ0(t−t0)

(2+3βωd ) − 1

}]

(2+3βωd )

3(1−ζ1+αωd )

,

for ζ0 �= 0, ζ1 �= (1 + αωd) (43)

Here, we get an exponential type scale factor with the viscous

terms. As (t − t0) → 0, the scale factor behaves as

a →

[

1 +
3H0(1 − ζ1 + αωd)(t − t0)

(2 + 3βωd)

]

(2+3βωd )

3(1−ζ1+αωd )

, (44)
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which shows power-law expansion in early time. On the other

hand, if ζ0 = H0(1 − ζ1 +αωd) or (t − t0) → ∞, we obtain

a(t) = exp

(

3ζ0(t − t0)

(2 + 3βωd)

)

. (45)

This case corresponds the de Sitter universe which shows

accelerated expansion in the later time of evolution.

Now, with the help of (43), the Hubble parameter in terms

of scale factor can be written as

H(a) =
H0

(1 − ζ1 + αωd )

×

[

ζ0

H0
+

{

(1 − ζ1 + αωd ) −
ζ0

H0

}

a
−

3(1−ζ1+αωd )

(2+3βωd )

]

.

(46)

This equations shows that if both ζ0 and ζ1 are zero, the

Hubble parameter, H = H0a
−3(1+αωd )

(2+3αωd ) , which corresponds to

non-viscous NHDE model. When ζ1 = 0, H reduces to Eq.

(22) which is the case of constant viscosity.

The derivative of ȧ with respect to a can be obtained from

(46), which is given by

dȧ

da
=

H0

(1 − ζ1 + αwd)

[

ζ0

H0
−

{

(1 − ζ1 + αwd) −
ζ0

H0

}

×

(

(1 + 3(α − β)wd − 3ζ1)

2 + 3βwd

)

a
−

3(1−ζ1+αwd )

(2+3βwd )

]

. (47)

Equating (47) to zero to get the transition scale factor aT as

aT =

[

(1 + 3(α − β)wd − 3ζ1) {(1 − ζ1 + αwd )H0 − ζ0}

(2 + 3βwd )ζ0

]

(2+3βwd )

3(1−ζ1+αwd )

.

(48)

The corresponding transition redshift zT is

zT =

[

(1 + (α − β)wd − 3ζ1) {(1 − ζ1 + αwd )H0 − ζ0}

(2 + 3βwd )ζ0

]−
(2+3βwd )

3(1−ζ1+αwd )

− 1.

(49)

It can be observed that for (ζ0 + ζ1 H0) =
{1+3(α−β)wd }H0

3
,

the transition from decelerated phase to accelerated phase

occurs at aT = 1 or zT = 0, which corresponds to the

present time of the universe. By considering the observa-

tional value α = 0.8502 and β = 0.4817 along with

ωd = −0.5, H0 = 1, we get (ζ0 + ζ1) = 0.15. A plot of

the evolution of the scale factor is given in Fig. 6. Thus, for

0 < (ζ0 +ζ1) ≤ 0.15 the scale factor has earlier deceleration

phase followed by an acceleration phase in later stage of the

evolution. The transition from the decelerated to accelerated

expansion depends on the viscosity ζ0 and ζ1 as shown above.

For (ζ0 + ζ1) > 0.15, the transition takes place in past of the

universe and the scale factor increases with accelerated rate

forever.

Fig. 6 The plot of the scale factor with respect to t − t0 for different

values of ζ0, ζ1 when ζ0 > 0 and ζ1 > 0 with ωd = −0.5, α = 0.8502

and β = 0.4817

The transition may also be discussed through the evolution

of DP. In this case, we get

q =
3
{

(1 − ζ1 + αωd) −
ζ0

H0

}

(2 + 3βωd)
e
−

3ζ0(t−t0)

(2+3βωd ) − 1, (50)

which is a time-dependent value of DP, which may describe

the transition phase of the universe. It can be observed that

DP must change its sign at t = t0. This time can be achieved

if 3(ζ0 + ζ1 H0) = {1 + 3(α − β)wd}H0. The sign of q is

positive for t < t0 and it is negative for t > t0. The values of

ζ0 and ζ1 can be obtained for a given values of ωd , α and β,

which may be obtained from observation, or vice-versa.

From (50), DP can be written in terms of scale factor as

q(a) =
{3(1 − ζ1 + αωd) − 3ζ0}

(2 + 3βωd)

×

⎡

⎣

(1 − ζ1 + αωd)

(a
3(1−ζ1+αωd )

2+3βωd − 1)ζ0 + (1 − ζ1 + αωd)

⎤

⎦ − 1.

(51)

In terms of red shift z, the above equation becomes

q(z) =
{3(1 − ζ1 + αωd ) − 3ζ0}

(2 + 3βωd )

×

⎡

⎢

⎢

⎢

⎣

(1−ζ1 + αωd )
(

(1+z)
−

3(1−ζ1+αωd )

2+3βωd − 1

)

ζ0 + (1 − ζ1 + αωd )

⎤

⎥

⎥

⎥

⎦

−1.

(52)

When the bulk viscous parameter and all other parameter are

zero, the deceleration parameter q = 1/2, which corresponds

to a decelerating matter dominated universe with null bulk

viscosity. However, when only the bulk viscous term ζ0 = 0

and ζ1 �= 0, the value of q is same as obtained in Eq. (38) for
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case (i) of variable viscous NHDE model, and when ζ0 �= 0

and ζ1 = 0 , Eq. (51) reduces to Eq. (27) of constant viscous

coefficient.

The present value of q corresponds to z = 0 or a = 1 is,

q0 = q(a = 1) =
3(1 − ζ1 + αωd) − 3ζ0

(2 + 3βωd)
− 1. (53)

This equation shows that if 3(ζ0 + ζ1) = [1 + 3(α − β)ωd ],

the deceleration parameter q = 0. This implies that the tran-

sition into the accelerating phase would occur at the present

time. The current DP q0 < 0 if 3(ζ0+ζ1) > [1+3(α−β)ωd ],

implying that the present universe is in the accelerating epoch

and it entered this epoch at an early stage. But q0 > 0 if

3(ζ0 + ζ1) < [1 + 3(α − β)ωd ] implying that the present

universe is decelerating and it will be entering the accel-

erating phase at a future time. For the observational value

α = 0.8502 and β = 0.4817 with ωd = −0.5 and H0 = 1,

we get (ζ0 + ζ1) = 0.15 which gives q0 = 0. Thus for this

value set, the transition into accelerating phase would occur

at present time. If (ζ0 + ζ1) > 0.15, q0 < 0, i.e., the universe

is in accelerating phase and it entered this epoch at an early

stage. If (ζ0 + ζ1) < 0.15, q0 > 0, i.e., the universe is in

decelerating epoch and it will be entered into the accelerated

phase in future. This result is verified graphically which is

represented by Fig. 7a. The Fig. 7b shows the q − a graph

in q − a plane to discuss the evolution of the universe with

respect to model parameters α and β. Here, the signature

change in the value of DP can be seen by the figure. From

above discussion we say that both viscous coefficient and

model parameter have their own role in the evolution of the

universe. Some values of bulk viscous term gives the acceler-

ated phase from the beginning and continues to be accelerated

in late time.

Statefinder diagnostic

As we have mentioned above , the scale factor and decel-

eration parameter have been discussed to explain the accel-

erating universe with viscous term or model parameters. So

it is necessary to distinguished these models in a model-

independent manner. In what follows we will apply two

geometrical approaches to viscous NHDE model, i.e., the

statefinder and Om diagnostic from which we can compute

the evolutionary trajectories with ones of the �C DM model

to show the difference among them.

In this case, the statefinder parameters defined in Eq. (10)

can be evaluated as

r = 1 +
9

(

ζ0
H0

− (1 − ζ1 + αωd )

) (

1 −
(1−ζ1+αωd )
(2+3βωd )

)

e
−

3ζ0(t−t0)

(2+3βωd )

(2 + 3βωd )

+
9

(

ζ0
H0

− (1 − ζ1 + αωd )

)2
e
−

6ζ0(t−t0)

(2+3βωd )

(2 + 3βωd )2
, (54)

and

s =

2
(

ζ0
H0

−(1−ζ1+αωd )

)(

1−
1−ζ1+αωd
(2+3βωd )

)

(2+3βωd )
e
−

3ζ0(t−t0)

(2+3βωd ) +
2
(

ζ0
H0

−(1−ζ1+αωd )

)2

(2+3βωd )2 e
−

6ζ0(t−t0)

(2+3βωd )

2
(

(1−ζ1+αωd )−
ζ0
H0

)

(2+3βωd )
e
−

3ζ0(t−t0)

(2+3βωd ) − 1

. (55)

From (54) and (55) it can be observed that the viscous

NHDE model converges to {r, s} → {1, 0} in the limit of

(t − t0) → ∞. This can also be achieved at (ζ0 + H0ζ1) =

H0(1+αωd)but this is a very fixed point. Thus, the statefinder

diagnostic fails to discriminate between �C DM and the

NHDE model. Here, we obtain time-dependent statefinder

pair which needs to study the general behavior. Let us see

the effect of viscosity coefficients ζ0, ζ1 and model param-

eters α, β for the general form of variable viscous NHDE

model. Figure 8a shows the r − s trajectory in r − s plane for

different values of ζ0 and ζ1 with H0 = t0 = 1, α = 0.8502

and β = 0.4817. The model behaviors to Q models for

0 < (ζ0 + ζ1) ≤ 0.57 and CG models for (ζ0 + ζ1) > 0.57.

The trajectories in Q-model and CG-model both converge to

the �C DM model in late time of evolution.

Fig. 7 a The q − a graph in

q − a plane for different values

of ζ0 > 0 and ζ1 > 0 with

ωd = −0.5, α = 0.8502 and

β = 0.4817. b The q − a graph

in q − a plane for different

values of α and β with ζ0 = 0.2,

ζ1 = 0.3 and ωd = −0.5

(a) (b)
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Fig. 8 a The r − s trajectories

are plotted in r − s plane for

different values of ζ0 > 0 and

ζ1 > 0 with ωd = −0.5,

α = 0.8502 and β = 0.4817.

The arrows represent the

directions of the evolutions of

statefinder diagnostic pair with

time. b The r − q trajectories

are plotted in r − q plane for

different values of ζ0 > 0 and

ζ1 > 0 with ωd = −0.5,

α = 0.8502 and β = 0.4817.

The arrows represent the

directions of the time evolution

pair {r, q} with time

(b)(a)

Figure 8b shows the time evolution of {r, q} pair in r − q

plane for different combinations of the values of ζ0 and ζ1

with H0 = t0 = 1, α = 0.8502 and β = 0.4817. The fixed

points {r, q} = {1, 0.5} and {r, q} = {1,−1} represents the

SC DM and SS models, respectively. Since q changes its

sign from positive to negative with respect to time which

shows the phase transition of the universe from deceleration

to acceleration. In beginning this model behaves different

from the �C DM but in future it behaves same as �C DM

which converges to SS model in late-time. Hence the vari-

able viscous NHDE model always converges to SS model

as �C DM , Q and CG models in late-time evolution of the

universe. For all the ranges of (ζ0 + ζ1) the trajectories cor-

respond to Q and CG models as in Fig. 8a. Thus the variable

viscous NHDE model is compatible with both Q and CG

models.

Thus, the viscosity coefficients are able to correspond to

both Q and CG models for different combinations of ζ0, ζ1

and also explain the phase transition of the universe.

Now, we are curious to know the behaviour of variable

viscous NHDE model with respect to the model parameters

α and β. Here, Fig. 9a, b represents the r − s and r − q

trajectories in r − s and r − q plane, respectively, for the

different values of α and β close to it’s observational value

with ωd = −0.5, H0 = t0 = 1, ζ0 = 0.02 and ζ1 = 0.03.

The evolutionary directions of both the trajectories are shown

in the figures by the arrows. In Fig. 9a, we analysed that for

this fixed value of ζ0 and ζ1 the (r, s) trajectories are lying in

the region corresponds to r < 1, s > 0 which shows that our

model is similar to the Q model. It also starts from the vicinity

of SC DM model in early time of evolution for some values

of α and β, e.g., (α, β) = (0.8502, 0.59). It is different from

RDE model and quiessence model as it produces the curved

trajectories for any values of (α, β) close to observational

value which approach to �C DM in late-time of evolution as

the Q model tends to�C DM model in late-time of evolution.

The r − q trajectories in r − q plane are shown by the

Fig. 9b. This model is also able to explain the phase transi-

tion of the universe. It also starts from the neighbourhood

of the SC DM model for some values of α and β (e.g.,

α = 0.8502, β = 0.55) and approaches to SS model in late-

time for any value of α and β close to the observational value.

In future the variable viscous NHDE model approaches to the

SS model same as the �C DM and Q models. Thus the vis-

cous NHDE model is compatible with the �C DM and Q

models.

Thus, we observed from Figs. 8 and 9 that viscous NHDE

model is compatible to Q and CG models for different ranges

of viscosity coefficients in the presence of the fixed observa-

tional value of model parameters whereas the model param-

eter in the presence of fixed value of viscosity coefficients

approaches only to Q model.

Om diagnostic

Let us discuss the another geometrical parameter, i.e., Om(z)

diagnostic in viscous NHDE model. By substituting the

required values in Eq. (32), we get the Om(z) diagnostic for

ζ = ζ0 + ζ1 H as

Om(z) =

[

ζ0

H0
+

{

(1 − ζ1 + αωd) −
ζ0

H0

}

(1 + z)
3(1−ζ1+αωd )

2+3βωd

]2

− (1 − ζ1 + αωd)2

(1 − ζ1 + αωd)2[(1 + z)3 − 1]
. (56)
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Fig. 9 a The r − s trajectories

are plotted in r − s plane for

different values of α and β with

ωd = −0.5, ζ0 = 0.02 and

ζ1 = 0.03. The arrows represent

the directions of the evolutions

of statefinder diagnostic pair

with time. b The r − q

trajectories are plotted in r − q

plane for different values of α

and β with ωd = −0.5,

ζ0 = 0.02 and ζ1 = 0.03. The

arrows represent the directions

of the time evolution pair {r, q}

with time

(a) (b)

Fig. 10 a The evolution of

Om(z) versus the redshift z for

different values of ζ0 > 0 and

ζ1 > 0 with ωd = −0.5,

α = 0.8502 and β = 0.4817. b

The evolution of Om(z) versus

the redshift z for different values

of α and β with ζ0 = 0.02,

ζ1 = 0.03 and ωd = −0.5

(a) (b)

Figure 10a shows the Om(z) trajectory with respect to z

for different values of ζ0 > 0 and ζ1 > 0 corresponding to

α = 0.8502, β = 0.4817, H0 = 1 and ωd = −0.5. Here, the

trajectory represents the negative curvature, i.e., the viscous

NHDE behaves as quintessence for the limit 0 < (ζ0 +ζ1) ≤

0.57 and it shows the positive curvature, i.e., the viscous DE

behaves as phantom, for (ζ0 + ζ1) > 0.57 whereas for z =

−1, i.e., in future time we get Om(z) = 1 −
ζ 2

0

H2
0 (1−ζ1+αωd )2

,

which is the constant value of Om(z). Thus for z = −1, the

viscous NHDE will correspond to �C DM .

Figure 10b plot the Om(z) versus z for different model

parameters α and β correspond to fixed ζ0 and ζ1. The graph

shows that there is always negative curvature for any values

of model parameters. This shows that the model behaviors

similar to quintessence model.

4 Conclusion

We have studied some viscous cosmological NHDE models

on the evolution of the universe, where the IR cutoff is given

by the modified Ricci scalar, proposed by Granda and Oliv-

ers [29,30]. It has been tried to demonstrate that the bulk

viscosity can also play the role as a possible candidate of

DE. We have performed a detailed study of both non-viscous

and viscous NHDE models. The component of this model is

DE and pressureless DM. We have obtained the solutions for

scale factor and deceleration parameter. We have also stud-

ied these models from two independent geometrical point of

view, namely the statefinder parameter and Om diagnostic.

We have studied the different possible scenarios of viscous

NHDE and analyzed the evolution of the universe according

to the assumption of bulk viscous coefficient ζ . In the follow-

ing we summarize the results obtained in different sections

for non-viscous and viscous NHDE models.

In Sect. 2, we have investigated non-viscous NHDE in flat

FRW universe. We have calculated the relevant cosmologi-

cal parameters and their evolution. The evolution of scale

factor has been studied. We have obtained power-law form

of scale factor for which the model may decelerate or accel-

erate depending on the constraint of model parameters. The

deceleration parameter is constant in this case. Therefore,

the model can not describe the transition phase of the uni-

verse. The statefinder parameters are also constant. We have

observed that the observed set of data of model parameters

do not favor the NHDE model over the �CDM as well as

SC DM model. However, NHDE model behaves like SC DM

model for α → 3β/2. It has been observed that this model

approaches to {r, s} → {1, 0} in the limit of α → −1/ωd

but there is no such value of parameters which would clearly

show the �CDM.

In viscous NHDE model as discussed in Sect. 3, we have

considered that the matter consists of viscous holographic

dark energy and pressureless DM. We have assumed a most
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general form ζ = ζ0 + ζ1 H to observe the effect of bulk vis-

cous coefficient in the evolution of the universe during early

and late time. We have studied three cases: (ζ0 �= 0, ζ1 = 0);

(ζ0 = 0, ζ1 �= 0) and (ζ0 �= 0, ζ1 �= 0).

In the first case where we have constant bulk viscous coef-

ficient, i.e., ζ = ζ0, an exponential form of the scale factor

is obtained. Therefore, the universe starts from a finite vol-

ume followed by an early decelerated phase and then tran-

sits into an accelerated phase in late time of evolution. As

(t − t0) → 0, the scale factor reduces to the power-law

form which corresponds to an early decelerated expansion.

As (t − t0) → ∞, the scale factor tends to the exponen-

tial form which corresponds to acceleration similar to the de

Sitter phase. The scale factor and red shift corresponding to

the transition from decelerated to accelerated expansion has

been obtained. The evolution of scale factor has been shown

is Fig. 1. It is clear from Fig. 1 that if ζ0 = 0.15, transi-

tion from decelerated phase to accelerated phase occurs at

aT = 1 and zT = 0, which corresponds to the present time

of the universe. The transition would takes place in past if

ζ0 > 0.15 and in future if 0 < ζ0 < 0.15.

The result regarding the transition of the universe into

accelerated epoch discussed above have been further veri-

fied by studying the evolution of DP. The viscous NHDE

model gives time-dependent DP which would describe the

phase transition. We have obtained q in terms of a and z. The

variation of q with a has been shown in Fig. 2a, b with vary-

ing ζ0 and constant model parameters, and varying model

parameters and constant ζ0, respectively. The evolution of

DP shows that the transition from decelerated to accelerated

epoch occurs at the present time, corresponding to q = 0

if ζ0 = 0.15. The transition would be in recent past, cor-

responds to q < 0 at present ζ0 > 0.15 and the transition

into accelerating epoch will be in the future, corresponds to

q > 0 at present if 0 < ζ0 < 0.15.

As the model predicts the late time acceleration, we have

analyzed the model using statefinder parameter and Om diag-

nostic to distinguished it from other DE models especially

from �C DM model. The evolution of the viscous NHDE

model in the {r, s} plane is shown in Fig. 3a with different

values of ζ0 with constant α and β. It shows that the evolution

of {r, s} parameter is in such a way that r < 1, s > 0, a feature

of quintessence model where as r > 1, s < 0 corresponds

to the Chaplygin gas model. In both models, the trajecto-

ries are coinciding with each other for any value of ζ0. The

viscous NHDE model behaving quintessence and Chaplygin

gas models in early time for different ζ0 untimely approaches

to �C DM model in late time. We have also discussed the

evolutionary behavior of {r, q} to discriminate the viscous

NHDE model. The trajectory of {r, q} has been plotted in

Fig. 3b which shows the phase transition from decelerated

to accelerated phase. If 0 < ζ0 ≤ 0.57, the transition takes

place from quintessence region and approaches to SS model

in late time as �C DM model approaches from SCDM. How-

ever, if ζ0 > 0.57, the transition starts from Chaplygin gas

model and approaches to SS model in late time. Both the tra-

jectories in Q model and CG model are coinciding on each

other for any value of ζ0.

A study of Om diagnostic of viscous NHDE model has

been carried out in Fig. 5a for different values of ζ0 and

fixed α and β. The trajectory shows that if 0 < ζ0 ≤ 0.57,

the Om(z) trajectory shows the negative slope which means

viscous NHDE behaves like quintessence and if ζ0 > 0.57,

the positive slope of the Om(z) trajectory is observed, i.e., the

viscous NHDE behaves like phantom. In future as z → −1,

the Om(z) becomes constant, i.e, it may approach to �C DM

model.

The above discussion shows that effect of bulk viscous

coefficient on NHDE model with different values of ζ0. We

have also discussed the viscous NHDE model with varying

model parameters α and β taking fixed ζ0. The trajectory for

q versus a as shown in Fig. 2b shows that the transition takes

place from decelerated to accelerated phase in future for any

values of α and β and approaches to q = −1 in late-time.

The trajectory for {r, s} and {r, q} have also been plotted

respectively in Fig. 4a, b for different values of α and β with

fixed value of ζ0. The {r, s} trajectory as shown in Fig. 4a

shows that the trajectory starts from the quintessence region,

even though some starts from the vicinity of SC DM and

approaches to �C DM in late-time. The signature change of

q from positive to negative has been observed in r − q plane

as shown in Fig. 4b. The viscous NHDE model approaches to

SS model in late-time as�C DM does. The Om trajectory has

been plotted in Fig. 5b for different values of α and β for fixed

ζ0. This trajectory only shows the negative curvature which

imply that the viscous NHDE behaves like quintessence.

From the above discussion with constant bulk viscous

coefficient, we find that the constant ζ0 (or cosmological

parameters α and β) play important roles in the evolution of

the universe i.e., they both determine the evolutionary behav-

ior as well as the ultimate fate of the universe.

In second viscous NHDE model we have assumed ζ =

ζ1 H . The solution of this model is similar to the non-viscous

NHDE one. We have obtained power-law form of scale factor

which gives constant values of DP and statefinder pairs.

In last case we have taken the most general form of bulk

viscous coefficient ζ = ζ0 +ζ1 H . The solution of this model

is similar to the constant bulk viscous coefficient ζ0. The

effect of both non-zero values of ζ0 and ζ1 have been dis-

cussed. We have obtained exponential scale factor which

gives time-dependent DP and statefinder pairs. The transition

from decelerated to accelerated epoch has been discussed.

As (t − t0) → 0, the scale factor asymptotically gives the

power-law which shows that the model decelerates in early

time and accelerates in late-time. As (t−t0) → ∞, the model

corresponds to de Sitter like. The transition scale factor and
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hence corresponding transition redshift has been calculated.

If (ζ0 + ζ1) = 0.15, the transition from decelerated to accel-

erated phase occurs at aT = 1 or zT = 0, i.e., at present time

of the universe. Figure 6 shows that evolution of the scale

factor with (t − t0). If 0 < (ζ0 + ζ1) < 0.15, the scale factor

has earlier deceleration phase followed by an acceleration

phase in later stage of the evolution. For (ζ0 + ζ1) > 0.15,

the transition takes place in past of the universe and the scale

factor increases with accelerated rate forever.

The DP is time-dependent which shows phase transition

from decelerated to accelerated phase. The DP has been writ-

ten in terms of scale factor or redshift. We have calculated

the present value q0 which gives ζ0 + ζ1 = 0.15. This shows

that the transition into acceleration phase occurs at present

time. If (ζ0 + ζ1) > 0.15, q0 < 0, i.e., the universe is in

accelerating phase and it entered this epoch at an early stage.

If (ζ0 + ζ1) < 0.15, q0 > 0, i.e., the universe is in deceler-

ating epoch and it will be entered into the accelerated phase

in future. We have plotted q versus a for different values of

(ζ0, ζ1) with fixed model parameters and others as shown

in Fig. 7a. The Fig. 7b plots the q − a for different models

parameters α, β with fixed ζ0, ζ1 and others.

Figure 8a shows the r − s trajectory in r − s plane for

different values of ζ0 and ζ1 with constant model param-

eters and others. The model behaviors to Q models for

0 < (ζ0 + ζ1) ≤ 0.57 and CG models for (ζ0 + ζ1) > 0.57.

The trajectories in Q-model and CG model both converge

to the �C DM model in late time of evolution. Figure 8b

plots the trajectory of q − r for different values of (ζ0, ζ1)

with constant model parameters and others. The DP changes

its sign from positive to negative with respect to time which

shows the phase transition of the universe from deceleration

to acceleration. In beginning this model behaves different

from the �C DM but in future it behaves same as �C DM

which converges to SS model in late-time. Thus, the variable

viscous NHDE model is compatible with both Q and CG

model. Figure 9a, b plot the trajectories of r − s and r − q

for different model parameters (α, β) with fixed ζ0, ζ1 and

others. In Fig. 9a, we have analysed that for this fixed value

of ζ0 and ζ1 the {r, s} trajectories are lying in the region cor-

responds to r < 1, s > 0 which shows that our model is

similar to the Q model. Figure 9b shows that this model is

also able to explain the phase transition of the universe. It

also starts from the neighbourhood of the SC DM model for

some values of α and β. In future the variable viscous NHDE

model approaches to the SS model same as the �C DM and

Q models. Thus the viscous NHDE model is compatible with

the �C DM and Q models.

We conclude that the trajectory of s − r and q − r suggest

a different behavior as compare to Ricci dark energy done

by Feng [16] where it was found that the s − r trajectory is

a vertical segment, i.e., s is constant during the evolution of

the universe. The trajectory in our viscous NHDE model is

mostly confined a parabolic curve and approaches to {r, s} =

{1, 0} in s − r plane and {r, q} = {1,−1} in q − r plane.

From Om diagnostic we find that the trajectory repre-

sents the negative curvature, i.e, viscous NHDE behaves as

a quintessence for 0 < (ζ0 + ζ1) ≤ 0.57 and it shows the

positive curvature, i.e., the viscous DE behaves as phantom,

for (ζ0 + ζ1) > 0.57, which is graphically represented by

Fig. 10a. We have also concluded that as z → −1, we get

the constant value of Om, which corresponds to �C DM

model. However, plot of Om as shown in Fig. 10b for dif-

ferent model parameters with constant ζo and ζ1 reveal that

there is always negative curvature for any values of model

parameters. This shows that the viscous NHDE behaviors

similar to quintessence.

In concluding remarks, let us compare our work with

respect to the earlier studied in this direction. Feng and Li [56]

who investigated the viscous Ricci DE model by assuming

bulk viscous coefficient proportional to the velocity vector

of the fluid. Chattopadhyay [55] reported a study on modi-

fied Chaplygin gas based reconstructed scheme for extended

HDE in the presence of bulk viscosity. In comparison to the

said work, the present work lies not only in its choice of differ-

ent bulk viscous coefficient but also in its different approach

to discuss the evolution of the universe. The present viscous

NHDE model successfully describes the present accelerated

epoch. The �C DM model is attainable by present model.

The NHDE model behaves quintessence model and Chap-

lygin gas model inn early time due to viscous effect. How-

ever, it behaves only quintessence if we consider the model

parameters with fixed viscous coefficient. Our work implies

the theoretical basis for future observations to constraint the

viscous NHDE.
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