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Abstract−This paper presents the effect of viscous dissipation on heat transfer characteristics of mixed electromag-

netic/pressure driven liquid slip flows inside parallel plate microchannels. Flow is governed by the Navier-Stokes equa-

tions subject to the imposition of electromagnetic field with the boundary condition appropriate to the slip flow regime.

For isoflux walls, some closed form expressions for the local and bulk temperature profiles and the Nusselt number

in terms of dimensionless slip length, Hartmann number and Brinkman number are given, while the viscous dissipation

is also taken into account. Then the analytical solutions derived in this analysis are elaborated. It turns out that since

the contribution of the viscous dissipation on the Nusselt number under the given circumstances, especially a stronger

electromagnetic field, may reach to nearly 10%, therefore, the viscous heating should be taken into consideration. Other-

wise, the heat transfer rate may be overestimated or underestimated depending on whether the fluid is being heated

or cooled. Also, there are singularities in Nusselt number values, which move close together by including the viscous

dissipation. Further, an increase in the Hartmann number increases the convection, which is especially reflected in smaller

values of dimensionless slip length.
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INTRODUCTION

Recent progress in micro-fabrication techniques for micro-fluidic

systems and in methods for the analysis of micro-fluid devices have

made it possible to design complex micro-fluidic devices such as lab-

on-chip, fuel cell, heat exchanger and so on. To apply these micron-

sized devices, one should have a fundamental knowledge of micro-

channels where the continuum assumption is no longer valid and the

Navier-Stokes equations must be solved in conjunction with velocity-

slip and temperature-jump at walls. There are many experimental

works (for example, see reviews [1-3]), highlighting that the deviations

from conventional theory in experimental results for laminar flow

through microchannels were attributed to the size of the channels.

Several researchers addressed slip length for liquid microflows.

For instance, the slip length ranging 6-8µm was evaluated by Chun

and Lee [4], inferring from the experimental results of dilute colloi-

dal suspension in a slit-like channel. Joseph and Tabeling [5] meas-

ured the slip length of water flowing through thin microchannels

and found that it is within ±100 nm. Tretheway and Meinhart [6]

also found that the slip length of water flow in a 30×300µm channel

coated with a monolayer is nearly 1µm.

Many numerical and analytical solutions, being gas or liquid,

are also available in the literature; for example, refer to [7-12]. Their

results confirm that the inclusion of velocity-slip and temperature-

jump conditions leads to a change in the heat transfer and fluid flow

characteristics so that they can match experimental measurements.

Viscous dissipation influences are normally significant for high

viscous flows (such as liquid flows) or high velocity gradients in

macroscales, while it becomes significant even for typical flows in

microscales. Accordingly, viscous dissipation should be taken into ac-

count to avoid incorrect results in microchannels. It is introduced in

the energy equation as a source term and effectively influences con-

vective heat transfer in some cases by changing temperature distri-

bution. Several researchers, showing that viscous heating plays an im-

portant role in convection [13-20], have reported its effect on the heat

transfer rate for microchannels under slip/jump boundary conditions.

On the other hand, magneto-hydrodynamic (MHD) flows relevant

to macroscales have been investigated in some references such as

[21-24]. Andreev et al. [25] conducted an experimental study of a

turbulent liquid metal flow in a rectangular minichannel under the

influence of an inhomogeneous magnetic field, which is a basic prob-

lem of liquid metal magnetohydrodynamics pertinent to the tech-

nique of electromagnetic braking in the process of continuous casting

of steel as well as for Lorentz force velocimetry. A number of Plexi-

glas blocks tightly covered the top channel in order to make sure

no-slip boundary conditions. They placed two finite permanent mag-

nets coupled by a steel yoke at outside the central part of the chan-

nel. With the insulating walls, an induced electric field was meas-

ured due to the interaction between convective terms (because of

the turbulent flow) and the magnetic field. In a further work [26],

they applied an ultrasonic velocity profile (UVP) method to a similar

problem. Chen et al. [27] conducted MHD experimental design and

program for Chinese liquid metal LiPb experimental loop DRAGON-

IV and analyzed the performance of MHD flow characteristics.

In recent decades, micropumps in mechanical and non-mechani-

cal forms are typically used to drive small volume of fluid in micro-

channels. Moreover, the advent of magnetohydrodynamic micro-
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pumps (or magnetohydrodynamic in microchannel) has attracted

researchers to study problems based on microfluidics due to its vari-

ous applications. It works based on Lorentz Force, which is gener-

ated by applying an electric field to the conductive fluid across the

channel along with a perpendicular magnetic field. For flow through

magnetohydrodynamic micropumps, some works with the assump-

tion of non-slip condition can be found in the literature [28-31].

Siegel et al. [32] explained a method for fabrication of complex

metallic microstructures in 3D by injecting liquid solder into microf-

luidic channels, and allowing the solder to cool and solidify. Employ-

ing liquid metals with high conductivity enables Hartman number

to increase. Their method significantly can facilitate the way for

fabricating metallic wires, electrodes, electromagnets, or heating

elements relevant to microfluidic channels (<10µm) (see also Ref.

[33]). In spite of using mercury for MHD actuation, the accessibil-

ity of other liquid metals and metal alloys with low melting temper-

ature would let utilizing liquid metals in microchannels. Dickey et

al. [34] also studied the behavior of the electrically conductive fluid

metal eutectic, injecting into microfluidic channels at room temper-

ature. EGaIn and Hg were brought into the microchannel by apply-

ing pressure to the inlet using regulated pressurized nitrogen, while

the outlet was at atmospheric pressure. Qian and Bau also presented

a comprehensive review on MHD-based microfluidics [35].

However, microscale study of MHD flows subject to slip condi-

tions is scarce and it has been recently put into investigation. With

regard to this, the steady state, incompressible, MHD Couette rarefied

flows inside two conducting walls was examined by Soundalgekar

[36,37] who fulfilled the magnetic induction as well as the slip con-

dition and then obtained the velocity distributions. He did a further

study in which an expression for Nusselt number for parallel plate

microchannel was derived by implementing the slip/jump bound-

ary conditions at walls in addition to assuming a transversely uni-

form magnetic field and neglecting advection term [38]. Cai and

Liu [39] investigated low-magnetic-Reynolds-number compress-

ible gas flows inside a two-dimensional microchannel. Their asymp-

totic solution led to obtain the velocities, pressure, and temperature

distributions with the assumptions of quasi-isothermal and slip/jump

boundary conditions at walls.

Actually, this work is a natural extension from the recent paper

[40] in which the fluid flow and heat transfer characteristics of mixed

electromagnetic/pressure driven slip flows within microchannels in

the case of isoflux walls were analyzed without viscous dissipation

effect included. Since viscous heating effect may strongly affect

convection, and seemingly, there is a lack of information about flow

characteristics of a viscous dissipative electromagnetohydrodynamic

liquid slip flows. Therefore, the aim of this study is to find its effect

on the convective heat transfer within parallel plate microchannels

with isoflux walls and to acquire corresponding expression for the

Nusselt number.

PROBLEM DESCRIPTION

Hydro-dynamically and thermally, fully developed laminar flow

of an electrically conducting fluid exposed to the electromagnetic

field inside parallel plate microchannels with isoflux walls is theo-

retically studied in this paper. Compared to Ref. [40], the viscous

dissipation by employing a different dimensionless temperature is

included. That is, the flow is considered to be steady, incompress-

ible with constant properties in which a constant external magnetic

field at a value B in the Y direction is applied, while a constant elec-

trical field in Z-direction is induced as a result of a potential difference

via electrodes (i.e., Ex=Ey=0), see Fig. 1. The magnetic Reynolds

number, Rem=σµmUmL, is very small, indicating that the flow of an

electrically conducting fluid does not change the magnetic field.

Therefore, the induced magnetic field is neglected in the paper to

avoid complexity of the solution [41].

When Rem<<1, the electric field may be obtained from a scalar

potential,

E=−∇φ (1)

and current may be computed using Ohm’s law:

(2)

The electric potential is derived by the following equation that is

due to conservation of current through setting its divergence to zero:

(3)

For the problem here, it becomes:

(4)

With two insulating walls and other walls (i.e., electrodes) subject to

a potential difference, the electric potential distribution leads to the

generation of a constant electric field. Now, the electrical field can be

coupled with the magnetic field with Ez=−KUmB, and 0<K<1 [39].

GOVERNING EQUATIONS

AND BOUNDARY CONDITIONS

The governing equations related to the steady, incompressible,

two-dimensional electromagneto-hydrodynamic flows are as the

following:

(5)

(6)

(7)

J = σ − ∇φ  + V B×( )

∇2

φ  = ∇ V B×( )⋅

∇2

φ  = 0

∂U

∂X
------- + 

∂V

∂Y
------- = 0

− 
∂P

∂X
------- + µ

∂2

U

∂Y
2

--------- − σB Ez + BU( ) = 0

ρcpU
∂T

∂X
------- = k

∂2

T

∂Y
2

---------
⎝ ⎠
⎛ ⎞

 + σEz Ez + BU( ) + αµ
∂U

∂Y
-------
⎝ ⎠
⎛ ⎞

2

Fig. 1. A schematic of the channel, B=(0, B, 0) and E=(0, 0, E
z
).



Viscous dissipation effect on heat transfer characteristics of mixed electromagnetic/pressure driven liquid flows inside micropumps 825

Korean J. Chem. Eng.(Vol. 30, No. 4)

Lorentz force and joule heating source terms, which are added to

the momentum and the energy equations, respectively, enable one to

simulate the flow exposed to electromagnetic field. Similar to the

mentioned source terms, the viscous dissipation term is also attached

to the energy equation. The first model of slippage at walls, suggested

by Navier [42] who assumed that the velocity at a solid surface is

proportional to the shear stress at the surface, is considered here:

(8)

Here, tangential momentum accommodation coefficients, σv, is as-

sumed to be unity.

Analytical solutions can be greatly facilitated by non-dimension-

alizing. The parameters below are used for this purpose:

The following non-dimensional numbers are also used for non-dimen-

sionalizing:

Where, Ha is Hartmann number, Re is Reynolds number, and L is

dimensionless slip length. For all parameters used in this paper, refer

to the Nomenclature. The dimensionless continuity, momentum and

the slip boundary condition according to the parameters and the non-

dimensional numbers take the following form:

(9)

(10)

(11)

Here, the non-dimensional parameter y varies in the range of 0<y<

0.5. Subscripts s and w in all equations denote to the fluid properties

at the wall and the wall, respectively. Note that the related energy

equation will be presented in the following section.

ANALYSIS

The non-dimensionalized energy equation is solved theoretically to

obtain the characteristics of convective heat transfer in parallel plate

microchannels in the absence of axial conduction. Under the slip con-

dition at walls, the fluid develops a velocity profile pertinent to electro-

magneto-hydrodynamic slip flow, which is taken from prior work [40]:

(12)

or

(12a)

where

(13)

and

(13a)

Here, for facilitating, let λ to be defined as:

(14)

Therefore, the velocity profile reads:

(15)

The way of making temperature dimensionless appropriate to the

energy equation in the case of isoflux walls is taken different from

that of Shojaeian and Shojaeian [40] to avoid a misinterpretation of

the relevant ∂T/∂X due to the inclusion of viscous dissipation. The

energy equation in dimensional form is as:

(16)

In the present work, α=0 refers to the absence of the viscous dis-

sipation, while α=1 is pertinent to its presence. The longitudinal

temperature gradient in the fully developed region appeared in Eq.

(16), ∂T/∂X, is unknown and can be acquired by carrying out an

overall energy balance for an elemental control volume, which in

general form is written as:

(17)

Therefore, for the present case it should read:

(18)

By non-dimensionalizing along with employing the Brinkman num-

ber, defined as Br=(µUm

2

/Dq''), and doing the integral on the right-

side, one finds:

(19)

where A is:

(20)

Now, ∂T/∂X in Eq. (16) can be substituted with Eq. (19). Defining

θ=(T− )/(Dq''/k), one gets to the following dimensionless thermal

energy equation:

(21)

The following thermal boundary conditions including non-tempera-
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ture jump and asymmetry are applied:

θ (y=0)=0, ∂θ/∂y (y=0.25)=0 (22)

Thus, a solution for the energy equation is obtained as:

(23)

Furthermore, one needs to have dimensionless bulk or mean tem-

perature, which is given by:

(24)

So the corresponding dimensionless mean temperature is derived as:

(25)

where

(26)

A is also obtainable from Eq. (20) as:

(27)

Therefore, the Nusselt number, which is normally defined as Nu=

(Dq'')/(k( -Tm), is written in non-dimensional form as:

(28)

Finally, for a fully developed laminar microflow, the Nusselt num-

ber takes the following form:

(29)

The validation is conducted by a comparison with the previous paper

[40] in the case where viscous dissipation and temperature-jump

are absent with Ha=4 and K=0.5. Table 1 verifies that present re-

sults (Case I) are in complete agreement with those of Ref. [40] (Case

II), although some trivial deviations are observed for high Brink-

man number owing to the different definition for dimensionless tem-

perature. Note that parameter A given by Shojaeian and Shojaeian

[40] should be assumed 4 for the comparison.

RESULTS AND DISCUSSION

This section represents the influences of the slippage and the elec-

tromagnetic field on the heat transfer rate for the hydrodynamically

and thermally fully developed liquid metal flow inside parallel plate

microchannels with isoflux walls, while the viscous dissipation is

also taken into consideration. The following results are based on a

different dimensionless temperature and a modified longitudinal tem-

perature gradient compared to the recent paper [40], as mentioned

before. It is worth noting that the current work can be generalized

to mini- and macro-scale flows through setting the slippage param-

eter, L, to zero. Viscous dissipation as a source term in the energy

equation converts kinetic motion of the fluid to thermal energy and
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Table 1. Nusselt number for fully developed flow between parallel
plates with isoflux walls for Ha=4 and K=0.5

L 0 0.01 0.1

Br Case I Case II Case I Case II Case I Case II

−0.1 8.464 8.480 8.787 8.803 10.243 10.252

−0.01 8.333 8.333 8.665 8.665 10.168 10.168

−0.001 8.320 8.320 8.653 8.653 10.161 10.161

−0.001 8.317 8.317 8.650 8.650 10.159 10.159

−0.01 8.304 8.304 8.638 8.638 10.152 10.152

−0.1 8.178 8.190 8.519 8.531 10.078 10.085

Fig. 2. Variation of fully developed Nusselt number versus Ha for
different values of L at Br=0.01, K=0.5 and α=0.
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gives rise to a change in the temperature distribution. Again, it is

worth noting that α=0 indicates the case where the viscous dissi-

pation is ignored, in contrary with α=1 for taking it into consider-

ation. Fig. 2 shows the variation of Nusselt number versus Hartmann

number for different L at Br=0.01 and K=0.5 with taking no viscous

dissipation, denoted by NuWVD. As expected, the Nusselt number

moderately increases with increasing the effect of electromagnetic

field (i.e. Ha) in the range within about 8.1% for L=0.1 and 8.2%

for L=0 at the given conditions. This behavior is because the veloc-

ity-slip increases with Hartmann number for a fixed L, according

to Eq. (12a). In other words, if L is kept to be constant, an increase

in the velocity-slip, as a consequence of applying stronger electro-

magnetic field, enhances the rate of heat transfer since it augments

advection near walls where diffusion is dominant. In a sense, an

increment in Ha through using a stronger magnet causes the fluid

particles near wall to have more movement, which facilitates con-

vective heat transfer. The slippage is also analogous to a magnet in

influencing the fluid particles motion adjacent to walls.

In Fig. 3, the normalized Nusselt number, NuNORM, defined as the

ratio of the Nusselt numbers for the two cases where the viscous

dissipation is included (i.e., α=1) and where the viscous dissipa-

tion is ignored by setting α=0, is depicted versus Hartmann num-

ber for different L at K=0.5 and Br=0.01. The Brinkman number

in the analysis comes from both the electromagnetic field and the

viscous dissipation effects. It is well-known that the positive values

of Br correspond to the wall heating (fluid is being heated by walls),

and negative values refer to the wall cooling. As seen in the figure,

it is obvious that the inclusion of viscous dissipation decreases the

Nusselt numbers in the case of wall heating. The reason is that the

viscous dissipation always contributes to internal heating of the fluid,

and accordingly, for Br>0 the temperature difference, regarded as a

factor for transferring the heat from the wall into the fluid, increases

as a result and leads to the Nusselt number to be lessened, as ex-

pected from Eq. (28). Note that the variation trend of the Nusselt

number with Ha under the influence of viscous dissipation, denoted

Fig. 5. Variation of fully developed normalized Nusselt number as
function of Ha for different K at Br=0.01, L=0.01 and α=1.

Fig. 4. Variation of fully developed Nusselt number as function of
Ha for different K at Br=0.01, L=0.01 and α=0.

Fig. 3. Variation of fully developed normalized Nusselt number ver-
sus Ha for different values of L at Br=0.01, K=0.5 and α=1.

by NuVD, is similar to that of NuWVD. Furthermore, the decreasing

trend of NuNORM with Ha, observed in Fig. 3, for those related to low

L is more than that of high L. In other words, the convective heat

transfer is less sensitive to viscous heating at high slippage since

more slippage on the wall gives rise to the decrease of the velocity

gradient at the wall. Subsequently, this reduction undermines the

impact of the viscous dissipation term. For example, for Ha=16,

L=0.1, Br=0.01 and K=0.5, ignoring the viscous dissipation has a

negligible effect on the Nusselt number, compared to 10% overes-

timation with the same condition but for L=0.

In Figs. 4 and 5, the values of NuWVD and NuNORM are plotted as a

function of Ha for different K at L=0.01 and Br=0.01. The figures

explain that with the increase of Ha the heat transfer rate enhances

for a fixed K, as mentioned before. One can observe that ignoring
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the viscous heating also overrates the Nusselt number in this case,

according to Fig. 5. Also, both NuWVD and NuVD vary roughly 5%

when K goes from 0.1 to 0.9 for Ha=16, while their variation with

K is almost none at Ha=1. In other words, the change in K, which

proportionally links the electric and the magnetic fields, is effective

for the heat transfer rate if a strong magnetic field applies on the

fluid.

The effect of Br on the Nusselt number for various Ha at K=0.5

and L=0.01 is shown in Fig. 6, while the viscous dissipation is neg-

lected (i.e., NuWVD). One can find that, except for very low Ha in which

Br does not change the rate of heat transfer, the value of NuWVD de-

creases with the increase of Br in the case of wall heating (Br>0).

In contrast, NuWVD is enhanced with increasing Br in negative di-

rection when the fluid is being cooled (Br<0). These behaviors can

Table 3. Fully developed Nusselt number with viscous dissipation
included at K=0.5 and Ha=4

Br

−0.01 −0.001 0 0.001 0.01

L

0.00 08.927 08.375 08.318 08.262 07.787

0.01 09.133 08.697 08.651 08.606 08.218

0.10 10.285 10.172 10.160 10.147 10.152

1.00 11.672 11.668 11.667 11.667 11.662
Fig. 7. Variation of fully developed normalized Nusselt number as

function of Ha for different Br at K=0.5, L=0.01 and α=1.

Table 2. Fully developed Nusselt number without considering vis-
cous dissipation at K=0.5 and Ha=4

Br

−0.01 −0.001 0 0.001 0.01

L

0.00 08.333 8.32 08.318 08.317 08.304

0.01 08.665 08.653 08.651 8.65 08.638

0.10 10.168 10.161 10.160 10.159 10.037

1.00 11.669 11.668 11.667 11.667 11.666

Fig. 6. Variation of fully developed Nusselt number as function of
Ha for different Br at K=0.5, L=0.01 and α=0.

be ascribed to the fact that for wall heating case, in a similar manner

that the viscous dissipation acts, the increasing Br leads to an in-

crease in the temperature difference between the mean (bulk) fluid

and the wall. Therefore, it makes the Nusselt number to be decreased.

On the other hand, for wall cooling (Br<0), increasing Br in the

negative direction leads to the augmentation of the heat transfer rate

by decreasing the temperature difference more. Fig. 7 gives the varia-

tion of the normalized Nusselt number, NuNORM, as a function of Ha

at different Brinkman numbers for K=0.5 and L=0.01. The results

reveal that neglecting the effect of viscous dissipation overestimates

the value of the Nusselt number for wall heating, as expected. For

instance, it is about 6.8% for Br=0.01 and Ha=16, compared to the

wall cooling case in which the heat transfer rate is underestimated

nearly 7.1% for Br=−0.01. Besides, it is found from Figs. 6 and 7

that the contribution of the electromagnetic field to the convection

for Br<0 is more than Br>0. Moreover, with Br going toward infinity

for either wall heating or wall cooling, the Nusselt number approaches

the asymptotic value of Nu=0, as expected from Eq. (29). This is

because the heat generated internally by the joule heating and the

viscous dissipation reaches a balance with the influence of wall heat-

ing or cooling, resulting in a thermal equilibrium state.

The variations of NuWVD and NuVD with respect to dimensionless

slip length at different Br at K=0.5 and Ha=4 are given in Tables 2

and 3. It is understood from the tables that the value of NuWVD has a

very little change with Br, whereas the viscous heating gives rise to

the heat transfer rate to be changed under the influence of Br, espe-

cially when the fluid is subject to a less slippage. For instance, a change

in Br from −0.01 to 0.01 causes a nearly 10% decline in NuVD for

L=0.01, while the decline is about 1.3% at L=0.1. This can be at-

tributed to the notion that the slippage, which tends to unify the vel-

ocity profile, leads to smaller velocity gradients and subsequently

smaller shear rates, causing a decline in the viscous heating effect.

The variations of singular values of Br with Hartmann number
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at different L are shown in Table 4. In singular points, the heat transfer

cannot be stated in terms of Nusselt number, but it can be expressed

that the heat transferred between the wall and the mean fluid gets

to a balance with the internal heat generation caused by the viscous

dissipation and the joule heating. Opposite to the slippage, for either

applying a stronger electromagnetic field or including the viscous

dissipation, the singularity points render toward a smaller value of

Br with negative sign. 

At the end, If interested to obtain the Nusselt number when the

flow is under the sole influence of electromagnetic force, it is suffi-

cient to leave out the pressure gradient term ∂p/∂x appearing in Eq.

(14) by setting it to zero and substituting λ=K Ha2 into the Nusselt

number expression.

CONCLUSIONS

An analytical investigation of both hydrodynamically and ther-

mally fully developed forced convection under the influences of

electromagnetic field and slippage has been carried out for flow

inside parallel plate microchannels in the case of isoflux walls. In

addition to the slip wall boundary condition, the electromagnetic

field via the two source terms, Lorentz force into the momentum

equation and Joule heating into the energy equation, have been ful-

filled in the analysis. The interactive effects among the Hartmann

number, Brinkman number and dimensionless slip length on the

heat transfer characteristics have been examined in detail. It has been

observed that increasing the electromagnetic field totally causes the

augmentation of the Nusselt number. The alteration of the Nusselt

number with the Brinkman number has shown some singularities

for each L that becomes closer when viscous dissipation is included.

Furthermore, the results have demonstrated that the heat transfer

rate may be overestimated or underestimated owing to neglecting

the viscous heating, which depends on the case of the fluid in terms

of wall heating or wall cooling. Therefore, the effect of the viscous

dissipation on the convective heat transfer, for liquid flows through

parallel plate microchannels, under the influence of electromagnetic

field is significant to deal with.

NOMENCLATURE

A : constant obtained by Eq. (27)

B : magnetic field strength

Br : Brinkman number

C1, C2, C3 : constant defined in Eq. (26)

cp : specific heat at constant pressure

D : hydraulic diameter

E : electric field strength

H : height of channel

Ha : hartmann number

k : thermal conductivity of fluid

K : −E/(Um B)

L : dimensionless slip length

l : mean free path 

: mass flow rate

Nu : nusselt Number

NuWVD : nusselt Number in absence of viscous dissipation

NuVD : nusselt Number in presence of viscous dissipation

p : pressure

q'' : heat flux

Re : Reynolds number

Rem : magnetic Reynolds number, µmUmL

S : cross-section area

T : temperature

U, V : dimensional velocity component in the x, y directions

u, v : dimensionless velocity component in the x, y directions

Um : mean velocity

W : width of channel

X, Y : dimensional position in coordinate system

x, y : dimensionless position in coordinate system

Greek Symbols

α : constant that takes 1 for including viscous dissipation and

0 for neglecting viscous dissipation 

γ : specific heat ratio of fluid

λ : constant defined by Eq. (14)

µ : dynamic viscosity of fluid

µm : magnetic permeability

ξ : constant defined by Eq. (13)

ρ : density of fluid

θ : dimensionless temperature

σ : electric conductivity

σv : tangential momentum accommodation coefficient

σT : thermal accommodation coefficient

Subscripts

i : fluid properties at the inlet

m : mean or bulk

s : fluid properties at the wall

w : wall
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