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We study the axisymmetric spreading of drops deposited on a pre-existing horizontal
layer of the same viscous fluid. Using a combination of experiments, numerical modelling
based on the axisymmetric free-surface Navier–Stokes equations, and scaling analyses, we
explore the drops’ behaviour in a regime where the flow is driven by gravitational and/or
capillary forces while inertial effects are small. We find that during the early stages of the
drops’ evolution there are three distinct spreading behaviours depending on the thickness
of the liquid layer. For thin layers the fluid ahead of a clearly defined spreading front is at
rest and the overall behaviour resembles that of a drop spreading on a dry substrate. For
thicker films, the spreading is characterised by an advancing wedge which is sustained
by fluid flow from the drop into the layer. Finally, for thick layers the drop sinks into
the layer, accompanied by significant flow within the layer. As the drop keeps spreading,
the evolution of its shape becomes self-similar, with a power-law behaviour for its radius
and its excess height above the undisturbed fluid layer. We employ lubrication theory to
analyse the drop’s ultimate long-term behaviour and show that all drops ultimately enter
an asymptotic regime which is reached when their excess height falls below the thickness
of the undisturbed layer.

1. Introduction

The deposition of a drop onto a film of the same liquid is an important process in
applications ranging from spray painting (Cormier et al. 2012) and ink-jet printing of
solution-processed organic electronics (Thompson et al. 2014), on the microscale, to the
3D printing of food (Godoi et al. 2016), on the macroscale. In spray painting, a film is
rapidly formed through the coalescence of the first few droplets impacting an initially
dry surface, so that subsequent drops spread on a liquid layer whose thickness increases
with the deposited volume. Similarly, the manufacture of organic electronics relies on the
sequential deposition of partially overlapping microdroplets which coalesce upon impact
and spread due to capillary pressure differences to form a liquid line (and eventually
a solid film after evaporation of the solvent). By contrast, in food printing, the larger
deposited volumes tend to spread due to gravity. In this paper, we investigate the effect
of the thickness of the underlying liquid film on the spreading of both “small” and “large”
drops using a combination of experiments, numerical modelling and scaling analyses.
While the spreading of droplets on an existing layer of fluid is of interest in its own

right, much previous work on this problem has been motivated by the fact that the
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presence of a thin precursor film regularises the contact line singularity that arises when
a drop spreads on a perfectly dry substrate; see, e.g., De Gennes (1985); Yarin (2006);
Bonn et al. (2009); Samsonov (2011); Popescu et al. (2012); Snoeijer & Andreotti (2013).
The existence of such films was confirmed in early experiments by Quincke (1877) and
Hardy (1919). Nanoscale liquid polymer droplets spreading on thin films of the same
fluid have been studied computationally (Milchev & Binder (2002); Heine et al. (2003);
see also Pierce et al. (2009) for spreading on permeable surfaces). The thickness of the
precursor films tends to be in the range from h∞ = 10 to 100 nm (Kavehpour et al.

2003). This is much thinner than the films we consider in the current study within which
we focus on a regime in which the spreading is driven by gravity and/or surface tension,
with gravity dominating for “large” drops and surface tension dominating for “small”
ones. We aim to characterise the spreading of such drops and to contrast their behaviour
to that observed when they spread on dry substrates.
On dry substrates, drops of partially-wetting fluids evolve towards their sessile equilib-

rium configuration which is parametrised by the finite equilibrium contact angle between
the liquid and solid substrate. As the equilibrium contact angle approaches zero the drops
become perfectly wetting and continue to spread indefinitely. Tanner (1979) analysed
this scenario using a thin-film model and showed that for “small” drops whose motion
is driven by a balance of capillary and viscous forces, the drop height, H(t), and radius,
R(t), ultimately display a power-law behaviour, with H(t) ∝ t−1/5 and R(t) ∝ t1/10,
respectively. Lopez et al. (1976) and Huppert (1982) considered the case of “large” drops
whose motion is driven by a balance of gravity and viscous forces. They showed that in
this regime, the large-time behaviour is again described by power-laws but with different
exponents, namely H(t) ∝ t−1/4 and R(t) ∝ t1/8.
When deposited on a pre-existing liquid film, the drop continues to spread and

ultimately approaches a configuration in which the liquid layer is again perfectly level.
For thin precursor films (relative to the size of the drop) the drop has a clearly defined
spreading front whose radius ultimately follows a power-law, but with an exponent that
is slightly larger than for spreading on a dry substrate. This scenario was studied on
the basis of a thin film model for the case of “small” drops by Tanner (1979) and
later by Kalinin & Starov (1986) and Chebbi (1999). They showed that the scaling
derived for spreading on a dry substrate is not recovered as h∞ → 0 because this
limit presents a singular perturbation (see, e.g., Voinov (1976); Hocking (1983); Cox
(1986) for analyses of this problem). Conversely, the drop spreading on a thin film only
provides a weak perturbation to the liquid layer ahead of itself, the most prominent
feature being the development of a small dip just ahead of the spreading front. This dip
is, in fact, the first extremum of an exponentially-damped oscillatory perturbation to the
precursor film, reminiscent of that observed when a fluid-coated plate is pushed into a
bath of the same viscous fluid; see Landau & Levich (1942) and Derjaguin (1943) for
the classical theory, and Maleki et al. (2011) for a recent detailed comparison between
theory and experiments. Similar features are observed in many other flow problems where
a perturbation propagates into a thin-film region; see, e.g., Gaver et al. (1996); Stillwagon
& Larson (1988); Salez et al. (2012); Pihler-Puzović et al. (2015).
In this paper, we investigate the influence of the thickness of the underlying liquid

film on the axisymmetric spreading of viscous drops considering a wide range of film
thicknesses up to the size of the deposited drop. We start by analysing the behaviour of
“large” drops by performing experiments with drops of glucose syrup. These experimental
studies are augmented by finite-element simulations which provide detailed insight into
the flow field and the evolution of the drop shape. Drops deposited on finite-depth films
are found to spread increasingly rapidly with increasing layer thickness. On thin fluid
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films, drops retain clearly defined spreading fronts. As the film thickness increases, this
“spreading” behaviour is progressively replaced by a “wedging” behaviour (where the
term refers to the overall shape of the drop rather than its localised shape near its outer
edge), while for even thicker layers, the drop “sinks” into the layer. For drops spreading
on thin films, our computational model approximately recovers the long-time power-law
predictions based on scaling arguments for drops spreading on dry substrates (Tanner
1979; Cazabat & Cohen-Stuart 1986; Lopez et al. 1976; Huppert 1982). We also consider
the behaviour of “small” drops, again covering the range from very thin films to films
that are thicker than the drop itself. The results of our numerical simulations are then
compared to the experimental results of Cormier et al. (2012) who studied the levelling of
shallow microdroplets of molten polystyrene on films of the same material. The regime
in which drops spread on thin layers (relative to the drops’ excess height above the
undeformed layer) is inevitably transient because the continued spreading ultimately
reduces the drops’ excess height to become less than the layer thickness. We employ
a lubrication-theory-based model to analyse the transition to this ultimate spreading
regime and extend an approach first introduced by Cormier et al. (2012) (for “small”
drops) to derive an explicit prediction for the evolution of the drops’ excess height (for
“large” and “small” drops) as they approach this regime.
This paper is organised as follows. The experimental methods and results for the

spreading of “large” glucose drops are presented in §2. The theoretical model and
numerical methods are described in §3. Results are presented in §4 where we start in
§4.1 with a comparison between our experiments and numerical simulations. In §4.2 we
characterise the effect of variations in liquid layer thickness, spanning three orders of
magnitude, on the early stages of the spreading of a drop of glucose syrup. We discuss
scaling laws for spreading at intermediate times in §4.3 and assess the influence of the
drop size on the spreading in §4.4. In section 4.5 we analyse the drops’ evolution towards
its ultimate spreading regime which is reached when the excess drop height has fallen
below the layer thickness. Finally, we summarise our results and present our conclusions
in §5.

2. Experiments

2.1. Experimental methods

2.1.1. Experimental setup

A schematic diagram of the experimental apparatus used to examine the spreading
following deposition of a drop on a substrate is shown in figure 1. The substrate (a Perspex
plate of dimensions 100×100×10 mm with surfaces milled to an accuracy of ±0.02 mm)
was secured to the base plate with three finger-tight nylon screws. A featureless, flat
substrate was used for the dry spreading experiments, whereas for spreading on a viscous
layer, centred, circular troughs with a diameter of 60.5 mm and depths of 0.52 ± 0.02
mm, 0.85± 0.03 mm, 1.51± 0.04 mm and 1.95± 0.03 mm were milled into the plate into
which a uniform film of liquid was deposited prior to experimentation. The substrate
was supported on a Perspex base plate, which was adjustably mounted on three vertical,
threaded poles (with a pitch of 1.25 mm) using nuts, thus allowing accurate levelling
to ±0.1◦. The fluid was deposited using a standard 10 ml plastic syringe whose inner
diameter was enlarged to 8 ± 0.05 mm to facilitate the manual deposition of the highly
viscous liquid. To ensure reproducible deposition of the fluid, we placed the syringe inside
a tightly-fitting removable holder which was mounted on the three vertical, threaded
poles, allowing its level to be adjusted in a similar way to the base plate. The accurate
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Figure 1. Schematic diagram of the experimental apparatus.

levelling of both base plate and syringe holder was essential to ensure axisymmetric
spreading. Side-view images of the backlit drop were captured with a wall-mounted CCD
camera (Pulnix TM-6740CL, 640 × 480 pixels).
We performed the spreading experiments with glucose syrup (Cerestar UK Ltd.),

which is a transparent, highly viscous Newtonian liquid. In order to enhance contrast
in the images, the glucose syrup was dyed using green food colouring. Mixing of the dye
entrained air bubbles, which were left to rise out of the fluid overnight. The experiments
were performed by filling the syringe with 5 ml of glucose syrup and wiping any excess
fluid from the outside of the nozzle with a dry paper towel. The filled syringe was then
placed inside the syringe holder, the image acquisition was initiated, and the plunger of
the syringe was displaced manually to empty the syringe barrel within a deposition time
of 2.5± 0.5 s.
We measured the density of the glucose syrup at the laboratory temperature of 20.5±

0.5◦C to be ρ = 1387 ± 1 kg/m3 by accurately weighing five samples of known volume
between 5 and 20 ml. We determined the viscosity of glucose syrup at the laboratory
temperature, using a Brookfield R/S-Plus (SST) rheometer with a concentric cylinder
CC25 geometry. We performed shear rate measurements with linear increase from zero
to a maximum value of 25 s−1 with increments of 1 s−1, applying a cycle of incremental
shear rate increase and decrease. The total experimentation time was 50 s, with one
measurement taken every second. Hence, we recorded 50 viscosity measurements and
these experiments confirmed that the viscosity of glucose syrup is independent of the
shear rate within the investigated parameter range. The resulting averaged dynamic
viscosity is µ = 119.73 ± 0.86 Pa s. The surface tension of the glucose syrup was taken
from the literature (Montañez-Soto et al. 2013) to be σ = 55.0± 0.6× 10−3 N/m.

2.1.2. Substrate preparation

When performing the experiments in which the drop is deposited on a uniform layer
of the same fluid, we prepared the substrate by slightly overfilling the trough and then
scraping off the excess fluid with a square-edged ruler. The ruler was moved at an angle of
around 30◦ and with low speed to avoid the washboard instability (Hewitt et al. 2012) at
the free surface. This method had the advantage of rapid deposition, thus preventing the
formation of a skin due to evaporation and subsequent crystallisation at the surface (Lees
2012; Edwards 2000). Since a certain amount of the (highly viscous) fluid adhered to the
scraper this procedure resulted in an underfilled trough, with the surface of the fluid layer
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Figure 2. Schematic diagrams of (a) the method to determine the layer thickness and (b) the
underfilled trough, illustrating the thickness of the layer h∞ and the distance to the upper
surface of the substrate δ. Also specified in the schematic are the radius as observed by the
camera, Rz=0, and the actual radius of the spreading front, Rz=−δ.

Figure 3. The averaged layer profiles for troughs of depth (a) 0.52 mm, (b) 0.85 mm, (c)
1.51 mm and (d) 1.95 mm. The dashed lines illustrate the approximated uniform layer

thicknesses.

located at a distance δ below the upper surface of the substrate, as illustrated in figure
2(b). The fact that the initial free surface was located below the upper surface of the
substrate meant that part of the free surface was obscured so that the outermost radius
of the propagating air-liquid interface that was observable by the wall-mounted CCD
camera during spreading, Rz=0(t), was smaller than the actual radius of the spreading
front, Rz=−δ(t). We will return to this issue in §4.1.

We determined δ by shining a red laser sheet vertically onto the fluid-filled trough,
which was aligned such that the laser captured the entire trough diameter as shown
schematically in figure 2(a). We then recorded a still image with a SLR camera (Nikon
D7100, 6000 × 4000 pixels) which was placed 10 cm above the trough and inclined at
α = 16.4±0.1◦ from the horizontal. These images were analysed by detecting the position
of the laser line relative to the edge of the trough. Sub-pixel resolution was achieved by
first isolating the laser line in the images and then fitting a Gaussian profile to the
intensity of the red channel of each pixel column across the line in order to find the
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point of maximum intensity. The averaged layer profiles across four to five measurements
are shown in figure 3, where we omitted the error bars of typically 3 %. Omitting the
meniscus at the trough edge, we determined the spatially-averaged layer thickness in the
trough by fitting a straight line to the averaged profiles within the radius r 6 25 mm.
We then calculated the standard deviation of the individual profiles from this uniform
thickness (illustrated by dashed lines in figure 3). The resulting layer thicknesses are
h∞ = 0.33 ± 0.06 mm, 0.5 ± 0.07 mm, 0.95 ± 0.12 mm and 1.14 ± 0.13 mm for trough
depths of 0.52 mm, 0.85 mm, 1.51 mm and 1.95 mm, respectively.

2.1.3. Image analysis

We analysed the images that were acquired by the CCD camera using the OpenCV

software (Bradski & Kaehler 2008) within a python environment. In order to convert
the results from the image analysis into dimensional quantities, a calibration image of
a cylindrical object of known dimensions was recorded prior to each experiment, which
yielded a spatial resolution of 0.111± 0.006 mm/pixel. Unavoidable small misalignment
of the camera was corrected for in post-processing by rotating the image prior to the
analysis, so that the platform edge was perfectly parallel to the image edge. We recorded
the spreading of the drop as a sequence of images, taken at a rate of 20 fps and then
analysed the resulting images over a period of up to 100 s from the end of the initial
drop deposition. In each image we determined the positions of the air-liquid interface,
the upper edge of the substrate and the end of the nozzle, using standard edge detection
routines. We implemented these routines, which identify edges based on discontinuities
in the intensity profile of the image, in the OpenCV framework. Sub-pixel accuracy was
again achieved by exploiting the smooth variations in the intensity profile. We determined
the position of the edge based on functional fits to the intensity profile. In particular, we
used tanh functions for solid edges (Nalwa & Binford 1986), such as the substrate and
nozzle edges, and spline functions for the air-liquid interface (Poggio et al. 1985, 1988).
The spline fit proved necessary because the interface became increasingly diffuse as the
drop spread due to surface reflections. The robustness of the analysis was improved by
using the interface position detected in the previous frame of the sequence as an initial
condition. Hence, for all images following the initial frame we applied the edge finding
routine to a region of ±5 pixels horizontally and ±2 pixels vertically of the interface
position located in the preceding frame. We determined the coordinates of the air-liquid
interface separately for the left and right sides of each image. The radii obtained from the
two sides typically differed by less than 2 %, indicating that the drops tended to spread
axisymmetrically. Representative results obtained from our edge detection algorithms
are shown in figure 4 where the orange lines indicate the lower end of the nozzle and
the platform edge, respectively, the green line the drop diameter at the upper boundary
of the substrate and the red line the air-liquid interface. The blue line shows the nozzle
centreline. The coordinates of the interface were measured relative to an (r, z)-coordinate
system that was centred at the intersection of the blue and green lines.

2.2. Experimental results

Sequences of images showing the spreading of a drop of glucose syrup on a dry substrate
and on a layer of the same fluid of thickness h∞ = 0.33 mm are shown in figure 4. Figures
4(a) and (e) show the initial drop configuration immediately after all the fluid has been
ejected from the syringe. Figures 4(b-d) and (f-h) illustrate the subsequent, approximately
axisymmetric spreading of the drop. In both cases the spreading rate decreases as the
drop spreads out (note the non-uniform time increments between the sub-figures). The
radius of the thread of fluid that connects the drop to the nozzle decreases rapidly
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Figure 4. Side-view images of glucose syrup spreading on a dry substrate ( (a)-(d) ) and on
a layer of the same fluid of thickness h∞ = 0.33 mm ( (e)-(h) ) at different times for a single
experiment: (a)/(e) t = 0.0 s, (b)/(f) t = 5.0 s, (c)/(g) t = 10.0 s, (d)/(h) t = 20.0 s. We show the
processed images, highlighting the platform edge and nozzle end, centre line, bottom diameter
and air-liquid interface.

and the thread ultimately pinches off (not shown here). The detached lower half of the
thread then collapses onto the surface of the drop where it tended to create additional
reflections which made the subsequent image processing difficult. However, the pinch-
off of the thread had little effect on the overall spreading dynamics; see computational
results in figure 6 below.
Figure 5 shows the time-evolution of the normalised drop radius R(t)/R(t = 0) for

the spreading on layers of thicknesses h∞ = 0.33, 0.5, 0.95 and 1.14 mm (solid symbols
with error bars) on a log-log scale and contrasts it with the evolution for spreading of
an equivalent drop on a dry substrate (hollow symbols with error bars); the lines show
the corresponding numerical results for spreading on a fluid layer and will be discussed
in §4.1 below. In order to make the radius evolution comparable across the different
configurations we monitored the radius at a vertical distance ζ = 0.81 mm above the
surface of the undisturbed fluid layer or the dry substrate, respectively (see figure 7).
This value of ζ was chosen so that for the thickest layer (and hence the largest gap size
δ), the radius was monitored at the upper edge of the trough, z = 0.
To within experimental accuracy, the initial evolution of the radii in figure 5 up to a

time of approximately 0.5 s is very similar for spreading on a layer of fluid and on a solid
substrate. Beyond this time the drop deposited on the dry substrate spreads significantly
more slowly than that deposited on the fluid layers. The figure shows that the drop
spreading on a dry substrate ultimately follows the power-law behaviour R ∝ t1/10, which
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Figure 5. Temporal evolution of the normalised radius, R(t)/R(t = 0)|z=−δ+ζ , for spreading
on layers of fluid of thicknesses h∞ = 0.33, 0.5, 0.95 and 1.14 mm and on a dry substrate, on
a log-log scale. The height at which the radius is measured (ζ = 0.81 mm) is illustrated in 7
below. Solid lines show the corresponding results of matching computations. Solid and hollow
symbols with error bars indicate experimental results for spreading on a fluid layer and on a dry
substrate, respectively. The lines show the corresponding numerical results for spreading on a
fluid layer.

may seem surprising since it matches the power-law behaviour predicted by Tanner’s
(1979) analysis for “small” drops – recall that drops considered here are “large”. However,
the behaviour is, in fact, consistent with observations by Cazabat & Cohen-Stuart (1986)
who performed detailed experiments of the spreading of “large” silicone oil drops on a
smooth glass surface. Their experiments show that there is an intermediate regime during
which the evolution of the drop radius follows an R ∝ t1/10 power-law. Eventually a
transition occurs to spreading that follows the R ∝ t1/8 power-law that is expected
from scaling arguments based on a balance between gravitational and viscous forces
(Lopez et al. 1976; Huppert 1982). The time at which the transition between the two
regimes occurs increases with the fluid viscosity and decreases with the drop size. For
the largest drop volume, V = 37.9 µl, and highest viscosity, µ = 1 Pa s, used in their
experiments, Cazabat & Cohen-Stuart (1986) report a transition time of ≈ 100 s. Our
drops are one order of magnitude larger, but also two orders of magnitude more viscous;
we therefore expect this transition to occur beyond the duration of our experiments which
were terminated before the drop had spread to the outer edge of the trough.

Over the duration of our experiments the drops spreading on a layer of fluid also
approach a power-law behaviour, R ∝ tn, but with a larger exponent, n > 1/10, which
increases with the layer thickness h∞, indicating faster spreading on thicker layers.

3. Theory and computations

In order to systematically study the influence of the layer thickness on the spreading
of a viscous drop on a layer of the same fluid we developed a theoretical/computational
model of the spreading process. This enabled us to extend the observation times beyond
those accessible experimentally and allowed the detailed visualisation of the flow in the
layer, particularly in the vicinity of the advancing front.
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3.1. The model

We model the glucose syrup as an incompressible Newtonian fluid and assume the
flow to be axisymmetric. We non-dimensionalise the governing equations by choosing the
cube root of the drop volume, V 1/3, as the lengthscale, L, and, assuming that the flow
is governed by a balance between viscous and gravitational forces, scale the velocities on
U = ρgL2/µ. We non-dimensionalise the pressure on the associated scale, µU/L = ρgL,
and time on the intrinsic timescale L/U . The flow is then governed by the non-dimensional
Navier–Stokes equations

Re

(
∂u

∂t
+ (u ·∇)u

)
= −∇p− ez +∇2

u, and ∇ · u = 0, (3.1)

where the Reynolds number, Re = ρUL/µ, the ratio of inertial to viscous forces, is
equivalent to the Archimedes number, Re = Ar = ρ2gL3/µ2.

Because the glucose syrup is highly viscous the drop takes a while to disconnect from
the syringe nozzle and during this time it already spreads significantly. We therefore
included the nozzle into the computational model. The fluid is subject to the no-slip
boundary condition u = 0 on the inner boundary of the nozzle and on the surface of the
substrate, including the outer edge of the trough where we assume the contact line to
be pinned. We denote the position vector to the free surface by Rfs(s, t), where s is the
arclength along the air-liquid interface, at which we apply the dynamic and kinematic
boundary conditions,

σ · n =
1

Bo
κ n− pext n, (3.2)

and (
u−

∂Rfs

∂t

)
· n = 0. (3.3)

Here σ is the fluid stress tensor, κ is twice the mean curvature of the air-liquid interface
(negative for a spherical drop) and n its outer unit normal (pointing out of the liquid).
pext is the external (atmospheric) pressure that we subsequently set to zero. The Bond
number, Bo = ρgL2/σ, the ratio of gravitational to surface tension forces, plays the role
of the capillary number, Bo = Ca = µU/σ.

3.2. Parameter regime

Using the physical parameter values from our experiments (see §2.1.1) yields the
characteristic length, velocity and timescales, L = V 1/3 = 17.1× 10−3 m, U = ρgL2/µ =
33.2×10−3 m/s and T = L/U = 0.52 s, respectively. This yields a Reynolds/Archimedes
number of Re = Ar = 6.58 × 10−3 and a Bond/Capillary number of Bo = Ca = 72.34,
indicating that, as assumed, the overall motion of the drop is likely to be quasi-steady
and dominated by a balance between gravitational and viscous forces. Capillary forces
are likely to have little effect on the overall motion because the capillary length Lc =
(σ/(ρg))1/2 = 2× 10−3 m is much smaller than the size of the drop, L ≫ Lc. Therefore,
we classify the drops used in our experiments as “large”. However, surface tension can
(and, as we will show below, does) still have a localised effect on the flow in regions where
the interface curvature is larger than 1/Lc.

3.3. Numerical solution

We used our open-source library oomph-lib (Heil & Hazel 2006) to discretise the
arbitrary Lagrangian-Eulerian (ALE) form (Donea et al. 1982) of the governing equations
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Figure 6. Temporal evolution of the computed drop radius, R(t)|z=−δ+ζ , for spreading on
a layer of fluid of thickness h∞ = 1.14 mm. The height at which the radius is measured, is
ζ = 0.05 mm. The thick dashed line shows the radius evolution following manual pinch-off of
the thread at t = 40.6 s. The insets show computed characteristic drop shapes before and after
pinch-off.

in an axisymmetric (r, z)-coordinate system by finite elements, using LBB-stable (Sani &
Gresho 2000) six-noded, triangular Taylor-Hood (P2P1) elements (Taylor & Hood 1973)
on an unstructured moving mesh. Time-derivatives were discretised using the second-
order accurate Backward Differentiation Formula (BDF2) (Sani & Gresho 2000). The
initial mesh was generated by Triangle (Shewchuk 1996), using the shape of the air-
liquid interface extracted from the experiments. We re-constructed the obscured part of
the free surface (see discussion in §2.1.2) by connecting the visible part of the air-liquid
interface to the undisturbed, uniform fluid layer ahead of the drop using a spline fit. The
simulation was started from rest, u(t = 0) = 0. We note that in the experiments, the
fluid is not at rest following deposition. In order to assess the effect of our idealised initial
condition, we repeated selected computations, starting with the drop shape observed
1 s after the end of the deposition. The results are qualitatively unchanged, confirming
that the system’s evolution is quasi-steady. Quantitative differences arise due to slight
differences between the observed and computed shapes; see figure 7. However, the long-
term evolution of the drop remained unaffected. The mesh deformation in response to
the displacement of the air-liquid interface was determined by solving the equations of
large-displacement elasticity, treating the fluid mesh as a pseudo-solid body. To avoid
overly large distortion of the elements we re-generated the mesh at regular intervals and
transferred the solution between the meshes by projection. When re-generating the mesh,
we biased the element sizes by spatial error estimates obtained from the Z2 flux-recovery
error estimator (Zienkiewicz & Zhu 1992), using the entries in the rate-of-strain tensor
as the generalised fluxes. This methodology has previously been used and validated in
various other applications (e.g. Hewitt et al. 2011; Hazel et al. 2012; Pihler-Puzović et al.
2015). Simulations were typically performed with a (dimensional) time step of 0.075 s
and O(800) elements. The accuracy of our numerical results was assessed by repeating
selected computations with higher spatial and temporal resolution; see figure 8 below.
In the experiments the liquid thread between the drop and the nozzle eventually pinches

off, but, as mentioned above, this appeared to have little effect on the long-term spreading
dynamics. In order to enable the direct comparison with experiments we included the
nozzle in our simulations but did not attempt to resolve the pinch-off process in detail.
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Instead, we simply cut the mesh when the radius of the thread dropped below 0.5×10−3 m
and then restarted the simulations. To assess the effect of this manual and somewhat ad-
hoc intervention we recorded the evolution of the drop radius in two separate simulations,
which are shown in figure 6. In one we cut the thread when its minimum radius had
dropped below the threshold and restarted the simulation (shown by the thick dashed
line in figure 6); in the other we continued the computation without any intervention
(shown by the thin solid line in figure 6). The evolution of the drop radii obtained
from the two simulations agreed to within graphical accuracy, as indicated by the region
of overlap for 40 6 t 6 60 s – the interval during which pinch-off is observed in the
experiments. Moreover, the shape of the curve in figure 6 is continuous across the two
simulations, confirming that the pinch-off has little effect on the overall behaviour.

4. Results

4.1. Comparison between experiments and computations

Figure 7 shows snapshots of the shapes of the spreading drops (solid lines) and
compares them against the experimentally observed shapes of the air-liquid interface
(symbols with error bars; the latter representing the pixelation error of the image
analysis). Overall, there is good quantitative agreement between the computations and
experiments, except near the advancing front, where the experiments systematically
lag behind the computations. This might be due to the crystallisation and associated
property changes of the glucose syrup when in contact with air, as discussed in §2.1.2.
Despite our best efforts in keeping the time scale between the layer preparation and drop
deposition as short as possible, the fluid layer may have started to crystallise, resulting
in an increased viscosity near the surface and hence slower spreading. One would expect
this effect to be more pronounced for thinner layers and this is indeed consistent with
our observations in figure 7 where the largest deviation is observed for the thinnest layer.
During the initial deposition the drop adopts a shape in which it slightly overhangs the
undisturbed fluid layer. This creates a region of high local curvature on the air-liquid
interface. Surface tension forces are significant in this region and lead to a rapid radial
expansion of the drop in this region until the free surface adopts a wedge-like shape. The
formation of this wedge is delayed with decreasing layer thickness.

We now return to figure 5 to compare the computed temporal evolution of the
normalised drop radius R(t)/R(t = 0) at a vertical distance ζ = 0.81 mm above the
undisturbed fluid layer with the experimental measurements. (The height at which the
radius is measured is indicated by the thick horizontal lines in figure 7.) We note that
for all layer thicknesses the experiments are slightly lagging behind the computations
with a maximum error of around 5 %. For large times, t > 20 s, the experimental and
computational data both approach straight lines in the log-log plot; the slopes (and hence
the associated power-law exponent, n) of the experimental and computational data agree
very well.
We have already pointed out that we measured the drop radius at a fixed height,

ζ = 0.81 mm, above the undisturbed fluid layer, because in the experiments with the
thickest fluid layer the air-liquid interface is obscured below this level. However, even
if this was not the case, there is always some ambiguity about the specific height at
which the drop radius is monitored. This is because, unlike the case of spreading on
a dry substrate, in our setup there is no clearly defined contact line which identifies
the outer boundary of the drop. It is therefore important to assess how the choice of ζ
affects the results. For this purpose figure 8 shows the temporal evolution of the drop
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Figure 7. Free surface at times t = 0 (black), 5 (green), 10 (blue) and 20 s (red) for layer
thicknesses of (a) h∞ = 1.14 mm, (b) h∞ = 0.95 mm, (c) h∞ = 0.5 mm, and (d) h∞ = 0.33 mm,
compared against the respective experiments. Lines represent the computational predictions;
symbols show the experimental data, with error bars indicating the pixelation error of the image
analysis. The thick solid horizontal line illustrates the height z = −δ + ζ at which the radius
is recorded, while the dotted horizontal line shows the upper edge of the substrate. Below this
line the air-liquid interface is obscured in the experiments. The inset in (a) shows the different
measurement heights used to obtain the data shown in figure 8.
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Figure 8. Temporal evolution of the computed drop radius at different measurement heights,
ζ, for the spreading on a layer of thickness h∞ = 1.14 mm (as shown in figure 7(a)). The squares
(circles) represent data obtained when the computation is performed with twice the spatial
(temporal) resolution.

radius for the thickest layer (h∞ = 1.14 mm; the case shown in figure 7(a)) at heights
of ζ = 0.81, 0.4 and 0.05 mm above the undisturbed fluid layer; these heights are shown
in the inset in figure 7(a). The evolution of the radius at ζ = 0.81 mm corresponds to
the experimentally observable evolution, Rz=0(t). During the early stages of the system’s
evolution when the drop overhangs the undisturbed fluid layer the drop radius recorded
at ζ = 0.81 mm exceeds the radii recorded at smaller heights. Surface tension then acts
to smooth out the highly curved region of the air-liquid interface until the advancing
front of the drop adopts the characteristic wedge shape shown in figure 7. In this regime
the radius increases with a decrease in the height at which it is measured. It appears
that once the drop has reached this regime, the slope of the different curves (and hence
the associated power-law exponent, n) becomes independent of the height at which the
radius is measured.

4.2. The flow field and its dependence on the layer thickness at early times

Figure 9 illustrates the flow field and its dependence on the layer thickness which is
varied by three orders of magnitude, from h∞ = 0.005 mm in the left column to h∞ =
5 mm in the right column. These layer thicknesses are representative of three different
spreading behaviours, which we refer to as “spreading” (left), “wedging” (middle) and
“sinking” (right). The figures show snapshots of the evolving fluid domain (note the
non-uniform time increments) and illustrate the flow field by showing representative
instantaneous streamlines (thick solid lines); the colour contours indicate the magnitude
of the velocity, |u| = (u2

r + u2
z)

1/2.
For a layer thickness of h∞ = 0.005 mm the drop spreads in manner that is very

similar to the spreading on a dry substrate (De Gennes 1985; Bonn et al. 2009). The
fluid layer essentially acts as a passive precursor film and there is minimal flow ahead
of the spreading drop. As the layer thickness increases the drop disturbs the fluid layer
over a greater distance ahead of itself and the outer edge of the drop ultimately adopts a
wedge-like shape – we refer to this behaviour as “wedging”. For even thicker films there is
significant flow into the layer ahead of the advancing front. The drop now “sinks” rather
than “spreads” and the redistribution of fluid into the initially undisturbed fluid layer
causes the formation of a transient bulge ahead of the drop. The formation of this bulge
is illustrated (for a layer thickness of h∞ = 5 mm) in figure 10 where we zoomed into
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Figure 9. Illustration of the computed flow fields for different layer thicknesses. The colour
contours represent the magnitude of the velocity |u| = (u2

r + u2
z)

1/2, ranging from 0 m/s (blue)
to 0.3×10−3 m/s (red) for layer thicknesses of h∞ = 0.005 and 0.5 mm and 0.6×10−3 m/s for a
layer thickness of h∞ = 5 mm. The thick solid lines are representative instantaneous streamlines.

the region near the outer edge of the drop (note the different scales for the radial and
vertical axes). The figure also shows that the presence of the bulge leads to an ambiguity
in the definition of the drop radius: the dashed line in figure 10 shows the level at which
the maximum radius of the air-liquid interface is recorded. As the bulge wells upwards,
its free surface intersects the measurement height, causing the drop radius to suddenly
jump outwards. For sufficiently large times, the bulge is levelled by gravity and figure
9 shows that the air-liquid interface then adopts a wedge-like shape, but with a much
shallower angle than for the intermediate layer thickness of h∞ = 0.5 mm.

In order to characterise the difference between the three regimes quantitatively we
plot in figure 11 the evolution of the drop radius R(t) (i.e. maximum radius of the
air-liquid interface at a measurement height of ζ = 0.05mm; solid line) and the outer
radius Rdisturb(t) of the region within which the spreading drop introduces a noticeable
disturbance to the layer (dashed line). For this purpose we defined Rdisturb(t) as the
maximum radius at which the magnitude of the fluid velocity at the free surface exceeded
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Figure 10. Snapshots of the computed free surface during the early stages of the system’s
evolution for a layer thickness of h∞ = 5 mm. The thick line shows the initial condition at
t = 0 s; the remaining lines represent the temporal evolution up to t = 2 s in increments of 0.5 s,
with increasing time indicated by the arrow. The development of a transient “bulge” ahead of
the drop is responsible for the jump in the drop radius (measured at at a height of ζ = 0.05 mm
above the undisturbed fluid layer, indicated by the dashed line) in figure 11(c).

Figure 11. Plots illustrating the extent of the region over which the drop introduces a
disturbance to the fluid layer ahead of itself, for layer thicknesses of (a) h∞ = 0.005 mm,
(b) h∞ = 0.5 mm and (c) h∞ = 5 mm. The black solid lines indicate the drop radius, R(t),
while red dashed lines represent the outer radius, Rdisturb(t), of the region within which the fluid
layer is disturbed. Note the different scales of the radius axes.
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a fixed threshold, chosen as 2.4×10−3 mm/s (which is about 1% of the maximum velocity
in the bulk of the drop). The figure shows that for h∞ = 0.005mm, when the drop is in
the “spreading” regime (figure 11(a)) the perturbation to the layer remains confined to
a very small region ahead of the drop; the curves representing R(t) and Rdisturb(t) are
virtually indistinguishable over most of the period analysed. In the “wedging” regime
(figure 11(b)) the region within which the fluid layer is disturbed extends as far as 20%
ahead of the drop radius. Both radii increase at a comparable rate and the size of the
perturbed region only shrinks very slowly as R(t) approaches Rdisturb(t). Finally, in the
“sinking” regime (figure 11(c)) the upwelling caused by the rapidly submerging drop
creates the bulge whose formation (already illustrated in figure 10) causes a jump in
both radii at t ≈ 0.3s. The drop then spreads slowly into the large disturbed region
whose outer radius remains approximately constant.

4.3. Scaling laws at intermediate times

Many theoretical studies of drop spreading on dry substrates or on substrates that
are covered with very thin precursor films predict that, at sufficiently large times, the
temporal evolution of the drop height and radius to follow a power-law, with exponents
depending on the particular parameter regime considered; see Bonn et al. (2009).

The temporal evolution of the normalised excess drop height, d0(t) = h(r = 0, t)−h∞,
where h(r, t) is the height of the air-liquid interface above the substrate following pinch-
off, is shown in figure 12(a). The data is shown on a log-log scale for layer thicknesses
ranging from h∞ = 0.005 to h∞ = 17 mm. Note that here we cover a much wider
temporal range than in the experiments which were limited to t < 102 s. For vanishing
layer thicknesses, h∞ → 0, the shape of the curves saturate and overlap (note that due
to the very close spacing of the curves for h∞ = 0.01 mm and h∞ = 0.005 mm, they
appear as a single thick line in figure 12(a)). As the layer thickness increases, the shape of
the curves continues to evolve, although the behaviour following pinch-off is qualitatively
similar in all cases – we observe a rapid decrease in excess height, which represents the
collapse of the pinched-off liquid thread into the bulk of the drop (see insets in figure
12(a)). This collapse is superimposed on the overall levelling of the drop. Therefore
the extent by which the excess drop height decreases in this initial period depends on
the layer thickness, with drops on thicker layers levelling more quickly. Following this
initial transient regime all curves adopt a power-law behaviour of the form d0(t) ∝ t−m

where the power-law exponent m depends on the thickness of the layer. Inspection of
the temporal evolution of the drop radius (not shown) shows that it also approaches a
power-law behaviour, R(t) ∝ tn, where m ≈ 2n. This suggests that the drop evolves in
a volume-conserving, self-similar fashion so that its shape at two different times can be
obtained by rescaling the vertical and radial coordinates according to the evolution of its
excess height and radius, respectively.
To assess this, the left half of figure 13 shows overlaid snapshots of the air-liquid

interface for drops deposited on layers of thickness (a) h∞ = 0.005mm, (b) 0.5mm and
(c) 5mm. In each case we show three drop shapes, each taken taken during the final decade
of the evolution shown in figure 12(a) when the excess drop height evolves according to a
power-law, with a thickness-dependent power-law exponent. To assess the degree to which
the drop shapes are self-similar, we scaled the vertical coordinate on the instantaneous
excess drop height and rescaled the radial coordinate according the observed power-law
behaviour for the radius. The fact that the rescaling leads to a good collapse of the drop
shapes onto a master curve confirms that the drop evolves in an approximately self-
similar fashion. We note that the rescaling works best for the smallest and largest layer
thicknesses shown and will return to this issue in §4.5. For the thinnest layer the rescaled
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Figure 12. Temporal evolution of the computed normalised excess drop height
d0(t)/V

1/3 for (a) the glucose system following pinch-off for layer thicknesses of
h∞ = 0.005, 0.01, 0.05, 0.1, 0.33, 0.5, 0.75, 0.95, 1.14, 1.5, 1.75, 2, 2.5, 3.5, 5, 8.5, 12 and 17 mm
and (b) the polystyrene system of Cormier et al. (2012) for layer thicknesses of
h∞ = 0.005, 0.01, 0.025, 0.054, 0.1, 0.25, 0.5, 0.75, 0.942, 1.5, 2, 3, 5 and 10 µm, on a log-log scale.
Note that the curves overlap as h∞ → 0. The insets in (a) show the collapsing thread. The
symbols in (b) show selected data of Cormier et al. (2012) with the dashed lines representing
the matching computations.

overall drop shapes are graphically indistinguishable. Only a zoom into the region near
outer edge of the drop (shown in the inset in 13(a)) shows small deviations in the rescaled
drop radius and the position and depth of the characteristic Landau-Levich dimple in
the layer thickness just ahead of the drop.
The upper curve in figure 13 shows how the power-law exponent m for the evolution

of the excess drop height (determined by calculating the logarithmic slope of the curves
in figure 12(a) for t = 103 s) depends on the non-dimensional layer thickness h∞/V 1/3.
For sufficiently thin fluid layers the power-law exponent approaches a constant value
of approximately 0.269 – slightly larger than the value mdry = 1/4 derived by Lopez
et al. (1976) and Huppert (1982) for gravity-driven spreading on dry substrates. This
is consistent with the theoretical results of Kalinin & Starov (1986) and Chebbi (1999),
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Figure 13. Plots illustrating the self-similarity of the drop shapes for the “large” drop spreading
on layers of thicknesses (a) h∞ = 0.005 mm, (b) h∞ = 0.5 mm, and (c) h∞ = 5 mm; and the
“small” drop spreading on layers with thicknesses of (d) h∞ = 5× 10−3 µm, (e) h∞ = 0.5 µm,
and (f) h∞ = 5 µm. The insets in (a) and (d) show the Landau-Levich dimple at the advancing
front. The excess drop height d(r, t) = h(r, t)−h∞ is normalised on its value at the centre of the
drop, d0(t); the radial distances are rescaled on the similarity variable rt−n, where the power-law
exponent n, obtained from a fit to the computational data, is (a) n = 0.135, (b) n = 0.1625, (c)
n = 0.469, (d) n = 0.102, (e) n = 0.167, (f) n = 0.246.

who show that the power-law exponents associated with spreading on a thin layer are
larger than those associated with spreading on a dry substrate. As the layer thickness
increases m grows rapidly (indicating faster spreading of drops on thicker layers) before
ultimately approaching yet another limit, m → 1, which we will explain in §4.5.

4.4. Influence of the drop size

In all the results presented so far the drop volume was set to the value in our
experiments. As discussed in §3.2, our drops are “large” in the sense that their overall
size exceeds the capillary length, implying that surface tension effects only play a minor
role in the overall dynamics. We will now consider drops that are “small” (V 1/3 ≪ LC or
equivalently, Bo ≪ 1), so that their dynamics is likely to be driven by capillary effects.
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Figure 14. Power-law exponent m on a log-log scale for the computed excess drop height
(d0(t) ∝ t−m), as function of the non-dimensional layer thickness h∞/V 1/3. The data for “large”
drops was computed at t = 103 s using parameter values from our experiments; the data for
“small” drops is for parameter values for Cormier et al.’s (2012) experiments with drops of

molten polystyrene, computed at t = 105 s. The short horizontal lines at h∞/V 1/3 → 0 indicate
the corresponding power-law exponents predicted by Tanner (1979) and Lopez et al. (1976) for
spreading of “small” and Huppert (1982) for spreading of “large” drops, respectively, on dry

substrates. The short horizontal lines at h∞/V 1/3 = O(1) indicate the corresponding power-law
exponents in the thick film limit; see Cormier et al. (2012) and §4.5.

We choose parameter values to match those of Cormier et al. (2012) who studied the
dynamics of a molten polystyrene drop spreading atop a thin layer of the same fluid.
In their experiments the drop volume was approximately V = 1 pl – nine orders of
magnitude smaller than the drops used in our experiments. Cormier et al. report power-
law exponents for the experimentally observed evolution of the excess drop height (m in
our notation) for layer thicknesses of h∞ = 0.942 and 0.054 µm, starting from a spherical
cap as the initial shape of the drop. Their experimental data points are shown by the
symbols in figure 12(b).
Cormier et al. do not specify the material properties of the molten polystyrene used in

their experiments. We therefore performed our computations using literature values from
other sources. For a temperature of 180◦C – the temperature at which the experiments
were performed – the density of molten polystyrene is ρ = 976 kg/m3 (Patnode &
Scheiber 1939), the viscosity is µ = 6, 800 Pa s (Fox & Flory (1948); but see below
for a discussion of the effect of variations in this quantity) and the surface tension is
σ = 25.52 mN/m (Kwok et al. 1998). Using these values and the much smaller drop
volume of V = 1 pl we obtain a Bond number of Bo = Ca = 3.78 × 10−5 and a
Reynolds/Archimedes number of Re = Ar = 2× 10−16, indicating that we are now in a
surface-tension-driven regime.
We performed computations for these parameter values and for layer thicknesses

between h∞ = 5× 10−3 and 50 µm. The resulting temporal evolution of the excess drop
height is shown in figure 12(b). Given the uncertainties about the material properties,
there is reasonable agreement with the data from Cormier et al.’s (2012) experiments.
The main difference to the data for the “large” drop is (i) the absence of the rapid initial
decrease in excess drop height associated with the collapse of the pinched-off thread that
detaches from the nozzle which not present here, and (ii) the much longer timescale
over which the drop spreads. For sufficiently large times the evolution of the excess drop
height again displays a clear power-law behaviour with a thickness-dependent power-
law exponent m. The right half of figure 13 shows that the drop shape again evolves
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in an approximately self-similar fashion over a time interval spanning two orders of
magnitude. The lower curve in figure 14 shows the power-law exponent m for the long-
term evolution of the excess drop height. The overall behaviour is qualitatively similar to
that for “large” drops in the sense that an increase in layer thickness again increases the
power-law exponent, indicating (relatively) faster spreading. The power-law exponent for
the “small” drop is less than that for the “large” drops considered in our own experiments.
This reduction is consistent with the trend observed for spreading on dry substrates for
which Tanner (1979) predicts a power-law exponent of mdry = 1/5 for capillary-driven
spreading of “small” drops, compared to Lopez et al.’s (1976) and Huppert’s (1982)
prediction of mdry = 1/4 for the gravity-driven spreading of “large” drops.
One final observation concerns the role of the viscosity on the system’s behaviour.

Given the uncertainty about the value of the viscosity in Cormier et al.’s (2012) ex-
periments, we explored the effect of variations in this quantity and repeated selected
computations with a viscosity of µ =1 MPa s – nearly three orders of magnitude larger
than the original value. We noticed that, while the timescale of the system’s evolution
increased significantly, as would be expected, the power-law exponents remained virtually
unchanged. This implies that, in the regime investigated, the power-law exponents are
independent of viscosity, but depend on the Bond number and the thickness of the layer
on which the drop spreads.

4.5. Large-time behaviour for “large” and “small” drops

The data presented so far indicates that, after a certain amount of time, the drop
spreads in a self-similar fashion, with a power-law behaviour for the excess drop height
and radius. The power-law exponents were found to depend on the layer thickness, and for
drops spreading on very thin layers (such that the excess drop height is much larger than
the layer thickness), the observed power-law exponents are close to those for spreading
on a dry substrate (where m = 1/4 or 1/5 for “large” or “small” drops, respectively).
We note that in the preceding discussion we had to characterise the thinness of the

layer by comparing its depth, h∞, to the typical excess height of the drop. This implies
that the behaviour observed for drops spreading on thin layers cannot remain valid for
all time because ultimately gravity and/or surface tension will completely level the drop.
At some point the drop’s excess height above the undeformed layer will therefore become
much smaller than the layer thickness. The layer can then no longer be regarded as thin
and we expect the drop’s spreading behaviour to change. The amount of time required to
reach this ultimate spreading regime depends on the timescale over which the levelling
takes place.
To analyse this effect we assume that the drop has evolved to a state in which the

evolution of the free-surface height h(r, t) above the surface of the substrate can be
described by lubrication theory so that h(r, t) satisfies
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1

r

∂
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(
1
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h3r
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(
ρgh− σ

(
∂2h

∂r2
+

1

r

∂h

∂r

)))
= 0; (4.1)

see, e.g., Middleman (1995). Following Cormier et al. (2012) we scale the radius, the
height of the interface, h(r, t), and its deviation from the uniform film thickness, d(r, t) =
h(r, t) − h∞, on h∞ so that {r, h, d} = {r̃, h̃, d̃}h∞, where a tilde is used to distinguish
dimensionless variables from their dimensional equivalents. We now consider the two
extreme cases in which levelling is predominantly driven by gravity or surface tension,
corresponding to “large” or “small” drops, respectively. In each case we scale time on the
appropriate levelling timescale τ , obtained by balancing the forces that drive and resist
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the levelling process. This yields
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for “large” drops whose levelling is driven by gravity, and
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(4.3)
for “small” drops whose levelling is driven by capillary forces. We note that the ratio of
the two timescales, τσ/τg, represents a Bond number, based on the thickness of the fluid
layer.
In terms of these variables the regime during which the drop spreads on a “thin” layer

is characterised by d̃ = d/h∞ = (h − h∞)/h∞ ≫ 1, allowing us to simplify the above
equations to
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for “large” and “small” drops, respectively. Conversely, at very large times (characterised
by t ≫ τg or t ≫ τσ) we have d̃ = d/h∞ = (h − h∞)/h∞ ≪ 1, allowing us to use the
linear approximations
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King (1990) showed that equations (4.4a) and (4.5a) for “large” drops have volume-
conserving similarity solutions of the form

d̃(r̃, t̃) = t̃−1/4 Fg,d̃≫1

(
r̃ t̃−1/8

)
and d̃(r̃, t̃) = t̃−1 Fg,d̃≪1

(
r̃ t̃−1/2

)
, (4.6a,b)

respectively. King (2001) derived equivalent solutions to equations (4.4b) and (4.5b) for
“small” drops:

d̃(r̃, t̃) = t̃−1/5 Fσ,d̃≫1

(
r̃ t̃−1/10

)
and d̃(r̃, t̃) = t̃−1/2 Fσ,d̃≪1

(
r̃ t̃−1/4

)
, (4.7a,b)

respectively. This shows that, as anticipated, the drop’s evolution depends strongly on
how far it has been levelled by gravity or surface tension. We expect that for sufficiently
large times (when t̃ ≫ τg or t̃ ≫ τσ) all drops will display the behaviour predicted by
the similarity solutions (4.6b) or (4.7b). To show that this is indeed the case, we plot
in figure 15 the evolution of the non-dimensional excess drop height at the centre of the
drop, d̃0(t̃) = d̃(r̃ = 0, t̃), for all our simulations (but only using data from the regime
when the drop displays a clearly-defined power-law behaviour: t > 200 s for the large
drop and t > 105s for the small one; cf. figure 12). Figure 15 shows that many of the data
points (indicated by symbols) come from a regime when the drop is still relatively thick
relative to the thickness of the layer; d̃0 ≫ 1. The evolution of the excess drop height
therefore follows a power-law behaviour with exponents m = 1/4 or m = 1/5 for “large”
and “small” drops, respectively, over many decades. Drops that are deposited on thicker
layers spread much more quickly and therefore reach the regime in which their excess
height is much less than the film thickness (d̃0 ≪ 1 ; resulting in power-law exponents of
m = 1 and m = 1/2 for “large” and “small” drops, respectively) within the duration of
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our computations. For such drops, the power-law exponents recorded at the fixed time
of 103s and 105s for the “large” and “small” drops (as shown in figure 14) correctly
captures their ultimate behaviour. Conversely, for drops spreading on thinner layers, the
power-law exponent recorded at that time only provides a snapshot of their behaviour
during their evolution towards the ultimate levelling behaviour.

We note that Cormier et al. (2012) derived the power-law behaviour reported above
(for “small” drops) not by appealing to King’s similarity solutions but by employing a
volume-conservation argument that allows them to obtain an explicit prediction for the
evolution of the excess drop height over the entire regime. We will now demonstrate that
the argument can be extended to also describe the behaviour of “large” drops. For this
purpose we postulate that the non-dimensional excess drop height above the undeformed
layer has the similarity form

d̃(r̃, t̃) = d̃0(t) F̃(η) (4.8)

where η(r̃, t̃) is the similarity variable. Apart from a rescaling of F , so that d̃0(t) represents
the non-dimensional excess height at the centre of the drop, this form of the solution is
consistent with the similarity solutions specified in equations (4.6) and (4.7) for which
η has the form r̃ t̃−n for some n. Cormier et al. (2012) report that in their experiments
the interface shape appeared to be better described by a similarity variable of the form

η =
r̃

[
t̃
(
1 + d̃0(t̃)

)3]k , (4.9)

and they attributed the correction factor
(
1 + d̃0(t̃)

)3
to a rescaling of time which

accounts for the variable flow resistance which varies like h−3; see equation (4.1).
We now express the conservation of drop volume,

2π

∫ ∞

0

d(r, t) r dr = V, (4.10)

in terms of the non-dimensional variables and represent the excess drop height d in terms
of equations (4.8) and (4.9) to obtain

(
d̃0(t̃)

)1/(2k) (
1 + d̃0(t̃)

)3
=

T

t̃
, (4.11)

where

T =
V

2πh3
∞

∫∞

0
F̃(η) η dη

(4.12)

is a constant whose value depends on the form of the similarity solution F̃(η), the film
thickness h∞, and the drop volume V . Equation (4.11) predicts that

d̃0(t̃) ∼

{
t−

2k
6k+1 for d̃0 ≫ 1

t−2k for d̃0 ≪ 1.
(4.13)

These limits agree with those from King’s exact similarity solutions if we choose k = 1/2
for “large” drops and k = 1/4 for “small” ones. More importantly, equation (4.11)
provides an explicit prediction for the evolution of the excess drop height over the
entire range of the drops’ evolution with just one fitting parameter, the constant β =∫∞

0
F̃(η) η dη. The resulting prediction (using β = 6) is shown by the continuous lines

in figure 15 and matches the computed data extremely well. Furthermore, the different
power-laws for d̃0 ≫ 1 and d̃0 ≪ 1 describe the system’s behaviour extremely robustly



23

Figure 15. Non-dimensional excess drop height d̃0 as function of non-dimensional time t̃ for
(a) the “large” drop and (b) the “small” drop, on a log-log scale. The green points represent
the computed data (for t > 200 s in (a), and t > 105 s in (b)), while the red lines show the
predictions from the theoretical model, equation (4.11).

over many decades of the non-dimensional time, t̃, with a rapid transition between the
regimes when d̃0 = O(1) and t̃ = O(1).
Recall now that the plots of the rescaled drop shapes in figure 13 showed that the

collapse of the data, based on the power-law exponents obtained from a fit to the
computational results, worked least well for the intermediate layer thicknesses shown
in figures 13(b,e). The explanation for this is that for these thicknesses the drop is
in the transition between the two clearly-defined power-law regimes shown in figure
15. The drops’ evolution can therefore not be described by a power-law with a single,
fixed exponent and an attempt to collapse the drop shapes by such a rescaling leads to
noticeable discrepancies.
Conversely, drops deposited on sufficiently thick layers rapidly reach the ultimate

spreading regime and their shapes are then well described by power-law-based similarity
solutions. This is illustrated in figure 16 where we contrast the rescaled computational
results (from the same time intervals as in figure 13, but for thicker layers) with the
analytical solutions of the linear equations (4.5a,b) that describe the drops’ ultimate
spreading behaviour. For “large” drops, the similarity solution is given by F̃g,d̃≪1 =

exp(−1/4 η2) where η = r̃ t̃−1/2; we refer to Backholm et al. (2014) for the solution of
equation (4.5b) (for “small” drops) in terms of hypergeometric functions.

5. Summary and conclusions

We employed experiments, numerical simulations and scaling analyses to study the
axisymmetric spreading of drops of viscous, Newtonian fluids on a layer of the same fluid
and contrasted their behaviour with that observed when such drops are deposited on dry
substrates. Our experiments were performed with “large” drops of glucose syrup, i.e. we
operated in a regime of large Bond number where the overall dimensions of the drop are
much larger than the capillary length, so that the behaviour of the drop is dominated by
a balance between gravitational and viscous effects.
During the early stages of the drops’ evolution we identified three qualitatively different

behaviours, depending on the thickness of the uniform fluid layer relative the typical size
of the deposited drop. For very thin layers, the drop develops a steep spreading front,
implying that there is a clearly defined drop radius whose value depends only weakly on
the height at which it is measured. In this case, the spreading front introduces minimal
perturbations to the fluid layer ahead of itself and the overall behaviour is very similar
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Figure 16. Plots illustrating the self-similarity of the drop shapes for (a) the “large” drop, (b)
the “small” drop, spreading on a layer of thickness h∞ = 17 mm and 10 µm, respectively. The
excess drop height d(r, t) is normalised on its value at the centre of the drop, d0(t) and the radial
distances are rescaled on the similarity variable r t−n for the ultimate spreading regime for which
n = 1/2 for the “large” drop and n = 1/4 for the “small” one. The solid lines represent the
computed data, while the thick dashed black lines represent the analytical similarity solutions
of equations (4.5a,b).

that observed for drops spreading on a dry substrate. For intermediate layer thicknesses,
the leading edge of the spreading drop adopts a wedge-like profile and perturbs the pre-
existing layer over a noticeable distance ahead of the drop radius. Finally, for thick layers,
the drop sinks into the layer and causes noticeable upwelling in the fluid layer ahead of
itself. This results in the formation of a transient bulge. Once this bulge has been levelled
by gravity the leading edge of the drop again approaches a wedge-like profile, but with
a much shallower angle than in the intermediate regime.
In all cases, the evolution of the drop ultimately reaches a regime within which the

excess drop height and radius display a power-law behaviour over significant lengths of
time while the drop shape evolves in a self-similar profile. The power-law exponents,
measured at a fixed time, depend on the layer thickness, reflecting the fact that drops on
thicker layers spread more quickly; the power-law exponents for drops spreading on very
thin layers (where “thin” has to be understood as thin relative to the excess drop height
at the time when the exponents are determined) are close to (slightly larger) than those
observed for drops spreading on dry substrates.
We performed additional computations in the small Bond number regime (i.e. for

“small” drops) where capillary effects play an important role, using parameter values that
are appropriate for Cormier et al.’s (2012) experiments with drops of molten polystyrene.
Overall, the behaviour of these drops was found to be similar to that observed for “large”
drops. Specifically, when increasing the layer thickness the evolution of the drop shape
passes from the “spreading” to the “wedging” regime before reaching a regime in which
the drop “sinks” into the layer. Furthermore, for both “small” and “large” drops the
power-law exponents for the excess drop height and radius, measured at a fixed time,
increase with the layer thickness. However, the power-law exponents for “small” drops
are generally smaller than for “large” drops. This is similar to the trend observed in
predictions based on scaling arguments for drops spreading on dry substrates.

A key observation is that, because the drops keep spreading indefinitely, their excess
height will ultimately become less than the thickness of the layer they were deposited
on. Beyond this point, the layer can no longer be regarded as thin and the drop’s
evolution undergoes a final change to a universal late-time behaviour. We characterised
the evolution towards this final spreading regime using a lubrication-theory-based model
and showed that our computed data is well described by similarity solutions to suitably
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simplified equations. We note that Benzaquen et al. (2014) performed a similar analysis
and associated experiments to study the capillary-driven levelling of films in a two-
dimensional geometry. Finally, we adapted an approach first used by Cormier et al.

(2012) to derive an explicit prediction for the temporal evolution of the excess drop
height that captures the continuous evolution of the power-law exponents during the
drop’s spreading.
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Montañez-Soto, J. L., Machuca, M. A. Velázquez, González, J. V., Nicanor, A. &
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