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A simple, physical approximation is developed for the effect of viscosity for stable 
interfacial waves and for the unstable interfacial waves which correspond to Rayleigh­
Taylor instability. The approximate picture is rigorously justified for the interface 
between a heavy fluid (e.g., water) and a light fluid (e.g., air) with negligible dynamic 
effect. The approximate picture may also be rigorously justified for the case of two 
fluids for which the differences in density and viscosity are small. The treatment of the 
interfacial waves may easily be extended to the case where one of the fluids has a small 
thickness; that is, the case in which one of the fluids is bounded by a free surface or 
by a rigid wall. The theory is used to give an explanation of the bioconvective patterns 
which have been observed with cultures of microorganisms which have negative 
geotaxis. Since such organisms tend to collect at the surface of a culture and since they 
are heavier than water, the conditions for Rayleigh-Taylor instability are met. It is 
shown that the observed patterns are quite accurately explained by the theory. Similar 
observations with a viscous liquid loaded with small glass spheres are described. A 
behavior similar to the bioconvective patterns with microorganisms is found and the 
results are also explained quantitatively by Rayleigh-Taylor instability theory for a 
continuous medium with viscosity. 

INTRODUCTION 

Viscous effects in Rayleigh-Taylor instability have not 
been considered in detail beyond the analytical aspects of 
the problem, and yet there are interesting situations in 
which the role of viscosity is quite decisive for the 
behavior of the instabilities. While the analysis of the 
instability of the interface between immiscible fluids can 
be worked out in a straightforward way, there are exten­
sive algebraic complications which quite soon become 
apparent. Since the physical aspects of the problem can 
be hidden by such formal solutions, it should be of 
interest to develop the essential results by simple physical 
arguments. As we shall see, it is easy to obtain an 
approximate description of the phenomena involved by 
such arguments. 

APPROXIMATE TREATMENT OF INTERFACIAL 
WAVES 

We first consider the simplest possible situation in 
which a nonviscous fluid of density p when undisturbed 
occupies the semi-infinite region z < 0 and is acted on by 
gravity with acceleration g. Suppose that the region z > 
0 is occupied by a fluid with negligible kinematic or 
dynamic effect; i.e., the density of this region is zero, and 
its viscosity is zero. If the surface is disturbed by a plane 
wave of small amplitude, 

11(x, t; k) = ak(t)sin kx, (1) 

it is evident that the oscillations are stable and it is also 
evident that for small amplitudes they must be simple 
harmonic. Thus, 

(2) 

The angular frequency w0 can depend only on g and the 
wavenumber k = 2.,/A., where A is the wavelength. Di­
mensional considerations suggest that 

Wo = (gkY12 , (3) 
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which is, of course, the correct and familiar result. One 
cannot be assured by a dimensional argument that the 
result of Eq. (2) should not contain some numerical 
factor, but the precise result, as given, is easily derived. 

If now we consider the interface between two fluids, 
one of density p' in the region z > 0 and the second of 
density p in the region z < 0 and if p' < p, then. an 
interfacial wave of small amplitude is stable. It is easy to 
see that the effective value of gravity for the wave is 

g
' p- p' 

= p + p,g, (4) 

since the downward acceleration is decreased by the 
factor (p- p')jp and the inertia is increased by the 
factor (p + p')jp due to the pressure of the upper fluid. 
The small amplitude oscillation must again be simple 
harmonic and the angular frequency will be 

(5) 

The effect of surface tension on the surface waves may 
also be elucidated in the following way. As before, the 
gravity field is taken to act in the -z direction. We 
suppose that an element of the fluid of density p with 
cross section dx dy is elevated to a height 11 above z = 0 
in a fluid of density p'. The downward force on the 
element due to gravity is then g(p- p')Tidxdy. The 
surface tension is given by the product of the surface 
tension constant T and the curvature. This curvature is 
approximately a211/ax2 = -k211 since 11 = ak sin kx 
where ak is a small quantity. Thus, the downward force 
on ~he element from surface tension is Tk 211dxdy. The 
effective inertia of the element is (p + p')11dxdy and it 
follows that the net effective acceleration in the -z 
direction is 

, _ (p - p') Tk 2 

g T - (p + p') g + (p + p')" (6) 
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The simple harmonic oscillation of a.(t) is now given by 

(7) 

where 

2 k I (p - p') Tk 3 

Wo = gT = ( ')gk + ( '). p+p p+p 
(8) 

Equation (8) is the well-known dispersion formula for 
interfacial waves when viscosity is neglected. 

Thus far wl in Eq. (5) or (8) has been taken to be a 
positive quantity since we have supposed that p > p'. 
There is no mathematical or physical reason that limits 
the applicability of the discussion to the case in which 
p' > p. In place of (7) we would have 

(9) 

where a2 is a positive quantity, 

viscosity of this fluid, and v = p.jp is its kinematic 
viscosity, then from dimensional considerations the 
damping of the oscillations should depend only on vk 2 • 

From the familiar expression for a damped simple har­
monic oscillator, the damped surface wave will, in an 
approximate sense, satisfy an equation of the form 

(12) 

The factor j is, of course, unknown, and actually the 
exact description of damped surface waves cannot be 
accurately described in such simple terms except in 
limiting situations. For example, it is well-known (Ref. I, 
pp. 623-625) that, for very small damping, surface wave 
oscillations have the form 

exp (iwo t - 2vk 2 t), 

and this form would be obtained from (12) withf = 4: 

2 _ 2 _ (p' - p) Tk 3 

a - -wo - (p' + p) gk - (p + p')" 

i:h + 4vk 2dk + wJa. = 0, 

(I 0) as may be seen by writing 

(13) 

As is to be expected the interface is now unstable, and 
the interfacial wave amplitude grows like e"'. This growth 
phenomenon is the familiar Rayleigh-Taylor instability 
phenomenon. The description of the instability is, of 
course, valid only so long as the amplitude remains small, 
but we must expect that the wavelengths for which a is 
largest as given by the small amplitude theory will 
continue to lead in growth beyond the amplitude range 
for which the small amplitude description is valid. 

It is evident from (10) that surface tension can prevent 
the instability for sufficiently small wavelengths. The 
limit of instability is given by 

(II) 

The stability of small hanging water droplets is easily 
observed and is a familiar effect. This stability is related 
to the behavior just indicated. 

In an application of Rayleigh-Taylor instability which 
will be of particular interest here, surface tension is not 
so important but viscosity will be decisive. To simplify 
the physical discussion, therefore, we shall drop the term 
arising from surface tension in the following; its effects 
can always be included in the way that has just been 
described. We shall now attempt to develop a simple 
approach to the damping of stable or unstable interfacial 
waves. If we first consider the stable case, p' < p, which 
can be described in terms of a simple harmonic oscilla­
tion, 

ii" + w6a. = 0, 

with 

2 - (p- p') 
Wo - ( ')gk. p+p 

Clearly, the effect of viscosity is to give some damping to 
the oscillations, and the damping may easily be estimated 
for some particular cases. First, we take the case of a 
heavy fluid (e.g., glycerol, water) in contact with a fluid 
with negligible dynamic effect (e.g., air) so that we have 
only to consider a single fluid. If p. is the dynamic 
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a.(t) = a.(O)exp(nt), 

so that for n we have the equation 

(13') 

Equations (13) and (13') then describe the long-wave­
length limit in which the damping is very small. Our 
major interest here, however, is in the case in which 
viscous damping is important. Some guidance in this 
direction may be obtained from the known behavior in 
the "creeping motion" limit for which (Ref. 1, pp. 
625---{)28) 

n ~ -w6/2vk 2
• 

This relation suggests that the short wavelength limit, or 
the limit in which damping is important, may be de­
scribed by 

ii" + 2vk 1 d" + wla. = 0, (14) 

or by 

(14') 

We must expect a corresponding behavior for the 
unstable case for which we would then have 

n1 + 4vk 1n - a2 = 0, 

n2 + 2vk 1n- a2 = 0, 

(15) 

(16) 

We may expect Eq. (16) to be of particular interest here 
since it covers the range in which viscous damping is 
important. We shall use Eq. (16) over the whole range of 
k even though it may not be accurately permissible when 
vk 1 

- a. We shall see later that Eq. (16) has acceptable 
accuracy even when vk 1 

- a for the kind of applications 
to be made here. If we proceed with this expression for n 
as a function of k, or A, we readily see that n has a 
maximum for 

Am = 4?T(v2 jg'r13 • 

This result IS of great physical significance since the 
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FIG. I. The ordinate is the instability growth factor n as given by the 
approximate theory of Eq. (16) with a given by Eq. (10). Water is 
accelerated into air with an acceleration of 2 g. For very short 
wavelengths, the growth rate n is negative and the interface is stable. 

interfacial disturbance with this wavelength grows more 
rapidly than any other. It is true that the theory is limited 
to small disturbances, but the disturbance which grows 
most rapidly should continue to be the leading one into 
the range where large amplitudes are reached. 

Some objection might be raised to the very simple 
derivation of Am. It may be pointed out that the numeri­
cal factor f in Eq. (12) enters only as J2f3 so that our 
expression for Am is not sensitive to its value. It is, of 
course, a straightforward matter to determine the rigor­
ous dispersion formula for n(k), and it is also easy to 
show that one gets Eq. (16) in the short wavelength limit. 
Beyond that a comparison of the approximate and the 
exact result may readily be made. For water accelerated 
into air with an acceleration of 2g the approximate n as 
given by (16) is shown in Fig. 1; the exact n was also 
computed and no significant difference between the two 
sets of value could be detected. Surface tension was 
included in these calculations. The close agreement be­
tween the exact solution and the approximate solution of 
Eq. (16) for the water-air interface cannot be taken as a 
justification of the approximate treatment of viscosity 
since for this combination surface tension, not viscosity, 
gives the significant modification of the simple gravity 
effect. Figure 2 shows the approximate relation n(A) and 
the exact relation for air accelerated into glycerin with 2g. 
Surface tension is not important in this case, but viscosity 
is decisive. The agreement is seen to be quite satisfactory. 

The great advantage of the simple model which leads 
to (16) is that it gives a direct physical insight to an 
expectation of a maximum in n(k), a maximum which 
must occur in the unstable physical situation. 
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FIG. 2. The exact and the approximate values for the instability 
growth factor n are shown for glycerin accelerated into air with an 
acceleration of 2 g. 

A second example which will be considered is the case 
of two fluids in which the density difference is small. 
Further, it will be supposed that the two fluids have the 
same kinematic viscosity and that surface tension is not 
important. In the short wavelength limit, that is, in the 
limit in which viscosity is important, we again use the 
damped oscillator equation in the form 

n2 + 2vk 2 n + wa = 0, 

for the stable case, and 

vk 2 » a, 

(17) 

(18) 

for the unstable case. Our concern here is with the 
unstable case and as before the maximum value of n 
occurs. for a wavelength 

Am = 4'lT(v2/g')l/3
• 

The approximate Eq. (18) may again be justified by 
examination of the exact solution. A comparison of the 
approximate solution and the exact solution shows that 
the approximate formulation is quite accurate (see Fig. 
3). We point out that Eqs. (17) and (18) describe a wave 
on the interface of two fluids for which p = p' 
+ !:::.p and p. = IL' + 1:::./L, where !:::.p and !:::.IL are both small 
compared with p and IL· respectively. 
Fig. 3. 

We shall also be concerned with an experimental 
situation in which the fluid of density p', which overlays 
a fluid of density p, has a thickness h'. The lower fluid will 
be taken to have a large thickness. The dimensions with 
which h' is to be compared are, of course, the wave­
lengths A of the interfacial waves which are of interest. 
The upper fluid now lies in the range 0 < z < h' and the 
lower fluid in the entire range z < 0. In the first case, we 
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FIG. 3. The exact and the approximate values for the instability 
growth factor n are shown for a liquid with density 1.000942 g/cm' over 
a liquid with unit density in the gravity field I g. 

suppose that the upper fluid is confined by a rigid plane 
at z = h'. If we consider a wave on the interface with 
wavenumber k, then it is known for the nonviscous case 
(Ref. 1, pp. 370-372) that the dispersion formula is 

p- p' 
wij = p + p' coth kh'gk, p > p'. (19) 

We shall be concerned with applications in which the 
kinematic viscosities, v and v', are essentially the same. If 
we have fluids for which the viscosities are large, or if the 
density difference is small, viscous damping of the oscil­
lations will be important. As before, if we write 

then 

(20) 

COMMENTS ON THE SOLUTIONS FOR DAMPED 
INTERNAL WAVES 

The complete analysis of small amplitude internal 
waves with viscous damping for two fluids of infinite 
thickness has been made by Harrison2 for the stable case 
and for the unstable case by Bellman and Pennington.3 

There are some serious errors in Harrison's results and 
there also appear to be errors in the results presented in 
the paper by Bellman and Pennington. Correct results 
have been given by Chandrasekhar.4 The difficulties in 
the problem are only algebraic. The dispersion formula 
for n in the stable case p' < p, is 

n2(-(Llp)2 + (p + p')(pm' + p'm)/k] 

+ 2nLlJL[Llp(km'- 2k 2 + km) + (p + p')(m'- m)k] 

+ (w5/k)[(p + p')(m'p + mp')- k(p + p'f] 

+ 4k 2 (LlJ.t)2(k- m')(m- k) = 0, (24) 

where 

LlJL = JL- JL'; Llp = p - p'; 

m = (k 2 + n/v)l/2
: m' = (k 2 + n/v' )1/ 2

; 

and w5 is given by Eq. (8). For the unstable case p' > p, 
we use Eq. (24), replacing w5 by -a2 where a2 is positive 
and is given by Eq. (10). 

The general result given in Eq. {24) may readily be 
specialized to the particular cases mentioned in the 
previous section. First, if p' ~ 0, JL' ~ 0, m' JL' ~ 0, then 
one finds for this one medium case, 

(n + 2vk 2
)

2 + w5- 4v2k 3m = 0 (25) 

for the stable case. The unstable case has -a2 in place of 
w5. Equation (25) is given in Ref. 1, p. 627. The long 
wavelength limit where viscous effects are small is found 
by neglecting the term 4v2k 3(k- m): 

n2 + 4vk 2 n + w5 = 0, 

n2 + 4vk 2 n - a 2 = 0, 

vk 2 « Wo, stable case; 

vk 2 « a, unstable case . 

(26) 

To obtain the short wavelength limit, m is approximated: 

for the stable case p > p'. For the unstable case, we have When this approximation is used in (25), one gets, at 

(21) 

When the upper boundary at z = h' is a free surface we 
have (Ref. I, pp. 370-372) for the stable case 

2- p- p' 
Wo - p coth kh' + p'gk (22 ) 

which should be used in Eq. (20). The unstable case has 

2 p'-p k 
(J - g 

- p coth kh' + p' (23) 

to be used in Eq. (21). 
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once, 

n2 + 2vk 2 n + wa = 0, 

n2 + 2vk 2n- a2 = 0, 

vk 2 » wo, stable case; 
(27) 

vk 2 » a, unstable case . 

A second case which has been considered is the one for 
which Ll p and LlJ.t are small. If all terms in Eq. (23) in 
(Llp)2

, (LlJL) 2
, or LlpLlJL are dropped, one has 

n2 (pm' + p'm) + wij[(pm' + p'm)- k(p + p')] = 0, (28) 

for the stable case. It is clear that Eq. (28) is valid in the 
first order in Llp or LlJL. The unstable case gives the 
corresponding result. We shall now suppose that m' 
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= m; that is, we suppose that the kinematic viscosities of 
the two media are the same. Equation (28) then gives 

m(n2 + Wt3) - kw5 = 0. (29) 

As before, for the short wavelength region we write 
m ~ k(I + n/2vk 2

), and from Eq. (29) we find 

for the stable case. The unstable case is, of course, given 
by 

(30) 

Figure 3 shows the behavior of the instability with 1 g in 
a case for which p' = I g/cm3 + 9.42 X I0-4 g/cm3

, p 
= I g/cnr and the kinematic viscosity of both fluids is 
10-2 Stokes. The exact solution and the approximate 
solution are found to be in fairly reasonable agreement 
for the values of n, and the value of A for which n is a 
maximum is nearly the same for both solutions. We may 
also present the long wavelength limit of Eq. (24) for the 
same situation in which we drop second-order terms in 
t:.p, D.!J.. We shall require that v' = v; i.e., the kinematic 
viscosities of the two mediums are exactly the same. We 
again begin with the form of Eq. (29) which is adapted to 
the unstable case 

(k 2 + n/v)l/2(n 2
- o2

) + ka2 = 0. (31) 

We now suppose that vk 2/a is a small quantity. A 
straightforward algebraic manipulation of Eq. (31) then 
gives 

We may now find that value of k, or A, for which n is a 
maximum, and we readily obtain 

(33) 

as the wavelength for maximum n for the long-wave­
length limit expression. The long-wavelength limit form 
gives a larger error than the short wavelength limit form 
when compared with the exact result. Further., the value 
of n itself is also poorer tha11 the short wavelength limit 
value. 

SOME COMPARISONS WITH OBSERVATIONS 

It has been known for over a hundred years that 
microorganisms which are negatively geotaxic, i.e., which 
swim upward against gravity, develop bioconvective pat­
terns when they have collected into a sufficiently dense 
layer at the top of a culture. Characteristic of these 
bioconvective patterns are fingers falling from the top 
layer into the lower liquid. Further, these fingers are 
separated in a rather regular pattern (see Figs. 4 and 5). 
Thermal instabilities have been excluded as a mechanism 
for these patterns. It seems quite evident that these 
patterns are the consequence of Rayleigh-Taylor insta­
bility. One makes the approximation that the upper layer 
which contains a dense swarm of the microorganisms is 
a homogeneous liquid which differs from the liquid below 
only by being slightly heavier. The greater density of the 
upper layer follows from the fact that the organisms are 
denser than water, or the culture medium. The assump-
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tion that the layer contammg the microorganisms is 
homogeneous is justified since, in the experimental situa­
tion, the organisms are uniformly distributed in the upper 
layer and they are very numerous. Their separations are 
small compared with the layer thickness and with other 
distances in the problem such as the wavelengths A. 
Extensive observations have been made5 with the mi­
croorganisms Tetrahymena pyriformis. A typical measure­
ment5 shows a density increment in the upper layer over 
the lower liquid of t:.p = 1.21 x I0-4 g/cm3

• The upper 
layer in this experiment has a thickness of 0.15 em, and 
the observed distance between the falling fingers is 
approximately 1.0 em. 

FIG. 4. A strobe-illuminated photograph of bioconvective sedimenta­
tion fingers descending from precipitation nodes; view is from the side. 
This Tetrahymena culture is enclosed in a 0.15 em thick perfusion 
chamber of diameter 2.1 em. The multiple flash mode utilized here gives 
one an impression of the bioconvective motion. 

FIG. 5. Precipitation nodes and cross connections in a Tetrahymena 
culture as viewed from above. All light areas are masses of cells 
reflecting light. White lines are connections, and junctions are precipi­
tation nodes. The circle at top center is about 0.7 em in diameter. 
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In order to apply the Rayleigh-Taylor instability 
theory it is necessary to take into account the small 
thickness of the upper layer. A precise calculation for this 
case has not previously been available. While the exact 
problem is straightforward, there are appreciable alge­
braic complications. The unbounded two medium prob­
lem leads to a four by four determinantal equation for 
the dispersion relation. When one of the mediums has 
small thickness, the determinant which gives the disper­
sion relation is six by six and several of the terms in the 
determinant are quite lengthy. The algebraic details are 
complicated and not instructive, but exact solutions have 
been carried out and the details will be presented else­
where. The approximate formulation discussed in the 
previous section leads, of course, to much simpler calcu­
lations. The growth factor n is taken as the solution of the 
simple quadratic equation 

where for the free surface condition for the upper layer 
we use the value of a2 given by Eq. (23). The effect of 
thickness of the upper layer is shown in Fig. 6. As might 
be expected the approximate theory becomes quite inac­
curate as h' ~ 0 since the free surface boundary condi­
tion and the viscous interfacial boundary conditions are 
inadequately considered. Figure 7 shows n as a function 
of A for h' = 0.15 em which is an observed value6 ; the 
approximate theory gives the maximum value of n at 
Am = 1.05 em and the exact theory gives the maximum at 
Am = 0.80 em. The measured value is 1.0 em which is in 
good agreement with the theoretical prediction. 

An experiment of a somewhat different kind has been 
performed in which a very viscous liquid (Dow-Corning 
DC-200) was loaded with solid glass spherical particles 
with radii of approximately 0.01 em. When such a 
mixture is placed in a chamber with flat top and bottom, 
the glass particles will settle on the bottom surface and a 
fairly uniform layer can be obtained. With a liquid of 
such high viscosity, the container can be inverted without 
the production of unwanted circulatory flows. The effec­
tive density and thickness of the upper layer can be 
determined before the container is inverted. A typical 
value for the density of the loaded liquid is p' 
= 1.4 g/cm3 and the density of the unloaded DC-200 is 
p = 0.943 g/cm3

• The observed instability pattern is 
shown in Fig. 8 in which the thickness of the unstable 
layer was h' = 0.20 em. Again the unstable layer is 
treated as a homogeneous fluid and the instability pattern 
can be determined from the Rayleigh-Taylor instability 
theory. Figure 9 shows the wavelength predicted by the 
theory where now the upper boundary of the unstable 
layer is taken to be a rigid boundary. The approximate 
theory is also shown in this figure. The agreement is not 
good for small values of h' for two reasons. First, the 
density difference, l::.p, is not small for this example, and 
second, the no-slip condition at the upper boundary of 
the unstable layer is not properly accounted for in the 
approximate picture. Figure lO shows the instability 
growth factor, n, as a function of A computed from the 
exact theory for an unstable layer thickness h' = 0.2 em. 
The maximum is n occurs at A = 0.7 em which is in very 
good agreement with the observations. 
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FIG. 6. The wavelength A.., at which the instability growth factor n is 
a maximum is shown as a function of the thickness h' of the upper layer. 
The upper layer density is p' = p + 1.21 X 10-4 g/cm3 where the lower 
layer density is p = I g/cm3

• The fluids are in a I g gravity field. The 
approximate result shown is for the short wavelength approximation. 
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FIG. 7. The instability growth factor n is shown as a function of A for 
I:J.p = 1.21 X w-• g/cml, h' = 0.15 em. The approximate result is for 
the short wavelength approximation. 
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FIG. 8. The photograph shows the instability pattern in a very viscous 
fluid (Dow-Corning DC-200) which has a kinematic viscosity of 10 
stokes. The unstable layer has a thickness h' = 0.20 em and has been 
loaded with small glass spheres to a net density p' = 1.4 g/cm3

• The 
lower layer has a density p = 0.943 g/crrr. 
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FIG. 9. The wavelength A.. for which the instability growth factor, n, 
is a maximum is shown as a function of the thickness of the unstable 
layer, h'. The upper fluid has density p' = 1.4 g/cm3

, the lower fluid has 
density p = 0.943 g/cm3

• The viscosity of both fluids is 9.43 poise. 

7 Phys. Fluids, Vol. 17, No.1, January 1974 

w ..... 
~0.5 

:r ..... 
3:0.4 
0 
0::: 
(!) 

0.3 

0
'
0o.o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

WAVELENGTH (CM) 

FIG. 10. The dependence of the instability growth factor n is shown 
as a function of wavelength for the conditions as given for Figs. 9 and 
10. The curve is calculated from the exact theory for a fixed upper 
boundary. 

A final remark may be made to emphasize the impor­
tance of the "cooperative" aspects of the fluid motions as 
contrasted with individual particle motions for the two 
cases described here. For the case of the Tetrahymena 
pyriformis, a microorganism which has a radius of ap­
proximately 2 X l0-3cm, the terminal Stokes velocity of 
fall in water of a spherical particle with this radius is 
6.6 x w-3 em/sec; the swim speed of organism is 4.5 
X w-2 em/sec; and the fall velocity of the Rayleigh­
Taylor instability jets is approximately l0- 1 em/sec. In 
the experiments with DC-200 liquid with a layer loaded 
with spherical glass beads, the particles have a radius of 
l0-2 em so that the terminal Stokes velocity of fall is 3.3 
times l0-2 em/sec. The observed fall velocity of the 
instability jets exceeds this Stokes particle velocity by a 
factor greater than 20. 
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