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ABSTRACT
We study the viscous effects on the interaction between the coplanar Be-star disc and the neutron
star in Be/X-ray binaries, using a three-dimensional, smoothed particle hydrodynamics code.
For simplicity, we assume the Be disc to be isothermal at the temperature of half the stellar
effective temperature. In order to mimic the gas ejection process from the Be star, we inject
particles with the Keplerian rotation velocity at a radius just outside the star. Both the Be star
and the neutron star are treated as point masses. We find that the Be-star disc is effectively
truncated if the Shakura–Sunyaev viscosity parameter αSS � 1, which confirms the previous
semi-analytical result. In the truncated disc, the material decreted from the Be star accumulates,
so that the disc becomes denser more rapidly than if around an isolated Be star. The resonant
truncation of the Be disc results in a significant reduction of the amount of gas captured by
the neutron star and a strong dependence of the mass-capture rate on the orbital phase. We
also find that an eccentric mode is excited in the Be disc through direct driving as a result of
a one-armed bar potential of the binary. The strength of the mode becomes greater in the case
of a smaller viscosity. In a high-resolution simulation with αSS = 0.1, the eccentric mode is
found to precess in a prograde sense. The mass-capture rate by the neutron star modulates as
the mode precesses.

Key words: accretion, accretion discs – hydrodynamics – instabilities – binaries: close – stars:
emission-line, Be – X-rays: stars.

1 I N T RO D U C T I O N

The Be/X-ray binaries represent the largest subclass of high-mass
X-ray binaries. About two-thirds of the identified systems fall into
this category. These systems consist of a Be star (i.e. a B star with
an equatorial disc) and, generally, a neutron star. The orbit is wide
(several tens of days � Porb � several hundred days) and eccentric
(0.1 � e � 0.9).

Most of the Be/X-ray binaries show only transient X-ray activity
as a result of transient accretion of the circumstellar matter of the
Be star, while some show persistent X-ray emission. Each Be/X-ray
binary exhibits some or all of the following three types of X-ray
activity (Stella, White & Rosner 1986; see also Negueruela et al.
1998):

(i) periodic (Type I) X-ray outbursts, coinciding with periastron
passage (LX ≈ 1036−37 erg s−1);

(ii) giant (Type II) X-ray outbursts (LX � 1037 erg s−1), which
show no clear orbital modulation;

�E-mail: okazaki@elsa.hokkai-s-u.ac.jp

(iii) persistent low-luminosity X-ray emission (LX � 1034 erg
s−1).

These features imply a complicated interaction between the Be-star
envelope and the neutron star.

A Be star has a two-component extended atmosphere, a polar
region and a cool (∼104 K) equatorial disc. The polar region con-
sists of a low-density, fast (∼103 km s−1) outflow emitting UV
radiation. The wind structure is well explained by the so-called
line-driven wind model, in which the radiative acceleration results
from the scattering of the stellar radiation in an ensemble of spec-
tral lines (Castor, Abbott & Klein 1975; Abbott 1982). On the other
hand, the equatorial disc, which is geometrically thin and nearly
Keplerian, consists of a high-density plasma from which the optical
emission lines and the IR excess arise. The radial velocity of the
disc is smaller than a few km s−1, at least within ∼10 stellar radii
(Hanuschik 1994, 2000; Waters & Marlborough 1994). Although
there is no widely accepted model for discs around Be stars, the vis-
cous decretion disc model proposed by Lee, Saio & Osaki (1991)
explains many of the observed features and thus seems promising
(Porter 1999; see also Okazaki 2001). In this model, the matter
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Figure 1. Schematic diagram of a Be/X-ray binary, taken from Okazaki &
Negueruela (2001b).

supplied from the equatorial surface of the star drifts outwards be-
cause of the viscous effect and forms the disc. The basic equations
for viscous decretion discs are the same as those for viscous accre-
tion discs, except that the sign of Ṁ (mass decretion/accretion rate)
is opposite. The boundary conditions for decretion discs, however,
are different from those for accretion discs. Therefore, the decretion
disc has a structure different from that of the accretion disc (Pringle
1991).

Until quite recently, models for Type I X-ray outbursts in Be/X-
ray binaries had assumed a large disc around the Be star so that the
neutron star can accrete gas when it passes through the disc near the
periastron. However, Negueruela & Okazaki (2001) and Okazaki
& Negueruela (2001a) have recently performed a semi-analytical
study based on the viscous decretion disc model for Be stars and
have shown that the Be disc in Be/X-ray binaries is truncated at
a radius smaller than the periastron distance, as long as αSS � 1,
where αSS is the Shakura–Sunyaev viscosity parameter (see Fig. 1
for a schematic view of a Be/X-ray binary). The truncation of the disc
is a result of the resonant torque exerted by the neutron star, which
removes the angular momentum from the disc. The disc radii they
obtained for seven particular systems (4U 0115+63, V 0332+53,
A 0535+262, EXO 2030+375, 2S 1417−624, GRO J1008−57 and
2S 1417−624) are consistent with the X-ray behaviour of those
systems. Moreover, the result is in agreement with the result of
Reig, Fabregat & Coe (1997) that there is a positive correlation
between the orbital size and the maximum equivalent width of Hα

ever observed in a system, a measure of the maximum disc size
around the Be star in the system.

The truncation of the Be disc in Be/X-ray binaries is not sur-
prising. The resonant interaction is important in various contexts
even in a fly-by encounter with a perturber. In fly-by encounters be-
tween a disc galaxy and a point mass perturber, the energy is always
transported from the disc to the perturber through the resonant inter-
action, except for overhead encounters where the energy transfer is
small (Palmer 1983). In distant encounters between a circumstellar
accretion disc and a perturbing mass with rperi/rdisc � 2, where rperi

and rdisc are the periastron distance and disc radius, respectively, the
disc material loses energy and angular momentum to the perturber’s
orbit through a resonance feature (Hall, Clarke & Pringle 1996).

In the case of Be/X-ray binaries, the surface density of the Be disc
is expected to increase more rapidly than that for isolated Be stars,
as a consequence of truncation. This qualitatively agrees with the
result found by Zamanov et al. (2001) that the Be discs in Be/X-ray
binaries are about twice as dense as those around isolated Be stars.
The disc may finally become optically thick, and become unstable
to radiation-driven warping (Pringle 1996; see also Porter 1998).
Multi-wavelength, long-term monitoring observations of V635 Cas,

the optical counterpart of 4U 0115+63, revealed that the Be disc in
4U 0115+63 undergoes a quasi-cyclic (3–5 yr) dynamical evolution
(Negueruela et al. 2001); after each disc-loss episode, the disc starts
reforming, grows until it becomes unstable to warping, and after
that a Type II outburst occurs. Although a direct link between the
warped disc and the Type II outburst is still missing, the dynamical
evolution of the Be disc is likely to be the agent that controls the
X-ray behaviour of the system.

This way, the truncated disc model, at least qualitatively, explains
many of the observed features of Be/X-ray binaries. The semi-
analytical model adopted by Negueruela & Okazaki (2001) and
Okazaki & Negueruela (2001a), however, only compares the reso-
nant torque integrated over the whole orbit with the viscous torque
to determine at which radius the disc is truncated. Hence, it cannot
make a quantitative prediction about how perfect or imperfect the
truncation is. Moreover, it predicts nothing about phase-dependent
features, such as the disc deformation and the change in the mass-
capture rate.

Therefore, in order to study the efficiency of the resonant trunca-
tion and the orbital-phase dependence of the interaction, we simulate
the interaction between the Be-star disc and the neutron star in Be/X-
ray binaries, using a three-dimensional (3D) smoothed particle hy-
drodynamics (SPH) code. In a general context, such simulations
will also enable us to study the interaction between the viscous disc
and the companion in an eccentric orbit. In this paper, which is the
first of a series of papers dedicated to understanding the interaction
between the Be disc and the neutron star, we study the effects of
viscosity on disc truncation in a coplanar system.

2 C A L C U L AT I O N S

2.1 SPH code

Simulations presented here were performed with a 3D SPH code.
The SPH code is based on a version originally developed by Benz
(Benz 1990; Benz et al. 1990). The smoothing length is variable
in time and space. The code uses a tree structure to calculate the
nearest neighbours of particles. The SPH equations with the stan-
dard cubic-spline kernel are integrated using a second-order Runge–
Kutta–Fehlberg integrator with individual time steps for each par-
ticle (Bate, Bonnell & Price 1995), which results in an enormous
computational saving when a large range of dynamical time-scales
are involved.

In our code, the Be disc is modelled by an ensemble of gas par-
ticles, each of which has a negligible mass chosen to be 10−10 M	
with a variable smoothing length. For simplicity, the gas particles
are assumed to be isothermal at the temperature of Teff/2, where
Teff is the effective temperature of the Be star. On the other hand,
the Be star and the neutron star are modelled by two sink particles
(Bate et al. 1995) with corresponding masses. Gas particles which
fall within a specified accretion radius are accreted by the sink par-
ticle. We assume that the Be star has the accretion radius of 0.9R∗,
R∗ being the radius of the Be star. For the neutron star, we adopt
a variable accretion radius of 0.9rL, where rL is the Roche-lobe ra-
dius for a circular binary. This is because having a small accretion
radius is time-consuming and it is unphysical to adopt an accretion
radius smaller than the smoothing length of the particles near the
disc outer radius. An approximate formula for rL is given by

rL � 0.462

(
q

1 + q

)1/3

D (1)
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(see, for example, Warner 1995) with the mass ratio q = MX/M∗,
where MX and M∗ are the masses of the neutron star and the Be star,
respectively, and D is the distance between the stars.

The SPH artificial viscosity, �i j , between particles i and j enters
the momentum equation as

dvi

dt
= −

∑
j

m j

(
Pi

ρ2
i

+ Pj

ρ2
j

+ �i j

)
∇i W (ri j , hi j ). (2)

Here v is the velocity, m is the mass, P is the pressure, ρ is the density,
W is the standard cubic-spline kernel, ri j is the distance between
particles i and j, hi j = (hi + h j )/2 is the mean of the smoothing
lengths of particles i and j, and �i j has the following standard form,

�i j =
{( − αSPHcsµi j + βSPHµ2

i j

)
/ρi j vi j · r i j � 0

0 vi j · r i j > 0,
(3)

(Monaghan & Gingold 1983), where αSPH and βSPH are the lin-
ear and non-linear artificial viscosity parameters, respectively,
ρi j = (ρi + ρ j )/2, vi j = vi − v j , cs is the isothermal sound speed,
and µi j = hi jvi j · r i j/(r 2

i j + η2) with η2 = 0.01h2.
In the continuum limit, the viscous force Fv in the above SPH

formalism is written as

Fv = αSPHhκ

2ρ
[∇ · (csρS) + ∇(csρ∇ · v)] (4)

(Meglicki, Wickramasinghe & Bicknell 1993), where

κ = −4π

15

∫
r 3 dW

dr
dr = 1

5
(5)

in the 3D SPH code with the cubic-spline kernel and

Si j = ∂vi

∂ j
+ ∂v j

∂i
(6)

is the deformation tensor. If we assume that the density varies on a
length-scale much longer than the velocity, we have

Fv = 1

10
αSPHcsh[∇2v + 2∇(∇ · v)]. (7)

This implies that the shear viscosity ν and the bulk viscosity νb are
given by

ν = 1

10
αSPHcsh (8)

and

νb = 5

3
ν, (9)

respectively, in the continuum limit of the 3D SPH formalism. On
the other hand, in the Shakura–Sunyaev viscosity prescription, the
shear viscosity ν is written as

ν = αSScs H, (10)

where H is the scale-height of the disc. From equations (8) and (10),
we have the relation between the SPH artificial viscosity parameter
αSPH and the Shakura–Sunyaev viscosity parameter αSS as

αSS = 1

10
αSPH

h

H
, (11)

if we assume that ∇ · v= 0. In general flows, however, ∇ · v �= 0.
Moreover, the viscosity is artificially turned off for divergent flows
in our model [see equation (3)]. Therefore, equation (11) should
be taken as a rough approximation to the relation between αSS and
αSPH.

In several simulations we report on in this paper, we have adopted
αSPH = 1 and βSPH = 2, in which case αSS is variable in time and

space. In the other simulations, however, we have adopted con-
stant values of αSS in order to roughly model the α disc. In these
simulations, αSPH = 10αSS H/h was variable in time and space and
βSPH = 0.

The mass ejection mechanism from the Be star is not known. In
our simulations, it is modelled by injecting gas particles at r = rinj.
In our normal-resolution simulations, which finally have ∼20 000
particles, we take rinj = 1.02R∗, while in a high-resolution simula-
tion we performed with αSS = 0.1, which finally has about 140 000
particles, we take rinj = 1.01R∗. These values were adopted so that
rinj ∼ R∗ + h̄/2, where h̄ is a typical smoothing length near the stel-
lar surface. In order to avoid an additional complexity, we kept
the injection rate constant in each simulation. Once injected, gas
particles interact with each other. As a result, most of the injected
particles fall on to the Be star by losing the angular momentum and
a small fraction of particles drift outwards, obtaining the angular
momentum from the other particles.

As the Be star, we take a B0V star with M∗ = 18 M	, R∗ = 8 R	
and Teff = 26 000 K, which has the typical spectral type of Be/X-ray
binaries. With these parameters, the disc scale-height H is ∼0.02r at
r = R∗ and increases as r 3/2. For the neutron star, we take MX = 1.4
M	 and RX = 106 cm.

2.2 Initial configuration

We set the binary orbit on the x–z plane with the major axis along
the x-axis. At t = 0, the neutron star is at the apastron. It orbits about
the Be star primary with the orbital period Porb and the eccentricity
e. The angle of misalignment, β, between the binary orbital plane
and the Be disc plane is set to 0 in this paper. The unit of time is
Porb, unless noted otherwise.

Each simulation is very time-consuming. It takes three to four
weeks to perform each of the normal-resolution simulations, which
run on a single processor of an HP Exemplar V2500. It takes about
four months to perform the high-resolution simulation, which runs
efficiently on eight processors of an SGI Origin 3800. This is par-
ticularly so for long-period systems. Thus, in this paper, we present
results for only a restricted range of parameter space as the first
step in the study of the interaction between the Be disc and the
neutron star. We fix the orbital period Porb, the orbital eccentricity
e, and the misalignment angle β(= 0), allowing only the viscosity
parameter to vary. We adopt Porb = 24.3 d and e = 0.34, targeting
4U 0115+63, one of the best studied Be/X-ray binaries. Then, the
semi-major axis a = 6.6 × 1012 cm ∼12R∗ and rL given by equa-
tion (1) ranges between 0.13a at the periastron and 0.26a at the
apastron.

2.3 Testing the code: discs around isolated Be stars

Before attempting the binary simulations, we applied the code to an
isolated Be star in order to test whether it gives reliable results com-
pared to those obtained by using a one-dimensional (1D) diffusion-
type equation for the surface density.

2.3.1 One-dimensional model

As mentioned above, we adopt the viscous decretion disc model,
which yields a geometrically thin, nearly Keplerian disc around the
Be star. For simplicity, we assume that the disc around an isolated Be
star is axisymmetric and Keplerian and in hydrostatic equilibrium in
the vertical (z-) direction. The evolution of such a disc is described by

C© 2002 RAS, MNRAS 337, 967–980

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/337/3/967/957434 by guest on 16 August 2022



970 A. T. Okazaki et al.

Figure 2. Evolution of the viscous decretion disc around an isolated Be star
in a 3D SPH simulation with αSS = 1. In the left panel, the surface density
evolution for the first three years is shown by the solid lines (t = 1, 2 and 3 yr
from the left). The surface density is measured in units of ρ−11 g cm−2, where
ρ−11 is the highest local density at t = 1 yr normalized by 10−11 g cm−3, a
typical value for Be stars. For comparison, the surface density distribution at
the same epochs in a corresponding 1D model is shown by the dashed lines.
The right panel shows the disc structure at t = 3 yr. The solid, dashed, dash-
dotted and dotted lines denote the surface density, the azimuthal velocity
normalized by the critical velocity of the Be star, the radial Mach number,
and αSPH, respectively. In both panels, the density is integrated vertically and
averaged azimuthally, while the velocity components and αSPH are averaged
vertically and azimuthally. The profile of Vφ is indistinguishable from that
proportional to r−1/2. Annotated at the bottom of the right panel is the
number of SPH particles at this epoch.

∂�

∂t
= 1

r

∂

∂r

[
(∂/∂r )

(
αSSc2

s r 2�
)

(d/dr )(r 2�)

]
(12)

with

Vr = − (∂/∂r )
(
αSSc2

s r 2�
)

r�(d/dr )(r 2�)
(13)

(see, for example, Pringle 1981), where � is the surface density, Vr

is the radial velocity, and � = (G M∗/r 3)1/2 is the angular frequency
of disc rotation.

In order to create a situation similar to that in the SPH simulations,
we inject mass at a constant rate at rinj = 1.02R∗. At the inner bound-
ary r = R∗, we adopt the torque-free boundary condition, � = 0. We
also take � = 0 as the outer boundary condition at r = 103 R∗, which
affects the disc structure only in a region near r = 103 R∗.

The evolution of � for αSS = 1 and αSS = 0.1 for the initial three
years is shown by dashed lines (t = 1, 2 and 3 yr from the left) in
the left panels of Figs 2 and 3, respectively. The surface density is
measured in units of ρ−11 g cm−2, where ρ−11 is the highest local
density at t = 1 yr normalized by 10−11 g cm−3, a typical value for Be
stars (Waters et al. 1988). It should be noted that, in this framework,
no steady solution is present for decretion discs unlike for accretion
discs (Pringle 1991). Instead, the formal solution of equation (12)
with ∂�/∂t = 0 and Vr = 0 gives the disc structure at t → ∞, which
is given by � ∼ r−2 in our isothermal disc model.

2.3.2 3D SPH simulations

Using the model described in Section 2.1, we performed two 3D
SPH simulations of the disc evolution around an isolated Be star
with αSS = 1 and αSS = 0.1. In these simulations, αSPH is variable in
time and space and βSPH = 0 to keep αSS constant, as described in
the previous section.

Figs 2 and 3 show the surface density evolution (left) and the
disc structure at t = 3 yr (right) for αSS = 1 and αSS = 0.1, respec-

Figure 3. Same as Fig. 2, but for αSS = 0.1.

tively. The time interval between adjacent contours in the left panel
is 1 yr. In the right panel, the solid, dashed and dash-dotted lines
denote the surface density, the azimuthal velocity normalized by the
stellar critical velocity, and the radial Mach number, respectively.
In the figures, the density is integrated vertically and averaged az-
imuthally, while the velocity components are averaged vertically and
azimuthally. The dotted line shows the vertically and azimuthally
averaged distribution of αSPH required to keep αSS constant.

From Figs 2 and 3, we observe that our 3D SPH code is capable of
producing the disc evolution similar to that in the 1D model, except
that for small viscosity the disc evolves a bit faster than in the 1D
model. The disc structure is almost Keplerian and the radial velocity,
which decreases with time, is very subsonic for r � 10R∗ at t � 1 yr.
These features are in agreement with the observed characteristics of
Be stars.

For the purpose of comparison, we present in Fig. 4 the result from
a simulation with αSPH = 1 and βSPH = 2. In this simulation, αSS is
variable in time and space and is roughly proportional to ρ−1/3r−3/2.
In the initial phase of disc formation, the density distribution has
a very steep slope in the radial direction, so that αSS remains high
except for a region near the injection radius. As time goes on, αSS

in the outer region decreases, because of the increase in the density
there. As a result, αSS has a local maximum near the star, which, in
turn, causes a dip in the density distribution, a feature not seen in
simulations with constant αSS.

Fig. 4 also shows that the disc structure outside the dip (r � 3R∗)
is, in a rough sense, similar to that in simulations with constant αSS.
Because our purpose is to study the interaction between the Be disc
and the neutron star in a system, of which the periastron distance is
∼8R∗, the difference in the disc structure close to the star does not
matter very much. In the following sections, we see that both kinds
of models give similar results.

Figure 4. Same as Fig. 2, but for αSPH = 1 and βSPH = 2. The dotted line in
the right panel denotes the distribution of αSS, after being averaged vertically
and azimuthally.
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Figure 5. Evolution of the mass-loss rate from the star, Ṁdec, (thin line)
and the disc mass Mdisc (thick line) for α = 1 (left panel) and α = 0.1 (right
panel). The mass-loss rate is measured at r = R∗ + 2rinj and averaged over
∼9 d.

In our model, in which the mass injection rate is kept constant, the
net mass-loss rate from the star through the disc decreases as the disc
mass increases. This is because a larger fraction of injected particles
must lose the angular momentum and fall back to the star to support
a larger disc. Fig. 5 gives the change in the mass-loss rate from the
star, Ṁdec, (thin line) measured at r = 2rinj − R∗ and the disc mass
Md (thick line) for the simulations shown in Figs 2 and 3. To reduce
the fluctuation noise, Ṁdec is averaged over ∼9 d. As expected, a
larger viscosity makes the decrease in Ṁdec faster. From the figure,
we note that, for the first several years, Ṁdec ∼ several ×10−10ρ−11

M	 yr−1 for a wide range of the viscosity parameter.
It is interesting to compare the model mass-loss rate with the

observed one. The observed equatorial mass-loss rate is, however,
a poorly determined quantity. It has been measured only during the
disc-formation phase for several stars. Among them, X Per is the
only star for which both the equatorial mass-loss rate and the highest
disc density are known. Telting et al. (1998) studied the long-term
behaviour of the Be disc of X Per (4U 0352+30), a Be/X-ray binary
system with Porb = 250 d and e = 0.11, and found that the equatorial
mass-loss rate for a disc build-up phase of less than 230 d was
greater than 5.3 × 10−9 M	 yr−1 and that for the following 380 d
was 3.7 × 10−9 M	 yr−1. They also found that the base density of
the Be disc of X Per was as high as 1.5 × 10−10 cm−3. It should
be noted that the model mass-loss rate shown in Fig. 5 is in good
agreement with the observed equatorial mass-loss rate of X Per.

The simulations shown above assume a continuous mass supply
from the Be star for studying the formation and evolution of a per-
sistent disc. Some Be stars exhibit a transient disc formation by
an episodic mass loss. Such a situation was investigated by Kroll &
Hanuschik (1997). They studied the evolution of the gas explosively
ejected from a Be star to model the transient disc formation and disc
decay, using a 3D SPH code. They found that the gaseous particles
form a nearly Keplerian disc in the viscous time-scale. Because of
the difference between the boundary conditions adopted in this pa-
per and by Kroll & Hanuschik (1997), the structure of our persistent
disc is different from that of the decaying disc studied by Kroll &
Hanuschik (1997).

3 B e D I S C – N E U T RO N S TA R I N T E R AC T I O N
I N A C O P L A NA R S Y S T E M

In the previous section, we have seen that our model with a 3D
SPH code is capable of reproducing the results from 1D simulations
of formation and evolution of the disc around isolated Be stars,
and of explaining the observed equatorial mass-loss rate from the
Be star. In this section, we apply our model to a Be/X-ray binary

with Porb = 24.3 d and e = 0.34, assuming coplanarity between the
Be disc and the binary. The semi-major axis of the binary, a, is
6.6 × 1012 cm (∼12R∗). We have run simulations with αSS = 1 for
30 Porb (∼2.0 yr), by which time the disc almost reaches an equi-
librium state, while we have run other simulations for 50 Porb (∼3.3
yr). In all simulations but one, the number of SPH particles at the
end of the simulation was about 2 × 104. In order to confirm the re-
liability of the results obtained by those simulations, we performed
a simulation with αSS = 0.1 with a higher resolution, in which the
number of SPH particles at the end of the simulation was about
1.4 × 105.

3.1 Disc evolution under the influence of the neutron star

Artymowicz & Lubow (1994) investigated the tidal/resonant trun-
cation of circumstellar and circumbinary discs in eccentric binaries
and found that a gap is always formed between the disc and the binary
orbit. Following their formulation, Negueruela & Okazaki (2001)
and Okazaki & Negueruela (2001a) have shown that the Be disc in
Be/X-ray binaries is truncated via the resonant interaction with the
neutron star, as long as αSS � 1. In the following, we investigate
the resonant interaction between the Be disc and the neutron star
in more detail, by analysing the results from 3D SPH simulations.
Table 1 lists some characteristic quantities from these simulations,
which are discussed below.

Figs 6 and 7 show the disc evolution under the influence of the
neutron star for αSS = 1 and αSS = 0.1, respectively. The truncation
of the disc is obviously more evident for αSS = 0.1 than for αSS = 1.
From Fig. 7, we clearly see how the resonant torque works on a
viscous decretion disc. When the disc size is small (t < 10 Porb for
αSS = 0.1), the disc evolution is almost identical to that around an
isolated Be star. As the disc grows, however, the effect of the reso-
nant torque from the neutron star becomes apparent and the radial
density distribution begins to have a break at a radius around the
4:1 to 5:1 resonance radii (for αSS = 0.1). We call this radius the
truncation radius. Because the resonant torque prevents disc mate-
rial from drifting outwards, the disc density increases more rapidly

Figure 6. Evolution of the viscous decretion disc with αSS = 1 in a Be/X-
ray with Porb = 24.3 d and e = 0.34. The left panel shows the surface density
evolution. The time interval between adjacent contours is 5 Porb (∼1/3 yr)
(t = 5 Porb, 10 Porb, . . . from the left). The right panel shows the disc structure
at the end of the simulation. The solid, dashed and dash-dotted lines denote
the surface density, the azimuthal velocity normalized by the critical velocity
of the Be star, and the radial Mach number, respectively. In both panels, the
density is integrated vertically and averaged azimuthally, while the velocity
components are averaged vertically and azimuthally. The profile of Vφ for
r � 0.7a is indistinguishable from that proportional to r−1/2. Annotated at
the bottom of the right panel is the number of SPH particles, NSPH, at this
epoch.
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972 A. T. Okazaki et al.

Table 1. Summary of the results from binary simulations. The system has Porb = 24.3 d and e = 0.34 in all simulations. ‘var’ in the viscosity-
parameter columns means that the quantity is variable in time and space. For the αSS = 1 simulation, rd is the radius at which the surface density
distribution has a break, while for the other simulations it is the radius at which the disc is truncated. Ṁdec and Ṁacc are the net mass-loss rate
from the Be star and the mass-capture rate by the neutron star, respectively, in units of ρ−11 M	 yr−1, where ρ−11 is the highest local density at
t = 1 yr normalized by 10−11 g cm−3, and S1,0 is the strength of the (1, 0) mode. 〈 · · · 〉 denotes the average over tf − 5 Porb � t � tf. ‘–’ in the
last column means that no precession is seen.

Viscosity parameters Run time NSPH 〈rd〉 〈Ṁdec〉 〈Ṁacc〉 Eccentric mode
αSS αSPH βSPH tf (Porb) initial final (a) (ρ−11 M	 yr−1) (ρ−11 M	 yr−1) 〈S1,0〉 Pprec (Porb)

1 var 0 30 100 16 227 0.39 2.4 × 10−10 2.1 × 10−10 3.7 × 10−2 –
0.3 var 0 50 100 20 820 0.38 1.7 × 10−10 9.9 × 10−11 8.9 × 10−2 –
var 1 2 50 600 19 661 0.37 3.0 × 10−10 1.7 × 10−10 9.6 × 10−2 –
0.1 var 0 50 100 19 232 0.37 1.9 × 10−10 3.9 × 10−11 1.0 × 10−1 –
0.1 var 0 47 1000 140 108 0.36 1.6 × 10−10 2.3 × 10−11 1.3 × 10−1 ∼20

Figure 7. Same as Fig. 6, but for αSS = 0.1.

than in discs around isolated Be stars. Outside the truncation radius,
the density decreases rapidly. The wavy patterns seen in the surface
density distribution in the left panel and in the radial velocity dis-
tribution in the right panel of Fig. 7 result from the tightly wound
spiral density wave excited in the disc.

In contrast to the low-viscosity simulation shown in Fig. 7, the
resonant torque has little effect on the disc structure when the vis-
cosity is very high. As seen in the left panel of Fig. 6, there is only
a very modest break in the surface density distribution for αSS = 1.
In this simulation, the disc almost reaches an equilibrium state at
t ∼ 15 Porb (∼1 yr) in the sense that the disc structure varies regu-
larly, depending on the orbital phase.

We also performed a simulation with αSS = 0.3. The disc structure
obtained is something between those with αSS = 0.1 and αSS = 1.

Figure 8. Same as Fig. 6, but for αSPH = 1 and βSPH = 2.

There is a clear break and a wavy feature in the radial surface-density
distribution, but these are not as strong as those for αSS = 0.1.

For comparison, we present in Fig. 8 the result from a simulation
with αSPH = 1 and βSPH = 2, in which αSS is variable in time and
space. From Fig. 8, we observe that the disc with constant artificial
viscosity parameters evolves in a similar way to that of the α-disc
with a similar viscosity parameter, except for the presence of the
dip in the density distribution close to the star, as expected from the
previous section.

In order to study the interaction between the Be disc and the neu-
tron star in more detail, we performed a high-resolution simulation
with αSS = 0.1. In this simulation, the number of SPH particles is
about an order of magnitude larger than – and so the smoothing
length is on average less than a half of – that of other simulations.
Fig. 9 shows the surface density evolution for t = 0–45 Porb and
the disc structure at t = 45 Porb in this high-resolution simulation
(unfortunately, the allocated computing time ran out at t = 47 Porb).
From Fig. 9, we easily see a more detailed disc structure than that
in the corresponding simulation with a lower resolution shown in
Fig. 7. The wavy pattern in the surface density distribution caused by
the spiral density wave is more remarkable in the high-resolution
simulation. This is because a larger number of particles gives a
higher resolution of the interacting region, which makes the inter-
action more localized and stronger. Although the surface density
profile has breaks near the 5:1 resonance radius (∼0.33a) and the
4:1 radius (r ∼ 0.39a), the steep density decrease already begins at
a much smaller radius, which coincides with the outermost density
peak of the spiral wave.

In the rest of this paper, we mainly present the results from
this high-resolution simulation as the representative results with

Figure 9. Same as Fig. 7, but for the high-resolution simulation.
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Tidal interaction in coplanar Be/X-ray binaries 973

Figure 10. Snapshots for αSS = 1, which cover one orbital period. Each panel shows the logarithm of the surface density. The dark spot near the origin is the
Be star, while another dark spot orbiting about the Be star denotes the neutron star with the variable accretion radius. Annotated at the bottom of each panel are
the number of SPH particles, NSPH, and the integrated number of particles captured by the neutron star, Nacc.

Figure 11. Same as Fig. 10, but for the high-resolution simulation with αSS = 0.1.

αSS = 0.1, because it gives a better understanding of the star–disc
interaction.

3.2 Phase-dependent disc structure

Most Be/X-ray binaries with known orbital parameters have or-
bital eccentricities in the range from 0.3 to 0.9. In such systems,
the star–disc interaction is likely to be strongly phase-dependent.
In this subsection, we discuss phase-dependent features except for

the mass-capture rate by the neutron star, which will be discussed
separately.

Figs 10 and 11 give snapshots covering one orbital period for
αSS = 1 and αSS = 0.1, respectively. Each panel shows the surface
density in a range of about two orders of magnitude in the loga-
rithmic scale. From these figures, we note a remarkable difference
in the disc structure between αSS = 1 and αSS = 0.1. For αSS = 1,
the disc has a significant density up to the periastron distance and
experiences a strong interaction at and after the periastron passage
of the neutron star.
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On the other hand, for αSS = 0.1, the resonant torque from the
neutron star is much more effective at truncating the disc than for
the high viscosity disc. The sharp decline in the disc density outside
the 5:1 resonance causes a gap between this radius and the periastron
distance, apparently reducing the mass-capture rate by the neutron
star, as seen in Section 3.4.

In both cases, the spiral density waves are clearly seen between
the periastron passage and the apastron passage. The opening angle
of the spirals, which is related to the effective gravity in the disc, is
smaller for a larger binary separation.

Through the resonant interaction, the angular momentum is trans-
ported from the disc to the binary. We have to admit that the effect
of the angular momentum transport on the binary turned out to be
much stronger than we had expected. Despite the fact that the mass
of each particle is only 10−10 M	 so that the disc mass is only
about 10−5–10−6 M	 in our simulations, the increase in the binary
orbital period is visible in the late stage of simulations. The com-
puted phase lags behind the correct orbital phase by ∼0.01 at t ∼ 30
in the simulation with αSS = 1 and by ∼0.04 and ∼0.05 at t ∼ 45
in the high- and normal-resolution simulations with αSS = 0.1, re-
spectively. In the following, figures should be read taking this phase
shift into account.

In order to have a measure of the disc radius, i.e. the radius
at which the disc density has a major break, we applied a non-
linear least-squares fitting method to the radial distribution of the
azimuthally-averaged surface density �, adopting the following
simple fitting function,

� ∝ (r/rd)−p

1 + (r/rd)q
, (14)

where p and q are constants and rd is the disc radius.
Fig. 12 shows the phase dependence of the disc radius (thick line)

in the simulations shown in Figs 10 and 11. To reduce the fluctuation
noise, we folded the data on the orbital period over 25 � t � 30 for
αSS = 1 and 42 � t � 47 for αSS = 0.1. In the figure, the horizontal
solid lines denote some of the lowest n : 1 resonance radii (2:1, 3:1,
. . . , 10:1 from the top), while the thin sinusoidal line denotes the
orbit of the neutron star. The origin of the phase is at the periastron
passage of the neutron star.

From Fig. 12, we note that the disc radius coincides with the
4:1 resonance radius (r/a = 0.39) for αSS = 1, whereas the disc has
a radius intermediate between the 4:1 radius and the 5:1 radius
(r/a = 0.33) for αSS = 0.1 (the mean rd is 0.39a for αSS = 1 and

Figure 12. Orbital-phase dependence of the disc radius rd. Averaging is
carried out over 25 � t � 30 for αSS = 1 (left) and 42 � t � 47 for αSS = 0.1
(right). The horizontal solid lines denote the 2:1, 3:1, 4:1, . . . , 10:1 resonance
radii from top to bottom, and the horizontal dashed line denotes the phase-
averaged value of rd. The thin sinusoidal line denotes the orbit of the neutron
star. The periastron passage of the neutron star, which occurs at phase 0, is
denoted by the vertical dashed line.

Figure 13. Orbital modulation in the optically thin continuum from the Be
disc for αSS = 1 (left) and αSS = 0.1 (right). In the right panel, the thick and
thin lines are for the high- and normal-resolution simulations, respectively.
Phase 0 corresponds to the periastron passage of the neutron star.

0.36a for αSS = 0.1). The latter is a typical feature expected for a
disc in which the wave damps locally (Artymowicz & Lubow 1994).

We also note that the disc radius modulates around the mean
value. The disc shrinks after the periastron passage of the neutron
star, which gives a negative torque to the disc. After that, it restores its
radius by viscous diffusion, so that the amplitude of the modulation
is larger for αSS = 1 than for αSS = 0.1.

Because the disc structure depends on the binary phase, the disc
emission is expected to exhibit an orbital modulation as well. To
see whether this is the case, we calculated the continuum flux from
the Be disc for r � 2rinj − R∗, assuming that the disc is optically
thin and the emissivity is proportional to ρ2, where ρ is the local
density. For simplicity, we ignored the effect of the obscuration
of the disc by the star, which will become important for systems
with high inclination angles. We then obtained a base flux curve by
performing the cubic-spline fitting of the fluxes at apastron passages.
The base flux describes the long-term change in the continuum flux.
Finally, we computed the orbital modulation by subtracting the base
flux from the instantaneous fluxes.

Fig. 13 shows the orbital modulation in the optically thin contin-
uum from the Be disc for αSS = 1 (left) and αSS = 0.1 (right). For
αSS = 0.1, the modulation is more clearly seen in the high-resolution
simulation (thick line) than in the normal-resolution simulation (thin
line). In order to reduce the fluctuation noise, we folded the data
on the orbital period over the period annotated in the panel. Con-
trary to what is expected from Fig. 12, the continuum exhibits little
modulation for αSS = 1, and about one per cent of modulation is
seen for αSS = 0.1. The negative result for αSS = 1 suggests that
the strongly-perturbed outer disc contributes little to the optically
thin emission, because of its low density. On the other hand, the
positive result for αSS = 0.1, in particular in the high-resolution
simulation, although the amplitude is still very small, seems to
come from the region where the density is enhanced by the spiral
wave. This is because the disc radius does not change significantly
and the rise and the subsequent decline of the disc emission are
in phase with the density enhancement and the subsequent damp-
ing caused by the spiral density wave. The difference between the
modulation patterns from the high- and normal-resolution simula-
tions with αSS = 0.1 suggests that resolving the spiral density wave
is important to obtain a reliable modulation pattern of such low
amplitude.

Although in Fig. 13 we can see little of the orbital modula-
tion in optically thin disc emission, it is still likely that optically
thick emission, such as Balmer lines, will show significant orbital
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Tidal interaction in coplanar Be/X-ray binaries 975

modulation. Calculating the optically thick emission from the disc
is, however, beyond the scope of this paper.

3.3 Excitation of the eccentric mode

In a circumbinary disc around an eccentric binary, an eccentric mode
is excited through direct driving as a result of a one-armed bar po-
tential (Artymowicz & Lubow 1996a). In this subsection, we study
whether the same mechanism works in Be/X-ray binaries. We anal-
yse the evolution of the eccentricity in the Be disc by decomposing
the surface density distribution into Fourier components which vary
as exp[i(kφ − ��orbt)], where k and � are the azimuthal and time-
harmonic numbers, respectively, and �orb = [G(M∗ + MX )/a3]1/2

is the frequency of mean binary rotation.
Following Lubow (1991), we define the mode strength by

S f,g,k,l = 2

πMd(1 + δk,0)(1 + δ�,0)

∫ t+2π�−1
orb

t

dt ′

×
∫

dr

∫ 2π

0

dφ�(r, φ, t) f (kφ)g(�t ′), (15)

where f and g are either sin or cos functions. The surface density here
is computed by summing up δ functions at particle positions, not
by taking the kernel into account as has been done in the previous
sections. Then, the total strength of the mode (k, �) is defined by

Sk,�(t) = (
S2

cos,cos,k,� + S2
cos,sin,k,� + S2

sin,cos,k,� + S2
sin,sin,k,�

)1/2
. (16)

Fig. 14 shows the excitation and precession of the (1, 0) mode (i.e.
the eccentric mode) for αSS = 1. The upper panel shows the strengths
of several modes, while the lower panel shows the evolution of the
angle ωd between the eccentric vector of the disc and that of the
binary orbit defined by

tan ωd =
∫

dr
∫ 2π

0
dφ�(r, φ, t) sin φ∫

dr
∫ 2π

0
dφ�(r, φ, t) cos φ

. (17)

The eccentric mode grows initially linearly in time (t � 8), as
predicted by the theory and also as found by Lubow & Artymowicz
(2000). At t ∼ 15 the strength of the eccentric mode is saturated
at S1,0 ∼ 0.04. As it is saturated, the mode stops precessing and is
locked at ωd ∼ π.

In order to study the structure of the eccentric mode in more
detail, we analyse the orbits of individual particles. The position
and velocity of each particle are instantaneously equal to those of
an elliptical Keplerian orbit of semi-latus rectum λ and the eccentric
vector eSPH with the amplitude eSPH and the longitude of periastron,
ω, with respect to the stellar periastron (see, for example, Ogilvie
2001). The radial coordinate r is then given by

r = λ

1 + eSPH cos(φ − ω)
. (18)

Given eSPH � 1, λ ∼ r in our simulations.
The upper panels of Fig. 15 present the distribution of the orbital

parameters of disc particles for αSS = 1 at t = 30. From the left panel,
we note that the disc eccentricity increases almost linearly in λ for
λ � 0.3a and is roughly constant for λ � 0.3a. The right panel for
the radial dependence of the longitude of periastron shows that the
eccentric mode is twisted in a trailing sense.

The normal-resolution simulation with αSS = 0.1 has shown a
similar trend. The eccentric mode grew initially linearly in time
(t � 40). The mode strength was almost saturated at t ∼ 45 at

Figure 14. Excitation of the eccentric mode. The upper panel shows the
strengths of several modes. The solid, dashed, dash-dotted and dotted lines
denote the strengths of the (1, 0), (2, 3), (1, 1) and (2, 2) modes, respectively.
The lower panel shows the angle between the eccentric vectors of the disc
and the binary.

S1,0 ∼ 0.1. The mode also stopped precessing and was locked at
ωd ∼ 3π/2.

The distribution of the orbital parameters of disc particles at t = 50
from this simulation is presented in the lower panels of Fig. 15.
From the left panel, we note that the eccentricity has a maximum at
λ ∼ 0.3a. The right panel shows that the eccentric mode is twisted
in a trailing sense, as in the case for αSS = 1.

Recently, Ogilvie (2001) has developed a non-linear theory of
the evolution of the shape and surface density of a 3D eccentric
accretion disc. When the eccentricity of the disc is small so that
terms of relative order O(e2) may be neglected, this theory pro-
vides a linear evolutionary equation for the complex eccentricity
E(λ, t) = e(λ, t)eiω(λ,t) of the disc. We have reworked this theory
for the case of a strictly isothermal decretion disc with no radial
velocity, and we have also evaluated the tidal forcing terms associ-
ated with a companion object of small eccentricity. The governing
equation is then of the form

�(G M∗λ)1/2 ∂E

∂t
= ∂

∂λ

(
Z1�c2

s λ
) + Z2�c2

s

+ 1

4

iG MX�β

λb

[
b(1)

3/2(β)E − b(2)
3/2(β)Eb

]
, (19)

where Eb and λb are the (constant) eccentricity and semi-latus rec-
tum of the binary orbit, b(m)

γ is the Laplace coefficient of celestial
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976 A. T. Okazaki et al.

Figure 15. Eccentricity eSPH and the longitude of periastron,ω, of the particle
orbits from the normal-resolution simulations with αSS = 1 at t = 30 (upper)
and αSS = 0.1 at t = 50 (lower). The grey-scale plot in each panel shows the
particle distribution in linear scale. 〈e〉 and 〈ω/π〉 are mean values of eSPH

and ω/π.

mechanics, and β = λ/λb. The dimensionless coefficients Z1 and
Z2 are given by

Z1 = C1 E + C2λ
∂E

∂λ
, Z2 = C3 E + C4λ

∂E

∂λ
, (20)

where C1, . . . , C4 are dimensionless complex constants that depend
only on the shear and bulk viscosity parameters αSS and αb. In the
limit αSS, αb → 0 these coefficients become purely imaginary and
give rise to precession induced by the pressure of the disc. Most
importantly, the real part of C2, which has the role of a diffusion
coefficient for short-wavelength eccentric perturbations, turns out
to be positive when αb/αSS > 2/3, as is true in the SPH simulations
[see equation (9)]. If this condition were not satisfied, the disc would
experience a local eccentric instability and equation (19) could not
be evolved forward in time.

Equation (19) has the character of a dispersive and diffusive lin-
ear wave equation for E(λ, t). The eccentricity of the binary pro-
vides a tidal forcing that is independent of time. Starting from an
initially circular state E = 0, the eccentricity of the disc first grows
linearly in time and then approaches a steady state. The steady eccen-
tric shape can be determined either by solving the time-dependent
problem until the transient response decays, or by solving the
second-order ordinary differential equation obtained by setting the
time-derivative to zero. We have performed both these calculations,
adopting the boundary condition E = 0 at the stellar surface, a
‘stress-free’ boundary condition Z1 = 0 at a notional outer edge
(β = 0.39), and a surface density distribution � ∝ λ−2.

The steady configurations of e(λ) and ω(λ) for the cases αSS = 1
and αSS = 0.1 are illustrated in Fig. 16. One should not expect a
perfect agreement with the SPH simulations because the theory is
based on the assumption of small eccentricities and only approxi-
mates the actual surface density distribution. However, the steady
eccentric shapes based on linear theory offer a fair explanation of

Figure 16. Model eccentricity e and longitude of periastron, ω, of the particle
orbits for αSS = 1 (upper) and αSS = 0.1 (lower). The notional outer edge is
at β(= λ/λb) = 0.39.

the results of the SPH simulations, especially for the high-viscosity
case.

Fig. 17 shows the evolution of an eccentric mode from the high-
resolution simulation with αSS = 0.1. The detailed structure of the
mode is shown in Fig. 18 by snapshots covering one precessional
period. From these figures, we note that the evolution and the struc-
ture of the eccentric mode are very similar to those from the corre-
sponding normal-resolution simulation until t ∼ 25. At t ∼ 25, the
eccentric mode suddenly begins to precess in a prograde sense, as
seen in the lower panel of Fig. 17. As ωd increases from ∼3π/2
to 2π, the mode strength increases. The mode stagnates at ωd ∼ 0
for (1–2) Porb around t ∼ 30, suggesting that the eccentric disc at
ωd ∼ 0 is an unstable configuration. The precession decelerates be-
fore reaching ωd = 0 and accelerates after that. At the same time,
the mode changes its shape. As seen in the lower panels of Fig. 18,
the eccentric mode is twisted in a trailing sense for ωd < 0 and in a
leading sense after that. At ωd = 0, the apsidal axes of all particle
orbits align.

As seen in Fig. 18, the twist of the mode increases, as the apsidal
axis of the disc moves toward the stellar periastron (ωd = 0 → π).
The strong radial dependence of the phase caused by the twist re-
duces the eccentricity of the disc, as shown in the upper panel of
Fig. 17. The precession is fastest at ωd ∼ π, suggesting that there is
a stable point at ωd ∼ π. After that, the mode becomes trailing and
its strength increases. The precessional period is about 20 Porb.

It is important to note that a similar behaviour is found in cir-
cumbinary discs around eccentric binaries. According to Lubow &
Artymowicz (2000), this behaviour occurs as follows. When the ec-
centricity of the disc edge is small, ωd is locked at a stable value
ωd = 3π/2. However, as the eccentricity grows, the locking action
weakens and the prograde precession – a result of the quadrupole
moment of the binary potential – dominates. The disc edge begins
to precess when its eccentricity becomes (0.2–0.7) e, and afterwards
the eccentricity oscillates with a precessional period. The disc typ-
ically attains the eccentricity of (0.5–1) e.
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Figure 17. Same as Fig. 14, but for the high-resolution simulation with
αSS = 0.1.

We note that the above behaviour of the eccentric mode in cir-
cumbinary discs around eccentric binaries is strikingly similar to
that shown in Fig. 17, except that, in our simulation for Be/X-ray
binaries, the growth and precessional time-scales of the eccentric
mode are much shorter and the disc eccentricity attained is signifi-
cantly smaller than in circumbinary discs.

Figure 18. Change in the eccentricity eSPH and the longitude ω of the disc particle orbits in the high-resolution simulation with αSS = 0.1. Epochs are chosen
for illustrative purpose, so the time interval is not constant. The grey-scale plot in each panel shows the particle distribution in linear scale. 〈e〉 and 〈ω/π〉 are
mean values of eSPH and ω/π at each epoch, respectively.

3.4 Mass-capture rate by the neutron star

As mentioned in Section 1, most of the Be/X-ray binaries show
transient X-ray activities. Among these, some exhibit periodical
X-ray outbursts called Type I, which coincide with the periastron
passage, while the others show occasional giant X-ray outbursts
called Type II and little or no detectable X-ray emission in quiescent
phase. 4U 0115+63, the system we are modelling in this paper,
belongs to the latter group. In this subsection, we first study how
much mass is captured by the neutron star in a general context,
and then discuss whether our model predicts the mass-capture rate
consistent with the observed X-ray behaviour of 4U 0115+63.

Fig. 19 shows the change in the mass-capture rate by the neutron
star, Ṁacc, and the disc mass, Md, for αSS = 1. The upper panel
shows the evolution of Ṁacc and Md, while the lower panel shows
the orbital-phase dependence of Ṁacc. In the lower panel, we folded
Ṁacc on the orbital period over 25 � t � 30 to reduce the fluctuation
noise. The horizontal dashed line and the dash-dotted line denote the
mean mass-capture rate by the neutron star and the mean mass-loss
rate from the Be star, respectively.

We have already seen that there is little truncation of the Be
disc for αSS = 1. Fig. 19 confirms this. For t � 20 the Be disc is
almost in equilibrium in the sense that the disc mass and the mass-
capture rate only show regular orbital modulations with constant
amplitude. For 25 � t � 30, the mean mass-loss rate from the Be
star is 2.4 × 10−10ρ−11 M	 yr−1, while the mean mass-capture rate
for the same period is 2.1 × 10−10ρ−11 M	 yr−1. Thus, in this high
viscosity disc, the neutron star captures the disc mass at about the
same rate as the mass-loss rate from the Be star.

The simulation with αSS = 0.3 also gives a high fraction (about
60 per cent for 45 � t � 50) of mass-capture rate with respect to the
mass-loss rate, as listed in Table 1. This indicates that the resonant
truncation effect is not effective for αSS = 0.3, either.

In contrast to the simulations with αSS = 1 and αSS = 0.3, the
high-resolution simulation with αSS = 0.1 revealed a subtle feature
in the mass-capture rate, as shown in Fig. 20. Before the precession
of the eccentric mode began, the mass-capture rate Ṁacc increased
monotonically; Ṁacc = 0 before t ∼ 10 with the resolution of this
simulation. Then, the peak mass-capture rate showed a gradual in-
crease to a level at Ṁacc = (8–9) × 10−11ρ−11 M	 yr−1 at t ∼ 25.

After the eccentric mode began to precess, Ṁacc exhibited a long-
term modulation, depending on the longitude of the eccentric mode,

C© 2002 RAS, MNRAS 337, 967–980

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/337/3/967/957434 by guest on 16 August 2022



978 A. T. Okazaki et al.

Figure 19. Evolution of the disc mass and the mass-capture rate by the
neutron star (upper) and the orbital-phase dependence of the mass-capture
rate (lower). In the upper panel, the thin line denotes the mass-capture rate
Ṁacc and the thick line denotes the disc mass Md. In the lower panel, the
data are folded on the orbital period over 25 � t � 30. The horizontal dashed
line and the dash-dotted line in the lower panel respectively denote the mass-
capture rate by the neutron star and the mass-loss rate from the Be star
averaged over the period annotated at the bottom of the panel.

ωd. It gradually increased as ωd increased from 0 to π and decreased
as ωd increased from π to 2π. At the periastron passage at t ∼ 38,
Ṁacc was a maximum of (2–3) × 10−10ρ−11 M	 yr−1, which was
about a factor of 3 higher than the level before precession. The
eccentricity of the disc was ∼0.1 at ωd ∼ 0 and 0.02–0.03 at ωd ∼ π.
It should be noted that even this small eccentricity caused a factor
of 3 enhancement in the mass-capture rate. If the disc had a much
stronger disturbance, the enhancement in Ṁacc is likely to be much
larger.

In addition to the long-term modulation due to the preces-
sion of the eccentric mode, we note that the mass-capture rate
by the neutron star is much smaller and more strongly phase-
dependent for αSS = 0.1 than for αSS = 1. For αSS = 0.1, the phase
at which the neutron star captures the disc mass most slightly lags
behind the periastron passage, because of the presence of a gap
between the disc outer radius and the periastron. In the high-
resolution simulation, the peak mass-capture rate for 42 � t � 47 is
∼10−10ρ−11 M	 yr−1, which is one order of magnitude smaller than
that for αSS = 1. The mass-capture rate then decreases by two orders
of magnitude by the apastron passage. Even in the normal-resolution
simulation, in which the disc density around the truncation radius
is significantly higher than that in the high-resolution simulation,
the peak mass-capture rate is about a factor of 3 smaller than that

Figure 20. Same as Fig. 19, but for the high-resolution simulation with
αSS = 0.1. In the lower panel, the data are folded on the orbital period
over 42 � t � 47. For comparison, the mass-capture rate from the normal-
resolution simulation with αSS = 0.1 (thin solid line) is overlapped in the
lower panel.

for αSS = 1, and decreases by a factor of 50 by the apastron. Note
that similar, strongly phase-dependent accretion was found in sim-
ulations by Artymowicz & Lubow (1996b) for circumbinary discs
around eccentric binaries.

In the high-resolution simulation with αSS = 0.1, the neutron star,
on average, captures the disc mass at the rate of 2.3 × 10−11ρ−11 M	
yr−1 for 42 � t � 47, while the mean mass-loss rate from the Be star
for the same period is 1.6 × 10−10ρ−11 M	 yr−1. This indicates that,
even after three years of disc growth, about 6/7 of the gas lost from
the star still accumulates in the disc, making the disc continually
denser.

The transient nature in the X-ray activity of Be/X-ray binaries is
considered to result from the interactions between the accreted ma-
terial and the rotating magnetized neutron star (Stella et al. 1986). If
the accreted material is dense enough to make the magnetospheric
radius smaller than the corotation radius, the accretion on to the neu-
tron star causes a bright X-ray emission (the direct accretion regime).
Otherwise, the magnetospheric radius is larger than the corotation
radius, and the accretion on to the neutron star is prevented by the
propeller mechanism. The system is then in quiescence (the pro-
peller regime).

Recently, Campana et al. (2001) found that 4U 0115+63 showed
a dramatic X-ray luminosity variation from LX ∼ 2 × 1034 erg s−1

to LX ∼ 5 × 1036 erg s−1 in less than 15 h close to the periastron,
whereas it showed a nearly constant X-ray luminosity at a level
of LX ∼ 2 × 1033 erg s−1 near the apastron. They concluded that
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the system was in the transition regime between the direct accretion
regime and the propeller regime close to the periastron and in the pro-
peller regime near the apastron, because the direct accretion regime
and the propeller regime, respectively, apply for LX � ξ 7/21037 erg
s−1 and LX � ξ 7/22 × 1034 erg s−1, where 0.5 � ξ � 1 is a parameter
which depends on the geometry and physics of accretion.

Here we try to compare our simulation results with the above
criteria by Campana et al. (2001). Although it is likely that the
captured material will form an accretion disc around the neutron star,
we do not know how the accretion rate is related to the mass-capture
rate shown in Figs 19 and 20, which is based on the moments at
which particles enter the variable accretion radius of the neutron star.
Therefore, we consider two extreme situations, in which tacc � Porb

or tacc ∼ Porb, where tacc is the accretion time-scale. In the former
situation, the accretion rate profile is approximately the same as
the profile of mass-capture rate whereas, in the latter situation, the
variation in the accretion rate will be much smaller than that in the
mass-capture rate. We assume that the X-ray luminosity is given by
L X = ηG MX Ṁ/RX with η = 1.

For αSS = 1, LX ∼ 1037ρ−11 M	 yr−1 at the periastron if
tacc � Porb and all the captured mass accretes on to the neutron star.
Note that this level of luminosity enters the direct accretion regime.
Because 4U 0115+63 is considered to be in the direct accretion
regime only in occasional giant X-ray outbursts, we conclude that
the αSS = 1 model is inconsistent with the observation if tacc � Porb.
If tacc ∼ Porb, the neutron star will emit the X-ray luminosity cor-
responding to the mean mass-capture rate of ∼2 × 10−10ρ−11 M	
yr−1 (see the lower panel of Fig. 19). The X-ray luminosity is then
LX ∼ 2 × 1036ρ−11 erg s−1. This level of luminosity enters the tran-
sition regime. Hence, the αSS = 1 model is not ruled out by the
observed constraint if tacc ∼ Porb.

We have the same conclusion for the αSS = 0.3 model. Because
it gives the mass-capture rate of about a half of that for αSS = 1, the
model is inconsistent with the observation if tacc � Porb, but it is not
ruled out if tacc ∼ Porb.

On the other hand, for αSS = 0.1, LX ∼ 1036ρ−11 M	 yr−1 at the
periastron even if tacc � Porb and all the captured material accretes
on to the neutron star. This suggests that the system is in the tran-
sition regime even at the periastron. It is likely that the low mass-
capture rate in this simulation puts the system into the propeller
regime in most of the orbital phases. Thus, the αSS = 0.1 model
for 4U 0115+63 is consistent with the observed X-ray behaviour,
irrespective of the accretion time-scale.

4 S U M M A RY A N D D I S C U S S I O N

In this paper, we have presented results from 3D SPH simulations
of the disc formation around isolated Be stars and of the interaction
between the Be-star disc and the neutron star in Be/X-ray binaries,
based on the viscous decretion disc model for Be stars (Lee et al.
1991). In several simulations we adopted constant values of artificial
viscosity parameters αSPH and βSPH, for which the Shakura–Sunyaev
viscosity parameter αSS is variable in time and space. In the other
simulations, we adopted constant values of αSS, for which αSPH is
variable in time and space and βSPH = 0. We preferred constant αSS

simulations because the analysis of the results became easier. In
all simulations, the Be disc was nearly Keplerian and the radial
velocity was highly subsonic. These features are consistent with
those observed for Be discs.

The simulations of isolated Be stars have shown that our code
is capable of producing results similar to those from the 1D sim-
ulations. The simulated mass-loss rate from the Be star in the first

several years of disc formation was several ×10−10ρ−11 M	 yr−1

for a wide range of viscosity parameter, which is consistent with the
observed equatorial mass-loss rate. Here, ρ−11 is the highest local
density at t = 1 yr normalized by 10−11 g cm−3, a typical value for
Be stars.

In binary simulations, we have studied the effect of viscosity
on the star–disc interaction in the case of a coplanar system with
Porb = 24.3 d and e = 0.34, the parameters for 4U 0115+63, one
of the best studied Be/X-ray binaries. We have chosen these orbital
parameters because they enable us to compare the simulation results
with the observed ones and the short orbital period makes the com-
puting time bearable. Some of the results from these simulations are
summarized in Table 1.

Our simulations have shown that there is a radius outside which
the azimuthally-averaged surface density decreases steeply. For a
smaller αSS, the slope outside this radius is steeper, giving a stronger
truncation effect on the disc. Among the simulations with αSS = 1,
0.3 and 0.1, we found that the resonant truncation of the Be disc is
effective only for αSS = 0.1. For αSS = 1 and 0.3, the neutron star
captures the disc mass at a rate comparable to the mass-loss rate
from the Be star. These results confirm the previous semi-analytical
result by Negueruela & Okazaki (2001) and Okazaki & Negueruela
(2001a) on disc truncation that the resonant truncation is effective
for a disc with αSS � 1. The truncation radius for αSS = 0.1 roughly
agrees with that derived semi-analytically.

Our simulations, in particular the high-resolution simulation with
αSS = 0.1, have shown how the disc grows under the influence of the
neutron star. In the initial build-up phase, the disc evolution is similar
to that for isolated Be stars. But, later on, the effect of the resonant
torque becomes apparent, preventing the disc gas from drifting out-
wards at several resonance radii. The effect is most remarkable at the
4:1 and 5:1 radii (r/a ∼ 0.39 and 0.33, respectively) for αSS = 0.1.
As a result, the disc density increases more rapidly than that for iso-
lated Be stars. This feature is consistent with Zamanov et al. (2001),
who have found that the discs in Be/X-ray binaries are about twice
as dense as those of isolated Be stars.

Because the neutron star orbits in an eccentric orbit about the Be
star, the interaction is phase-dependent. The disc shrinks a little at
the periastron and then recovers gradually. Consequently, the disc
emission will vary with phase. For our system with e = 0.34, this ef-
fect turns out not to be large enough to cause an observable variation
in the disc continuum as long as it is optically thin. It is possible,
however, that the orbital modulation in the disc continuum in sys-
tems with much higher orbital eccentricity is observable. Moreover,
it is likely that the profiles of optically thick emission lines from
the disc, such as Balmer lines, will show an orbital modulation even
in systems with moderate eccentricity, because the disc structure is
made non-axisymmetric by the periodic excitation and damping of
the spiral density wave.

In the Be disc in Be/X-ray binaries, an eccentric mode is excited
through direct driving as a result of the (1, 0) harmonic of the binary
potential. In high-viscosity simulations, the mode grows initially
linearly in time and then approaches a steady state, of which steady
eccentric shapes based on linear theory of the evolution of a 3D
eccentric decretion disc described in Section 3.3 offer a fair expla-
nation. The strength of the mode in the steady state is larger for a
smaller value of αSS.

On the other hand, in the high-resolution simulation with
αSS = 0.1, the eccentric mode undergoes prograde precession at
some point. The precession period is about 20 Porb. The preces-
sion rate is not constant. It accelerates for 0 < ωd < π and deceler-
ates for π < ωd < 2π, where ωd is the angle between the eccentric
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vector of the disc and that of the binary orbit. The precession rate is
radius-dependent. It is larger at a larger radius. Because the eccentric
mode is leading for 0 < ωd < π and trailing for π < ωd < 2π, the
twist of the mode increases with time for 0 < ωd < π and decreases
for π < ωd < 2π. The strength of the eccentric mode, which anti-
correlates with the twist of the mode, decreases for 0 < ωd < π and
increases for π < ωd < 2π.

As the mode precesses, the mass-capture rate, Ṁacc, by the neu-
tron star modulates. It is maximum at ωd ∼ π. Even for an eccen-
tricity of 0.1, Ṁacc at maximum is about a factor of 3 higher than the
level before precession. If the disc has a much stronger disturbance,
the enhancement in Ṁacc is likely to be much larger. Such a system
may temporarily show periodic X-ray outbursts.

In our model for Be/X-ray binaries, in which the disc material
overflows toward the neutron star via the L1 point, the mass-capture
rate by the neutron star becomes strongly phase-dependent. The
dependence is stronger for a smaller value of viscosity. In the disc
with αSS = 0.1, the mass-capture rate decreases by two orders of
magnitude between the periastron and apastron passages and, after
the apastron passage, no disc mass is captured by the neutron star.
Note that our model gives a much stronger contrast in the mass-
capture rate than that expected for the stellar wind accretion.

We have also compared the simulated mass-capture rate with
the observed X-ray behaviour of 4U 0115+63, considering two
extreme situations, in which tacc � Porb or tacc ∼ Porb, where tacc is
the accretion time-scale. We have found that the disc model for
αSS = 0.1 gives a result consistent with the observation for both
situations, whereas the higher viscosity models for αSS = 1 and 0.3
are ruled out unless tacc ∼ Porb.

Analysing multi-wavelength long-term monitoring observations
of 4U 0115+63, Negueruela et al. (2001) found that the Be star
undergoes quasi-cyclic (∼3–5 yr) activity, losing and reforming
its circumstellar disc. They also found that, at some point, the
growing disc becomes unstable to warping and then tilts and starts
precessing. Type II X-ray outbursts take place after the warping
episode. As shown in this paper, our αSS = 0.1 model explains
many of the observed features of 4U 0115+63 in the phase be-
fore the warping occurs. Our simulation, however, has shown no
dynamical instability, and therefore is incapable of explaining the
warping episode. Including the effect of radiation from the Be star
may turn out to be essential to have a model that explains the
whole cycle of the disc evolution, which is beyond the scope of this
paper.

In this paper, we have concentrated our study on the viscous
effects on the star–disc interaction in a coplanar system with fixed
orbital period and eccentricity. This was done not only as a first step
to have a comprehensive understanding of the interaction between
the Be disc and the neutron star in Be/X-ray binaries, but also to have
an archetypal model with which we can compare the results from
our future simulations. In the next paper, we will study the effects
of the misalignment angles between the Be disc and the binary. We
will discuss the effects of the orbital eccentricity in the third paper,
and in the fourth paper we will conclude the series by studying the
effects of the orbital period.
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