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When one solution of reactant A is displacing another miscible solution of reactant
B , a miscible product C can be generated in the contact zone if a simple A +
B → C chemical reaction takes place. Depending on the relative effect of A, B and C
on the viscosity, different viscous fingering (VF) instabilities can be observed. In this
context, a linear stability analysis of this reaction–diffusion–convection problem under
the quasi-steady-state approximation is performed to classify the various possible
instability scenarios. To do so, we determine the criteria for an instability, obtain
dispersion curves both at initial contact time using an analytical implicit solution and
at later times via numerical stability analysis. Along with recovering known results for
non-reactive systems where the displacement of a more viscous fluid by a less viscous
one leads to a VF instability, it is found that in the presence of a chemical reaction,
injecting a more viscous fluid into a less viscous fluid can also lead to instabilities. This
occurs when the chemical reaction leads to the build up of non-monotonic viscosity
profiles. Various instability scenarios are classified in a parameter plane spanned by
Rb and Rc representing the log-mobility ratios of the viscosities of the B and C
solution respectively with respect to that of the injected solution of A. A parametric
study of the influence on stability of the Damköhler number and of the time elapsed
after contact of the two reactive solutions is also conducted.

1. Introduction
Reactive systems are able to trigger hydrodynamic flows as soon as the chemical

reaction changes the physical property of the fluid such as its density, surface tension
or viscosity. In the case of viscosity in particular, a viscous fingering (VF) instability,
occurring in a porous medium when a given fluid displaces another more viscous
fluid Homsy (1987), can be triggered or influenced by a chemical reaction changing
the viscosity of the solution. Experimental evidences and theoretical studies of such
chemically influenced viscous fingering have been obtained for reactions changing
the permeability of the porous matrix by dissolution (Chadam et al. 1986; Wei &
Ortoleva 1990) or precipitation (Nagatsu et al. 2008). In the case of immiscible
flows, this instability, known as the Saffman–Taylor instability, can also be modified
by reactions that change the surface tension at the fluid interface (Jahoda &
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Hornof 2000; Fernandez & Homsy 2003). Several works have moreover addressed
theoretically the coupling between VF and autocatalytic reactions (De Wit & Homsy
1999a, 1999b; Swernath & Pushpavanam 2007, 2008; Ghesmat & Azaiez 2009)
without however corresponding experimental confirmations as autocatalytic reactions
are more prone to change density rather than viscosity (De Wit 2001; De Wit
et al. 2003). In the context of chromatographic applications, adsorption–desorption
phenomena have also been shown to influence VF patterns (Mishra, Martin & De Wit
2007).

More recently, experiments demonstrating the influence of a simple A + B → C
chemical reaction on the properties of viscous fingering between miscible solutions of
initially separated reactants A and B have rejuvenated the interest for a theoretical
classification of the possible VF instability scenarios for miscible reactive fluids.
Indeed, Nagatsu et al. (2007) have first shown that depending on the reactants at
hand, the reaction can either increase or decrease the viscosity of the solution, which
has important effects on the width and scalings of the fingers in time. They have
also tuned the chemistry to analyse fingering at both large and moderate Damköhler
numbers, i.e. at respectively strong and moderate effects of chemistry on the flow
(Nagatsu et al. 2007, 2009). In parallel, Podgorski et al. (2007) have also examined
experimentally purely chemically driven viscous fingering in a system where the two
A and B reactant solutions have the same viscosity but the product C is more
viscous. Strikingly, the fingering patterns differ depending on whether A is injected
into B or vice versa. The VF properties of such an A + B → C reactive system have
been studied numerically in the case where the reactants have the same viscosity
and the product is more viscous (Gérard & De Wit 2009). It has been shown that
VF patterns can indeed be different depending on whether A displaces B or vice
versa, when the diffusion coefficients or initial concentrations of the two reactants are
different. A more recent study by Hejazi & Azaiez (2010) examined flows where the
reactants and the chemical product all have different viscosities. The study analysed
the effects of the viscosity ratios as well as of the Péclet number on the development of
the VF.

When considering miscible solutions involving three key chemical species A, B and
C related by a simple bimolecular reaction A + B → C, it is easy to understand
that fingering properties will depend on the relative values of the viscosities µA, µB

and µC of the pure solutions of the three chemicals. The present study focuses on
the case where A is injected into B , i.e. the porous medium is initially filled with
the reactant solution B which is displaced by a solution of A injected at a constant
speed U . If the reactant A has a viscosity larger than or equal to that of the reactant
B , then the non-reactive system is stable with regard to VF. However, for reactive
systems, fingering can occur if the product C has a viscosity different from that of the
reactants. If, on the contrary, the non-reactive system is already genuinely unstable
because B is more viscous than A, then the properties of the reactive fingering
instability can nevertheless also be affected by the generation of a product of different
viscosity.

To gain insight into the way a chemical reaction may affect the stability of the
system with regard to a VF instability, a reaction–diffusion–convection (RDC) model
coupling Darcy’s law to evolution equations for the concentrations of species A, B and
C is used. The viscosity, non-dimensionalized by µA, depends on the concentration of
B and C through two log-mobility ratios Rb and Rc quantifying respectively the ratio
between the viscosity of the reactant B and product C and that of the reactant A.
A peculiarity of the stability of such systems is that the base state of the problem is
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Figure 1. Schematic of the displacement process with chemical reaction.

time dependent as the reaction proceeds and more and more product C is generated
in the course of time. The viscosity profile varies therefore in time and the related
stability can thus change as time goes by. A linear stability analysis (LSA) of the time-
dependent base state of the model is conducted both analytically at time t = 0 and
numerically for later times using a quasi-steady-state approximation. A parametric
study is performed in terms of the log-mobility ratios Rb and Rc as well as of the
Damköhler number of the problem.

The paper is organized as follows. In § 2, the RDC model of the problem is
introduced and the relevant dimensionless parameters are defined. The base-state
viscosity profile is discussed in terms of the parameters of the problem. Section 3
introduces the linear stability analysis equations that are solved analytically at t =0
in § 4 and numerically at later times in § 5. The discussions and conclusions are given
in § 6.

2. Mathematical model
2.1. Formulation of the problem

We consider a two-dimensional porous medium or equivalently a horizontal Hele-
Shaw cell having a gap width sufficiently small with regard to the other two
dimensions so that the flow evolution can be considered to be governed by
two-dimensional Darcy’s law. A schematic of the flow geometry is shown in
figure 1. Initially the cell is filled with a solution of B having a viscosity µB .
A miscible solution of A of viscosity µA is injected from the left side at a
uniform velocity U along the x direction, the coordinate y being aligned along the
perpendicular direction. It is assumed throughout that A and B have the same initial
concentration, a0. The following reaction occurs as soon as species A and B are in
contact:

A + B → C. (2.1)

The chemical product C has a viscosity µC that, in general, will be assumed to
be different from that of either reactants. The flow system is modelled using the
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continuity equation, Darcy’s law and three RDC equations, namely

∇ · u = 0, (2.2)

u = − κ

µ
∇p, (2.3)

∂A

∂t
+ u · ∇A = DA∇2A − kAB, (2.4)

∂B

∂t
+ u · ∇B = DB∇2B − kAB, (2.5)

∂C

∂t
+ u · ∇C = DC∇2C + kAB, (2.6)

where u =(u, v) stands for the two-dimensional velocity vector, µ is the viscosity, κ is
the medium permeability and p is the pressure. Note that A, B and C represent the
dimensional concentrations of the two reactants and product, respectively, while DA,
DB and DC are their corresponding diffusion coefficients and k is the reaction constant.
It will be assumed that all species involved have the same diffusion coefficient, i.e.
DA = DB = DC = D.

Formally the initial conditions are

u = U, v = 0, A =

{
a0 x < 0

0 x > 0
, B =

{
0 x < 0

a0 x > 0
and C = 0.

For simplicity, the domain length is assumed infinite, which prevents the introduction
of this length as an additional parameter in the problem.

In general, µ = µ(A, B, C), and so we define explicitly µA = µ(a0, 0, 0),
µB = µ(0, a0, 0) and µC = µ(0, 0, a0); thus, each constant represents the viscosity of the
fluid when only one species is present at the concentration a0. The exact dependence
of the viscosity on concentrations B and C still needs to be specified. Following
earlier studies (Tan & Homsy 1986; De Wit & Homsy 1999a, 1999b; Azaiez & Singh
2002; Gérard & De Wit 2009), an exponential dependence is adopted. The logarithm
of the viscosity is thus taken to be a linear combination of the concentrations. Hence,
without loss of generality, we can consider µ =µA µ(B, C) as all of the species diffuse
at the same rate and we have equal initial concentrations of A and B . Therefore, one
can write

µ = µA e(RbB+RcC)/a0, (2.7)

where Rb and Rc are the log-mobility ratios between the viscosity of pure solutions
at concentration a0 defined as

Rb = ln

(
µB

µA

)
and Rc = ln

(
µC

µA

)
. (2.8)

Occasionally and with a slight terminology abuse, the log-mobility ratios will be
referred to as simply the mobility ratios or viscosity ratios.

2.2. Dimensionless equations

In what follows, the flow will be examined in a Lagrangian reference frame moving
with the average injection velocity U , i.e. we make the transformation

û = u − U î, (2.9)

where î is the unit vector along x. The resulting system of equations is non-
dimensionalized using the injection velocity U , diffusive length scale D/U , time D/U 2,
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viscosity µA, pressure µAD/κ and concentration a0. The following dimensionless
equations are obtained:

∇ · u = 0, (2.10)

u + i = − 1

µ
∇p, (2.11)

∂A

∂t
+ u · ∇A = ∇2A − DaAB, (2.12)

∂B

∂t
+ u · ∇B = ∇2B − DaAB, (2.13)

∂C

∂t
+ u · ∇C = ∇2C + DaAB, (2.14)

µ = eRbB+RcC. (2.15)

The Damköhler number Da = ka0D/U 2 represents the ratio between the characteristic
hydrodynamic time scale τh = D/U 2 and the chemical time scale τc = 1/[ka0].

2.3. Base-state viscosity profiles of the reactive system

In order to predict the influence of the chemical reaction on the stability of the
system, let us first characterize the base state of the underlying reaction–diffusion
(RD) dynamics.

In the absence of any transverse instabilities, there is no disturbance to the flow
and the dynamics are one-dimensional. The system (2.10)–(2.15) admits a base-state
solution corresponding to u0 = v0 = 0, where the base-state concentrations A0(x, t),
B0(x, t) and C0(x, t) are solutions of the following RD equations:

∂A0

∂t
=

∂2A0

∂x2
− DaA0B0, (2.16)

∂B0

∂t
=

∂2B0

∂x2
− DaA0B0, (2.17)

∂C0

∂t
=

∂2C0

∂x2
+ DaA0B0. (2.18)

The appropriate linear combination of these equations leads to

∂(A0 + B0 + 2C0)

∂t
− ∂2(A0 + B0 + 2C0)

∂x2
= 0. (2.19)

Given the initial and boundary conditions of the problem, the only possible solution
is A0 +B0 +2C0 = 1. There is no exact analytic solution for the above set of base-state
equations. It is however known that, when the two reactants have the same initial
concentrations and diffusion coefficients as it is the case here, the reaction front
defined as the region where the concentration of the chemical product is maximum
remains at the location of initial contact between the two reactants (Gálfi & Rácz
1988; Jiang & Ebner 1990). In the moving reference frame, this front is at x = 0. On
the basis of the asymptotic large time concentration profiles (Gálfi & Rácz 1988) and
(2.15), the base-state viscosity profile is

µ0(x, t) = eRbB0(x,t)+RcC0(x,t). (2.20)

Figure 2 shows the logarithm of the viscosity profiles as a function of the self-similar
dimensionless variable η= x/2

√
t for asymptotic large times. Two situations have to

be distinguished depending on whether Rb is positive or negative. For Rb > 0, the
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Figure 2. Log–viscosity profiles as a function of the self-similar variable η for asymptotic
long-time concentration profiles (t → ∞) for (a) Rb = 3, (b) Rb = −1 and various Rc .

system is genuinely unstable as the displacing reactant A is less viscous than the
displaced reactant B (figure 2a). On the contrary, if Rb < 0, the non-reactive system
is stable as the viscosity µA of the displacing solution of A is larger than that of the
displaced solution of B (figure 2b). In both cases, the chemical reaction, by producing
a product C of different viscosity, modifies the non-reactive viscosity profile except in
the special case where Rb = Rc, i.e. when µB = µc. Depending on the relative value of
Rc and Rb, the viscosity profile can remain monotonically increasing or decreasing or
features an extremum due to a non-monotonic spatial variation.

Note that as all three species A, B and C diffuse, react and mix, it may be
misleading to talk about a front between the A and C chemicals or between C and
B . However, a close inspection of figure 2 shows (and this is especially visible on the
non-monotonic viscosity profiles) that µ(η) varies differently depending on whether
η< 0 or η> 0. It is therefore useful to introduce the notion of a ‘trailing zone’ defined
as the zone for which η< 0, i.e. the zone between the solution of A and the location
of the maximum production of C. Similarly, a ‘leading zone’ will be defined as the
zone where η> 0, i.e. the zone where the location of the maximum production of C
displaces the reactant B . These regions are schematically represented in figure 1. In
addition, one can define RAC = ln(µ)|η=0 ≡ Rc/2 and RCB = Rb − ln(µ)|η=0 ≡ Rb − Rc/2
with RAC+RCB = Rb, where µ is constructed using large time asymptotic concentration
profiles as in figure 2. These definitions determine the viscosity jumps between the
pure reactant solutions and the reaction zone.

2.4. Monotonic versus non-monotonic viscosity profiles

Let us determine the location of monotonic versus non-monotonic viscosity profiles
in the (Rb, Rc) plane and look at the values of the relative viscosity jumps RAC and
RCB in each case. This classification follows the reasoning of Rongy, Trevelyan &
De Wit (2008), who have proposed a somewhat similar classification for a reactive
system in a horizontal layer in the case of buoyancy-driven convection.

The gradient of the base-state viscosity profile is obtained using (2.20) and the
relationship C0 = (1 − A0 − B0)/2 as

∂µ0

∂x
= µ0

[
Rc

2

(
−∂A0

∂x

)
+

(
Rb − Rc

2

)
∂B0

∂x

]
. (2.21)
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Figure 3. Large time asymptotic viscosity profiles in the (Rb,Rc) parameter plane.

Because the concentration profiles A0 and B0 are uniformly decreasing and increasing
respectively, both −∂A0/∂x and ∂B0/∂x are positive. A monotonic profile will
thus occur when Rc(Rb − Rc/2) > 0, i.e. if 0<Rc/2 < Rb (monotonic increase) or
Rb <Rc/2 < 0 (monotonic decrease). The lines Rc = 0 and Rc =2Rb delimit therefore
the location in the parameter space for which monotonic viscosity profiles are
encountered (see shaded zones in figure 3). The profile exhibits an extremum whenever
∂µ0/∂x = 0 somewhere along x which is obtained when Rc(Rb − Rc/2) < 0. In that
case, either the trailing or leading zone is destabilizing. The flow is then expected
to be unstable in the case of the monotonically increasing and non-monotonic
viscosity profiles but stable in the case of the monotonically decreasing profiles. In
this sense, the present study bears some similarities with earlier ones dealing with non-
monotonic viscosity profiles (Manickam & Homsy 1993; Loggia et al. 1995; Loggia,
Salin & Yortsos 1998; Pankiewitz & Meiburg 1999; De Wit, Bertho & Martin 2005;
Schafroth, Goyal & Meiburg 2007). However, there is a fundamental difference arising
from the important role of chemistry. As shall be seen later, along with the viscosity
gradients, chemistry plays an important role and modifies the development of the
instability in time for both monotonic and non-monotonic viscosity profiles.

Figure 3 summarizes these results in the (Rb, Rc) plane. Insets of the viscosity profiles
are shown. The shaded areas feature monotonic profiles with area V representing the
stable case of a monotonically decreasing viscosity. The y-axis (Rb = 0) corresponds to
the case where both reactants A and B have the same viscosity and the non-reactive
flow is neutrally stable. The only unconditionally stable situation in that case is when
Rc =0 which corresponds to a constant and uniform viscosity in the whole system.
As soon as Rc (= 0 for Rb = 0, the product will have a viscosity different from that of
the reactants and the viscosity profile presents an extremum, therefore triggering an
instability. This case has recently been studied numerically in the nonlinear regime in
the case Rc > 0 (Gérard & De Wit 2009).
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The special case where the product C has the same viscosity as that of the reactant
B corresponds to the dashed line Rc =Rb. The viscosity profile is then antisymmetric.
The situation is therefore exactly analogous to that of a non-reactive displacement.

The x-axis (Rc = 0) represents a flow where the chemical product C has the same
viscosity as the reactant A, implying a neutrally stable trailing zone (see figure 2). The
viscosity profiles for this case are similar to those shown in the contiguous shaded
areas, i.e. they do not have an extremum. However, as shown in figure 2 for both
Rc = 0 cases, the viscosity profile of this reactive case is different from that with
Rc = Rb. In particular, it has a larger viscosity gradient as now the same viscosity
difference between A and B is confined to the leading zone only (RCB = Rb). The
reactive system is then expected to remain stable for Rb < 0 when the viscosity is
monotonously decreasing and to be more unstable than its non-reactive equivalent
for Rb > 0. Intuitively, a symmetric situation could be expected for the special case
Rc = 2Rb, where now the same viscosity difference is concentrated on the trailing zone
(RAC =Rb) as seen in figure 2. However, as shown below, the cases Rc = 0 (RAC = 0)
and Rc = 2Rb (RCB = 0) are actually not similar.

Outside the dashed areas, the viscosity profiles are non-monotonic and the chemical
reaction has then certainly an influence on the stability of the system. Before presenting
a detailed analysis of this issue, we should note that intuitively, from figure 3, the
flow is always unstable if the initial front between the two reactants is unstable (right
part of the plane; Rb > 0). On the other hand, if the initial front is stable, then the
flow may be stable or unstable (left part of the plane; Rb ! 0).

Let us now proceed with the linear stability analysis that will allow us to gain more
insight into the problem and check the above expectations.

3. Linear stability analysis
3.1. Linearized equations

In order to conduct the stability analysis, all dependent functions are expressed as
the sum of the base-state solution and a perturbation:

A(x, y, t) = A0(x, t) + A′(x, y, t),
B(x, y, t) = B0(x, t) + B ′(x, y, t),
C(x, y, t) = C0(x, t) + C ′(x, y, t),
p(x, y, t) = p0(x, t) + p′(x, y, t),
µ(x, y, t) = µ0(x, t) + µ′(x, y, t),
u(x, y, t) = u′(x, y, t),
v(x, y, t) = v′(x, y, t),






(3.1)

where primed terms represent small disturbances from the base states. Inserting the
above expressions in (2.12)–(2.15) and linearizing them leads to

∂A′

∂t
+ u′ ∂A0

∂x
=

(
∂2

∂x2
+

∂2

∂y2

)
A′ − Da(A

′B0 + A0B
′), (3.2)

∂B ′

∂t
+ u′ ∂B0

∂x
=

(
∂2

∂x2
+

∂2

∂y2

)
B ′ − Da(A

′B0 + A0B
′), (3.3)

∂C ′

∂t
+ u′ ∂C0

∂x
=

(
∂2

∂x2
+

∂2

∂y2

)
C ′ + Da(A

′B0 + A0B
′), (3.4)

µ′ = µ0(RbB
′ + RcC

′). (3.5)
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Applying the curl to Darcy’s equation and using the continuity equation gives

µ0

(
∂2

∂x2
+

∂2

∂y2

)
u′ +

∂µ0

∂x

(
∂u′

∂x

)
= −∂2µ′

∂y2
. (3.6)

Using the expression for the viscosity disturbance (3.5), the right-hand side of (3.6) is
further simplified to

(
∂2

∂x2
+

∂2

∂y2

)
u′ +

1

µ0

∂µ0

∂x

∂u′

∂x
= −Rb

∂2B ′

∂y2
− Rc

∂2C ′

∂y2
. (3.7)

3.2. Quasi-steady-state approximation

The coefficients of these linearized equations are a function of space and time as the
base state is spatially and temporally varying. To solve the problem, we therefore
use a quasi-steady-state approximation (QSSA) whereby the base-state solutions are
‘frozen’ at a time t0 (Tan & Homsy 1986). The stability of this frozen profile is then
determined by expanding the disturbances in terms of Fourier components as

(u′, A′, B ′, C ′) = (φ,ψA,ψB,ψC)eiky+σ (t0)t , (3.8)

where ψA, ψB and ψC are only functions of x while σ (t0) is the growth rate of a
disturbance of wavenumber k. Inserting the above normal mode expansions into the
linearized equations (3.2)–(3.4) and (3.7) and eliminating the amplitude of the product
perturbation ψC using the relation ψA + ψB + 2ψC = 0 leads to:

[
d2

dx2
+

([
Rb − Rc

2

]
∂B0

∂x
− Rc

2

∂A0

∂x

)
d

dx
− k2

]
φ = k2

([
Rb − Rc

2

]
ψB − Rc

2
ψA

)
,

(3.9)
[
σ (t0) − d2

dx2
+ k2 + DaB0

]
ψA = −∂A0

∂x
φ − DaA0ψB, (3.10)

[
σ (t0) − d2

dx2
+ k2 + DaA0

]
ψB = −∂B0

∂x
φ − DaB0ψA. (3.11)

The above eigenvalue system of differential equations is next solved to determine the
growth rates σ (t0) using two approaches. The first approach discussed in § 4 is based
on step profiles for the reactants base-state concentrations (t0 = 0) and results in an
algebraic equation for the growth rate. The second approach is presented in § 5 and
involves a numerical solution of the system (3.9)–(3.11).

4. Dispersion curves at t0 = 0

4.1. Analytical solution at t0 = 0

An analytical solution for the growth rate σ at t0 = 0 will now be derived. The
concentrations of the two reactants are represented using the Heaviside step function:

A0 = H (−x) =

{
1 x < 0
0 x > 0,

B0 = H (x) =

{
0 x < 0
1 x > 0.

(4.1)
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For x < 0, the linearized equations therefore are
[

d2

dx2
− k2

]
φ = k2

([
Rb − Rc

2

]
ψB − Rc

2
ψA

)
, (4.2)

[
σ − d2

dx2
+ k2

]
ψA = −DaψB, (4.3)

[
σ − d2

dx2
+ k2 + Da

]
ψB = 0. (4.4)

The solutions of the above equations are

ψ−
B = B−eγ0x,

ψ−
A = A−eγ1x + B−eγ0x,

φ− = G−ekx − Rck
2

2
(
γ 2

1 − k2
)A−eγ1x − (Rc − Rb)k2

γ 2
0 − k2

B−eγ0x,





(4.5)

where A−, B− and G− are constant coefficients while γ0 and γ1 are defined as follows:

γ0 =
√

k2 + σ + Da, γ1 =
√

k2 + σ . (4.6)

On the other hand, for x > 0 the linearized equations are
[

d2

dx2
− k2

]
φ = k2

([
Rb − Rc

2

]
ψB − Rc

2
ψA

)
, (4.7)

[
σ − d2

dx2
+ k2 + Da

]
ψA = 0, (4.8)

[
σ − d2

dx2
+ k2

]
ψB = −DaψA. (4.9)

The corresponding solutions are

ψ+
A = A+e−γ0x,

ψ+
B = B+e−γ1x + A+e−γ0x,

φ+ = G+e−kx − (Rc − Rb)k2

γ 2
0 − k2

A+e−γ0x +

(
Rb − Rc

2

)
k2

γ 2
1 − k2

B+e−γ1x,





(4.10)

where A+, B+ and G+ are constant coefficients. The arbitrary constants in (4.5) and
(4.10) are determined by applying the following continuity conditions at x = 0:

[
µ0

dφ

dx

]
0+

0−
= 0, [φ]

0+

0− = 0,
[
dψA

dx

]
0+

0−
= −φ(0), [ψA]

0+

0− = 0,
[
dψB

dx

]
0+

0−
= φ(0), [ψB]

0+

0− = 0.






(4.11)

The above conditions are obtained by integrating (3.9)–(3.11) across x = 0. Imposing
these conditions results in a homogeneous system of six algebraic equations for
the unknowns. For non-trivial solutions, the determinant of the coefficient matrix
is required to be zero, which results in the following nonlinear equation relating
implicitly the growth rate σ to the disturbance wavenumber k:
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−2γ0

[
(eRb + 1)

{
(Rc − Rb)k2

γ 2
0 − k2

(γ0 − k) +
(2Rb − Rc)k2

γ 2
1 − k2

(γ1 − k) − 2kγ1

}

+2
(Rc − Rb)k2

γ 2
1 − k2

(γ1 − k) − 2
(Rc − Rb)k2

γ 2
0 − k2

(γ0 − k)

]
= 0. (4.12)

The above equation may be further simplified to

(eRb + 1)(γ0 + k)[Rbk − 2γ1(k + γ1)] + k(eRb − 1)(Rc − Rb)(γ1 − γ0) = 0. (4.13)

The stability of the problem depends on the value of σ , which in general may be
complex. The system is stable if Re(σ ) is negative for all values of k and unstable if
Re(σ ) is positive for some k. Plotting the real part of the growth rate Re(σ ) against
the wavenumber k yields dispersion curves that we will now seek to obtain for various
values of the flow parameters. The various types of dispersion curves will be classified
using the definitions given by Cross & Hohenberg (1993). Type I dispersion curves
cross the line Re(σ ) = 0 at the three wavenumbers k = 0, k1 and k2 such that growth
rates with positive real parts occur for 0 <k1 <k <k2. Such dispersion curves lead to
fingers maintaining a finite wavenumber in time (Bánsági et al. 2003) and long-wave
instabilities are absent. Type II dispersion curves cross the line Re(σ ) = 0 at the two
wavenumbers k = 0 and kc such that growth rates with positive real parts occur for
0 < k < kc. Such dispersion curves can include long-wave instabilities in which fingers
appear with a zero wavenumber and are characterized in the nonlinear regime by
a general coarsening trend in time. As (4.13) satisfies σ = k = 0, type III dispersion
curves (for which σ (= 0 at k = 0) are not possible.

First, note that in the limit of an infinitely slow reaction, i.e. Da → 0, one has
γ0 → γ1 and (4.13) reduces to

σ =
k

2
(Rb − k −

√
k(k + 2Rb)), (4.14)

which is the classical dispersion equation for miscible viscous fingering in non-
reactive fluids obtained by Tan & Homsy (1986). Equation (4.14) corresponds to a
type II dispersion curve because σ > 0 for 0<k <Rb/4. The maximum growth rate
σmR2

b occurs at the most unstable wavenumber kmRb where km = (
√

5 − 2)/2 and
σm = (5

√
5 − 11)/8. In the absence of reactions, the system is thus unstable whenever

Rb > 0.
Equation (4.14) is also obtained from (4.13) when Rb = Rc, which is expected

because, as already explained earlier, if the reaction is converting B to C with
µB = µC then the resulting system is equivalent to the non-reactive case. Note that
although species A is being consumed, the change in its concentration does not affect
the flow viscosity that is normalized by µA.

Let us now seek to find the various zones of instabilities at t0 = 0 in the (Rb, Rc)
parameter plane.

4.2. Long-wave instabilities

A long-wave instability is sought by letting k and σ be small in (4.13). It was found
that, in order to balance the equation, σ and k must be of the same order. Hence,
they are expressed as σ = εW and k = εK , where ε is small and positive. Expanding
(4.13) in ε yields

2εW
√

Da(e
Rb + 1) = εK

√
Da(Rc + (2Rb − Rc)e

Rb ) + O(ε3/2)
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Figure 4. Contours of the maximum growth rate in the (Rb ,Rc) plane for Da = 1 at t0 = 0.
The shaded regions are stable. The contours of the maximum growth rate are illustrated at
equal intervals of 0.15. For Rb > 0, the system is unstable for Rc < RU , while instability occurs
if Rc >RL for Rb < 0.

for Da > 0. Therefore

W

K
=

Rc + (2Rb − Rc)eRb

2(eRb + 1)
+ O(ε1/2).

The condition on the parameters Rb and Rc at which the onset of an instability occurs
is called the neutral stability curve. Because W is real, the neutral stability curve is
obtained by substituting W = 0 in the above equation, which shows that a long-wave
instability occurs at Rc =RL, where

RL =
2Rb

1 − e−Rb
. (4.15)

Note that RL > 0 for all values of Rb. For W " 0 one requires that Rc+(2Rb −Rc)eRb "
0, i.e. Rc(1 − e−Rb ) ! 2Rb. Hence, the system is unstable for Rc <RL if Rb > 0 and for
Rc >RL if Rb < 0 (see figure 4). It should be stressed that the curve Rc =RL is not
always the neutral stability curve because short-wave instabilities or complex growth
rates exist for RL <RC <RU (see the Appendix), where RU is determined numerically
but detailing these trends is beyond the scope of this work. The zones of instabilities
are summarized by plotting the contours of maximum growth rate in the (Rb, Rc)
plane for Da = 1 at t0 = 0 in figure 4.

4.3. Parametric study

In this section, the effects on the instability of the Damköhler number Da and the
parameter Rc are examined. The role of these two parameters has already been the
subject of earlier experimental studies. In particular, fast and slow chemical reactions
corresponding to large and small Da have been examined by Nagatsu et al. (2007)
and Nagatsu et al. (2009), respectively. There are also experiments on cases where
the chemistry either increases (Rc > 0) (Nagatsu et al. 2007; Podgorski et al. 2007) or
decreases (Rc < 0) (Nagatsu et al. 2007) the viscosity.
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Figure 5. Neutral stability curves for various values of Da at t0 = 0. For Rb > 0, the system is
unstable below the Da-dependent curve.

4.3.1. Effects of Da

Figure 5 shows the neutral stability curves for various values of Da at t0 = 0, with
the curves Rb = 0 and Rc = RL shown by solid lines. For Rb =0, the flow is stable
regardless of the values of Rc or Da at t0 = 0. For an initially stable viscosity profile
(Rb < 0), the flow is unstable if Rc >RL. Note that the neutral curves for this case
are independent of Da . On the other hand, in the case of initially unstable viscosity
profile (Rb > 0), the flow is unstable if Rc < RL. For RU >Rc >RL, the flow is stable
to long-wave disturbances but is unstable to short waves (type I curves). In the latter
case, the neutral curves depend on Da .

We now discuss the effect of the reaction rate. As Da → 0, the neutral stability
curve approaches the line Rb = 0 which is logical, as one then recovers the non-reactive
situation for which the whole half-plane where Rb > 0 is unstable.

Concerning the value of the most unstable mode, let us note that taking the limit
Da → ∞, i.e. taking the limit of an infinitely fast reaction, reduces (4.13) to

σ =
k

2
(p − k −

√
k(k + 2p)), (4.16)

where

p = Rb +

(
eRb − 1

eRb + 1

)
(Rb − Rc) =

(
eRb − 1

eRb + 1

)
(RL − Rc). (4.17)

The maximum growing wavenumber is kmp and the maximum growth rate is σmp2.
This shows again that the non-reactive case (4.14) is recovered in the special case
where Rc = Rb, i.e. when p = Rb. The neutral stability curve is at p = 0, i.e. Rc = RL.
For the system to be unstable for Da → ∞, one requires that p > 0; therefore, it is
necessary that Rc <RL if Rb > 0, and Rc >RL if Rb < 0. Furthermore, for large Rb,
the line Rc = RL approaches the line Rc = 2Rb. Note that this line is precisely the one
for which the viscosity profile switches from monotonic to non-monotonic in the long
time limit.

Let us now determine whether the unstable reactive system is more or less unstable
than its non-reactive equivalent. To do so, the effect of Da on the stability of the
system at t0 = 0 is illustrated in figure 6.
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Figure 6. Dispersion curves at t0 = 0 showing the influence of the Damköhler number Da
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Rc = 5.

If Rb < 0, the system is stable for the non-reactive case Da =0 while the most
unstable situation is obtained for Da → ∞ when the dispersion curve approaches the
analytical solution given by (4.16) as shown in figure 6(a). Decreasing Da causes the
system to become less unstable, i.e. both the maximum growth rate and the band
of unstable modes decrease. Eventually, the system reaches the stable non-reactive
situation of a more viscous fluid pushing a less viscous one when Da =0.

If Rb > 0, the initial front between the two reactants A and B is genuinely unstable.
In this case, one notes that p in (4.17) can be equal to Rb only when Rc = Rb and in
this case, the system behaves like the non-reactive one. Out of this line, the influence
of the reaction can have different trends. For Da → ∞, (4.17) reveals that in the region
Rb < Rc, p < Rb and so the chemical reaction has a stabilizing effect with both the
maximum growing wavenumber and maximum growth rate being smaller than their
corresponding non-reactive counterparts for the same value of Rb. On the contrary, in
the region Rc < Rb, p >Rb and therefore the chemical reaction has now a destabilizing
effect. So, in short, if the reaction is dominant in the dynamics (Da → ∞) and the
system is genuinely unstable (Rb > 0) because the displacing solution of A is less
viscous than the solution of B , the reaction tends to further destabilize the system if
Rc <Rb and to stabilize it otherwise. Let us illustrate this for specific points in the
Rb > 0 part of the (Rb, Rc) plane.

Figure 6(b) illustrates the influence of Da in the case Rc <Rb. As shown on the
viscosity profiles of figure 2(a), this corresponds to situations with a larger viscosity
gradient at the leading zone. Increasing Da causes the system to become more unstable
as more product C is produced per unit of time. As Da tends to zero or infinity, the
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dispersion curve approaches the analytical solutions (4.14) of the non-reactive system
and (4.16) for Da → ∞, respectively.

Opposite effects are observed when Rc >Rb in which case an increase of Da leads
to a less unstable system. Figure 6(c) illustrates these trends when RL >Rc >Rb. The
limiting case Da → ∞ corresponds to the least unstable flow while the non-reactive
one results in the most unstable flow. For RU >Rc > RL > Rb, chemical reaction still
attenuates the instability but, moreover, it switches the dispersion curve from type
II to type I. This is expected because as discussed in § 4.2, the flow is stable to
long-wave disturbances when Rc >RL for Rb > 0. Therefore, there is now a critical
value of Da above which the system becomes stable. For the special values considered
in figure 6(d ), Rb = 2 and Rc = 5, the critical Da is 0.375.

Let us insist that the trends for enhancement of the instability when Rb < 0 or when
Rb > 0 and Rb > Rc and its attenuation when Rc > Rb > 0 were found consistently for
a wide range of mobility ratios and Damköhler numbers. This is also true for the
change of dispersive curves from type II to type I with increasing Damköhler number
when RU > Rc >RL >Rb > 0.

Having identified the effects of Da on the initial stability of the system, let us now
examine the effects of Rc.

4.3.2. Effects of Rc

The effects of Rc are illustrated in figure 7 for Da = 1. If Rb < 0, as Rc is decreased
the flow becomes less unstable, with a full stabilization once Rc <RL. These trends
are illustrated in figure 7(a) for Rb = −1 with a corresponding RL ≈ 1.164.

Instability characteristics when Rb > 0 are depicted in figure 7(b,c). Here the flow
becomes less unstable with increasing Rc. In figure 7(b), the flow is fully stabilized
once Rc reaches RL, which in this particular case is RL ≈ 3.164. Further increase of
Rc maintains a stable system. On the other hand, when the flow is still unstable when
Rc reaches RL, then, as predicted from the long-wave instability analysis, the flow
ceases to be unstable at short wavelengths and type I dispersion curves are obtained.
Ultimately, for large enough Rc, the flow is stabilized. These trends are illustrated in
figure 7(c) where Rb = 5 and a corresponding RL ≈ 10.068.

In summary, an increase of Rc has a destabilizing effect if Rc >RL in the case where
the non-reactive system is genuinely stable (Rb < 0). On the other hand, if the system
is already viscously unstable even without reaction (Rb > 0), the production of an
increasingly more viscous product, i.e. an increase of Rc has a stabilizing effect. In this
latter scenario, type I dispersion curves are obtained if the flow is still unstable when
Rc reaches RL, while otherwise only type II dispersion curves should be expected.

4.4. Summary

The results of the stability analysis at t0 = 0 can be summarized in terms of the
three major parameters: Rb, Rc and Da . When the initial non-reactive system is
stable (Rb < 0), then faster chemical reactions (larger Da) work towards increasing
the instability. Furthermore, an increase in the viscosity of the chemical product C
(larger Rc) tends to enhance the flow instability as long as Rc > RL. For Rc <RL, the
flow is totally stable. If on the other hand the initial non-reactive system is genuinely
unstable (Rb > 0) then faster chemical reactions tend to increase the flow instability if
Rc <Rb and to decrease it otherwise. In the latter case, the flow can be fully stabilized
if Rc >RL while it remains unstable for all values of Da if Rc <RL. Finally, the more
viscous the chemical product, i.e. the larger Rc, the less unstable is the flow. All these
trends are summarized in a convenient way using a contour plot of the maximum
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growth rate in the (Rb, Rc) plane for Da = 1. Figure 4 represents the trends with
the contours taking the value zero on the neutral stability curve (solid lines) and
increasing away from it.

We should finally comment that formally, the QSSA is strictly not valid at t0 = 0
as the base-state solution varies quickly at t0 = 0. Moreover, it is difficult to get a
physical interpretation of the results at t0 = 0 because this corresponds to a situation
where no diffusion has taken place yet. However, the results of the stability analysis
at t0 = 0 provide a useful starting point to understand where the instabilities are most
likely to occur and develop in the parameter space. As shown in the next section,
the stability characteristics at t0 = 0 carry indeed the essence of the relative properties
at later time. As time increases, the use of the QSSA is more justified as the rate of
change of the base-state solution decreases. The next section discusses results of the
LSA for such times greater than zero.

5. Stability at later times
In the preceding section, the stability of the reactive system at t0 = 0 was analysed.

At later times, the stability properties can be modified as the chemical reaction changes
the base state of the problem in time. As time goes by, more chemical product is
generated while the reactants are consumed, which modifies the weight of each species
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in the viscosity profile across the reaction zone. To gain insight into the development
of the instability in time, the eigenvalue problem described by (3.9)–(3.11) is solved
numerically using a finite difference method and the RD base state at any given time
is obtained by solving (2.16)–(2.18). A non-uniform grid that is finest around the
interface where the concentration gradients are large is adopted. The computational
domain is chosen wide enough to capture all eigenfunctions and to satisfy the decaying
conditions at the boundaries. By discretizing the set of ordinary differential equations,
the system results in a generalized algebraic eigenvalue problem. The general real
matrix is converted into an upper Hessenberg form in order to obtain the eigenvalues
and eigenfunctions. From the set of obtained discrete eigenvalues only the largest one
is reported. The accuracy and convergence of the numerical results were ascertained
by varying the domain length and the spatial step size. The code was validated by
comparing with the results of Tan & Homsy (1986) for non-reactive flows (Da = 0).
Furthermore, excellent agreement between the predictions of the numerical code for
small t0 and the analytical results based on the step profile approximation were
obtained. In the next sub-sections the cases where the initial reactant front is either
stable (Rb =0 or Rb < 0) or unstable (Rb > 0) will be examined.

5.1. Equal reactant viscosities (Rb = 0)

When the two reactants A and B have the same viscosity, µA =µB , then the initial
non-reactive system is stable. However, once a reaction takes place (Da > 0), a non-
monotonic viscosity profile will develop if the viscosity of the chemical product C is
different from that of the reactants, i.e. if Rc (= 0. This viscosity profile will exhibit
a maximum if Rc > 0 and a minimum if Rc < 0, and the resulting flow is expected
to be unstable. However, a question may arise as to whether the system will be
unstable right away at t0 = 0 or whether there is a critical onset time for the instability
to take place. One may also wonder whether chemical reactions that generate a
product more viscous than the reactants (Rc > 0) will lead to different dynamics than
those where the product is less viscous than the reactants (Rc < 0).

First, one should recall that for t0 = 0 the flow is always stable when Rb = 0 (figure 4).
However, it is expected that beyond a certain critical time, an instability will set in if
Rc (=0. Figure 8(a) depicts the temporal evolution of the maximum growth rate for
two selected values of fixed |Rc| with Rb = 0 and Da = 1. It is clear that indeed the
system is not right away unstable as there is a threshold time for the instability to
set in. This onset time which is dependent on the rate of production of C, logically
increases when |Rc| decreases, i.e. when the amplitude of the instability-driving force
decreases. This result should be compared with that of Gérard & De Wit (2009), who
used nonlinear simulations to analyse the case Rb = 0. Figure 2 of Gérard & De Wit
(2009) showing the results of the simulations for Rb = 0, Rc =3 and Da = 1 indicates
that the instability starts to develop around t0 = 100. This time is of the same order
of magnitude as the time when σmax reaches its maximum value in time (figure 8a).
Clearly, the results of the present LSA based on the QSSA are in good agreement
with the nonlinear simulations.

Figure 8(a) also indicates that for a given |Rc|, the instability starts earlier when
Rc < 0 than when Rc > 0. This shows that, for equal amplitude of the extremum,
the system is more unstable when the reaction builds up a minimum rather than a
maximum in the viscosity profile. This is related to the fact that fingers develop more
easily along the flow on the leading zone than against the flow on the trailing zone
(Mishra, Martin & De Wit 2008). However, at large times, the maximum growth
rate becomes independent of the sign of Rc. It is suspected that this occurs when
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Figure 8. (a) Maximum instantaneous growth rate against log10(t0) when Rb = 0 and Da = 1.
(b) Maximum value of C for the RD problem against log10(t0) when Da = 1.

the production of C levels off (see figure 8b). Finally, note that all curves of the
maximum growth rate σmax show a maximum at some intermediate time, indicating
that the most unstable flow should be expected when enough chemical product has
been generated but before the reaction levels off. After this time, the extremum in
viscosity, i.e. the driving force of the instability, is then saturating, while diffusion
smoothes the viscosity gradients out and hence stabilizes the system again.

5.2. Stable initial reactant front (Rb < 0)

In the left part of the (Rb, Rc) plane where the non-reactive situation is genuinely
stable, the flow is expected to be unstable for Rc > 0 or Rc < 2Rb < 0 (figure 3). For
t0 = 0, it was found that the system is unstable only if Rc >RL > 0. As shown below
the situation is different for t0 > 0.

5.2.1. Rc > 0

As time goes by, quite rapidly the whole upper left region, i.e. quadrant IV of
figure 3, ultimately becomes unstable. This is expected as the non-monotonic viscosity
profile features there a maximum with an unstable trailing zone and a stable leading
one. A systematic parametric study has been conducted for negative Rb and different
values of Da and Rc in region IV. Typical trends for increasing instability with
increasing Damköhler number at fixed Rc are illustrated in figure 9(a). This is
associated with an increase in the rate of chemical production and thus with a larger
maximum viscosity for a given fixed time. However, it should be noted that a further
increase in Da can in fact lead to a reduction of the instability.

For a fixed Da but now increasing positive Rc, the maximum value of the viscosity
profile increases; see figure 9(b). It should be stressed that these trends in Rb < 0 are
similar to those reported in the nonlinear simulations by Gérard & De Wit (2009) in
the special case Rb =0 but Rc > 0, where indeed destabilization with increased Da at
fixed Rc or with increased Rc at fixed Da is observed.

The temporal evolution of the maximum growth rate σmax for Da = 1, Rb = −1 and
two positive values of Rc, namely Rc = 2 and Rc =4, is depicted in figure 10(a). Clearly,
the larger Rc the larger is the instantaneous maximum growth rate. Furthermore, σmax

reaches a maximum at an intermediate time before decaying fast at large times. It is
worth noting that the maximum growth rate also exhibits a local minimum that is
particularly noticeable in the case Rc = 4. Finally, note that these results are consistent



Stability analysis of viscous fingering instabilities of a reactive interface 519

(a)
0.025

0.020

σ

0.015

0.010

0.005

–0.005

0

(b)
0.025

0.020

0.015

0.010

0.005

–0.005

0

0

k
0.1 0.30.2 0

k
0.05 0.10 0.15 0.250.20

Db = –1
Rc = 6 Da = 5

Da = 100

Da = 2
Da = 0.4
Da = 0.15
Da = 0.05
Da = 0.01

Da = 1
Rb = –1

Rc = 5
Rc = 6

Rc = 4
Rc = 3
Rc = 2
Rc = 1

Figure 9. Instability characteristics at t0 = 1 for zone IV: Trailing zone unstable, leading
region stable. Rb = −1, (a) Rc = 6 and variable Da , (b) Da = 1 and variable Rc .

(a) (b)

(c)

0.030

0.025

0.020

σ
m

ax

σ
m

ax

0.015

0.006

0.004

0.002

0
–1 0 1 2 3 4 5

0.006

0.004

0.002

0

0.010

0.005

0
0

log10(t0) log10(t0)
1 3 4 52

log10(t0)
1 3 4 52

Da = 1
Rb = –1

Rc = –6
Rc = –4
Rc = 2
Rc = 4

Rb = –2
Rc = 2

Rb = –2
Rc = –6

Da = 1000

Da = 1
Da = 10
Da = 100

Da = 0.1
Da = 0.01

Da = 1000

Da = 1
Da = 10
Da = 100

Da = 0.1
Da = 0.01

Figure 10. Maximum instantaneous growth rate against log10(t0) for (a) Da = 1, Rb = −1 and
various values of Rc , (b) Rb = −2, Rc = 2 and various values of Da and (c) Rb = −2, Rc = −6
and various values of Da .

with the numerical simulation of Hejazi & Azaiez (2010) where it was found that the
instability develops at t ≈ 250 for Rb = −1 and Rc = 3.

Figure 10(b) depicts the variations of the maximum growth rates with time at
Rb = −2 and Rc = 2 and different values of Da . For sufficiently large times, the
maximum growth rates increase with increasing Da . However, in early times an
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increase of Da may reduce the instability and an overall non-monotonic trend is
observed. The curves display a local minimum and local maximum, with the former
fading away for very small Damköhler numbers. Furthermore, as a result of a slower
rate of chemical reaction, the smaller the Damköhler number the later in time the
maximum is observed. At very large times all curves collapse and Da does not have
any effect on the instability.

5.2.2. Rc < 2Rb < 0

Let us now analyse the situation where Rc < 2Rb when Rb < 0 for which the reaction
builds up in time a non-monotonic viscosity profile with a minimum such that the
trailing zone is stable while the leading region is unstable. It was found that in
general, an increase in Da or |Rc| enhances the instability, and that in particular the
flow can be unstable for negative Rc. This latter result is to be contrasted with what
was obtained for t0 = 0 where it was found that the flow is stable if Rc <RL, which,
recalling that RL is always positive, implies that the flow is, in that case, necessarily
stable when Rc < 0.

The variations of the instantaneous maximum growth rate with time are shown in
Figure 10. Variations for fixed Da = 1, Rb = −1 and two negative values of Rc < 2Rb,
namely Rc = −4 and Rc = −6 are illustrated in figure 10(a) while the effects of Da for
fixed Rb = −2 and Rc = −6, are depicted in figure 10(c). Clearly, a threshold time is
needed before the flow becomes unstable, and like other previously discussed cases,
σmax reaches a maximum at some intermediate time before decaying rapidly later. The
required threshold time decreases with increasing Da . In this case, a larger Damköhler
number results systematically in a more unstable flow and, for large times, all curves
decay to the same value such that the maximum growth rates become independent
of Da . Note also that for the same value of |Rc − Rb|, which is equal to 5 for Rc = 4
and Rc = −6 and equal to 3 for Rc = 2 and Rc = −4, the long time σmax is the same.
Furthermore, for a fixed |Rc − Rb|, the maximum growth rate is obtained when the
instability is located at the leading zone (Rc ! 0) where fingers develop along the
flow rather than at the trailing one (Rc > 0) where the fingers have to move against
the flow at the back and against a stable barrier at their tip.

5.3. Unstable initial reactant front (Rb > 0)

In the right part of the (Rb, Rc) plane where the non-reactive situation is in itself
already unstable, increasing time quickly destabilizes the whole Rb > 0 half-plane.
The results of the numerical solution for small t0 > 0 when Rb > 0 are qualitatively
similar to those obtained for the step-function approximation at t0 = 0. In particular,
the chemical reaction enhances the instability when the leading zone is more unstable
than the trailing one (Rb > Rc) and attenuates it in the opposite case. No effects are
observed when both zones are equally unstable (Rc = Rb). Note that even though
the trends are qualitatively similar, the stabilizing or destabilizing effects due to the
chemical reaction are stronger in the case of a step profile (t0 = 0) than at later times
t0 > 0.

Figure 11(a) depicts the variations of σmax with time for Da =1, Rb = 3 and various
values of Rc. For flows with Rc >Rb, namely the curves corresponding to Rc = 6
and Rc = 9, similar trends to what has been observed earlier are also seen here,
i.e. there is an intermediate-time maximum of σmax before a decay at late times.
The effects of Da when Rc >Rb are shown in figure 11(b). Similar to the case
observed in figure 10(b), the effect of Da depends on time, i.e. for early times
the instability is reduced with increasing Da , while it is increased at late times. In
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Figure 11. Maximum instantaneous growth rate against log10(t0) for (a) Da = 1, Rb = 3 and
various values of Rc , (b) Rb = 2, Rc = 4 and various values of Da and (c) Rb =2, Rc = 0 and
various values of Da .

the case Rc < Rb namely the curves corresponding to Rc = −3, Rc = 0 and Rc = 3, the
curves are monotonically decreasing, hinting that the maximum growth rate is reached
at t0 = 0. The effect of Da for the case Rc < Rb is shown in figure 11(c). Here, there is
a systematic trend for increase of instability with increasing Da .

Note that the times at which the largest σmax is reached are consistent with the
times for the onset of instability in the nonlinear simulations of Hejazi & Azaiez
(2010). Comparing the absolute maximum growth rate over time for fixed Rb and
respectively the same |Rb − Rc| shows that the non-monotonic profile is again more
unstable when it exhibits a minimum, i.e. when the instability is located at the leading
zone (Rc ! 0) rather than at the trailing zone. Finally, note that the difference between
these symmetric situations of constant |Rb − Rc| vanishes at long times.

5.4. Change of the instability in time

The classical non-reactive VF is known to weaken in time when diffusion smoothes
out unstable viscosity gradients (Tan & Homsy 1986; De Wit et al. 2005). Chemical
reactions are obviously changing this picture as readily seen in figure 8 for Rb = 0. In
this case, the system is stable at t0 = 0 and positive growth rates are obtained only after
a given onset time needed for the extremum in viscosity to build up. At later times,
when the increase in the maximum concentration of the product C starts to level off
(see figure 8b), σmax starts to decrease. This can be attributed to a saturation of the
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destabilizing effects due to chemistry combined with the stabilizing effects of diffusion,
which tends to smooth out the viscosity gradients between the different species.

A similar trend is observed for Rb > 0 where the situation furthermore depends on
whether the system is unstable at t0 = 0 or not. Figure 12 shows dispersion curves
for different times starting from t0 = 0 in the case Rb =3, Rc = 0, i.e. when the trailing
zone is neutrally stable and the leading one unstable. The trends observed for a
reduction of the instability with increasing time are similar to what is already known
in the case of non-reactive flows with monotonic viscosity profiles.

Figure 13 depicts the effect of diffusion in the opposite case where Rb = 3, Rc =6,
i.e. the trailing zone is unstable while the leading zone is neutrally stable. In this case,
a non-monotonic temporal behaviour of the dispersion curves is observed. Up to a
certain critical time tc + 0.05, an increase in time leads to a ‘less’ unstable flow, but
at later times up to around t0 + 5 the growth rate increases. For larger times, the
maximum growth rate and the spectrum of unstable wavenumbers are reduced with
increasing time.

This non-monotonic variation of the instability characteristics with time can be
attributed to the close interplay between chemistry and hydrodynamics. At early
times, an increase of t0 results in a reduction in the stabilization because of the
stabilizing effect of the chemical reaction at small times. However, a little later there
is more chemical product and therefore larger viscosity gradients and a stronger
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instability. Recall that, unlike the previous case (Rb = 3, Rc = 0), here the instability
grows in the trailing zone and develops opposite to the flow. For large enough Da , this
is able to mitigate the effects of diffusion. However, at still later times t0, the chemical
production saturates and diffusive effects become dominant. This interpretation is
supported by the results for slow reactions (small Da), where monotonic changes in
time of the instability characteristics similar to those in figure 12 were obtained. This
temporal difference in stability was well illustrated in figure 11(a).

Non-monotonic changes in the instability characteristics with time have also been
found in the case Rb < 0, and as shown in figure 10(a), the situation can even
be more complicated. At asymptotic long times, symmetric values of Rc around
the line |Rb − Rc| give the same growth rate but the situation is more unstable at
intermediate times. There, systems where the instability is located on the leading zone
are more unstable than their equivalent of the trailing region. The situation however
is also different at time t0 = 0, where the results summarized in § 4 are recovered.

5.5. Summary

Trends of the flow instability and its change with time have been summarized by
plotting stability zones and contours of the maximum growth rate in the (Rb, Rc)
plane for Da = 1. The results are shown in figure 14 for t0 = 0.5, 1, 4 and 100 and have
to be compared with those for t0 = 0 presented in figure 4. Before analysing these
contours, it is important to remember that these are instantaneous growth rates and
the overall instability of the system actually depends cumulatively on the evolution
of the growth rate in time.

If Rb > 0, the stable zone very quickly shrinks until ultimately the whole Rb > 0
half-plane becomes unstable. For Rb < 0, a comparison of figures 4 and 14 shows that
while the whole quadrant VI (Rc < 2Rb < 0) of figure 3 is stable at t0 = 0, an instability
develops in the course of time, destabilizing first the system with small negative Rb

and large negative Rc. This can be understood as, for small negative Rb, the stable
initial reactant front can easily be destabilized by a strongly less viscous product
giving a minimum of large amplitude in the viscosity profile and a destabilizing
leading region. Ultimately, in the large time limit, only region V of figure 3 remains
stable. This is expected as this is the only region where the viscosity profile remains
monotonically decreasing.

For a given value of Rb, in the large time limit, the growth rates are found to be
smallest on the line Rc = Rb (see figure 14d ). Furthermore, the instantaneous growth
rates at large times are symmetrical about this line as the vertical distance to a contour
of a given value is the same both above and below the line Rc = Rb. This implies that
for large times the instantaneous growth rate eventually becomes independent of Rb

when Rc >Rb. In figure 14(d ) at t0 = 100, the contours in the region Rc >Rb have
a negative gradient that decays to zero as Rc increases. Furthermore, in the region
Rc <Rb, away from the line Rc = Rb the contours have a positive gradient decaying
to two as Rc decreases so that the contours are parallel to the line Rc =2Rb.

Figure 14(d ) also shows that at fixed Rb > 0 and large times, the maximum growth
rate is increasing when Rc is decreased below zero. This corresponds to non-monotonic
viscosity profiles with an increasing amplitude of the minimum (zone I in figure 3).
On the other hand, in the upper right quarter where Rb and Rc are positive, we see
that for Rb ∼ 10, an increase of Rc first tends to stabilize the system as the viscosity
gradient becomes steeper in the trailing zone and smoother in the leading zone. Once
Rc is large enough, there is again a destabilization with increasing Rc, corresponding
to an increase of the maximum in the non-monotonic profiles of region III in figure 3.
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Figure 14. Contours of the maximum growth rate in the (Rb,Rc) plane for Da =1 at (a)
t0 = 0.5, (b) t0 = 1, (c) t0 = 4 and (d ) t0 = 100. The shaded regions are stable. The contours of
the maximum growth rate are illustrated at equal intervals of (a) 0.05, (b) 0.04, (c) 0.03 and
(d ) 0.015.

The asymmetry between VF at the trailing versus leading zones discussed earlier is
also well illustrated. In particular, this can be seen from an inspection of the maximum
values of the growth rates at intermediate times (see figure 14b). For values of Rc

equidistant from the line Rc = Rb, regions I (Rc < 0, Rb > 0) and VI (Rc < 2Rb < 0)
of figure 3 for which the instability is located on the leading zone are respectively
more unstable than regions III (Rc > 2Rb > 0) and IV (Rc > 0, Rb < 0) for which the
instability is at the trailing zone.

6. Conclusion and discussion
Simple A + B → C chemical reactions have recently been shown both to influence

experimentally and theoretically the properties of miscible viscous fingering when
generating a product C having a viscosity different from that of the reactants A and
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B . A detailed linear stability analysis of the problem has been performed to determine
to what extent such a simple bimolecular reaction can modify the stability properties
of a system where the reactant A is displacing a more or less viscous reactant B .
This stability problem depends crucially on time as the base-state reaction–diffusion
concentration profiles and hence the related viscosity profile change in time. Hence, we
make the quasi-steady-state approximation to examine the stability of the base-state
profiles at a time t0. An analytical stability analysis is performed at time t0 = 0 while
a numerical approach is used at t0 > 0.

Before discussing the results, let us summarize the main parameters and their
significance. The rate of the chemical reaction is expressed by the Damköhler number
Da that accounts for the ratio of hydrodynamic and chemical characteristic times. The
parameter Rb represents the ratio of the viscosity of the displaced reactant B to that
of the displacing reactant A. Therefore, the initial front is stable when Rb ! 0 and
unstable otherwise. Furthermore, the ratio of the viscosity of the chemical product C
to that of the displacing reactant A is represented by Rc. When Rb < Rc (Rb >Rc), the
leading reaction zone between the product C and the reactant B is less (respectively
more) unstable than the trailing reaction zone between the reactant A and the product
C. Finally, the leading reaction zone is stable when Rc " 2Rb while the trailing one is
stable when Rc ! 0.

It was found that even if some zones (as summarized in figure 4) are stable at
t0 = 0, the chemical reaction quickly destabilizes almost all of the (Rb, Rc) parameter
plane. As summarized in figure 14(d ) for t0 = 100, the only stable situation for long-
time asymptotic reactive VF is when the chemical reaction maintains a monotonic
decreasing viscosity profile (zone V in figure 3 for which 2Rb < Rc < 0). All other
situations for which the viscosity profile is either non-monotonic or monotonically
increasing are destabilized. In these unstable situations, one then needs to check
whether the chemical reaction leads to non-monotonic viscosity profiles or not.

For the non-monotonic cases, Rc(Rc − 2Rb) > 0, a maximum or a minimum in
viscosity develops in time such that there will always be either a trailing or a
leading region behind or ahead, respectively, of the reaction zone that features an
unfavorable log-mobility ratio. In this case, an instability eventually always sets in
and it increases with increasing |Rc| at fixed Rb, i.e. for changes in the parameters
that favour an increase of the amplitude of the extremum. The dependence on the
Damköhler number Da is more complicated. Indeed, it was found that for short
times, faster chemical reactions reflected by a larger Da always enhance the instability
except in the case of an unstable initial system (Rb > 0) that gives rise to a trailing
zone more unstable than the leading one (Rc >Rb). This picture does however get
complicated as time passes by and faster reactions can in fact act towards reducing the
instability.

If the viscosity profile is monotonically increasing, Rc > 0 and (Rc − 2Rb) < 0, the
underlying non-reactive system is already unstable because a less viscous solution of
A displaces a more viscous solution of B . However, the reaction modifies the stability
properties because, unless Rc =Rb which is the equivalent of the non-reactive case,
the presence of the product C breaks the symmetry of the viscosity profile with regard
to the reaction front position. It was found that the system is more unstable when
the mobility ratio at the leading zone is larger than that at the trailing zone. Even
in symmetric situations where Rc = 0 and Rc = 2Rb for which the same unfavourable
viscosity jump occurs at the leading and trailing regions, respectively, the situation
is more unstable in the former case. This conclusion also holds in the case Rb =0
where the flow is more unstable for viscosity profiles featuring a minimum (Rc < 0,
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i.e. leading zone unstable and trailing zone stable) rather than a maximum (Rc > 0,
i.e. leading zone stable and trailing zone unstable).

These differences in the trends that depend on whether the viscosity jump is larger
on the trailing or leading zones and the asymmetric behaviour when both zones
have the same viscosity jump may seem at first sight counterintuitive. However, as
shown by Mishra et al. (2008) for non-reactive VF of finite slices, fingering is more
intense for fingers extending along the flow than against it, i.e. for fingers developing
on the leading zone of a non-monotonic viscosity profile rather than on the trailing
zone. Therefore, here, for the same fixed viscosity jump, the instability is always more
developed at the leading zone and attenuated at the trailing zone. In particular, VF
breaks the symmetry that one would have expected for Rb = 0 and maxima or minima
of the same amplitude (see figure 8).

At this stage, the present work should guide future experimental analysis and
nonlinear simulations by giving stability trends in parameter space. A full comparison
with experiments will be possible only if additional information is obtained on the
nonlinear dynamics ensuing the onset of the instability. Further work in this direction
is in progress.
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of Canada (NSERC) and the Alberta Ingenuity Fund (AIF) for financial support.

Appendix. Supplementary details of the stability at t0 = 0

Figure 15 summarizes the LSA results at t0 = 0 in the (Rb, Rc) plane by showing the
stable and unstable regions by unshaded and shaded zones, respectively. The zones
I1, I2 and I3 can be shown to correspond respectively to type I dispersion curves, type
II dispersion curves and systems where the most unstable growth rate is complex.

The regions I 1 and I 3 lie above the line Rc =RL and are stable to long-wave
instabilities. The neutral stability curve for real growth rates with type I dispersion
curves is defined by Rc =RS , where the onset wavenumber is

k =
Rb

3
− 1

6

√
R2

b + 12Da

and

RS = Rb +
1

54Da

(
eRb + 1

eRb − 1

) (
R3

b +
(
R2

b + 12Da

)3/2
+ 18RbDa

)
,

which is only defined for Rb " 2
√

Da . The point P 1 is defined as the point where
Rc = RL = RS .

The neutral stability curve for complex growth rates is obtained numerically and is
defined as Rc = RN for Rb " λ

√
Da , where λ≈ 8.3478. The point P 2 is defined as the

point where Rc = RS =RN . The curve Rc = RE is numerically obtained and represents
the situation when a dispersion curve has two maxima of equal amplitude, with one
corresponding to a real growth rate and the other corresponding to a complex growth
rate.

Thus, the region I 3 is defined as RE <Rc <RN , regions I 2 are defined as (RL −
Rc)Rb > 0 and the region I 1 lies between RL <Rc <min(RS, RE). For convenience, the
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Figure 15. A sketch of the various stability regions in the (Rb,Rc) plane at t0 = 0 for Da > 0.

overall neutral stability curve is denoted by RU which equals RS for 2
√

Da ! Rb !
λ
√

Da and RN for Rb > λ
√

Da .
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