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Viscous fingering of a miscible high viscosity slice of fluid displaced by a lower viscosity fluid is
studied in porous media by direct numerical simulations of Darcy’s law coupled to the evolution
equation for the concentration of a solute controlling the viscosity of miscible solutions. In contrast
with fingering between two semi-infinite regions, fingering of finite slices is a transient phenomenon
due to the decrease in time of the viscosity ratio across the interface induced by fingering and
dispersion processes. We show that fingering contributes transiently to the broadening of the peak
in time by increasing its variance. A quantitative analysis of the asymptotic contribution of fingering
to this variance is conducted as a function of the four relevant parameters of the problem, i.e., the
log-mobility ratioR, the length of the slicg the Péclet number Pe, and the ratio between transverse
and axial dispersion coefficients Relevance of the results is discussed in relation with transport of
viscous samples in chromatographic columns and propagation of contaminants in porous media.
© 2005 American Institute of PhysidDOI: 10.1063/1.1909188

I. INTRODUCTION in liquid chromatography or groundwater contamination.
Liquid chromatography is used to separate the chemical
components of a given sample by passing it through a porous

places another more viscous one in a porous medids. medium. In some cases, typically in preparative or size ex-

such, the typical example usually presented for this instabil€lusion chromatography, the viscosity of the sample is sig-
ity is that of oil recovery for which viscous fingering takes Nificantly different than that of the displacing fluithe elu-
place when an aqueous solution displaces more viscous oil fi"0- Displacement of the sample by the eluent of different
underground reservoirs. This explains why numerous papepgscosny'leads then to viscous fmgerlng of 'e|ther the front or
devoted to the theoretical and experimental analysis of finth€ rear interface of the sample slice, leading to deformation
gering phenomena have appeared in the petroleum engined}t the initial planar interface. Thls fmger-mg is dr-amatlc- for
ing community For what concerns the geometry, theoreticalthe performance of the separation technique as it contributes
works typically focus on analyzing the stability properties 0 peak broadening and distortions. Such conclusions have
and nonlinear dynamics of an interface between semi- Peen drawn by several authors that have shown either
infinite domains of different viscosity. In the same spirit, ex- €xperimentall§™ or numerically® the influence of viscous
perimental works done either in real porous media or in dingering on peak deformations.
model Hele—Shaw systeftwo parallel plates separated by a [N groundwater contamination and more generally soil
thin gap width consist in injectingcontinuouslya low vis- ~ contamination, it is not rare that the spill’'s extent is finite due
cous fluid into the medium initially filled with the more vis- t0 a contamination localized in space and/or time. If the
cous one. The attention is then focused on the dynamics @#ill’s fluid properties are different than that of water, and in
the interface between the two regions. The instability develparticular, if they have different viscosity and/or denéity,
ops and the fingers grow continuously in time until the dis-fingering phenomena may influence the spreading character-
placing fluid has invaded the whole experimental system. Agstics of the contaminated zone. For ecological reasons, it is
long as the experiment rur(ge., until the displacing fluid important then to quantify to what extent fingering will en-
reaches the outlgtthe instability develops. Dispersion of large the broadening in time of this polluted area.
one fluid into the other may lead to a slight stabilization in Nonlinear simulations of fingering of finite samples have
time nevertheless this stabilization is usually negligible onbeen performed in the past by Tucker Norton and
the time scale of the experiment and for high injection ratesco-worker$®in the context of chromatographic applications,
The situation is drastically different in other important by Christieet al. in relation to “water-alternate gas” oil re-
applications in which viscous fingering is observed, such asovery technique% as well as by Zimmermaf and have

Viscous fingering is an ubiquitous hydrodynamic insta-
bility that occurs as soon as a fluid of given viscosity dis-
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shown the influence of fingering on the deformation of the v L,

sample without, however, investigating the asymptotic dy-y -

namics. Manickam and Homsy, in their theoretical analysis - Hp €=0

of the stability and nonlinear dynamics of viscous fingering . —

of miscible displacements with nonmonotonic viscosity pro- 0

files have further stressed the importance of reverse fingering

in the deformation of finite extent sampl¥s-* Their para- FIG. 1. Sketch of the system.

metric study has focused on analyzing the influence of the
end point and maximum viscosities on the growth rate of the ) ) . o ) .
mixing zone. rier fluid 1. This fluid 2, which is a solution of a given solute

In this framework, the objectives of this paper are two-Of concentratiore; in the carrier, will be referred in the fol-
fold: first, we analyze the nonlinear dynamics of viscous fin-0Wing as thesample This sample is displaced by the carrer
gering of miscible slices in typical analytical chromato- fluid 1 in which the solute concentratianis equal toc,;=0.

graphic and groundwater contamination conditions in ordef*SSUMIng that the viscosity of the medium is a function of
to underline its specificities and, second, we quantify théN€ concentratioe and that the flow is governed by Darcy’s

asymptotic contribution of viscous fingering to the broaden/aW: the evolution equations for the system are then

ing of the output peaks as a function of the important param- v .y=0, (1)
eters of the problem. From a numerical point of view, the i

only difference with regard to most of the previous works w(c)
devoted to viscous fingering’ is the initial condition Vp=-= U, (2
which is now a sample of finite extent instead of the tradi-
tional interface between two semi-infinite domains. As we
; ) : o ac &c éc
show, this has an important consequence: if the longitudinal  — +u-Vc=D,— +D 3)

2 Py g2
extent of the slice is small enough with regard to the length oX %y

of the migration zone, dispersion becomes of crucial imporwhere is the viscosity of the fluidK is the permeability of
tance as it leads to such a dilution of the displaced samplgye medium,p is the pressure and=(u,v) is the two-
into the bulk fluid before reaching the measurement locatiogjimensional velocity field. The displacing fluid is injected in
that fingering just dies out. As a consequence fingering i% uniform manner with a mean velocity along thex direc-
then only a transient phenomenon and the output peak of thgon. D,, D, are the dispersion coefficients along the flow
diluted sample may look Gaussian even if its variance isjirection and perpendicular to it, respectively. The character-
larger than that of a pure diffusive dynamics because of trantic speedU is used to define a characteristic lendth
sient fingering. This explains why the importance of finger-=p, /u and time r,=D,/U2. We nondimensionalize space,
ing phenomena in chromatography and soil contaminatiogpeed, and time bl U, and ., respectively. Pressure, vis-
has been largely underestimated or ignored in the Iiterature;.osityl and concentration are scaled @yD,/K, u,, andc,,
We perform here numerical simulations to Compute the Variwhereﬂl is the Viscosity of the disp|acing fluid ar[q the

ous moments of the sample distribution as a function of timenitial concentration of the sample. The dimensionless equa-
when fingering takes place. This allows us to extract thejons of the system become

contribution of viscous fingering to the variance of the aver-

aged concentration profile and to understand how this con- V-u=0, (4)
tribution varies with the important parameters of the problem

which are the log-mobility ratid? between the viscosity of Vp=-pu(cuy, (5)
the sample and that of the bulk fluid, the Péclet number Pe,

the dimensionless longitudinal exteinbf the slice and the ac +U.Ves= @ N s@ ®)
ratio ¢ between the transverse and longitudinal dispersion 5 = -7 2  "gy?’

coefficients. The outline of the paper is the following. In Sec. B _ ) L . .

II, we introduce the model equations of the problem. TypicalVheree=D,/Dy. If =1, dispersion is isotropic while#1
experimental parameters for liquid chromatography andgharacterizes anl_sotro_plc dlsper_5|on. Sm_ntchmg to a coordi-
groundwater contamination applications are discussed iHat€ System moving with speed i.e., making the change of

Sec. lll. The characteristics of the fingering of a miscibleVarables<’=x-t, y’=y, u’=u-i, with i, being the unit vec-

slice are outlined in Sec. IV, while a discussion on the mo-°r @longx, we get, after dropping the primes,

ments of transversely averaged profiles is done in Sec. V. v .y=0, (7)

Eventually, a parametric study is conducted in Sec. VI before

a discussion is made. Vp=-pu(O)(u+iy, (8)
ac #c  &c

Il. MODEL SYSTEM _w.yczﬁmﬁ, 9

Our model system is a two-dimensional porous medium
of lengthL, and widthL, (Fig. 1). Aslice of fluid 2 of length  We suppose here that the viscosity is an exponential function
W is injected in the porous medium initially filled with car- of c such as
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u(c) =eRc (10) A. Chromatographic applications

First of all, let us note that in most chromatographic
whereR is the log-mobility ratio defined bR=In(u2/11),  applications, heterogeneous chemistparticularly adsorp-
where u, is the viscosity of the sample and, as said beforeion and desorption phenomenia crucial to the separation
wy is the viscosity of the displacing fluitFig. 1). If R>0,  process and will undoubtedly affect possible fingering pro-
then we have a low viscosity fluid displacing a high viscosity cesses. We neglect such physicochemical interactions in this
sample and the rear interface of the sample will be unstablgst approach focusing on the effect of viscous fingering on
with regard to viscous fingering. R<0, then the sample is an unretained compound. A typical chromatographic column
the less viscous fluid and the front interface of the slice willhas a diameted=4.6 mm, a lengti., =150 mm, and con-
then develop fingering. In our simulations, we consider thesists of a porous medium packed with porous particles, the
R>0 situation. total (intraparticle and interparticleporosity being equal to

Introducing the stream functiogy such thatu=dy/dy  0.7. The volume of the sample introduced in the column is of
andv =-dy/x, taking the curl of Eq(8), we get our final  the order of 20ul, injected at a flow rateQ=1 ml min %,
equationsl. The extent of the injected sample is th&r=1.7xX10°3m

and the speed of the flow=1.4x 103 m s'1. The longitu-

V2= R(&_z,/;a_c . dypac N @) (11) dinal and transverse dispersion coefficients are typidazlély
"\ xax  ayay oyl =1.43x 108 m?s™* (Ref. 2] andD,=5.65x 101 m?s™%.
These parameters allow one to define a characteristic length
L.=D,/U and a characteristic time,=D,/U?. As a result,
ac, apoc_opoc_ e Pe (12 the Péclet number Pasd/D, is here nothing else than the

A dyIX Xy X2 +807y2' dimensionless diameter, i.e., PéH . =460, while the di-

Thi del | ically int ted ) mensionless longitudinal extent of the sample becoines
is model is numerically integrated using a pseu-_ _ - - o
dospectral code introduced by Tan and HomMsyd success- WiLo=170. The dispersion ratio is equal =D, /Dy

p y el =0.04. As a typical transit time from inlet to outlet takes

fully .imgl)éezr(')nented for various numerical studies of 5 any 7=100's, the dimensionless time of a simulation
fingering:™“" The two-dimensional domain of integration is, should be of the order oF=7/7,=15 000 to account for a

in dimensionless units, of size R&. where PeL,/D, is _realistic time to characterize the properties of the output
the dimensionless width which is nothing else than the Pedeﬁeaks.

number of the problem, while =UL,/D,. The dimension-

less length of the sample_is UW/DX_. The initial condition g il contamination

corresponds to a convectionless flgi=0 everywhergem- o _ _ .

bedding a rectangular sample of concentratierl and of The effects of fluid viscosity and fluid density may be
size Pex| in ac=0 background. The middle of the sample is important in controlling groundwater flow and solute trans-
initially located atx=2L/3. In practice, for the simulations, POt processes. Recently, a series of column experiments
the initial condition corresponds to two back to back stepVere conducted and analyzed by Woetal.™ to provide
functions betweerr=0 andc=1 with an intermediate point SOmMe insight into these questions. The experiments were per-
wherec=1/2+Ar, r being a random number between 0 angformed in fully saturated, homogeneous, and isotropic sand
1 andA the amplitude of the noisgypically of the order of ~ columns(porosity equals to 0.34 ang=1) by injecting a
1073). This noise is necessary to trigger the fingering insta250 ml pulse of a known concentration solution at a flow rate
bility on reasonable computing time. =0, numerical Q=0.015 n¥/day. Their experimental setup consists of a
noise will ultimately seed the fingering instability but on a vertical pipeL,=0.91m in length with a diameter of
much longer time scale. The boundary conditions are peri=0-15 M. Assuming the medium to be homogeneous and the
odic in both directions. This is quite standard along the transdispersion coefficienD as isotropic, a typical value for the
versal directiory. This does not make any problem along the@quifer dispersion ggeﬁment ®=0._1_m?/month, i.e.,D

x axis asc=0 at bothx=0 andx=L. The problem is con- =3.86% 1(T,8 m?s 1. In the same spirit as above, we com-
trolled by four dimensionless parameters: the log-mobilityPute the Péclet number to be of the order of20, while
ratio R, the Péclet number Pe, the initial length of the in-the dimensionless length of the samplé 4s30.

jected samplé, and the ratio between transverse and longi- ~ Based on these two examples, let us now investigate the
tudinal dispersion coefficients properties of fingering of finite slices for typical values of

parameters in the range computed above, i.e., Pe
~100-500,6 ~0.04-1,1~0-500, whileR is supposed to

be of order 1.
I1l. EXPERIMENTAL VALUES OF PARAMETERS

FOR TWO APPLICATIONS

. . ) IV. FINGERING OF A FINITE WIDTH SAMPLE
In order to perform numerical simulations, let us com-

pute the order of magnitude of the main parametPeclet Figure 2 shows in a frame moving with the injection
number Pe, length of the samp)efor both a liquid chroma-  velocity U the typical viscous fingering of the rear interface
tography experiment and for the propagation of contaminantsf a sample displaced from left to right by a less viscous
in a porous mediunfgroundwater contamination fluid. The system is shown at successive times using density
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FIG. 3. Transverse average profiles of concentration at successivettimes
=0, 500, 700, 1000, 1500, 2000, 5000, and 15 000. Inset: transverse average
profile of concentration at=60 000(Pe=512|=128,R=2, ¢=1).
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interface features the standard error function characteristic of
simple dispersion, the left one shows bumps signaling the
presence of fingering. Because the extent of the sample is
finite, dispersion and fingering contribute to the fact that the
maximum concentration becomes smaller than one, effec-
tively leading to a viscosity ratio between the sample and the
FIG._ 2. Density plqts of concentration at successive times in the framgy|k that decreases in time. As a consequence, fingering dies
2”008’6"1%ggét‘ig’gg’g;tﬁfégn&ggé’:gf;ffg; %:5’2?%:78?’ 1000, 1500, = ¢ and the transverse profile starts to follow a distorted
Gaussian shape. If one waits long enough, the asymmetry of
the bell shape diminishes which explains that output peaks in
chromatographic columns may look Gaussian even if finger-
plots of concentration with blackcespectively, whitecorre-  ing has occurred during the first stages of the travel of the
sponding toc=1 (respectivelyc=0). While the front inter- sample in the column. As computed in the preceding section,
face is stable, the back interface develops fingers such that typical dimensionless time of transit in a real chromato-
the center of gravity of the sample is displaced in the coursgraphic setup corresponds to 15 000 units of time. Figures 2
of time towards the back with regard to its initial position. and 3 show that, after 15 000 units of time, fingering is dis-
This dynamics results from the fact that the stable zone actappearing for this specific set of typical values of parameters,
as a barrier to finger propagation in the flow direction lead-and that dispersion becomes again the dominant mode. As
ing therefore to reverse fingering. Such a reverse fingeringhromatographic columns are generally opaque porous me-
has been well characterized by Manickam and Homsy irdia, it is therefore not astonishing that the presence of vis-
their numerical analysis of fingering of nonmonotonic vis- cous fingering has long been totally ignored until recent ex-
cosity profilesl.4 After a while, dispersion comes into play perimental works which have visualized fingering by
and dilutes the more viscous fluid into the bulk of the dis-magnetic resonance or optical imagf§.Similarly, tracing
placing fluid. As the sample becomes more and more dilutedhf the spatial extent of a contaminant plume at a distance far
the effective viscosity ratio decreases in time weakening thécom the pollution site may lead to measurements of
source of the instability. Ultimately, dispersion becomesGaussian-type spreading even if fingering has occurred at
dominant and the sample goes on diluting in the bulk withoutearly times. The only influence of such fingering appears in
witnessing any further fingering phenomenon. These succe¢he larger variance of the sample than in the case of pure
sive steps can clearly be observed on the transverse averagdidpersion as we show it next.
profiles of concentration defined as

_ 1 ("
c(x,t) = Pe f c(x,y,t)dy. (13
° V. MOMENTS OF THE TRANSVERSE AVERAGED

As seen on Fig. 3, we first start with two back to back stepPROFILE
functions defining an initial sample of extehtDuring the
first stages of the injection, there is a first diffusive regime  The averaged profiles of concentratiofx,t) allow to
quickly followed by the fingering of the rear interface corre- compute the first three moments of the distribution: the first
sponding here to the left front. While the rigtite., fronta) momentm,
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L d 0_ (a)
. ‘c(x,t)xdx 1004
)=—"—", 14
m(t) =~ — (14 —
c(x,t)dx I
0 T -300
is the position of the center of mass of the distribution as a = 400 4
function of time. The second moment is the varianée 500 4
L
f c(x,t)[x — m(t)]?dx -600 : : : : .
0
A1) = : : (15 _ ®
f ‘c(x,t)dx 400x10°
0 i
giving information on the width of the distribution. Eventu- . 300 1
ally, we compute also the third moment, i.e., the skewness ° o 7
L
5 j
i c(x,t)[x = m(t)]*dx 100 4
alt)= C (16) l
f ax,t)dx 01 T T T T T
0
01 ()
that gives information concerning the asymmetry of the peak
with regard to its mean position.
The variances? is the sum of three contributions: -20
oA(t) = ol + 05+ o7, (17) 5
where 0?=12/12 is the variance due to the initial length of
the sampleaﬁ=2t is the contribution of dispersion in dimen- €0x 105
sionless units and? is the contribution due to the fingering hats
phenomenon. I1fR=0, the displacing fluid and the sample L . T .

40 50 60x10°

<
—
o]
[\
<
w
=]

have the same viscosity and no fingering takes place. Hence,
in that caseo?=c?+05=1%/12+2. We have checked that
this result is recovered by numerical simulations Rx0. FIG. 4. First three moments of the distributiqia) mean positiorm of the
The integrals in the computation of the momeﬁté)—(16) Eenter of mass(b) varianced?, (c) skewnessa (Pe=512,1=128,R=2, ¢
are evaluated numerically by using Simpson’s rule. The nu-
merical result is very good if the spatial discretization stgp
is small. Typically, we get the exact result fdk=1. Unfor-
tunately,dx=1 is a resolution too high for fingering simula- of Figs. 2 and 3. As fingering occurs quicker than dispersion,
tions especially if one wants to look at the dynamics at verythe center of gravity of the sampia(t) is displaced towards
long times. As an example, previous simulations on viscoushe back(smallerx values because of reverse fingering of
fingering phenomert&*®were done with largetix as typical  the rear interface of the sampl€ig. 4(a)]. Fingering con-
dimensionless fingering wavelengths are around 100Rfor tributes to the widening of the peak and thefst) increases
=3 for instance. Using typicalljdx=4 gives roughly 25 [Fig. 4b)] while the skewnesa(t) becomes nonzero due to
points per wavelength which is numerically reasonable. Fothe asymmetry of the fingering instability with regard to the
what concerns the variance, simulations WRF0 anddx  middle of the samplgFig. 4(c)]. After a while, fingering dies
=4 give the correct? att=0 but a constant shift appears so out and the first momenn(t) saturates to a constant indicat-
thato?(t)—12/12-2=C, with C being a constant of the order jng that dispersion becomes again the only important dy-
of 0.1% of1%/12. As we are mostly interested in the rate of namical transport mechanism. Note that the skewmes
variation of oy, whereor is defined as observed to revert back towards 0 at very long times.
— 2y _ _ 2_ 2 Onset of fingering is also witnessed in the growth of the

o) =\of(t) = No*() ~ of - a3, (18) mixing zonel4 defined here as the interval in whidix,t)
all simulations are done here wittkk=4. The slightC shift ~ >0.01 (Fig. 5. An important thing to note is that, after a
does not affect the value af; as we have checked it for diffusive transient, fingering appears on a characteristic time

decreasing values afx. scalet’, defined as the time for which the mixing zone tem-
Figure 4 shows the temporal evolution of the first threeporal dependence departs from the pure diffusive regime.
moments, i.e., the deviatiom(t)—m(t=0) of the center of As has already been discussed bef6r@ the character-

mass in comparison to its initial location &0, the total istics of the fingering onset timé and of the details of the
variances?(t) and the skewnesa(t) for the typical example nonlinear fingering regime are dependent on the noise ampli-
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FIG. 5. Mixing zonel, as a function of time realized with the same param- -

eters(Pe=5121=128,R=2, £=1) and three different values of the ampli-
tude A of the noise seeding the initial conditiof:-) A=0.1, (--) A=0.01,

(—) A=0.001; (- theoretical curve of a pure diffusive behavigge vt.
Inset: zoom on the first stages of the injection. The onset timeorre-
sponding to the time at which the mixing zone departs from the pure diffu-
sive initial transient, is a decreasing function/ff

tude A. The higher the noise intensit%, the quicker the
onset of the instabilityinset in Fig. 5. To get insight into the
influence of the relevant physical parameters of the problem
it is therefore necessary to fix the amplitude of the noise to
an arbitrary constant as this is not a variable that is straightf!G- 7. Density plots of concentration for the same values of parameters and
forwardly experimentally available. In that respect, our re_same times as in Fig. 2, but a different noisi the initial condition.
sults have here typically been obtained for a noise of fixed
A=0.001. The number of fingers appearing at early times is arameter® Pe | ande. As can be seen. if fingering starts
related to the most unstable wavenumber of the band of urf> S s ) ' gering s

. always at the same onset timifor fixed A, the contribution
stable modes, nevertheless the location and subsequent nqn- . . . .
: ) ! i ' o the variance due to fingering saturates to different
linear interaction of the fingers depend on the specific real- . : . .

asymptotic valuesr,.. This corresponds to slightly different

ization of the random numbers series. As a consequence, it |S 7 . . . . .
nlonlmear interactions of the fingers as can be seen on Figs. 2

necessary to compute a set of r.eal|ze.1t|0ns to get St?“s“c%nd 7 which show the temporal evolution of the fingers for
information ongy, the main quantity of interest here. Figure

6 shows the temporal evolution of, for 15 different noise the, respectively, dotted and dashed curves of Fig. 6. If the

realizations of identical amplitude for fixed values of the patterns observed are very similar during the initial linear
phase of viscous fingering, the evolution of the fingers is

slightly different in the nonlinear regime, leading to different
values ofo.. In particular, merging is observed in Fig. 7
s, o leading to the fast development of one finger and, then,
#~ spreading of the stripe of viscous fluid leading to a larger
value ofo...

’ As a consequence, to understand the influence of finger-
/ / ing on the broadening of finite slices, it is necessary to study
400 1/ the parametric dependence (@f..), the statistical ensemble
S 17/ averaged asymptotic value of the fingering contribution to
i/ the variance.

7

200+

600 -

VI. PARAMETER STUDY

The quantity{o..) gives information on the influence of
0 0 10 20 30 40 S0 60x10° viscous fingering on the broadening of finite samples. In ap-
‘ plications such as chromatography and dispersion of con-
o6 netion of time for 1 S— ed with taminants in aquifers, such a broadening is undesirable and it
the same values of paramelaRs =512~ 125, R-2, s=1) but afferent 'S INErefore important to understand the optimal values of
parameters for whicRo.,) is minimum given some con-

noiser realizations of identical amplituda=1073. The dotted and dashed ’ ) ) )
curves correspond to the simulations of Figs. 2 and 7, respectively. straints. In that respect, let us first consider a porous medium
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FIG. 9. Onset timet” of the instability for increasing values &® (Pe

FIG. 8. Influence of the sample lengtlon o, for (V) Pe=64 and®) Pe ! ! vl
=256,1=128,s=1). (—) Best fit of the experimental points:«R2.

=128(R=2,¢=1).

in which dispersion is isotropits=1) and let us analyze the fingering to the broadening of the peak dies out apdatu-
subsequent influences b&fR, and Pe. The anisotropic case rates too... Above a given critical length, of the sample, the
(e #1) will eventually be tackled. The mean valde..) is  same asymptotic single finger growing diffusively is reached
plotted for various values of the parameters, the bar arountefore the left and right interfaces interact. Hence the same
this mean value spanning the range of asymptotic data beralueo., is obtained for any> .. Let us note that the switch

tween the minimum and maximum observed. from the fingering to the diffusive dynamics appears later in
time when Pe is increased. Indeed larger Pe means more
A. Influence of the sample length  / fingers that can interact for a longer time before the diffusive

regime becomes dominant. As a consequehcé& an in-
creasing function of Pe as can be seen in Fig. 8. Further
studies need to be done to understand the role ahd of
gossible tip splitting occurring for large Pe on the existence

The sample length has been measured to have practi-
cally no influence on the onset tinté of the instability.
Although Nayfeh has shown that the stability of finite
samples could be affected if the two interfaces are clos J
enoughz,4 we note that, for the smallest value of sampleand value of the critical Iengtn'. i i
length| considered herél=32), the rear interface features The fact that the contribution of fingering to the broad-

the same initial pattern as the one appearing on the interfacff‘é“ngI ththe_ peak saturate_s bleyond a critical flengr':h of the
between two semi-infinite regions of different viscosities for52Mple has important practical consequences for chromatog-

a same random sequence in the seeding noise. Our sampf@?hy: if fingering is unavoidable, one ”f“ght as weII. Ioaq
are thus here long enough for the onset tithéo depend sample_s of long exte_nt as the contribution of fmgeymg IS
only on the amplitudé\ of the noise seeding the initial con- saturating beyond a givég For long samples,_t_he efficiency
dition and not feel the finite extent of the sample. The IengthOf thg process depen@s th_en on the Cor,“P_e““O” betwéen'

| influences nevertheless the broadening of the peak and th d,l /12, the respe,ctlve.fmgerlng and initial Ieng'Fh contri-
(o), in particular, for small. The points reported in Fig. 8 utions to t’h_e peak’s variance. We_ can .thu_s predict that for
for two different Pe are obtained for one realization and a|0<|_< 0./ V12, the contrlbutlon. of flngermg_ls cons'Fa_rlF and
same seeding noisein the initial condition, leading to a dominates the broadening while foro../v12, the initial
typical value ofo... The smaller the exteritof the sample, sample length becomes the key factor.

the sooner the dilution of the more viscous solution into theB Infl f the loa-mobility rati R
bulk of the eluent and thus the less effective fingering. Above™ niiuence ot the 10g-mobility ratio
a given extent., o, is found to saturate. At first sight, this It is easy to foreseen that the largerthe more impor-
might appear counterintuitive as one could expect that, fotant the viscous fingering effeFirst of all, linear stability
longer samples, fingering is maintained for a longer timeanalysis of viscous fingering at the interface between two
thereby enhancing the fingering contribution to the variancesemi-infinite  domain€ predicts that the characteristic

A closer inspection to the finger dynamics shows on the congrowth time of the instability decreases BS?. Although
trary that, after a transient where several fingers appear aralready influenced by the nonlinearities and dependent on the
interact, only one single finger remaifsee Figs. 2 and)7In  amplitude of the noise, the onset tinie measured in our
the absence of tip splitting, the stretching of the mixing zonesimulations shows the same treffdg. 9). Note that, for very
becomes then exclusively diffusive as already discussed pramall values ofR, the onset time becomes very large which
viously by Zimmerman and Homé?:”This is clearly seen explains why, for samples of low viscosity, fingering might
in Fig. 5 which shows that the mixing length growsétsat not be observed during the transit time across small chro-
long times after a linear transient due to fingering. Once thenatographic columns or on small scale contamination zone.
asymptotic diffusive regime is reached, the contribution ofWhen R is increased, the viscous fingering contribution to
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FIG. 10. Influence of the log-mobility rati® on (o..) for (O) Pe=128|| . _ - ) )

=128; (@) Pe=128,1=512; (A) Pe=256,1=128; (A) Pe=256,1=512 (¢ FIG. 12. Onset timet" of the instability for increasing values of for

=1). different values of the log-mobility ratio(VV) R=1, (O) R=2, (A) R=3
(Pe=128)=128.

peak broadenindo..) is more important(Fig. 10 with a . . _ . _
linear dependence suggesting a power law increase for largé @n increasing function of Pe. In chromatographic applica-

R. tions, increasing the diameter of the coluiive., increasing
Ly here in our modglis thus expected to dramatically in-
C. Influence of the Péclet number Pe crease the influence of fingering in broadening. This explains

) i ) . . why fingering really becomes an issue for wide contamina-
The Péclet number Pe is typically experimentally in-i,n ;ones and in preparative chromatography where col-

creased for a given geometry by increasing the injection flow,ns of very large diametéup to one metérare sometimes
rate U. As can be seen in Fig. 11¢..) is found to increase constructed.

linearly with Pe. Fingering induced broadening can thus be

minimized by small carrier velocity as expected. However, p._ influence of the ratio of dispersion coefficients €
the exact influence of the carrier velocity is difficult to ) ) ) ) )
trace because practically, a changeUnalso modifies the Figure 12 shows the influence of the ratio of dispersion

dispersion coefficients and hence the valuesofn our di- coefﬁcientSS:DY/Dx on th(_a.onset time of the in_stability. As
mensionless variabled) also enters into the characteristic 8xPected from linear stability analyé%decreasm_ga has a
time and length corresponding, respectively,lxg U2 and destabilizing effect as fingering appears then quicker. This is
D,/U. The concrete influence of the carrier velocity is thusdue to the fact that small transverse dispersion inhibits the
more complicated to trace in reality. For a fixed injection Mixing of the solutions and favors longitudinal growth of the
speed, the Péclet number can also be varied by changing tfi89ers allowing them to survive for a longer time. As a
width L, of the system. The linear dependencd®f) on Pe consequence, the less viscous solution msftead of be_mg trans-
is then related to the fact that in a wider domain, more fin-versely homogeneous invades the more viscous fluid prefer-

gers can remain in competition for a longer time so that aably in the longitudinal direct_ion Ieading to larger mixing
more active fingering is maintained. This also implies fhat 2°0N€S and hence largeo..). Figure 13 illustrates that de-

creasinge has a dramatic effect on the broadening of the
peak. The inset shows the same graphics in logarithmic scale

800 for €. {0,y seems to vary as (n) at least for small values of
. e. Peak broadening due to fingering is therefore expected to
be particularly dramatic for chromatographic applications
600 T wherez ~0.04.
A el
& 200- VIl. CONCLUSION
v Viscous fingering leads to a mixing between miscible
{ fluids of different viscosity. In the case of viscous slices of
200+ finite extent, fingering is a transient phenomenon because the
L mixing of the two fluids leads to an effective decrease of the
log-mobility ratio in time. Transient fingering can neverthe-
0L~ T T T T T T less play an important role because it contributes to distor-
0 100 200 :‘1‘[90 400 500 600  tion and broadening of the sample. In particular, we have
¢ shown that, even if the spreading of the sample may look
FIG. 11. Influence of the Péclet number Pe(on) (1=128,R=2, £=1). Gaussian at long times because dispersion has again become
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