
169

QUARTERLY OF APPLIED MATHEMATICS
Vol. XXIX JULY 1971 No. 2

VISCOUS FLOW ALONG A CORNER:

NUMERICAL SOLUTION OF THE CORNER LAYER EQUATIONS*

BY

STANLEY G. RUBIN and BERNARD GROSSMAN

Polytechnic Institute of Brooklyn Graduate Center, Farmingdale, New York

Abstract. Solutions for the viscous incompressible flow along a right-angle corner
have been found by a method of successive iteration. The algebraic nature of the asymp-
totic flow field has been utilized to provide boundary conditions for the numerical
analysis. One arbitrary constant appearing in the asymptotic series has been determined
by the elimination of interior mass sources that appear as a result of any inaccuracy in
the value of this constant, allowing additional mass to cross the outer boundary. The
numerical solution shows a swirling flow in the corner but a closed vortical pattern is
not established.

1. Introduction. The viscous flow along a right-angle corner has been reconsidered
by Rubin [1], In his analysis the flow was partitioned into the three regions depicted
in Fig. 1, and solutions for the boundary layer and potential flow were obtained by the
method of matched asymptotic expansions. The asymptotic boundary values, as f —» ®,
required for the corner layer solution were determined by the proper matching of the
flows in the three regions.

When numerical solution of the elliptic corner layer equations was initiated, it
became clear that conjectured exponential decay of the velocities and streamwise vor-
ticity from the corner layer into the boundary layer was not realized. As it was not
practical in the numerical analysis to apply the asymptotic conditions, strictly valid
only for the coordinate f —* =°, for values of f excess of ten or twenty, additional con-
sideration of the asymptotic behavior was required in order to describe the proper alge-
braic decay. A detailed asymptotic analysis is presented by Pal and Rubin [2], where
the existence of consistent asymptotic series exhibiting the necessary algebraic behavior
is formally demonstrated. Of particular significance for the numerical analysis is the
appearance of arbitrary constants and logarithmic terms in these expansions.

The analysis contained herein is concerned with a numerical solution of the corner
layer equations, taking proper account of the asymptotic formulas discussed in [2]
The system of equations for the corner layer region is transformed into four Poisson-
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POTENTIAL FLOW
Y/X = 0(1), Z/X = 0(l)

Fig. 1. Corner flow geometry.

like equations for the streamwise velocity, suitably modified cross-plane velocities, and a
modified streamwise vorticity. This system includes only differentiated forms of the
mass continuity equation and vorticity definition and is similar to that described previ-
ously by Pearson [3]. For the asymptotic boundary values the series solution obtained in
[2] is required. In view of the nature of the asymptotic expansion discussed in [2], suffi-
cient accuracy for the numerical analysis is obtained by retaining only terms up to
0(^2[v2 + f2]~2). This leads to the inclusion of a single unknown constant x; moreover,
logarithmic effects are avoided as they first appear in terms of 0(f-5).

Solutions are obtained numerically by the Gauss-Seidel method of successive itera-
tion with the asymptotic values applied at f = Z < 15. From the results of [2] it is
apparent that any inaccuracy [x] in the constant x at the asymptotic boundary will
result in an increased error of 0([x]-Z_1) in the asymptotic conditions, above the usual
error associated with the termination of the series. This inaccuracy is reflected in the
mass flux crossing the boundary f = Z. Using an iterative procedure, an optimum value
for x is obtained by minimizing the errors associated with the undifferentiated mass
continuity equation, i.e., eliminating interior mass sources. Systematic consideration of
the effects of Z, x> or grid spacing was facilitated by the use of a CDC 6600 computer.

2. Mathematical formulation. The similarity equations valid downstream of the
leading edge x = 0 and governing the viscous incompressible corner layer flow are ob-
tained as the leading terms in an expansion of the Navier-Stokes equations for R =
(2U0x/v) 1 (Rubin [1]). With

u(x, y, z) = U0u(v, f), v(x, y, z) = U0R'1/2v(v, f),

w(x, y, z) = U0R-1/2wU ?), v = y(U0/2vxY/2, f = z{U0/2vx)u2,
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the corner layer equations as reformulated in [2] become

uii + utt + vuv + ~ 0, (2.1a)

+ <pOi + 2u(6 — fit, + tjW;-) = 0, (2-lb)

¥>, + ipt — 2m = 0, (2.2a)

xp, — <p{ — d = 0. (2.2b)

The cross-velocities v(rj, f) and w(rj, f) in the 77, f direction respectively are related to
<p, rj/, u by

v = t)U — (p w = fw — ip (2.3a)

and the streamwise vorticity Q = vjv — vt is given by

Q = fw, — tjWj- — 9. (2.3b)

Alternate forms for the continuity Eq. (2.2a) and vorticity relation (2.2b) are obtained
by cross-differentiating so that

<Pn + <Ptt + 9? ~ -uv = 0, (2.4a)

- 0, - 2ut = 0. (2.4b)
Eqs. (2.1) and (2.4) constitute a set of four nonlinear elliptic Poisson-like equations for
which relaxation methods are generally well suited. The appropriate boundary con-
ditions are, at the surface 77 = 0,

<p = \j/ = u = 0, (2.5a)

0 = ^, (2.5b)

while from symmetry, across 77 = f,

= %, <p = i, <p; = , (2.5c)

0 = 0. (2.5d)
From the analysis of [2] the asymptotic behavior as f —» 00 is the following:

(i) min (77, f) —* <=>: Corner Layer —> Potential Flow.

u ~ 1 + o(rj~N), 6 ~ o(?;_M), for arbitrary 2V, M. (2.6a)

e,7r/4(<f> — ii/0 ~ (77 — it;)e'r/i — (2)1/2/3 + 4xr_1 + (2)1/2jSxr-2 + i^%>(log t)t~". (2.6b)
n-3

where r = (77 + tf)e_,T/4; y„ is real with a log f term first appearing in y5 . x is a real
constant yet to be determined and

0 = lim („/'(„) - /(„)) = 1.21678;
17—»co

/(17) is the familiar Blasius flat plate solution (Rosenhead [4]).
(ii) f —» 00, 77/f —> 0: Corner Layer —» Boundary Layer.

« ~ 1'(v) + xv1"(v)r2 + 0(r3), (2.7a)
e ~ rrw - Mv) + xi"(v)[5 - u/w + xift'wr' + o(r3), (2.7b)



172 S. G. RUBIN AND B. GROSSMAN

<t> ~ /(tj) + x[3vf'iv) + Ky)]r? + 0(r3), (2.7c)
* ~ fr(v) - ng(v) + xhfw + 4f'(J,)]r1 + fteA(i?)r2 + o(r3), (2.7d)

where

J7(l) = 1"(V) [' t(r - /?)//"(t)] rfr,
* 0

and /i(i?) is determined numerically (see Appendix I). For the numerical computation
only terms up to Off-2) or 0(r~2) will be retained. Therefore, the asymptotic boundary
conditions as obtained from a composite expansion of (2.6) and (2.7) become:

U = f'(v) + xvf'W. (2.8a)
e = ff'fo) - + Xi1"(v)[ 5 - ^)]r' + 0A'(„)r2}, (2.8b)

= Kv) + X{[3?jj'(ri) + Kv) — 477 + /3]f-2 + 4t?(7)2 + f2)-1

+ Kv2 + 2vt; - ?)(v2 + ?r2}, (2.8c)

i = tf'fo) - ifyfo) + x{hf'iv) + 4/'(,) - 4]r'
+ /W0») - 1 ]r2 + 4f(?;2 + iT1 - 0(„2 - 2^ - ?)(v2 + f2)-2}. (2.8d)

The symmetry conditions (2.5c) and (2.5d) are automatically satisfied by the above
relations when f —► co, T] = f (cf. [2]).

The error associated with the truncated series (2.8) can be expected to be of 0(f-3);
however, due to the typically divergent nature of such asymptotic expansions it was
found that the magnitude of the first neglected term in any of the formulas (2.8) or
equations (2.1) could be represented as and that \E(t))\ < 35, except for (2.8c)
where local values of E{rt) pti 70 occur (see Appendix I).1 For f = X = 15, the series
truncation error should then be at most 0.03; therefore, the final numerical solutions
were determined with Z = 15. The effect of smaller Z values is discussed in Sec. 3.

With the boundary conditions (2.5) and (2.8), and the system of equations (2.1)
and (2.4), the problem is completely specified. It is significant to note that although the
final system includes the differentiated equations (2.4), the prescribed boundary con-
ditions guarantee that Eqs. (2.2) are also satisfied. For it would appear that if the right-
hand sides of (2.2a) and (2.2b) were instead of zero, 2C(ri, f) and V(-q, f) respectively,
Eqs. (2.4) would still be satisfied for any harmonic functions C and V; i.e.,

C„ + crr = 0, V„ + Vn = 0. (2.9)
Since we are seeking solutions for which C and V are to vanish everywhere, the boundary
conditions (2.5) and (2.8) must insure that C and V are zero on at least part of the corner
boundary with the normal gradients, e.g., C, on 77 = 0, zero elsewhere on the boundary.
From (2.5a), (2.5b) we obtain V = 0 on 77 = 0 and with (2.4a), C„ = 0 on 77 = 0. The
symmetry conditions (2.5c) and (2.5d) insure that along the diagonal 17 = T, both V
and the normal gradient of C vanish; i.e., V = 0 and C, — Cf = 0. Finally, the asymp-
totic conditions (2.8) are such that C = 0 and V = 0, as they result from an asymptotic
expansion of Eqs. (2.1) (cf. [2]). Of particular significance in this regard is the constant

1 In view of the nature of the series (2.7), for Z < 15 the accuracy of the calculation would not be
appreciably increased by including an additional term in (2.8).
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X- For any inaccuracy in this value leads to an error in the flow properties at the boun-
dary of 0([x]2_1), in addition to the error associated with the termination of series (2.8).
Therefore, the finite difference representations for C and V at f = Z will also be in error.
Eqs. (2.2) will be satisfied to the accuracy of the finite difference scheme and the maxi-
mum accuracy allowed by the series (2.8) only when the error in x is a minimum. There-
fore, the boundary conditions (2.5) and (2.8) insure that (2.2) will be satisfied. The
proper choice of the constant x is achieved when the functions C(ji, f) and V(ij, f)
attain their minimum absolute values.

3. Numerical analysis. The governing equations are written in finite difference
form with the use of five-point central difference formulas (see Appendix II). The follow-
ing equations result:

8w0 = iti (2 + <p0t) + w2(2 + \p0t) + u3( 2 — <p0t) + w4( 2 — ^o0> (3.1a)

40o(2 + u0f) = 6i(2 + <p0i) + 02(2 + "Ao t) + $3(2 — <po t)

+ 04(:2 — f0f) — 2w0/[f0(Wi — Ms) — Vo(u2 — W4)] (3.1b)

4p0 = <Pi + <f>2 + <f>3 + <Pi — (ui — u3)t + (02 ~ d4)(t/2), (3.1c)

4^0 = ^ -f- \f/2 -f- -)- — (m2 — u4)t — (0! — d3)(t/2), (3.Id)

where the grid points are defined in Fig. 2 and t is the uniform grid spacing. The boun-
dary conditions are prescribed by (2.5) and (2.8), with the asymptotic values (2.8) applied
at f = Z. The vorticity at the surface 7? = 0 is specified by a three-point end difference
formula having an error equivalent to that of (3.1):

0„ = - hi)- (3-2)
From the symmetry conditions (2.5c), (2.5d) across rj = f,

Ua = u'a , <Pa = Va , to = V* , 6a = — 0O- . (3.3)

Solutions of (3.1) are obtained by the 3auss-Seidel method of successive iteration
(Smith [5]). Initial values for <p, 4>, u, 0 are selected such that C(»j, f) and V(rj, f) are
zero throughout. The prescribed initial values are

u(v, r) = mm) + k« - nmntf'w («,
V(n, f) = b/'O?) - Kv)]g(t) + tf"(f)[/(i?) - f* g(v) dv~]

+ [(a - p)/m"tt){v21"(v) - WO?) + /(*)],
w(v, f) = f(f, v),

0(v, f) - fM, — 7?«r + v{ — w, ,

(3.4)

where

lim ( f g(rf) d,T) — 77) = 6.11456.
TJ—»«0 \J 0 /

These initial conditions exhibit exponential decay for f —» c°; however, in this iterative
method the algebraic nature of the asymptotic flow field appears very rapidly, after
about 50 iterations.
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The iteration procedure begins on the diagonal at the lower left-hand corner of the
triangular domain of Fig. 2, one grid point above the surface 77 = 0. The point being
considered is denoted by subscript zero in Eqs. (3.1). Utilizing the initial values for
points 1, 2, 3 and <p0 , ^0 , 8o , a new value of u is obtained from (3.1a). This result im-
mediately replaces the initial value of u0 . 60 is determined from (3.1b), <p0 from (3.1c)
and ipQ from (3.Id); the new values are used as they become available. The calculation
then proceeds point by point to the right until all new values have been determined
for this row. After the point f = Z — t, the computation returns to the diagonal, in-
crementing 77 by t. The procedure continues until all grid points have been treated; this
results in one complete iteration. The number of iterations required prior to convergence
depends upon the grid spacing t and the boundary limit Z. If the solution is said to be
converged when changes in successive iterations are less than one percent everywhere,
then Table 1 lists the required number of iterations and respective calculation times on
the CDC 6600 computer.

The error associated with any of the converged solutions is a function of the error
inherent in the finite-difference approximation, the truncation error, at the boundary,
in series (2.8), and any inaccuracy associated with the constant x- Neglecting the effect of
the latter for the moment, it is estimated that the first two are 0(t2) and 0{E{ri)Z~z)
respectively. Therefore, with t = 0.2 and Z = 15, inaccuracies due to grid size are per-
haps somewhat larger than those associated with the choice of the asymptotic boundary.
As discussed previously, at the boundary the series truncation error with Z = 15 is
less than 0.03. The finite-difference error can be further reduced by decreasing t; how-
ever, this is extremely time-consuming and leads to computer storage difficulties. On
the other hand, for the system (3.1) and boundary conditions (2.5) describing the
rectangular corner layer region, this error should be 0(i2). Therefore, if <tx and <r2 are

z
Fig. 2. Finite difference grid.
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TABLE 1

No. of Calculation
Starting Conditions t Z Iterations Time

(i) Initial Conditions (3.4) 0.6 8.8 3000 1.0 min
(ii) Initial Conditions (3.4) 0.4 10 4200 2.5 miu
(iii) Converged Solution of (ii)

Simple Average for Inter-
mediate Values 0.2 10 2500 5.2 min

(iv) Converged Solution of (iii)
with Conditions (2.8) from
Z = 10 to Z = 15 0.2 15 2000 9.5 min

solutions for and t2 respectively, with t = 2<2, an improved solution <r is given by

3it = 4tr2 — , (3.5)

and the error is estimated to be 0(t\) (see Smith [5, p. 140]). The improved values, de-
noted by a bar ( ), can be obtained from solutions having tx = 0.4, t2 = 0.2, Z = 15.

The Gauss-Seidel explicit method of iteration when applied to the system (3.1) is
not stable for all combinations of t and Z. As seen from the numerical results, this is due
to the behavior of 4* for large f and <p for large ij; i.e., ^ ~ f as f —> . Due to the ap-
pearance of if/t, <pt, r]t, and Zt terms in (3.1a) and (3.1b), increasing the asymptotic boun-
dary Z for fixed t ultimately leads to an instability, originating at large y, f, in the
iterative procedure. Solutions for fixed t are found only for Z less than some Zt . The
values of Zt for selected values of t are given in Table 2. Therefore, it was not possible
to obtain a t = 0.4, Z = 15 solution directly. Although the instability might be elimi-
nated by an implicit iterative scheme of the Peaceman-Rachford alternating direction
type (Smith [5]), this additional complexity was deemed unnecessary for the analysis
presented here. In lieu of an imphcit calculation, a solution is obtained for t = 0.4,
Z = 10. In order to provide the Z = 15 accuracy for the boundary values applied at
Z = 10, the results along f = 10, for 0 < -q < 10, of the t = 0.2, Z = 15 solution are
applied as the boundary values at Z = 10 in the t = 0.4 calculation, in place of the
asymptotic values (2.8). Therefore, for 0 < f < 10 solutions having the accuracy as-
sociated with t — 0.4, Z = 15 and t = 0.2, Z = 15 are determined.

The improved solution discussed previously can now be specified for 0 < f < 10.
The constant x is also determined iteratively. The initial solutions for x = 0 were

unacceptable in view of the algebraic behavior of all the flow variables as f . Further-
more, the values of C(y, f) and V(y, J") were in excess of those compatible with an error
due solely to the finite difference approximation. C(y, f) was positive throughout with
almost a uniform distribution; for t = 0.2, Z = 10, it was found that max \C(y, f),
V(v, r)l = 0.08. Near the corner where the streamwise velocity and vorticity are small,

TABLE 2

t 0.8 0.6 0.4 0.2

Zt <9 =9 =11 =18
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the errors in these quantities were therefore quite large. With algebraic decay, errors of
0{Z-1) in the outer boundary conditions are incurred and the dilemma is resolved.
Due to the inaccuracy in the asymptotic formulas (2.8), when x = 0, additional mass
crosses the outer boundary and is reflected as interior mass sources, compatible with
Eqs. (2.9). These mass sources should decrease in strength as conditions (2.8) are more
closely satisfied. That this is the case is shown in Fig. 3. For increasing positive x the
strength of the interior source points monotonically increases, while for increasing nega-
tive values of x they are diminished until a minimum is attained. In Fig. 3, the maximum
absolute value of C (17, f) is depicted as a function of x for various t and Z. The increased
accuracy with finer grid spacing t or larger values of Z is also shown. Similar variations
with Z and t occur for V{-q, f), although the maximum value for all of the solutions is
almost insensitive to changes in x> and for the improved solution, extremely small.
Due to the zero boundary conditions for V on the surface and along the symmetry line,
and the small value of (or <pn) at f = Z, the magnitude of V(17, f) is primarily a
function of the grid spacing t, and only for the smaller value of t = 0.2 is the effect of the
outer boundary significant. For the improved solution the error associated with the grid
size is minimal and variations in x have a minor influence. The same is not true for
C(t], f) where derivative conditions apply at the surface and symmetry line. The asymp-
totic value of C (or ip:) at f = Z will be considerably larger and therefore variations
in x and Z have significant effects on C(tj, f) for all of the t values shown on Fig. 3.

.12
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Fig. 3. Variation of \c\ and \v\ with x? t and Z.
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TABLE 3a. C(u, f)

8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4
1.6

.8
0.0

.004
.004 .004

.003 .003 .004
.002 .002 .003 .003

.001 .001 .002 .003 .003
-.000 .000 .001 .001 .002 .003

-.001 - .000 - .000 .000 .001 .001 .002
-.002 - .001 - .001 -.000 -.000 .000 .001 .001

-.002 -.002 - .001 -.001 -.001 -.000 -.000 .000 .001
-.002 -.002 -.002 - .001 -.001 -.001 -.001 -.000 -.000 . 001

.002 - .002 -.001 -.001 -.001 -.001 -.001 -.001 -.001 -.001 -.001

.004 - .002 - .000 . 001 .001 -.001 -.001 -.001 -.002 -.002 -.002

1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

It is noteworthy that for the improved solution the smallest maximum absolute
value of C(r], f) occurs when x = —2.5, and corresponds to both the maximum negative
and maximum positive values. For x > —2.5, Fig. 3 reflects a maximum negative value
of C(ji, £"), with a positive maximum for x < —2.5. Furthermore, an average value of
C(r), f) defined as the sum of all the interior values passes through zero at x = —2.5.
Throughout the range — 2.7 < % < —2.3 the effects of variations in x are of the order
of the series truncation error and therefore x cannot be determined with any more
precision. However, variations in the flow properties are minimal throughout this
interval and C(t/, s"), F(t/, f) remain quite small. Complete distributions of C(y, £) and
V(t], f) are presented in Table 3 for x = —2.5. The results to be discussed in the follow-
ing section relate to this solution.

4. Numerical results. In Table 4, the distributions of streamwise velocity and
vorticity as well as the secondary flow velocities are presented. These solutions are in

TABLE 3b. V(v, f)

8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4
1.6

.8
0.0

.000
.000 - .001

.000 - .001 -.001
.000 - .001 -.001 -.002

.000 - .001 - .001 -.001 -.002
.000 -.001 - .002 - .002 - .002 -.002

.000 - .002 - .003 - .003 -.003 -.003 -.002
.000 .000 - .002 - .003 -.003 -.003 -.003 -.002

.000 .000 - .000 - .002 - .003 -.003 -.004 -.004 -.004
.000 - .001 - .002 - .004 - .005 - .006 - .006 - .006 - .005 - .004

.000 - .000 -.001 - .003 - .005 -.007 -.007 -.007 -.007 -.005 -.003

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8
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TABLE 4a. Streamwise velocity u

8.8 1.000
8.0 1.000 1.000
7.2 1.000 1.000 1.000
6.4 1.000 1.000 1.000 1.000
5.6 1.000 1.000 1.000 1.000 1.000
4.8 .998 .999 1.000 1.000 1.000 1.000
4.0 .966 .989 .994 .996 .996 .997 .997
3.2 .815 .905 .950 .966 .971 .974 .975 .976
2.4 .543 .677 .781 .842 .869 .880 .885 .888 .890
1.6 .263 .381 .487 .573 .629 .657 .670 .677 .680 .682

.8 .068 .134 .195 .251 .297 .329 .346 .355 .359 .361 .362
0.0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8

TABLE 4b. Streamwise vorticily Q

8.8 -.000
8.0 -.000 -.000
7.2 .000 -.000 -.000
6.4 .000 -.000 -.000 -.000
5.6 .000 -.002 -.002 -.002 -.001
4.8 . 000 -.043 -.035 -.028 -.024 -.022
4.0 -.000 -.332 -.308 -.250 -.216 -.196 -.184
3.2 .000 -.898 -1.158 -1.035 -.905 -.830 -.785 -.756
2.4 -.000 - .783 -1.560 -1.813 -1.731 -1.617 -1.539 -1.488 -1.453
1.6 . 000 -.252 -.721 -1.160 -1.338 -1.325 -1.264 -1.207 -1.159 -1.122

.8 -.000 - .049 - .113 - .171 -.193 -.161 -.095 -.027 .031 .082 .128
0.0 -.023 - .068 . 027 . 293 . 601 .837 . 985 1.075 1.131 1.169 1.202

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8

TABLE 4c. Secondary velocity v

8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4
1.6

.8
0.0

1.779
1.839 1.773

1.919 1.831 1.758
2.029 1.909 1.810 1.731

2.190 2.014 1.877 1.772 1.690
2.422 2.160 1.958 1.814 1.709 1.631

2.580 2.334 2.043 1.840 1.705 1.612 1.545
2.111 2.293 2.054 1.788 1.615 1.508 1.437 1.388

1.079 1.615 1.727 1.545 1.346 1.220 1.146 1.100 1.070
.297 .643 .914 .963 .861 .746 .672 .629 .604 .590

.026 .094 .195 .270 .280 .247 .210 .186 .172 .164 .160
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8
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TABLE 4d. Secondary velocity w

8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4
1.6

.8
0.0

1.779
1.839 1.838

1.919 1.915 1.904
2.029 2.021 2.001 1.974

2.190 2.173 2.136 2.092 2.047
2.422 2.396 2.328 2.252 2.179 2.113

2.580 2.621 2.531 2.410 2.298 2.200 2.118
2.111 2.349 2.370 2.271 2.145 2.028 1.928 1.843

1.079 1.326 1.413 1.400 1.327 1.232 1.141 1.059 .990
.297 .433 .418 .327 .231 .144 .065 -.005 -.065 -.117

.026 .076 .061 -.048 - .188 -.305 -.388 -.447 -.491 -.525 -.554
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

accord with the asymptotic behavior predicted in [2], The streamwise velocity and
vorticity exhibit a very rapid decay into the potential flow as 17, f ®, but the algebraic
nature of the flow for f ®—> 0 is also apparent. As predicted by the asymptotic
theory, the velocities u and v approach their boundary layer values somewhat more
rapidly than does the crossflow velocity w or streamwise vorticity 12. Moreover, for
j) = f > 4, where series (2.8) is expected to deviate from the exact asymptotic solution
by less than 10%, the computed numerical solutions are within 6% of the asymptotic
formulas (2.8). For small values of v the accuracy of the asymptotic series is only good for
much larger but deviations from the numerical solutions are always less than the
series truncation error (see Appendix I).

Fig. 4 depicts isovels of the streamwise velocity. Included in the figure are the results
found by Carrier [6] and Pearson [3], both of whom were unaware of the algebraic nature
of the asymptotic flow field. Carrier obtained approximate solutions for u by splitting the
continuity equation (2.1c) and neglecting the vorticity equation (2.1b). This procedure
results in an erroneous secondary flow field, as shown by Rubin [1]. The results obtained
here for mainstream velocity in the corner layer also differ significantly from those
found by the Carrier approximation. The solutions found by Pearson [3], who solved the
full set of comer layer equations by an iterative technique, are much better for the
secondary2 and streamwise velocities, although the secondary flows are significantly
different for larger values of f (Fig. 5). This is to be expected in view of the algebraic
decay. The corner layer thickness, defined here to be at the point where the shear stress
(«,)o is 99% of the two-dimensional value (Fig. 6), is about three to four two-dimensional
flat plate boundary layer thicknesses.

The skin friction coefficient at 17 = 0 is defined by (2v/U0x)1/2(uv)0 ■ As shown in
Fig. 6, this coefficient increases monotonically from zero at the corner to its asymptotic
two-dimensional value. There are no overshoots in the skin friction similar to those
found for the cold wall hypersonic interaction in a corner (Cresci et al. [7]), where the
theory, applied only near the leading edge of the corner, fails to indicate a crosswise

2 The secondary flow velocities for y — f < 3 are relatively insensitive to variations in x, but with
x = —2.5 they are in excellent agreement with the asymptotic series (2.8).
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Fig. 5a. Streamwise velocity along symmetry line.
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influx. On the other hand, Bloom [8] and Libby [9] independently have shown that the
asymptotic inflow is eliminated for cold wall conditions even at very low Mach num-
bers. This would indicate a basic difference in the corner flow structure for cold wall and
adiabatic wall conditions. Of course, the hypersonic corner layer interaction itself may
be fundamentally different from the low-speed flow as the appearance of complex shock
patterns will affect the structure of the secondary flow.

The computed secondary flow field is also described in Table 5, where the local
crossflow direction as defined by tan-1 (w/v) is given. The region of inflow diminishes
as f increases but a closed vortical flow in the corner layer is not established. In view of
the asymptotic form of w = R~1/2w(ri, z/x) in the boundary layer as z/x —> co,
[w(v, z/x) ~ 0.861 f(n){z/x)~1/2] (Rubin [1]), Fig. 7 represents a qualitative sketch of the
entire boundary layer-corner layer secondary flow field. The crossflow velocity is locally
tangent to the projected stream surfaces. The known corner layer and asymptotic
boundary layer flow (z/x —■» ®) are given by the solid and dashed lines, respectively.
The intermediate region has not been determined but since the v velocity component is
"Blasius" throughout to 0(R~1/2), the dotted lines are indicative of the flow in this
region.

5. Summary. The flow along a corner formed by the intersection of two perpen-
dicular flat plates leads to a three-dimensional boundary layer problem for the interior
corner layer region. The governing equations are reduced to four Poisson-like equations
and solved numerically by the Gauss-Seidel method of successive iteration. Since Pal
and Rubin [2] have previously demonstrated the algebraic nature of the asymptotic
flow field as f —> ®, terms up to 0(f~2) in the series found in [2] are used as the asymp-
totic boundary values for the numerical analysis. A single arbitrary constant in this
series is unknown. By varying the numerical value of this constant the mass flux across
the outer boundary is altered and interior mass sources appear. The correct value of the
constant is then determined by eliminating the appearance of such source effects. The
final result should be accurate to within approximately two percent and is obtained
by a suitable combination of solutions that have grid spacings of t = 0.4 and t — 0.2,
respectively. The numerical results differ from the asymptotic series of [2] by less than

TABLE 5. Secondary flow direction

90°
45

i.O 45 43
7.2 45 43 42
6.4 45 43 42 41
5.6 45 42 41 40 39
4.8 1S0°<  >0° 45 42 40 3S 38 37
4.0 45 41 38 37 36 36 36
3.2 45 44 40 3S 36 36 36 36
2.4 45 50 50 47 45 44 45 46 47
1.6 45 56 65 71 74 79 84 179 173 168

45 51 72 170 146 129 118 112 109 107 106

.8 1.6 2.4 3.2 4.0 4.S 5.6 6.4 7.2 8.0 8.8
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Fig. 7. Qualitative sketch of secondary flow (lines denote streamsurface intersection with crossplane).

6% in the range tj - f > 4 and deviations between the two values are always bounded
by the series truncation error. In view of the algebraic decay, the corner layer extends
outward approximately three to four two-dimensional flat plate boundary layer thick-
nesses. Although a swirling motion is found in the corner layer, a closed vortical pattern
is not established for the incompressible flow.

Appendix I. Solution for h(y) and l(tj). The asymptotic series (2.7) can be written as

u ~ /'(,) + xvrwr2 + xiww2 - Hv))r3 + o(r4), (i.ia)
v ~ f(v) + x[3 vf(v) + fMir2 + xMv)r3 + o(r4), (i.ib)
"A ~ tf'(v) — Pg(v) + xlvf'(v) + + X@h(rj)$~2 + 0(£~3), (He)

0 „ r/"(„) _ Pg'(v) + x/"(„)[ 5 - rtKn^r1 + tfh'idr* + 0(r3). (I.ld)
The governing equations for the functions h = h(rj) and I = l(-q), as presented in [2],
become

h'" + fh" + 2fh' + f"h = fl" - f'"l + gf"(3i}/' + /)
+ 2vf'g' - gf'(5 - „/), (I.2a)

and

V" + fl" - 3fl' + 2f'l = 2(h" + fh' - Zfh) - ivf"g. (I.2b)
The boundary conditions are

h<!0) = m = i'(0) = 0,
h'iv) ~ l'(y) — 2h{ri) ~ o(rf~M) as t; —> oo
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for arbitrary M, N. The remaining boundary condition is obtained from symmetry
(cf. P-R). Using the expansion (2.6), it is found that

h{n) ~ 1 + o(r/~N) as 7? —» oo for arbitrary N. (1.3b)

Eq. (I.2a) can be integrated once, and with (1.3b) becomes

h" + fh' + fh = f'V - f'l - g(vf" + 4/') + g'{Zvf + /) + 3. (1.4)
The system (I.2b), (1.4) can be further simplified by introducing

s = s(t?) = V — Ah, t = £(ij) = I. (1.5)

Then

S" + fs' - fs = 2g(4f - vf") - 2g'(2vf + /) - 6, (I.6a)
and

t'" + ft" - 3ft' + if't = 2fs - 2^(4/' + vf") + 2<7'(3vf + 1) + 6. (I.6b)
The boundary conditions (1.3) transform as

s(o) = 0, t(o) = 0, t'{o) =0, t' ~ 2 + o(V~N),

  2 + o(v'M), (1.7)

as v ~* 00 > for arbitrary N, M. s(v) is first determined from (I.6a), with t(v) obtained
from (1.6b). The system is linear so that the two-point boundary value problem is solved
by the suitable addition of complementary and particular solutions. The homogeneous
equations exhibit both algebraically growing (s ~ 77, t' ~ 77s) and exponentially decay-
ing solutions. The algebraic growth is eliminated when the complimentary and particular
solutions are combined. The functions h{77) and l(v) are presented in Table 1.1.

Having determined the solution for the series (1.1), it is possible to examine the
magnitudes of the specific terms and exhibit the divergent nature of the expansion.
At 77 = 2.0, with x = —2.5, the largest overall errors are incurred by the truncated
series (1.1). For f »2,

u ~ 0.817 - 1.28r2 + 4.96r3 + 0(f4),

v ~ 0.887 - 14.47r2 + 71.62^"* + 0(f-4),

+ ~ 0.817f + 0.1S7 - 9.45f1 + 18.26r2 + 0(r°), (J g)

6 ~ 0.256f - 1.12 - 2.87r' - 6.68r2 + 0(f3),

v ~ 0.747 4- 11.91T2 - 61.70r3 + 0(f4),

  0.187 + 8.17f_1 - 13.30r2 + 0(r3),
Along 77 = f » 1, from (2.8),

u ~ 1 + o(f~Ar), 6 ~ o(^~N), M, N arbitrary positive, „ ^

v = w ~ 1.2168 + 5f_1 + 1.522f~2 + 0(r3)-
Therefore, with f = Z = 15, the error near the boundary associated with the truncated
series (2.8) should be less than 0.02 for any of the physical flow properties. The series
(1.9) is in excellent agreement with the numerical solution for f > 3.5; e.g., at f = 4
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TABLE 1.1. A(ij), l(v)

rj) h\ri) l(ri) l'(-n)

0.0 0.0000 - 6.9426 0.0000 0 0000
.4 -2.5336 - 5.7080 -1.3400 - 6.5287
.8 -4.5386 -4.2651 -5.0631 -11.8467

1.2 -5.8923 -2.4264 -10.5845 -15.4150
1.6 -6.4205 -.1569 -17.0804 -16.6358
2.0 -6.0048 2.1948 -23.5452 -15.2742
2.4 -4.7515 3.8985 -29.0191 -11.8329
2.8 -3.0566 4.3487 -32.8917 -7.4986
3.2 -1.4333 3.6156 - 35.0713 - 3.5521
3.6 -.2341 2.3565 - 35.8895 -.7529
4.0 .4721 1.2334 -35.8357 .8447
4.4 .8096 . 5260 - 35.3275 1.5899
4.8 .9421 .1846 -34.6242 1.8769
5.2 .9851 .0537 -33.8514 1.9687
5.6 . 9968 . 0130 - 33.0578 1.9933
6.0 .9994 .0026 -32.2591 1.9988
6.4 .9999 .0004 -31.4594 1.9998
6.8 1.0000 . 0001 -30.6594 2.0000
7.2 1.0000 .0000 -29.8594 2.0000
7.6 1.0000 .0000 -29.0594 2.0000
8.0 1.0000 . 0000 -28.2594 2.0000
8.4 1.0000 -.0000 -27.4594 2.0000
8.8 1.0000 -.0000 -26.6594 2.0000
9.2 1.0000 -.0000 -25.8594 2.0000
9.6 1.0000 -.0000 -25.0594 2.0000

and f = 5.6, the numerical results are w = 2.580 and w = 2.190, respectively, while
from (1.9) we obtain w = 2.512 and w = 2.158.

Appendix II. Finite difference approximation. For a function T0 = T(tj, f) having
continuous third-order partial derivatives in tj, f, Taylor's series expansion gives

T1 = T(v + t, f) = To + /To, + (?/2)To„ + (#76)T0„, + 0(0, (H.la)

T3 = T(v - t, f) = T„ - tT0, + (f/2)T0„ - (t3/6)T0,in + 0(1*) (Il.lb)

with similar relations for T2 = T(rj, f + t), Ti = T(tj, f — t).
Therefore, the following derivative relations are obtained:

?T0„ = T, + T2 - 2T„ + 0(0, (11.2a)

2;To, = Ti - r3 + 0(0, (II.2b)

with similar results for T0ff, T0r . If the relations (II.l), (II.2) are used in the governing
equations, the finite difference system (3.1) results.

The truncation error denoted by ||( )|| and defined as the difference between Eqs.
(3.1) and the governing system of partial differential equations (2.2) and (2.4) is given by



186 S. G. RUBIN AND B. GROSSMAN

j | (3.1 a) 11 = (t2/l2)[un "I" uo;rrr 2<p0Wo,„ + 2i/'oWofff}, (II.3a)

11 (3 - lb) 11 = (t /12) { 0o,,,, + ^orrrr 2^o^o,,, 4" 2</,0^0fff ~f~ 4fw0Wo,,, 47fU0worf{} >

(II.3b)

ll(3.1c) j| = (<7l2){^„„ + <PoCC{! + 20Ofrf - 4w0,„}, (II.3c)

11 (3. Id) 11 = (t2/ 12){^o„„ + "Aoffff - 20o,„ - 4w0frt}. (II.3d)
Therefore the truncation errors (II.3) and discretization errors (II.1) are 0(t2). The
maximum errors in (II.3) are a result of the asymptotic form of ipo and 90, which asymp-
tote to tf'iv) — Pg(y) and — fig'in) respectively. Higher-order derivatives of these
expressions are maximal in the vicinity of rj = 1.5 where errors in F(?j, f) are largest.
These inaccuracies are substantially reduced for the improved solution where the
truncation error is 0(f).
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