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Abstract. The viscous flow induced by a shrinking sheet is studied. Existence and
(non)uniqueness are proved. Exact solutions, both numerical and in closed form, are
found.

1. Introduction. The viscous flow due to a stretching boundary occurs in expanding
or contracting surfaces in a fluid such as extrusion of sheet material from a die and
the elongation of pseudopods. Crane [3] found a closed form solution for steady, two-
dimensional stretching where the velocity on the boundary is away and proportional
to the distance from a fixed point. The more basic stretching solutions (which differ
appreciably from Crane’s) are as follows. Gupta and Gupta [4] added suction or injection
on the surface. The flow inside a stretching channel or tube was considered by Brady and
Acrivos [2] and the flow outside a stretching tube by Wang [10]. The three-dimensional
and axisymmetric stretching surface was studied by Wang [9]. The unsteady stretching
film was investigated by Wang [11] and Usha and Sridharan [8]. The above solutions are
also rare exact similarity solutions of the Navier-Stokes equations.

There is no doubt about the existence of Crane’s stretching flow, since an exact closed
form solution has been found. The stability was shown by Bhattacharyya and Gupta [1].
The uniqueness of the flow has been proved independently by McLeod and Rajagopal [6]
and Troy et al. [7].

On the other hand, very little is known about the shrinking sheet where the velocity
on the boundary is towards a fixed point. Only a very specific unsteady shrinking film
solution was discussed by Wang [11]. From continuity Crane’s stretching sheet solution
would induce a far field suction towards the sheet, while the shrinking sheet would cause
a velocity away from the sheet. Thus from physical grounds vorticity of the shrinking
sheet is not confined within a boundary layer, and the flow is unlikely to exist unless
adequate suction on the boundary is imposed. The purpose of this paper is to study the
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properties of the flow due to a shrinking sheet with suction. Suction occurs when the
fluid condenses on the surface, such as in chemical vapor deposition (Jensen et al [5]).
We shall prove existence and discuss (non)uniqueness of exact solutions.

2. Formulation. Let (u, v, w) be velocity components in the Cartesian directions
(x, y, z) respectively. The continuity and steady constant property Navier-Stokes equa-
tions are

ux + vy + wz = 0, (2.1)

uux + vuy + wuz = −px/ρ + ν∇2u, (2.2)

uvx + vvy + wvz = −py/ρ + ν∇2v, (2.3)

uwx + vwy + wwz = −pz/ρ + ν∇2w. (2.4)

Here p is the pressure, ρ is the density and ν is the kinematic viscosity. The boundary
conditions on the sheet at z = 0 are:

u = −ax, v = −a(m − 1)y, w = −W (2.5)

where a > 0 is the shrinking constant, W is the suction velocity and m = 1 when the
sheet shrinks in the x direction only, m = 2 when the sheet shrinks axisymmetrically.
Far from the sheet the fluid has no lateral velocities and the pressure is uniform. The
similarity transformation is

u = axf ′(η), v = a(m − 1)yf ′(η), w = −
√

aν mf(η) (2.6)

where η = z
√

a/ν. Equation (2.1) is automatically satisfied, equation (2.4) becomes

p/ρ = νwz − w2/2 + constant (2.7)

and equations (2.2,2.3) reduce to the ordinary differential equation

f ′′′ + mff ′′ − (f ′)2 = 0. (2.8)

The boundary conditions are

f ′(0) = −1, f(0) =
W

m
√

aν
≡ s, f ′(∞) = 0. (2.9)

Equations (2.8-2.9) have never been studied before.
We present here a special exact solution. When

s =

√
6

2m − 1
(2.10)

equations (2.8-2.9) have an exact solution

f(η) =
s2

η + s
. (2.11)

Note that in this case f(∞) = 0 and the decay is algebraic. In the rest of the article we
will explore the possibility of f(∞) �= 0.
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3. Characterization of solutions with f(∞) �= 0. Throughout this section we
will assume that for some δ ∈ [−∞,∞) we have f ∈ C3(δ,∞) such that

f ′′′ + mff ′′ − (f ′)2 = 0 on (δ,∞), (3.1)

there exists x0 ∈ (δ,∞) such that f ′(x0) < 0 or f ′′(x0) > 0, (3.2)

lim
x→∞

f ′(x) = 0, (3.3)

it is not true that lim
x→∞

f(x) = 0. (3.4)

For convenience, we shall assume that 0 < m < 15.

Lemma 3.1. There exists x1 ∈ (−δ,∞) such that

f(x) > 0, f ′(x) < 0, f ′′(x) > 0, f ′′′(x) < 0 for x > x1.

Proof. Since (
f ′′em

∫
f
)′

= em
∫

ff ′ 2 ≥ 0 (3.5)

we see that f ′′ has at most one zero in (δ,∞). If there exists x∗ such that f ′′(x∗) = 0,
then (3.5) implies f ′′ > 0 on (x∗,∞). If on the other hand f ′′ is never 0, then assumptions
(3.2) and (3.3) imply that f ′′ > 0 on (δ,∞). In each case there exists x∗ such that

f ′′(x) > 0 for x > x∗ (3.6)

and in view of (3.3) we have that f ′(x) < 0 for x > x∗.
Since

f iv + mff ′′′ = (2 − m)f ′f ′′

we have that (
f ′′′em

∫
f
)′

= (2 − m)f ′f ′′em
∫

f . (3.7)

Hence, if m = 2, then f ′′′ is never 0 and if m �= 2, then f ′′′ has at most one 0 in (x∗,∞).
(3.3) and (3.6) imply that there exists x1 such that f ′′′ < 0 on (x1,∞). This, (3.1) and
(3.6) imply f > 0 on (x1,∞), which completes the proof. �

Lemma 3.1 and (3.4) imply

lim
x→∞

f(x) = C (3.8)

for some C ∈ (0,∞).

Lemma 3.2. There exists c0 ∈ (0,∞) such that

f ′′(x) < c0e
−mCx for x > x1.

Proof. Since

f ′′′ + mCf ′′ = f ′ 2 − m(f − C)f ′′ (3.9)
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Lemma 3.1 implies that for x1 < x < L < ∞ ,

f ′′ + mCf ′ ∣∣L
x =

∫ L

x

f ′ 2 − m(f − C)f ′′

<

∫ L

x

f ′ 2

< −f ′(x)
∫ L

x

−f ′ = −f ′(x)(f(x) − f(L))

and sending L → ∞ gives

−f ′′(x) − mCf ′(x) < −f ′(x)(f(x) − C).

Since there exists x∗ > x1 such that 0 < f(x) − C < mC/3 for x > x∗ we have

−f ′′(x) − 2mC

3
f ′(x) < 0

and hence for some c∗ < ∞,

−f ′(x) < c∗e−2mCx/3 for x > x∗.

Using this in (3.9) gives

f ′′(x)emCx − f ′′(x∗)emCx∗
<

∫ x

x∗
emCsf ′(s)2ds < c∗ 2

∫ ∞

x∗
e−mCs/3ds,

which implies the conclusion of the lemma. �
Define a Banach space X to be the set of all u ∈ C2[0,∞) such that

lim
x→∞

u(x) = lim
x→∞

u′(x) = 0

and

‖u‖ = sup
x≥0

|u′′(x)|e4x < ∞.

For b ∈ [0, 1] and m ∈ (0, 15) define Tb,m : X → X by

(Tb,mu)′′(x) = be−4x +
∫ x

0

e4(s−x)(u′(s)2 − mu(s)u′′(s))ds. (3.10)

It is easy to see that if u ∈ X and ‖u‖ ≤ 2, then

‖Tb,mu‖ ≤ b + (m + 1)‖u‖2/64 < 2. (3.11)

If u1, u2 ∈ X, ‖u1‖ ≤ 2 and ‖u2‖ ≤ 2, then a straightforward calculation gives

‖Tb,mu1 − Tb,mu2‖ ≤ m + 1
16

‖u1 − u2‖. (3.12)

(3.11) and (3.12) imply

Theorem 3.3. For every b ∈ [0, 1] and m ∈ (0, 15) there exists a unique Ub,m ∈ X such
that

‖Ub,m‖ ≤ 2 and Tb,mUb,m = Ub,m.
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Note that

U ′′′
b,m = (U ′

b,m)2 − m(Ub,m + 4/m)U ′′
b,m, U ′′

b,m(0) = b. (3.13)

Using the differential equation (3.13) enables us to extend the definition of Ub,m(x) for
x < 0 on the maximal interval.

Lemma 3.4. For any b ∈ (0, 1] and m ∈ (0, 15) there exists γ ≥ 0 such that

Ub,m(x) = U1,m(x + γ) for x ≥ 0.

Proof. Continuity of U ′′
1,m implies that there exists γ ≥ 0 such that U ′′

1,m(γ) = b.
Define v(x) = U1,m(x + γ) for x ≥ 0. Since

v′′(x)e4x = U ′′
1,m(x + γ)e4(x+γ)−4γ ≤ 2

we have that v ∈ X and ‖v‖ ≤ 2. (3.13) implies

v′′′ + 4v′′ = v′ 2 − mvv′′, v′′(0) = b (3.14)

and integration gives that Tb,mv = v. Therefore v = Ub,m by Theorem 3.3. �

Lemma 3.5. U1,1(x) = e−4x/16.

Proof. Let v(x) = e−4x/16. Note v ∈ X and ‖v‖ = 1. A direct calculation shows
T1,1v = v; hence, v = U1,1 by Theorem 3.3. �

Theorem 3.6. There exist β ∈ (x1,∞) and γ ≥ 0 such that

f(x) = C +
mC

4
U1,m

(
mC

4
(x − β) + γ

)
for x ≥ β.

Proof. Choose β > x1 such that(
4

mC

)3

c0e
−mCβ ≤ 2 and

(
4

mC

)3

f ′′(β) ≤ 1, (3.15)

where c0 is as given in Lemma 3.2. Define

v(x) =
4

mC
f

(
4

mC
x + β

)
− 4

m
for x ≥ 0.

Note

v′′(x)e4x =
(

4
mC

)3

f ′′
(

4
mC

x + β

)
emC(4x/(mC)+β)−mCβ ≤

(
4

mC

)3

c0e
−mCβ ≤ 2.

Hence v ∈ X and ‖v‖ ≤ 2.
Since v satisfies (3.14), an integration gives that Tb,mv = v, where

b = v′′(0) =
(

4
mC

)3

f ′′(β) ≤ 1

and therefore Theorem 3.3 implies that v = Ub,m. Lemma 3.4 implies that

v(x) = U1,m(x + γ),

and this completes the proof. �
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4. Results and conclusions. Theorem 3.6 implies that every solution of our bound-
ary value problem (2.8) and (2.9), for which f(∞) �= 0, is of the form

f(x) = C +
mC

4
U1,m

(
mC

4
x + γ

)
for x ≥ 0

for some constants C > 0 and γ. U1,m is given by Theorem 3.3 and extended to the
maximal interval by (3.13). The boundary condition f(0) = s implies

C +
mC

4
U1,m(γ) = s (4.1)

and f ′(0) = −1 implies (
mC

4

)2

U ′
1,m(γ) = −1. (4.2)

Equations (4.1, 4.2) imply that

s =
4 + mU1,m(γ)

m
√
−U ′

1,m(γ)
. (4.3)

Plotting the right-hand side of (4.3) vs. γ gives all possible s and their multiplicity.
When m = 1, Lemma 3.5 implies U1,1(x) = e−4x/16; hence (4.3) becomes

s = 2cosh(2γ + ln 8). (4.4)

Therefore, there are no solutions for s < 2, one for s = 2 and two for s > 2. There is
an additional, algebraically decaying solution (2.11) when s =

√
6. Equations (4.2, 4.3)

imply that s = C + 1/C. This is summarized in Figure 1.

2 �����6
s

0.25

0.5

0.75

1

1.25

1.5

1.75

2

C

Fig. 1. C vs. s when m = 1
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When m = 2, U1,2 is known only numerically. One can find it also by solving (3.13)
as an initial value problem with

U1,2(0) = 0.061780044595, U ′
1,2(0) = −0.2480768280953, U ′′

1,2(0) = 1. (4.5)

At first glance it behaves rather uninterestingly: monotone decreasing, it blows up at
δ0

.= −1.303249602. However, a parametric plot of (s(γ), C(γ)) for γ > δ0 reveals
an interesting graph; see Figure 2. Note first that for s < s0

.= 1.31175869 we have

s

0.2

0.4

0.6

0.8

1

C

1.312 1.413 1.424

Fig. 2. C vs. s when m=2. As C→0 the curve converges to s=
√

2;
however, it does cross the limiting value infinitely many times.

no solution. For s > s1
.= 1.42382978 we have only one solution. For s0 < s < s2

.=
1.41337508 we have two solutions. However, for s2 < s < s1 things are quite complicated.
It turns out that the behaviour of s as C → 0 is governed by details of how U1,2(γ) blows
up as γ → δ0. Numerically, we first found out that

U1,2(γ) − 2
γ − δ0

+ 2 → 0 as γ → δ0. (4.6)

If we now let φ(γ) = U1,2(γ) + 2− 2/(γ − δ0) and use (3.13), neglecting quadratic terms
in φ, we obtain a much better approximation of U1,2(γ) for γ near δ0:

U1,2(γ) .=
2

γ − δ0
− 2 +

√
γ − δ0(a1 cos(a0 ln(γ − δ0)) + a2 sin(a0 ln(γ − δ0))), (4.7)

where a0 =
√

15/2, a1 = 0.13946 and a2 = 0.49590. Using this approximation in (4.3)
gives for small γ − δ0 that

s
.=
√

2(1 + (γ − δ0)3/2(a∗
1 cos(a0 ln(γ − δ0)) + a∗

2 sin(a0 ln(γ − δ0)))) (4.8)
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where a∗
1 = 0.397136 and a∗

2 = 0.4903. Hence if sn denote the extreme values of s, then
we have n solutions whenever

sn−2 < s < sn and n ≥ 2 is even

or
sn < s < sn−2 and n ≥ 3 is odd.

Using (4.8) one can show that

sn
.=
√

2
(
1 − (−1)n e−2.563...−3nπ/

√
15

)
for n large, (4.9)

which is actually a very good approximation of sn for n as low as 3. Note that, when
s =

√
2, the algebraically decaying solution (2.11) with C = 0 is also possible.

We find for both two-dimensional and axisymmetric shrinking sheets that there must
be adequate suction on the surface to maintain the flow. At certain suction rates the
solution may not be unique. Which solution actually occurs depends on the flow stability,
which is not investigated in this paper. There are also significant differences as can be
seen from a comparison of Figures 2 and 1. As C → 0, s becomes infinite for the two-
dimensional case but s remains finite for the axisymmetric case. On the other hand, for
the axisymmetric case there exist infinitely many solutions near s =

√
2. Since in that

neighborhood solutions are quite sensitive to initial conditions, a certain degree of chaos
may occur.

For the stretching sheet, studied previously, solutions are unique and exist for all
suction (injection) rates. The shrinking sheet studied in this paper offers a wealth of
nonlinear fluid phenomena.
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