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Abstract

Considerable research activities in wibration and seismic analysis for
various fluid-structure systems have been carried out in the past two decades.
Most of the approaches are formulated within the framework of finite elements,
and the majority of work deals with inviscid fluids. However, there has been
little work done in the area of fluid-structure interaction problems
accounting for flow separation and nonlinear phenomenon of steady streaming.
In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method
ie extended to address the flow separation and nonlinear phenomenon of steady
streaming for arbitrarily shaped bodies undergoing large periodic motion in a
viscous fluid. The results are designed to evaluate the fluid force acting on
the body; thus, the coupled rigid body-viscous flow problem can be simplified
to a standard structural problem using the concept of added mass and added
damping. Formulas for these two constants are given for the particular case
of a cylinder {mmersed in an infinite viscous fluid. The finite element
modaling ig based on a pressure-velocity mixed formulation and a streamline
upwind Petrov/Galerkin technique. All computations are performed using a

personal computer.



l. Introduction

This paper describes the application of the Arbitrary Lagrangian Eulerian
(ALE) viscous fluid formulation [1] to evaluate the fluid force acting on a
vibrating rigid body. The motion of an oscillating body is governed by its
mass, the stiffness of the spring, the damping coefficient, the surrounding
viscous fluid and the external force acting on the solid (see Figure 1). In
current engineering practice, the influence of an inviscid fluid is taken into
account by means of a hydrodynasmic mass or an added mass [2,3)]. When dealing
with viscous fluide, the sdded mass cannot describe properly the force acting
on the body, thus, an added damping term is needed. To avoid coupling between
the apring-mass system and the nonlinear Navier-Stokes equations, the equation
of motion for the rigid body is simplified to:

M +Cd4KdwE - F (1)
wvhere M, C, K, Foyp and d are the mass, structural damping coefficlent,
structural spring constant, external force, and displacement, respectively, of
the rigid body. A superposed dot denotes material time differentation. Fg is
the resultant fluid force acting on the body (i.e., without actually modeling
the viscous fluid) and it 4w assumed of the form:

Pe = Hygd + Cyqd ()
where M 4 and C, 4 are the added mass and added damping coefficlents,
respectively. Substituting Bq. (2) into Eq. (1) yields

M+ M )4+ (CeC ) +RdmE (3)
which can be solved readily since it {s a standard one degree of freedom
structural dynamic equation, provided M , and C,4 are evaluated properly. M_,
and Cy4 can be estimated by prescribing to the rigid body a sinusoildsl motion

d = u, sin ut (4)

where By, w and t are the amplitude of the motion, circular Erequency and



time, respectively.

In the next section, the governing equations for a viscous fluid subject
to @ large boundary motion, such as given by Eq. (4), are formulated. 1In
Section 3, the computational procedures for M., and C,q using the ALE method
are described. An application to a e¢lrcular cylinder oscillating in & viscous
fluid 1s given in Section 4. The concluding remarks are presented in Section

5.



2. Governing Equations for Viscous Fluids in ALE Formulation

Consider a fluid domain R described by material, spatial, or referential
coordinates which are denoted by E, X and X» respectively., Throughout this
paper, repeated indices denote a summation over the number of space dimensions
(NSD). The spatial derivative (i.e., derivative with respect to x) 1is
designated by a comma followed by a subscript while the material, spatial and
referential time derivatives of an arbitrary function f are represented by
f,t[!l' !.tlgl and f,tl;l' respectively., The continuity and Navier-Stokes

equations for a Newtonlan, isothermal fluid are [4.,5]
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where B {s the bulk modulus of the fluid, P is the thermodynamic

pressure; v is the material velocity vector; p is the fluid density; vy is the

kinematic viscosity; b is the body force vector; and ¢ is the convective

veloeity vector. The convective velocity is defined as

g =g

where E’ is the mesh velocity wector which is arbitrarily chosen depending on

(6)

the particular problem [6,7].

The variational equations associated with Eqs. (5) are [7,8)

|
{ i > F.tlﬁl dn: . { 6P u1'1 43‘ = [} {(7a)

and, - .



= ~ 1
{ &y ‘ri.tl;l ﬂx-l-{ Wy oey vy dl:-{ ;tmi)_irnuq-
x x

| ‘z—’{tavtlrj AU AP RN { 6%, b dR - gn“ bv b ds = 0
Ry x « %)
The weighting function &P in (7a) 1s chosen to be discontinuous across the
{nterelement boundaries and constant inside the element. The same
function &P is used for the pressure interpolation completing & Calerkin
formulation. On the other hand, the weighting function a'v'l in (7b) is

composed of two terms: the first one, 6v,, is continuous within the elements

1l
and across their boundaries; and the second term is the discontinuous
atreamline contribution. In Eq. (7b) a Petrov/Galerkin formulatien is used

because the interpolation Ffunctions for the velocities are linear combinations

of the continuous term, &v Hughes and Brooks [9] present a detailed

1-
discussion on the assumptions required for obtaining Eq. (7b). 1t should be
noted that the continuous part of the velocity weighting function, ihi. Bust

satisfy v, = 0 on the boundary where the velocity field is prescribed. The

, §
Cauchy stress traction, h. is applied to the rest of the fluild boundary.

The spatial discretization of Eqs. (7) via finite elements leads to the
following two systems of matrix equations:

E’g 0% = 0 (8a)

L
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Ha+py) +Ky=-CFE = (8b)

where !? is the pressure-mass matrix; E is the fluld mass matrix: and v
and 5 are the vectors of unknown nodal values for velocity and pressure,
respectively. g is the material time derivative of g; ain the time
derivative of the material veloeity veector, v, holding the referance fixed;

fﬂlt

(1.e., X fixed), n is the generalized convective velocity vector; is the



total external load vector applied to the fluid, Eu is the fluid viscosity
matrix and E ia the divergence operator matrix.
Remark l: If the fluid is assumed Incompressible, Eqs. (B) are further

simplified to

Gyv=0 (9a)
Ma+n(w) +Ry-gR= £ (9b)

Remark 2: A predictor—multicorrector algorichm described in Refs. [1,10] ia
used to solve either Egqs. (B) or (9). Two passes (i.e., one iteration) are

used to {nsure atability and account for the upwinding effects on the mass

term.

In order to determine the dimenaionless parameters governing the boundary
value problem, the incompressible fleld equations (i.e., Eqa. (5)) are written
in a nondimensional form [11]. The length scale used is the dimension b of
the rigid body in the motion direction (see Fig. l). The time scale
is u-l and the characteristic velocity v, = 8w is chosen to scale the
velocities, Recall, from Eq. (4), that v, 1s the amplitude of the prescribed
velocity. Finally, uvﬁfh is the pressure scale where y 1s the absolute
viscosity of the fluild. 1In this analysis, the gravity is perpendicular to the
plane under consideration (i.e., the body forces are zero) and incompressibi-

11ty of the fluid is assumed. Consequently, scaling with b, w } and v,, Equ.

(5) become:
;1,1 -0 (10a)
¥ PR --1—-{[?l ¥ v, .. =%, (10b)
l.tI;I j i.l I'“ l.! 1!1 i.! 11

where the superscripted bars denote dimensionliess functions, all the spatial



derivatives are with respect to dimensionless coordinates E; - xlfb. B is an
amplitude ratio parameter and R, is the frequency Reynolds number. However,
for inviscid fluids (i.e., R, approaches to infinity) the right hand side of
Eq. (10b) will become zero and the resulting equilibrium equations are not the

classical Euler equations. Hence, a different pressure scaling {s introduced.

The characteristic pressure is defined as phuvo, and Eq. (10b) becomes

YT T 4 0 M4l T (10w

The solution characteristics of this problem are governed by the two
parameters in Eqs. (10) and a, which is associated with the geometry. They

nte defined as:

- 2
H"% * B-'rn s and !“-L“l'—:f‘ (1)

where D is the diameter of the outer boundary of the fluid domalin and Re is
the Reynolds number (i.e., Re = vohfu}. From Eq. (10b) one can notice

that § and R, are assoclated with convection and diffusion, respectively.
Therefore, for “small” g and R, the diffusion effects govern the velocity
field; whereas, with “large” g and Ry the convection dominates.

In order to define the boundary value problem completely, the
dimensi{onless boundary conditions and mesh velocities are given as follows.
Velocity conditions need to be ampecified on the boundaries, wvhereas, the
pressure needs to be fixed at one point in the fluid domsin to obtain a
pressure datum. On the outer cylinder and in the vertical direction along the
symmetry line the fluid velocity is zeru while on the rigid bady the

dimensionless form of the boundary condition, defined by Eq. (4), Is glven by:



v, G, 3D, %, ) =cos T (12a)

“z(ili + d(t), X)) =0 (12b)
whaere

d(t) = g sin t (12c)

and El are the dimensionlesa coordinates for the contour of the inner body.

The influence of § on the equilibrium equation and on the motion of the
inner boundary suggests that a perturbation technique can be used to solve
this problem, see Ref. [l1]). However, such a procedure is only valid for
umall g. Conversely, the Arbitrary Lagrangian Eulerian formulation used here
does not restrain the magnitude of the amplitude ratio, @.

Unless a perturbation technique is used, the velocity conditions at the
solid body boundary require a Lagrangian description. That 1is, the mesh must
follow the particle movement at thie boundary. However, elsewhere and
principally away from the oscillating body, a Eulerian description i{s better
suited because a fixed reference through which the fluld moves allows atrong
distortions due to the flow. Finally, in order to evaluate the boundary
effect, the density of elements must increase in the vicinity of the moving
solid. These requirements can be fulfilled by using an ALE formulation: (1)
at the surface of the oscillating body the mesh motion is prescribed equal to
the particle motion, (2) away from the solid the mesh ia fixed and (3) in
between, a transition zone is defined with an arbitrarily prescribed mesh

motion, The mesh velocities can be defined as:
.ﬂ .l._'l_
711 + cos(7=) Ju con wt 1f el (13a)

0 if ¢ » L (13b)



and
= 0 (13¢)
where ¢ is the horizontal distance between the referential point (mesh node)
and the rigid body surface, and L {s an arbitrarily chosen transition length.
Finally it is noted that a streamline upwind Petrov/Galerkin formulation
is required because of the relative importance pf the convective effects. In
general, the convective effect is increased in the vicinity of the moving
solid. Therefore, for Reynolds numbers greater than 50, upwinding is
necessary. A temporal, rather than apatial criterion [12], is selected for

the perturbation of the weighting function because of the time dependency

of g and the increased convection which can oceur in the smallest elements.,



3. Determination of the Added Mass and Damping Coefficients

The evaluation of M,y and C,y is similar to the procedure described in

Ref. [3]. That i1s, the body motion is prescribed and the fluid force, Fga
acting on the solid is evalusted. Since acceleration and velocity cannot be
applied independently of each other ({.e., set the acceleration equal to one
and the velocity to zero, or vice-versa) the prescribed sinusoidal motion
defined by Eq. (4) is chosen. 1In this manner, Fe can be expanded using a
Fourier series; and consequently, the term in phase with the acceleration is
separated from the one in phase with the velocity. From these two terms, the

added mass and damping can be computed, The Fourler decomposition of Fg 1s as

followa:
Pf =A %+ I An cos(nut) + I B sin(nget) (15)
? =l o=l ©
wvhere,
| 29
Ay =gz [o) Tt (16a)
1 2y
Ay =71, Fgoosout)dt , nwl, .. = (16b)
2
!I'I --‘I‘L‘fﬁ Ft sin(ngt)dt , n= |, ;.0 = (16¢c)

If the initial assumption that Fy is & linear combination of acceleration and
veloceity 18 true, only two coefficienta {Al and BI} are nonzaro. Obviously,
these coefficients are the ones associated with the same frequencies as the
prescribed acceleration and velocity. Once Ay and B; are computed from Eqa.

(16b) and (16c), the added mass and damping are determined by
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and
7
L= -q (17n)

respectively., Or, in dimensionless form, using the scaling factors defined inm

the previous section:

H . =- nl &= (18a)
ad 2 .4
8w pb
o
and
C.= hl Al (18b)
ad - 3 |
LI pb w

With refersnce to Fig. |, the computation of Ft at every Lnstant can be
obtained by {ntegrating both the thermodynamic pressure P and the viscous
ahear forces around the body. The added mass and damping parameters can then
be computed; and the rigid body-viscous flow {ntersction problem is sisplified
to Eq. (3).
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4. Numerical Exn!Elan

Numerical results are obtained for a circular body oscillating with a
sinuscidal motion. The circular body shape is chosen in order to compare the
hydrodynamic force obtained using this method with the Fritz formulas [2].

The latter is valid only for a cylinder immersed in inviscid fluids. The
method described in this paper can account for an arbitrary geomstry in a
viscous fluid.

All calculations are performed in single precision (32 bits per word) on
a 640 kilobyte IBM-XT personal computer with an B0O87 mathematical processor.

The dimensionless parameter o Ls set to 30 throughout this analysis. The
influence of the other two parameters governing the problem, namely g and R,
is assessed by varying them in the following fashion: the amplitude ratio
parameter, B, 1s taken equal to 0.1, 0.4, 0.75 and 1.0; the frequency Reynolds
number, R,, varies from 20 to infinity. 1In fact, these different cases
represent a Reynolds number (Re = !ua) which ranges between 2 and infinity.

The dimensionless time-step used in the computation is usually given

by wAt = %ﬁ; however, in the cases highly dominated by diffusion or convection

X
28°

node elements (constant pressure elements). Finally, the transition length

it 18 reduced to As shown in Fig. 2; the 224-node mesh consists of 195 4-
for the mesh movement does not influence the results 1f L > 9s,.

Figures 3 and 4 show the instantaneous streamlines for 8 = 0.l and two
frequency Reynolds numbers: 20 and 500. As expected, for high R, most of
shearing occurs {n a small layer surrounding the rigid body. At t =3 a
vortex clearly appears, but it disappears almost Instantaneously. However,
for large 8 and R, the vortex does not disappear and vortex shedding occurs,
see Fig., 5 where g = 1.0 and R, = 1000, Although the purpose of this study is

to compute the fluid force on the solid, Fig. 5 clearly suggests that a vortex
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shedding analysis can be conducted with the present method {f a finer mesh is
used away from the solid boundary in order to capture the vortex movement.

The pressure distribution around the rigid body for g = 0.1 and R, = 20
and 500 (i.e., Re = 2 and 50, respectively) is presented in Fig. 6. One can
observe that the angle 8 for the stagnation point decreases (i.e., tending
to %ﬂ as R, 18 increased at t = 0, and that the pressure amplitude decreases
as R, increases. The last phenomenon is also observed in Fig. 7, where the
variation of the fluid reaction (F;), 1s plotted versus time. The relative
importance of the added mass and damping via the decomposition of Fy is also
depicted in Fig. 7. For instance, the ratio of damping to mass force
decreases from 75% at R, = 20 to 15X at R, = 1000.

It is important to notice that both added mass and damping are frequency
dependent for wviscous fluide., Figures B and 9 show the variations of the two
parameters with B, . From these figures, it can be concluded that added mass
is independent of the amplitude ratlo A, while the added damping varies
with 8. As expected, for all g, the added damping goes to zero and the added
mass remains constant as R, goes to infinity. The computed added mass for R
= = {8 0.8169 which compares well (3.8% relative error) with Fritz's
approximation (0.7871), given the coarseness of the mesh. If the added mass
results are interpolated using Pritz formulas for the limit, the following
equation im obtained:
~0.643

M, =~ 5992 R
ad w

with a correlation of 98.3X. Obviously, this correlacion would be improved 1if

+ 0.787 (19)

the sctual computed mass for R, = = was taken; however, Frit: formulas are the
slmplest and most extended way to approximate the value of the added mass for
an inviseid fluid. The added damping interpolation is a little more

complicated because the added viscosity is a function of g. However, Fig. 9



suggests that § only influences the slope of the Log-Log curve. Hence, the
following interpolation 1s obtalned:

c;d
and the curves plotted in Fig. 9 are derived from the direct application of

= |,.88 (t'n.ujn"““'“'““ (20)

Eq. (20) for different parameters § and R_.
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5. Conclusions

This paper shows that Arbitrary Lagrangian Eulerian techniques are
applicable to vibration and seismic analysis for fluid-structure systems. An
ALE formulation is presented for a viscous fluld subject to a large boundary
motion. Because of the use of a pressure-velocity mixed formulation, and the
improvements in accuracy of the streamline upwind Pecrov/Calerkin techniques,
the computer program is Iimplemented on a persomal computer.

The concept of added mass and damping is used to simplify the rigid body—
viscous flow interaction problem into a standard structural dynamic
analysis., When the fluid force on the solid is expanded via Fourier analysis,
only the added mass and damping terms are nonzero. The hydrodynamic mass
computed for the inviscid case agrees well with the Fritz formula.

A parametric analysis shows that M,y is only a function of the frequency
Reynolds number, and a simple formula is presented for the particular geometry
studied here. On the other hand, the added damping depends on the frequency
Reynolds number and the amplitude ratio of the motion. A simple formula is

also obtained for the prediction of C,y in this particular problem.
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Fluid Force versus Time for the Decomposition of Fe in Mass and
Damping terms with g = 0.1.

Dimensionless Mass (E;d} versus Frequency Reynolds Number (RwJ.

Dimensionless Damping fﬁ;d) versus Frequency Reynolds Number (R,).
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