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Summary. This paper is concerned with a detailed examination of the response 
of Maxwell models of the planet to surface mass loads. Particular attention is 
devoted to an examination of the factors which determine the isostatic 
response since the understanding of this response is crucial in a number of 
different geodynamic problems. One particular example which we discuss in 
detail is concerned with the prediction of free air gravity anomalies produced 
by large-scale deglaciation events. Using the methods developed here we are 
able to provide the first direct assessment of the importance of initial isostatic 
disequilibrium on the observed relative sea-level variations and free air gravity 
anomalies forced by the melting of the Laurentide ice sheet. We are therefore 
able to estimate the extent to which such initial disequilibrium might influence 
the inference of mantle viscosity from isostatic adjustment data. Our calcula- 
tions establish that free air gravity data, although they are sensitive to the 
degree of initial disequilibrium, provide an extremely high quality constraint 
upon the viscosity of the lower mantle. 

1 Introduction 

The inference of mantle viscosity from the study of slow, deglaciation-induced changes in 
the Earth’s shape is a geodynamic problem on which active work has continued for approxi- 
mately fifty years. The earliest efforts by Haskell (1935) and others were based upon 
Newtonian viscous half-space models of the planet and showed that an instantaneously 
applied and spatially periodic normal stress on the free surface relaxed exponentially in time. 
The relaxation time constant for a model with constant density and viscosity was shown to 
be proportional to the product of the viscosity of the mantle and the wavenumber of the 
applied load. McConnell (1965), motivated by Crittenden’s (1963) work on the uplift of 
Pleistocene Lake Bonneville, extended Haskell’s half-space analysis to allow both for a depth 
dependence of viscosity and for the effect on the response of the high viscosity surface 
lithosphere. In McConnell’s model, which was applied to interpret the relaxation data from 
Fennoscandia, the temporal decay of a harmonic surface deformation was still governed by a 
single characteristic decay time. 
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Beginning in the early 1970s, new isostatic adjustment data became available from the 
response of North America to the melting of the Laurentide ice sheet which covered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall of 
Canada and parts of the north-eastern United States. Walcott (1970) reported some evidence 
in the new data for slight variations of apparent relaxation time with time from specific 
relative sea-level curves. The existence of this new data set concerning the relaxation of a sur- 
face depression of much larger spatial scale than that of Fennoscandia promised the possibility 
of considerable improvement in the ability to resolve the variation of inantle viscosity with 
depth. Parsons (1972) showed that the information content in the Fennoscandia data was 
such that the relaxation carried no information on mantle viscosity from depths in excess of 
about 600 km. The Laurentide data appeared to offer equivalent information from depths in 
excess of three times this, a crucial contribution given that convection theorists at the time 
were relying on a sharp increase of viscosity across the seismic discontinuity at 670 km depth 
in order to restrict convection to the upper mantle. 

Interpretation of the data from the Laurentide region clearly required a global model of 
the adjustment process and such models were fairly rapidly forthcoming. Parsons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 972) 
constructed a Newtonian viscous spherical model which he used to investigate the dependence 
of relaxation time upon wavelength in a viscosity and density stratified sphere. These 
calculations demonstrated that discontinuities in density in the interior of such an earth 
model lead to additional relaxation times for fNed spherical harmonic wavenumber. Cathles 
(1975) constructed a spherical model of the rebound process which also included the elastic 
response to unloading and used it to predict relative sea-level histories at several sites near 
the Laurentide and Fennoscandian ice sheets. His model neglected viscoelastic coupling, 
however, and was implemented by separately integrating different sets of field equations for 
the elastic and viscous components of the response. Peltier (1974, 1976) employed corres- 
pondence principle methods to show that a complete viscoelastic theory of the adjustment 
process could be obtained using a normal mode formalism. The structure of this theory was 
such that it integrated all previous work and included important physical effects, such as 
elastic-viscous coupling, which had previously been omitted. It also proved possible, using a 
Greens function for the system synthesized in terms of normal modes, to make relative sea- 
level predictions in which the self-gravitation of the oceans was properly accounted for 
(Clark, Farrell & Peltier 1978; Peltier, Farrell & Clark 1978). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA recent review of work 
completed using this theory will be found in Peltier (1981) and new extensions of the 
analyses are discussed in Wu & Peltier (1982). 

This paper is concerned with further elaborations of the basis theoretical structure which 
were necessary in order that the model might be tested against geophysical observables other 
than relative sea-level histories. Although our interest was initially confined to free air 
gravity data, we found that the same new analysis was required in order to use the model to 
make predictions of deglaciation-induced stress in the mantle and to understand the extent 
to which the continuous glaciation-deglaciation cycle of the ice age might induce real wander 
of the Earth’s rotation pole relative to the surface geography (Sabadini & Peltier 1981). 
In order to understand each of these phenomena we must be able to calculate the final state 
of isostatic equilibrium which is achieved in the limit of infinite time when the planet is 
loaded by the addition to its surface of a point mass. The necessity of this is clear in the case 
of free air gravity data since these data are a direct measure of the current extent of isostatic 
disequilibrium. Unless we can predict the infinite time response we will clearly not be able to 
predict the instantaneous deviation from it. 

As well as providing a complete discussion of the infinite time response of the system, to 
which we shall refer as the ‘isostatic response’, the following sections will also provide some 
elaboration of important details of the viscoelastic calculation which have not previously zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeltier 
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been described at length. Among these are: (1) direct assessment of the importance of elastic- 
viscous coupling; (2) a discussion of the crucial impact of this coupling on the dynamics of 
models with lithospheres; (3) an assessment of the importance of the assumption of initial 
isostatic equilibrium in the interpretation of relative sea-level and free air gravity data; and 
(4) an attempt to fit present-day free air gravity anomalies with simple disc load disintegra- 
tion models of the main Pleistocene ice sheets. We will begin with a brief elaboration of the 
theoretical structure itself. 

2 The viscoelastic field theory 

The constitutive relation which has been employed in our past analyses of glacial isostatic 
adjustment, and which we shall continue to employ here, is that for a Maxwell solid. When it 
is subject to an applied shear stress such material initially behaves as a Hookean solid but 
‘fmally’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a Newtonian viscous fluid. Although this constitutive relation cannot provide a 
complete description of the viscoelasticity of the mantle, since it does not include the 
transient anelasticity necessary to explain seismic Q,  it nevertheless suffices for the analysis 
of isostatic adjustment. This is because of the relatively low value of the elastic defect and of 
the relatively short time-scale over which the shear modulus relaxes (Peltier, Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Yuen 198 1). 
The stress-strain relation of the Maxwell solid is linear and as such violates laboratory data 
on the steady state creep of olivine single crystals (Kohlstedt & Goetze 1974). It is becoming 
increasingly evident, however, that polycrystalline materials at the relatively low stress levels 
typical of mantle convection and post-glacial rebound behave in a much more Newtonian 
fashion since deformation may then be controlled by grain boundary processes such as super- 
plasticity (Twiss 1976; Berckhemer, Auer & Drisler 1979). We therefore continue to use the 
linear Maxwell constitutive relation in the form (Peltier 1974) 

1 
f k l t -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (  V T k l - - ? k k 6 k l ) =  3 2MkI t h e k k 6 k l  (1) 

where Tkl and ekl are respectively the stress and strain tensors, the dot denotes time differen- 
tiation, 6k1 is the unit diagonal tensor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are the usual elastic Lame parameters and v is 
the viscosity. In the domain of the Laplace transform variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, (1) becomes 

where the tilde denotes implicit dependence upon s and where 

2 

3 
K = X + - p .  

The functions A@), p ( s )  are viscoelastic moduli and K is the usual elastic bulk modulus. In 
terms of A(s) and p ( s )  the stress-strain relation (2) has exactly the same form as that for a 
Hookean elastic solid. 
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43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W R.  Peltier 

2.1 S C A L A R  E Q U A T I O N S  O F  MOTION A N D  B O U N D A R Y  CONDIT IONS IN T H E  

T R A N S F O R M  DOMAIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The correspondence principle assures us that if we solve an 'equivalent' elastic problem as a 
function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(s) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(s) as moduli then we shall have constructed the Laplace 
transform of the solution to the viscoelastic problem. The equivalent elastic problem which 
we must solve is the problem of surface loading of a spherical self-gravitating earth model. 
The appropriate field equations for this problem are well known from the theory of elastic 
gravitational free oscillations (Backus 1967) and for momentum conservation and the 
gravitational field are respectively 

o = - p 0 v &  - p l g o e ,  - V ( U . p , g , e , ) + ~ . i  ( 4 4  

In (4b) the density perturbation j1 is obtained from the linearized continuity equation as 

where the momentum equation, in which the inertial force has been neglected, has also been 
linearized with respect to perturbations from a hydrostatic equilibrium background state 
coo, p o l  go) which satisfies 

In (4) p and g are density and gravitational acceleration, U is the displacement vector, T the 
stress tensor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ the gravitational potential and e, a unit vector in the radial direction. In 
(4a, b) the perturbation geopotential q1 will be the sum of two parts, @? and @3, which are 
respectively the potential of the externally applied gravitational force field (the load) and 
that due to the internal redistribution of mass effected by the load induced deformation. It 
therefore follows that VZ&= 4nGp1 within the Earth whereas V2& = 0 in the same region. 
The first term on the right of (4a) is the total gravitational body force whereas the second 
term on the right is the buoyancy force, which would vanish identically if the Earth were 
neutrally stratified. The third term in (4a) can be written as V(ua,po) and is the advection 
of prestress as a result of an initial elastic displacement (Love 1927). It may not be 
immediately obvious what role this term will play in the fluid limit and we have not made 
this role sufficiently clear in our past discussions of the viscoelastic problem. Its importance 
is clarified by defining a new stress # = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT - pogouI where I is the identity tensor and u is 
the radial displacement. The last two terms of (4a) then combine as V - T~ and (4a) itself then 
looks like the momentum balance equation for a viscous fluid. The existence of the prestress 
term in (4a) is required in order that the correct boundary condition be satisfied in the 
viscous fluid limit. 

We first seek solutions to equations (4) which describe the deformation of the radially 
stratified planet which is produced when a point mass load is placed on its surface. Since the 
tangential stress on the surface vanishes, the toroidal and poloidal motions decouple with the 
former being identically zero. Symmetry considerations then demand a solution with the 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation 439 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
following vector harmonic decomposition 

1 a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAae u,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ) ~ ,  (cos8)e, t V, (r, s) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, (cos8)eo 

Substitution of (5) into (4) then leads to the set of simultaneous ordinary differential 
equations discussed by Love (191 1 )  and Alterman, Jarosch & Pekeris (1959) with the excep- 
tion that our system lacks those terms derivative of the inertial force. With the understanding 
that U,  V ,  a, x, X and p respectively stand for U,, ( r ,  s), Vn (r, s),  a,, (r, s), x,, (r,  s), X(r, s), 
p(r, s), equations (4) reduce to the following set of three coupled second-order equations 

P O +  + pogox - 

O =  ~ - 2 n ( n + l ) V ]  

in which the dots denote differentiation with respect to r ,  and 

. 2 n(n t 1 )  

r r 
x = U t - U - -  V 

Equations (6) are the complete set of equations in the transform domain which are to be 
solved in the mantle. In terms of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY = (Un,  V,, T,,, , Ton, a,,, en)' in which 

T, = Axn + 2pUn , 

are respectively the coefficients in the spherical harmonic expansions of radial and tangential 
stress and an auxiliary variable related to the radial gradient of the potential perturbation, 
equations (6) may be written in the standard form 

dY 

dr 
- -  - A Y  
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in which the elements of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA matrix are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWu and W.  R.  Peltier 

2x n(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) x 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aI i  =(-,-- r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ’ P ’  - 0, 0,o) 

1 1  1 

r r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 
a2i =( --,-, 0, -, 0,o) 

4 7  
r r  r 

4p n(n + 1) -PO@ -t 1) 
(94 

Y 
a3i = (-[ - - Pogo] 9 

27 1 - A  -3 p o  

t r r2 rP r r 
% = ( ’ [ POBO - -1, - - [ 2 ~  - n (n + 1 ) (7 + P)] , - , -, - , 0) 

The solution 6-vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY which solves (8) may be represented generally as a linear superposition 
of six linearly independent solutions. The combination coefficients are determined by the 
boundary conditions at the endpoints of the domain 0 Q r Q a, where a is the planetary 
radius. Three of these boundary conditions are that U, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and CP be regular at r = O  and 
together they reduce the number of acceptable linearly independent solutions of (8) from 
six to three. To determine the remaining boundary conditions at r = a we follow Longman 
(1963) and Farrell (1972) and treat the point mass load (7) on the surface as a unit mass 
distributed uniformly across a disc of vanishingly small radius a. Expanding 7 in a Legendre 
series gives 

m 

7 = C r, p,(cose) 
n=O 

in which the r, are given by (Hobson 1955; Longman 1963; Famell 1972) 

2n t 1 

4na2 
r, =-- 

in the limit a +. 0. If we assume that the surface point mass load is applied as a delta function 
in the time domain then in the Laplace transform domain the boundary conditions will be 
independent of the Laplace transform variable s. The required conditions are then (Longman 
1963; Farrell 1972) that V$2 ‘e, change by 4n7 across r =a,  that (V& + 4nCpu) .e, be 
continuous at r =a ,  that the normal stress balance the applied load (~,(a) = -7g) and that 
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Viscous gravitational relaxation 44 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

the tangential stress vanish zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0). In terms of the appropriate Legendre coefficients, 
these conditions are 

Trn (0) = -g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr n  (1 la) 

which now suffice to determine U,, V,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, throughout the Earth. In analogy with the 
surface loading problem for an elastic sphere, it is convenient to describe these coefficients 
in terms of a triplet of dimensionless scalar Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(h,, ln ,  k,) which are functions of 
r, n and s. The definition is 

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI~:S)I [ -kn (r, $1 ] 
Using (12) the total potential perturbation may be written as 

hn (r, s)/go 

V n  (r, $1 = @z,n (r) In (r, $)/go . (12) 

in which the integration is over the Earth's surface. Substituting for 7(r) in terms of its 
Legendre expansion (1 Oa) and using the addition theorem for spherical harmonics (e.g. 
Jackson 1962) one obtains 

so that 

4naGr, ago 

(2n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1) me 
@z,n(a)=------- - 

in which go is the gravitational acceleration at the Earth's surface and me is the Earth's mass. 
The analysis given in (1-16) above is essentially identical to that in Peltier (1974) and we 

have repeated it here, and have in fact expanded it in places, in order to provide the basic 
material necessary for comprehension of the following sections. In these sections we will 
first discuss a sequence of simple earth models for which analytic solutions to the governing 
equations can be obtained. These solutions are rather useful since they reveal several 
important properties of the mechanism of viscous gravitational relaxation. 

3 Love number spectra for earth models of increasing complexity 

If the physical properties of the model earth are all constant then we may obtain solutions 
to (8) subject to (1 1) in terms of simple functions. Here we shall focus, first, upon three 
important versions of the homogeneous model which isolate fundamental features of the 
more general problem. Following discussion of these simple models we shall describe the 
Love number spectra obtained for more realistic earth models. 
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3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHOMOGENEOUS A N D  INCOMPRESSIBLE 

We shall first consider the homogeneous incompressible model which has, for definiteness, 
the constant values of density, viscosity and elastic parameter listed in Table 1, which are 
those appropriate to the average earth. Since the model is incompressible V .u  0 and since 
it has constant density arpo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 so that (4c) reduces to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 = 0 and (4a) and (4b) decouple. 
Equation (4b) reduces to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R.  Peltier 

V2& = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 .  

In an incompressible medium the dilatation A = V . u goes to zero and A goes to infinity in 
such a way that their product has a finite limit (Love 191 1, section 154), i.e. 

lim (AA) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIl . 
A+- 
A-0 

The incompressible form of the constitutive relation which replaces (2) is then 

which, using the definition ofekl and the fact that V - u = 0 may be shown to have divergence, 

0.7 = VIl - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp v  X v X U (20) 

where p = p(s) is as defined in (3b) and n has the meaning of a mean normal stress. Using 
arpo = 0 and V - u = 0, (4a) may be rewritten 

0 = -V(poG1+ pogou . e, - rI) - p V  x w 

where w = V x u. The divergence of (21) is 

Po 

P 
O =- V2 +gou - e, - n / p o ) .  

For spheroidal motion with no @ dependence 

n = C n n  (r,  (case) 
m 

n = O  

00 

o = C H ,  (r, S) a, P, (cos8)eo 
n = O  

Table 1. Physical properties of the average earth. 

Parameters Symbol 

Density 
Viscosity 
S-wave velocity 
P-wave velocity 
Lam6 constants 

Gravitational acceleration at 

Radius of the Earth 
Earth's surface 

Pa 
V 

VS 

VP 
CI 
h 

go 
a 

Average value 

5517 
loz2 
5130 
10 798 
1.4519X 10" 
3.5288 X 10'' 

9.82 
6.371 XIOb 

Units 

kg m-3 
poise 
m s-' 
m s-' 
N m-2 
N m-* 

m s-' 
m 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA443 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. 1  1 
H ,  = V ,  +-Vn - - U n .  

r r 

Since the density is uniform, go/r = E, a constant where g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4nGp0/3. Using ( 5 )  and (23), 
equations (17) and (22) reduce to the following respective forms 

v;@ = 0 (24) 

v;(@ t grU - n/Po) = 0 (25)  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV; = d2/dr2 t (2/r)d/dr - n(n t 1)/r2. Also, the radial component of (21) is 

a,"(r2 U )  - n(n t 1)U= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p 0 / p ) r 2 4 ( @  + ErU- W P ~ )  (26) 

in which the definition of the dilatation has been used to eliminate V. The solutions of (24) 
and (25) are respectively 

Substituting (28) into (26) we obtain an inhomogeneous 0.d.e. for U which may be solved to 
give 

P+l t c 2 r n - - l  . c1 n 

2(2n t 3 )  
U =  

Using (6d) and (7) we may obtain solutions for V,, , To,, , Q, , and Tyn = n, t 2p(s) U, . The 
solution 6-vector Y which solves the incompressible equivalent of (8) is then the following 
superposition of three linearly independent solutions. 

where 

2 p ( n  t 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr" 
2(2n t 3)(n t 1) 

' 
2(2n t 3 )  

y3= [o, o , p O r " ,  o , r" ,  (2n t 1 ) r " - ' ] ' .  
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444 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W. R. Peltier 

Ci(n,s) in (30a) can be determined for fxed n and s by defining 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M =  

p0[na"+'+ 2pan (n2 - n - 3) 

2(2n t 3) 
potan + 2p(n - 1)an-' 

2pn(n -+ 2)a" 

2(2n + 3)(n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) 

2p(n - l)a"-' 

n 

3[nanf1 

2(2n t 3) 

The surface boundary conditions (1 1) then take the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M c = b  

and the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi can be obtained from 

c=M-'b.  

After considerable algebra we obtain the following explicit expressions for the coefficients 
Ci : 

in which P ( s )  = a-' [npogo t p(s)a-' (2n2 + 4n + 3)] . Substituting these values for the Cj in 
(30), from their definitions (12) we obtain the surface load Love numbers for the incom 
pressible model as 

l.l(s)(2nZ + 4n + 3) 

a2P(s) 
k, (a, s) = - 1 + 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA445 

In Fig. l(a) we plot the spectrum h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a,s) for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. It will be seen by inspec- 
tion that these spectra are characterized by asymptotes both for large and small values of s. 
As pointed out in Peltier (1974), the asymptote at large s, h:, is the load Love number of 
the elastic sphere whereas the small s asymptote, h,", is such that the difference (h," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- h:) 
measures the total viscous relaxation which would occur if the point load were left on the 
surface for all time (Peltier 1976). For later purposes it is important to note that the procedure 
used here to construct the Love number spectra breaks down for s sufficiently small. Thls 
can be seen as follows: when s + 0, p(s) us from (3b) and this tends to zero with s, so 
that the second row of M in (3 lc) vanishes identically and the constants Ci cannot be deter- 
mined from (3 le) because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM-' does not exist. This difficulty occurs because for small s, or 
equivalently large time from the Tauberian theorems, the Maxwell solid effectively behaves 
like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan inviscid fluid with vanishingly small tangential stress and indeterminate tangential 
displacement (see Section 3.3 below). The sixth-order system degenerates to a second order 
system and this must be solved explicitly in general to determine the s = 0 spectral 
asymptotes. 

3.2 HOMOGENEOUS A N D  COMPRESSIBLE 

A second analytic solution which can be found for a spherical homogeneous model is that in 
which the full effects of compressibility upon the deformation are included. This solution 
may be obtained by setting bo = 0 and A = V . u in (4a, b) to obtain 

0 ' - p  oV@l +pogoAe, - V @ o g o u . e , ) + ( X + 2 ~ ) V A  - P O X  V x u  (344 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oZ@, = -4nGpoA. (34b) 

The curl and divergence of (34a) are respectively 

P 
-V2w =goer x VA 
Po 

0 = 4EA t Ee, . V x  w +- 0 2cov2 A 

Po 

(35) 

(36) 

in which 5 = gdr  and w = V x u. The scalar forms of (34b), (35) and (36) are respectively 

v:a, = -3 t xn  (37) 

VfHn = Vi2 X n  (38) 

(v: + a2)xn = n(n + 1)E Vg2H, (39) 

in which V$ = V$(s) = [h(s) t 2p(s)] / p o ,  V j  = yi(s) = p(s)/po, a' = a2(s) = 4E V;;"(S), and 
we shall also define y2 = y2 (s) = 4n(n t l)E2 q2 (s) G2 (s). Equations (38) and (39) may be 
combined to give 

Defining wavenumbers k and 4 by 

2k2 (s) = a2 (s) t 4 Y 4  (s) t y2 (s) 
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446 

then (40) has the equivalent form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(8: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2)(V: + q 2 ) x  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 .  (42) 

This equation has regular solutions at r = 0 of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = j ,  (kr) and x =in (qr) where j ,  is 
the spherical Bessel function of the first kind and nth degree. The complete solution 6-vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y can again be represented in the form (30a) in which the elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy1 are determined 
using x = j ,(kr) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(37), (38), (6d), (7) and (23c) to obtain this contribution to the elements 
of Y = (U, , V,  , T,, , Ten, a,, Qn)r .  This particular solution is 

U, = -(k2r)-' [n(n + l)cj, (kr) + krjl, (kr)] 

V, = -(k2r)-' [(l + C)j, (kr) + Ckri; (kr)] 

T,,, = X j ,  (kr) + 2p [n(n + l)C(kr)-' f(kr)-' j ,  (kr) -1;  (kr))-ji(kr)l 

Ten = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-pCj,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(kr) t 2p [(l + C)(kr)-' {(kr)-' j ,  (kr) - j l ,  (kr)] - C j i  (kr)] 

a,, = 3 tk-2j ,  (kr) 

Q, = 3t(1 -nC)(l +n)(k'r)-'j,(kr) (43) 

in which C = - Vi'k-' and j l ,  and j :  are the first and second derivatives of the spherical 
Bessel function respectively. The second linearly independent solution yz has exactly the 
same form as (43) but with k replaced by q everywhere. The third of the required three 
linearly independent solution 6-vectors of which the complete solution Y is composed is 

Y3 = (44) 

The three linearly independent solutions obtained above will be recognized as those described 
by Gilbert & Backus (1968) for the corresponding free oscillations problem, the sole differ- 
ences being that factors dependent upon the existence of the inertial force in their work do 
not appear in ours and our moduli p(s) and h(s) are frequency dependent. 

Given the new yi required in the general solution of the compressible problem we may 
proceed to determine the values of the combination coefficients Ci which are required in the 
linear superposition (30a) to satisfy the boundary conditions. This proceeds as in the last 
example and leads to analytic (though extremely complicated) expressions for the Love 
numbers h,  (s), I ,  (s), k,  (s). In Fig. l(1 b) we compare the Love number spectrum with n = 60, 
of the homogeneous compressible model to that for the homogeneous incompressible model. 
Inspection shows that in the large s elastic limit the compressible model exhibits considerably 
enhanced deformation, whereas in the small s infinite time limit the asymptotic deformation 
of the two models is identical. The reason for the equality of the isostatic response in these 
two models will be explored in the next subsection. In agreement with the point noted 
previously in connection with our discussion of the incompressible model we note that our 
procedure for calculating Love numbers again fails in the s = 0 limit since k -+ q and y, and 
y2 are no longer linearly independent. 
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Viscous gravitational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelaxation 447 

3.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINHOMOGENEOUS BUT INVISCID 

Our ability to provide a direct treatment of inviscid models is important for three reasons: 
first, since the real Earth possesses an essentially inviscid outer core, we are obliged to 
calculate the deformation in such regions directly. Secondly, and as pointed out in each of 
the preceding sections, our method for calculating Love numbers in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 limit breaks 
down. In this limit the deformation has reached isostatic equilibrium and since this state of 
no motion must be independent of viscosity we can compute it under the assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0 
as we shall see. The last reason for the importance of this calculation is that an accurate 
calculation of the isostatic response is crucial if the viscoelastic model is to be used to predict 
gravity anomalies and stress. 

Inspection of (3b) shows that the limits s -+ 0 and v .+ 0 are equivalent in the sense that in 
either limit the shear modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(s) vanishes. Under this assumption the field equations 
(4a-c) reduce to the following forms: 

0 = - ~ 0 V r p ,  -plgoe, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-VP (453) 

V2@1=471GP1 (45b) 

P I  = -poV - u .(arpo)er (45c) 

where we have introduced a pressure field (mean normal stress) through the association 
p = u .pogo e, - Keii in (4a) with p = 0. The static deformation of an inviscid fluid part of 
the Earth has most recently been discussed by Dahlen & Fels (1978) whose analysis agrees 
with previous conclusions of Smylie & Mansinha (1971), Chinnery (1975) and Crossley & 
Gubbins (1975). There it is shown that fluid particles undergoing a quasi-static deformation 
experience changes neither of pressure nor of density as the deformation proceeds. It there- 
fore follows that the dilatation is zero everywhere. Substituting V - u =  0 in (45c), and 
expanding all variables in spherical harmonics, equations (45a, b) then reduce to 

In (46b) U is now to be interpreted as the displacement of an equipotential, isobaric, or 
material surface. Using (7) we may reduce (46a) to a set of two simultaneous ordinary 
differential equations in the components of the 2-vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY = (an, as 

dY 

dr 
- _  - AY 

with 

(474 

r 

The solution of the relaxation problem for realistic earth models requires matching of 
solutions (47a) for the outer core with solutions of (8) for the mantle across the core- 
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448 

mantle boundary (CMB). The matching conditions are the same as those described by Smylie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Mansinha (1971) and later authors. If @: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b-) and @, (b-) are solutions of (47a) just below 
the CMB then the solution just above the CMB may be expressed as 

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWu and W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  Peltier 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2 

@n 

Qn (b') 

- 
0 

1 

0 

0 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 - 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc3 

where b is the radius of the core-mantle boundary and the Ci are to be determined by the 
boundary conditions at the Earth's surface. The last two constants determine a discontinuity 
of isobaric surface displacement across the CMB as discussed in the above cited references. 

In an inviscid fluid part of the Earth in which the density is constant, bo = 0, and (47) 
admits solutions of the form 

The solution (49) may in fact be employed as a starting solution for sufficiently small r in 
the inviscid fluid. This starting solution is then propagated to the CMB using (47), the 
boundary condition (48) is applied, and the mantle 6-vector is then propagated to the Earth's 
surface using (8). The surface boundary conditions (1 1) are then applied to determine the Ci. 

The above analysis can be employed directly to calculate the surface load Love numbers 
h," and k," which determine the isostatic response, a fact which has not been demonstrated 
previously. With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = 0 (or equivalently v = 0) the homogeneous earth models discussed in the 
last two subsections degenerate to the same incompressible inviscid fluid. The isostatic solu- 
tions can therefore be obtained by solving (45a) and (45b) with p1 = 0 and subject to the 
normal surface boundary conditions. This is equivalent to setting b = a in (48) and requiring 
that the result satisfy (1 1) in order to determine the Ci. Some algebra yields 

C1= 0 =an 

C, = indeterminate = V,  

c3= U" = 

From (1 2) the 'isostatic' Love numbers for the homogeneous models (whether compressible 
or incompressible) are then 

(5 0)  

- (2n + 1) 

47TazPo(a) . 

- (2n + 1) 
h," = 

3 

k,"=- I .  (5 Ib) 

These formulae are in accord with the results shown in Figs l(1a) and l(1b) for the spectral 
asymptotes in small values of s. In fact, these are the same results when p ( s )  is taken to be 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA449 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 3 ~ 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~I 0 I 2  3 4 

LOGlO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

I 

LdLL 
-24 -22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 -IE 2 0 2 4 24 22 -20 I8 - 2  0 2 4 

LOG10 ( 5  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOG10 ( 5 )  

Figure 1. (la) shows the Love number spectrum h,(a , s )  for the homogeneous incompressible earth 
model. The angular order n of the Legendre harmonic is marked on each curve. (lb) illustrates the effect 
of compressibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the spectrum for angular order n = 60. In (2a) we show the effect on these spectra 
of the presence of the lithosphere. Note that the large s (elastic) and small s (isostatic) asymptotes are the 
same as those shown in (la). (2b) shows the effect of compressibility on these spectra for angular order 
n = 60. In (3a) we show hn(u, s) spectra for n = 6 for viscosity models L1 (A), L2(B) and L3(C) described 
in the text. (3b) compares spectra for n = 30 of the same models. 

zero in equations (33a, b). For realistic inhomogeneous earth models, deformations of large 
angular order n effectively see only the topmost layer of the model so that 

where p is the average density of the planet. In the next subsection we shall investigate the 
important effect upon the isostatic response which is introduced by the presence of the 
surface lithosphere. 

3.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE F F E C T  O F  T H E  LITHOSPHERE UPON T H E  ISOSTATIC RESPONSE 

On the basis of the discussion in the preceding subsection (equations 51a, 52a) it is clear that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all earth models in which the viscosity is everywhere finite are characterized by the property 
that the surface load Love number h," diverges to negative infinity as the Legendre degree, 
n ,  increases. From (51a) the divergence is essentially linear in n. Inspection of (5a) and (12) 
reveals that a consequence of this divergence is that the infinite series expansion for the 
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450 

radial displacement will fail to converge for small 8, diverging in fact to negative infinity at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Recognizing that such large displacements may violate the linearity assumption upon 
which the field theory is based, the divergence of the infinite time response of the planet to 
an applied surface point mass load is nevertheless exactly what one should expect physically. 
Since the point mass occupies no volume it has infinite density and must therefore sink to 
the centre of the inviscid planet, this being the only location where it will feel no net force. 
Any surface load of finite surface area would, however, induce only a finite subsidence 
beneath it, the finite spatial scale of the load serving to clip the contribution to the response 
of the Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh r  with large n. 

Even for the point mass load, though, there exists a property of realistic earth models 
which removes the singularity from the infinite time response at small 8. This property con- 
cerns the tendency for the viscosity of the planet to obtain very high values in a thin layer 
near the surface called the lithosphere. Physically the region exists as a combined conse- 
quence of the exponential dependence of viscosity upon temperature and the thermal 
boundary layer nature of the mantle convective circulation which localizes a sharp increase 
of temperature (of = 1500°C) to the upper 100 km of the planet (e.g. Peltier 1980). Below 
this lithosphere, in which the radial temperature gradient is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall (adiabatic), the viscosity of 
the upper mantle is relatively uniform and equal to about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloz2 poise (e.g. Peltier 1974; 
Peltier & Andrews 1976; Peltier et al. 1978). As one approaches the upper surface of the 
planet from below the sharp drop in temperature combined with the thermally activated 
nature of the creep phenomenon effects a nominal viscosity increase which may be 
somewhat in excess of 10 orders of magnitude (making no allowance for effects of hydration, 
etc.). 

A viscoelastic lithosphere may be included in the previous homogeneous models by 
employing a two 'layer' approximation in which the viscosity of the lithosphere uL is large 
compared to the viscosity of the mantle U M  so that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / u ~  < s e ~ / U M  the lithosphere 
behaves as an elastic solid with XL(s) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and pL(s) = p. In order to illustrate the effect of 
such a region on the Love number spectra we shall consider, for definiteness, an earth model 
in which the top 120 km have a viscosity which is 20 orders of magnitude higher than that of 
the mantle (i.e. uL = 1042P). If we assume the model to be incompressible then the 
governing equations for both lithosphere and mantle are the same as those employed in 
Section (3.1). At the mantle-lithosphere interface all field variables must be continuous. As 
in our discussion of the homogeneous model, the field equations are valid only for s 5 p/uM 
since for smaller s the mantle begins to behave inviscidly. In this range of s we treat the 
mantle explicitly as an inviscid fluid in which the solutions have the same form as discussed 
in the last subsection. Then the boundary conditions between mantle and lithosphere for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s <" p/uM are the same as those between the fluid core and the mantle. 

Love number spectra h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, s) for this model are shown in Fig. 1.2(a), inspection of which 
shows that the individual spectra are characterized by two distinct relaxations, one for large 
s and one for small. These two relaxations are associated with the mantle and lithosphere 
respectively. Comparison of the large s asymptotes h: and the small s asymptotes h," of 
these spectra with those shown in Fig. l(1a) for the model without lithosphere, shows that 
they are identical. The new spectra for the two-layer model differ from those in Fig. l(1a) by 
the existence of the extensive intermediate asymptote in the range s Q This 
new asymptote, which we may denote by h i ,  would become equal to h," for a model in 
which the lithospheric viscosity was infinite. In practice, for most applications, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuL is so large 
that it may be treated as effectively infinite, thus the hk are the effective h r .  Fig. l.2(a) 
shows that the extent of the influence of the presence of the lithosphere is a strong function 
of n. For small n the deformation wavelength is so long that the lithospheric influence is 

P. Wu and W. R.  Peltier 
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Viscous gravitational relaxation 45 1 

negligible; the entire relaxation takes place in the mantle. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 30 the effect of the litho- 
sphere on the spectrum becomes more pronounced and is such as to produce a marked 
decrease of h i .  For n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 150,h i  = h: (convergence with n)  and the load is entirely supported 
by the lithosphere. Such short wavelengths are oblivious of the mantle and the relaxation 
takes place only at long times (small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) within the lithosphere itself. 

The effect of compressibility on these spectra is illustrated for a single example (n = 60) in 
Fig. l(2b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs previously the compressible model has the largest elastic response (large s) 
but both models have the same isostatic (small s) asymptote. The intermediate states h i  for 
the two-layer model are also affected by compressibility and the sense is again such as to 
enhance the response. Given a large contrast between the viscosities of mantle and lithosphere 
the magnitudes of the hk are determined entirely by lithospheric thickness. In summary 
then, the effect of a surface lithosphere in which the viscosity is effectively infinite is to 
suppress the viscous gravitational relaxation of all surface deformations of sufficiently short 
wavelength. It is therefore an important effect to keep in mind when the isostatic response 
of a planetary model is considered. 

3.5 LOVE NUMBER SPECTRA FOR A REALISTIC EARTH MODEL 

In the past subsections we have described Love number spectra for earth models which were 
sufficiently simple that analytical solutions to the boundary value problem were possible. 
For realistic earth models the system of equations (8) must be solved numerically and to do 
this we have employed the shooting method described by Peltier (1974). If we are interested 
in earth models which are effectively incompressible we may obtain a modified version of 
(8) merely by setting Ax = n and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0 in (6). The simultaneous equations for the incom- 
pressible model then have exactly the form (8) except that in the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA the parameters 
Alp, 1/p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are replaced respectively by 1, 0 and 3p(r,s). An earth model is completely 
described by the set of functionsp,(r),g,,(r), v(r), p(r) and h(r) (if the model is compressible). 
These functions are assumed known at a discrete set of N sampling points ri, 1 =G i G N and 
are determined at intermediate radii by linear interpolation although cubic splines would 
probably be preferable. It is rather important in the viscous gravitational relaxation problem 
that a model consisting of a stack of homogeneous layers not be adopted since each discon- 
tinuity introduces a new relaxation time into the relaxation spectra to be discussed in the 
next section. 

Fig. 1(3a,b) shows Love number spectra for three compressible and realistic earth 
models each of which has p(r), A@), p(r) profiles which are the same as model 1066B of 
Gilbert & Dziewonski (1975). The viscosity profiles for the three viscosity models are shown 
in Fig. 7. Each has a 120 km thick lithosphere and a loz2 poise upper mantle. The differences 
between models are in the lower mantle beneath the seismic discontinuity at 670 km depth 
and in the presence or absence of a low viscosity channel beneath the lithosphere. Model 1 
has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 1022P through the mantle, model 2 has a lower mantle with v = 1023P, while model 3 
is the same as 2 but includes a low viscosity zone which is 10zkm thick in which Y = 1 O2’ P. 
Inspection of Fig. 1(3) shows that all models have the same hf and hk asymptotes for the 
reasons discussed previously. In Fig. l(3a) the spectra are for n = 6 and it will be observed 
that the relaxation for model 1 is centred about a larger value of s than for either models 2 
or 3. This is simply because the n = 6 harmonic samples the lower mantle and since model 1 
has the lowest viscosity there it relaxes with the shortest characteristic time. The effect of 
the low viscosity zone is seen to be negligible for n = 6. In Fig. l(3b) the spectra are for n = 
30 and in this case model 3 shows a faster relaxation than either models 1 or 2. The n = 
30 harmonic does not ‘see’ the lower mantle so that the only important differences between 
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models are those in the upper mantle. The low viscosity zone in model 3 therefore forces the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 30 relaxation for this model to proceed most quickly whereas the spectra for models 1 
and 2 are almost indistinguishable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An extremely important result which follows from the calculations in this subsection is 
the determination of the asymptotic values of the surface load Love numbers which obtain 
in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs -+ 0. We have previously denoted these numbers by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh k ,  Zk, and kk for models 
with lithospheres and noted that it is in terms of these asymptotic values that the isostatic 
response to a given surface load is described. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we shall see later in Section 5.2, hk and k: 
are both required in the calculation of free air gravity anomalies. Another important applica- 
tion of these numbers which we shall discuss briefly here is in the determination of the polar 
motion forced by the glaciation-deglaciation cycle of the current ice age. This problem has 
recently been discussed in Sabadini & Peltier (1981) where it is shown that the Laplace 
transformed excitation function for aviscoelastic earth is proportional to 1 t k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s). Therefore 
if k2 -+ - 1 in the limit of infinite time (or equivalently s -+ 0) as obtains for a homogeneous 
viscoelastic earth (equation 5 lb), then the net motion of the pole over a single glaciation - 
deglaciation cycle will vanish. However, to the extent that 1 t kz differs from zero in the 
infinite time limit the rotation pole will execute a continuous slow drift relative to the 
geography as the surface ice load appears and disappears. In Sabadini & Peltier (1981) k, (s )  

was approximated as 

P. Wu and W. R. Peltier 

for realistic earth models with F(s)  taken as the normalized shear modulus for a homogeneous 
Maxwell model. This approximation was taken from Munk & MacDonald (1960) who express 
the 'isostatic factor' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, as 1, = 4(b/a)(l - p l / p o ) ,  in which b is the crustal thickness, a the 
Earth's radius, p' the crustal density, and po the average density of the planet. Using this 
formula, Sabadini & Peltier (1981) estimated 1, = 0.006 and obtained an average speed of 
polar wander of 0.2"/106yr away from the centre of glaciation (see fig. 6 of Sabadini & 
Peltier). Using the general formalism developed here we have calculated isostatic factors for 
realistic earth models from 1, = 1 t k ) .  For a realistic earth model we obtain Is = 0.009 
(Table 2) which implies an average speed of polar wander during the ice age which may be 
somewhat larger than 0.3"/106yr. Although this new result does not greatly alter the con- 
clusion of Sabadini & Peltier (1981), it is nevertheless important. True polar wander induced 
by this process could well be that which is observed in the recent palaeomagnetic record. If 
the rotation pole should wander sufficiently in response to this forcing, it could conceivably 
induce a large-scale melting in Antarctica and a marked change in global climate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 2. Infinite time Love numbers for model 1066B with a 
120 km thick lithosphere that has infinite viscosity. 

n 

0 
1 
2 
6 

15 
30 
60 
m 

0.140 
0.716 
2.847 
7.412 

17.305 
25.508 
12.639 
5.078 

L . nk, 

0 
0 
1.982 
5.945 

14.470 
21.315 
9.832 
2.706 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA453 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARelaxation spectra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor earth models of increasing complexity 

Having found solutions to the equivalent elastic problem in the domain of the Laplace trans- 
form variable s, in the form of Love number spectra, the first step in the application of the 
correspondence principle to the surface loading problem has been completed. The final step 
is to invert these spectra into the time domain. Although several approximate methods are 
available in terms of which the time domain forms of these spectra may be evaluated, it 
turns out that the inversion may be carried out exactly using a normal mode formalism first 
described in Peltier (1976). We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill first provide a brief review of this formalism here and 
then go on to apply it to the same sequence of simple earth models discussed in the last 
section. 

4.1 T H E  N O R M A L  MODE FORMALISM FOR VISCOUS G R A V I T A T I O N A L  R E L A X A -  

TION 

Consider the homogeneous boundary value problem associated with the simultaneous set of 
0.d.e .'s (8). For the homogeneous problem the surface boundary conditions which replace 
(11) are 

T,., (a) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo, (a) = a, (a )  = 0 (53) 

and will obtain only for the values of s which satisfy the secular condition 

det(Tcn, Ti,,, @i) = 0 (54) 

where Ti,, , Ti, and @i (j = 1,3) denote the three linearly independent surface values of the 
functions in (53) which are obtained by propagating each of the three linearly independent 
starting solutions of (8) to the Earth's surface from the starting depth. The set of s values 
which solve (54) constitute a discrete set of eigenvalues is;) each of which is the inverse 
relaxation time of a particular normal mode of viscous gravitational relaxation. In terms of 
these eigenvalues of the homogeneous problem, the s-domain form of the solution to the 
inhomogeneous boundary value problem has the following Laurent series form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is the number of eigenvalues found for fured Legendre degree n. The eigenvalues 
sl are therefore poles of the integrand in the contour integral which defines h,(t) .  As we 
shall show below, each of the poles s = -s l  lies on the negative real axis in the complex 
s-plane so that inversion of h, (s) gives 

The constants $ are just the residues at the poles s = -sr in the solution to the inhomo- 
geneous problem. They may be determined by solving the inhomogeneous problem to 
determine 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA54 

in which the only unknowns are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Defining 

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWu and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

h: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) = h" (s) - h: , 

equations (57) may be rewritten as 

so that 

AU terms in (56) are now known and we have an exact time domain form of the Love 
number spectra whichare required to describe the response of an earth model to gravitational 
interaction with a point massload which is brought to its surface at t = 0 and instantaneously 
removed. In the following subsections we shall describe the eigenspectra s? in terms of plotted 
points in the s-n plane, to which we shall refer as relaxation diagrams. 

4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR E L A X A T I O N  S P E C T R U M  F O R  AN INCOMPRESSIBLE H O M O G E N E O U S  M O D E L  

For homogeneous boundary conditions, the determinant of the matrix M in (31d) must 
vanish. Since this has the explicit form (from 3 lc) 

2p(s)(n - 1)(2n + i)a3"-I 

n(n + 1)(2n + 3) 
det M = {po tn  + p(s)(2n2 + 4n + 3)a-') 

the eigenvalues of the homogeneous problem are solutions of 

(59) 

or are those values of s which make p(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 0. Since p(s) = p / ( s  + p/u) from (3b), the non- 
zero eigenvalues are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 1  
sn = 

2n2+4n+3 1 
sn = 

2n2+4n+3 1 

in which p is the elastic Lam6 parameter. 

appropriate compliance p(s) = p in (60) to obtain 
The eigenvalue for a purely viscous incompressible model may be found by employing the 

which is the same as the expression for the inverse decay time of a viscous sphere deduced 
directly from the hydrodynamic equations by Peltier (1 974). Using the nondimensionalization 
scheme in Table 3 and employing the average values of p o ,  go, p and u for the real Earth 
(Table 11, dimensionless values of s" and sVn have been calculated for several values of the 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA455 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 3. Non-dimensionalhation scheme. 

Length 
Time 
Density 
Stress 
Gravitational acceleration 
Gravitational potential 
Elastic parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6.371 X lo6 m 
1OOOyr (3.153 Xl0'"s) 
p = 5517 kg m-3 
p* = n G p 2 a 2  

P * / ( U P )  

(cc*/d 
cc* 

Table 4. Comparison of the viscoelastic eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs" and the viscous eigenvalues 
sVn for a homogeneous earth model. 

n Percentage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs" 
difference 

V n  

2 
4 
6 
8 

10 
50 

100 
5 00 

- 0.9165 
-0.7196 
- 0.5766 
- 0.4784 
- 0.4080 
- 0.1023 
- 0.05 27 
- 0.0108 

- 1.1458 
- 0.8537 
- 0.6597 
- 0.5342 
- 0.4479 
- 0.1046 
- 0.0534 
- 0.0108 

25 
18 
14 
10 
10 

2 
1 

< 0.1 

angular order and are compared in Table 4. Inspection of this table shows that by neglecting 
the elastic coupling term in the denominator of (61) all relaxation times are shortened. The 
error committed in making the viscous approximation is approximately 25 per cent for 
n = 2 and 10 per cent for n = 10. 

A plot of the relaxation spectrum for the homogeneous incompressible model is shown in 
Fig. 2(a) in which the values of S" are normalized according to Table 2 so that l/s" gives the 
relaxation time in kyr. For sufficiently high angular order n(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 25), the deformation 'sees' 
the Earth as a flat half-space and the relaxation time may be approximated as 

-1  2vn 

s" P o w  ' 
?=-,- 

This is the same as the result obtained by Haskell (1935), McConnell (1965), and other 
authors. When n is small the effect of sphericity is to cause the relaxation spectrum to 
deviate from the linear relation (63) in such a way that relaxation time is increased. 

The eigenfunctions corresponding to the eigenvalues s" which satisfy the secular condition 
may be found to within an arbitrary multiplicative constant by choosing C1 (s") = A  for 
example and then using any two of the three linearly independent row vectors of M to find 
C2(s") and C3(sn) in terms of A (say). Substitution of these results into (30) with p =  
p(sn) then yields 

a2n2(n + 2)r"-' 

(n + 1)(n - 1) 
U, (r, s") a nr"+' - 
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456 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W. R.  Peltier 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, I , , . , , ,  , I , , , , , ,  , 

2 -  
( e )  

I -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArz 
r/ 

- 
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 : ::::- 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-  
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 , *.**- - 

c -  

( f ) *  a r r r r r r a , '  r ~ ' " " ' ' ~  ' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TZ 

' ' . .... 
- 

1 

and similarly for T,  (r, s"), Td (r, s") and Q, (r, s"). From these eigenfunctions we may 
construct the differential kernels which are crucial to the formulation of the inverse problem 
for mantle viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand which are rather useful for purposes of mode identification (Peltier 
1976). We shall show some examples of these kernels here. 

In the sdomain the shear energy distribution is just 

= 2p(~)AjjA$ (65) 

31 ' ' """I0 ' ' " '  " '  100 

in which 

I0 100 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA451 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is the strain deviator and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* denotes complex conjugation. The radial part of A,A$ is just 

K, ,=- (2arU, ,  - F f l ) 2 + r - 2 n ( n  t l ) ( r a , V ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, t U f l ) 2 t r r 2 n ( n - l ) ( n + l ) ( n + 2 ) V ~ ( 6 7 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

3 

where 

F, = r - ' [ 2 U ,  - n(n + 1)V,] 

As described zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Peltier (1976) the importance of K(r)  is Lat one may use it to calculate 
the shift in a free decay pole which is forced by a perturbation of the viscosity profile 
S u (r) by computing 

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = P  n =lo 

r/a r /a 

Figure 3. Normalized shear kernels for representative modes of the homogeneous earth model A whose 
properties are shown in Fig. 4. The angular order n of the mode is shown in each frame. Note that the 
higher order modes have their shear energies progressively more sharply confined to the near surface 
region. 
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In Fig. 3 we show plots of the differential kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(r )  for a few values of the angular order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. 
For small values of n (2 and 3) we see that the shear energy in the mode is distributed 
throughout the Earth's volume while as n increases it becomes progressively more highly 
concentrated at the Earth's surface. 

For this homogeneous earth model the calculation of the residues rp which are required 
to invert the Love number spectra into the time domain is particularly simple. Since there is 
only one relaxation time for each value of n we may use equation (55) to obtain 

P. Wu and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

r" = sn (h," - h;) 

and the complete time domain solution to the inhomogeneous problem may be constructed 
using (56). 

4.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARELAXATION SPECTRUM FOR A COMPRESSIBLE HOMOGENEOUS EARTH 

For the homogeneous compressible model discussed in Section 3.2 we may also compute the 
eigenspectrum by finding the zeros of a secular determinant which is analogous to that 
shown explicitly in (31c) for the incompressible problem. Now, however, from (43), the 
elements of the secular determinant consist of spherical Bessel functions and this introduces 
a slight complication because the eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin are located on the negative real axis of the 
complex s-plane where the arguments of the Bessel functions may become complex. This 
may be seen by direct substitution of (3a, b) into equations (41a, b) to give 

in which0 = h + 2p and K = h + 2p/3. 
There are now five distinct cases which must be treated separately and these are 

(1) s > 0, in which case k2 > 0, q 2  < 0 and therefore q is purely imaginary. 
(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs < -p/u, then k2 > 0, q 2  < 0 and again q is purely imaginary. Here the analysis 

proceeds in the way pointed out by Gilbert & Backus (1968). We define p 2  = -q2  and find a 
second solution vector to supplement (43) by substituting I, (pr) in place of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj,, (kr) where 
1, is the modified Bessel function. 

(3) - P / U  < s < - (K/@)(p/u) ,  in this case k2 < 0 and q2 > 0 so that k is purely imaginary. 
The appropriate solution vector which replaces (43) then has j ,(kr) replaced by Z,(pr) 
where p 2  = - k2.  

(4) -(K/o)(p/v) < s < - [n(n f l)Kp/u] /[4p + n(n + 1)p] , then k2 > 0 and q 2  > 0 and 
the solutions are as before. 

( 5 )  - [n(n + l ) K p / v ]  /[4p + n(n + I)p] < s < 0, in this case k2 is complex and q is the 
complex conjugate of k .  Therefore j ,  (kr) and j ,  (qr) are also complex conjugates and this 
implies that the solution vectors y1 and y2 are also. At first sight it therefore appears that in 
this range of s values there are only two linearly independent solution vectors y, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy3 to 
satisfy three boundary conditions. However, this is only apparent since the real and imaginary 
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parts of y, are linearly independent. Writing 

and 

we therefore have a general solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c4y4 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc5 y, + c3y3 and the matrix M whose deter- 
minant gives the secular function can now be constructed. 

No simple analytic expression exists for the eigenvalues s, in this case and numerical root 
finding algorithms must be employed. For atl of the calculations in this paper where the 
evaluation of spherical Bessel functions is required, they have been generated using the 
method of continued fractions. Lentz (1976) has shown this method to be highly efficient, 
accurate and stable, even for complex arguments. Derivatives of the Bessel functions required 
in (43) are obtained using the recursion relations. Some eigenvalues for the compressible 
model are listed in Table 5 where they are compared to their incompressible counterparts. 
Inspection of this table shows that the effect of compressibility is to shift the eigenvalues to 
somewhat longer relaxation time but the magnitude of this shift is extremely small. 

4.4 RELAXATION SPECTRA ILLUSTRATING SPECIFIC PHYSICAL EFFECTS O F  

EARTH-LIKE CHARACTERISTICS O F  THE VISCOELASTIC MODEL 

In this section we shall consider five simple incompressible earth models which have been 
constructed to illustrate the effects upon the relaxation spectrum of important physical 
properties of realistic earth models when these properties are isolated from one another. The 
structure of these models is shown in Fig. 4 where the profiles of po(r) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,(r) and v(r) are 
illustrated. Model A is the homogeneous model discussed previously, B has a 120km thick 
lithosphere, C has an inviscid fluid core of radius 3485.5 km and high density contrast, D has 
an outer shell of thickness 195.6 km in which the density is reduced, while E has high 
viscosity below a depth of 671 km. The last model F has a low viscosity region in the 
outermost 120 km. 

The relaxation spectrum for model B is shown in Fig. 2(b) and may be compared to that 
for the homogeneous model in Fig. 2(a). Each harmonic of angular order n now has two 
different modes of relaxation which are accessible to it which we have named MO for the 
fundamental mantle mode and LO for the lithospheric mode. The modes have been identified 

Table 5. The effect of compressibility on the eigenvalues sn for a homogeneous earth model. 

s" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n Incompressible Compressible Percentage 

difference 

2 - 0.9165 
4 - 0.7196 
6 - 0.5766 
8 - 0.4784 

10 - 0.4080 
20 - 0.2339 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 - 0.1023 

-0.9117 
- 0.7133 
- 0.5712 
- 0.4740 
- 0.4045 
- 0.2325 
- 0.1019 

0.5 
0.8 
0.9 
0.9 
1 .o 
0.8 
0.3 
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1 5 7  1 5 7 7  

Y 10 

- 
r/a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA06 04 

20 F 

1 0  0 8  06 04  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ) ,  shear wave velocity (VS), and Newtonian viscosity ( u )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the simple incompressible 
earth models discussed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the text. 

0 33 67 0 33 67 10 
r/a r/a 

Figure 5. (a) shows normalized shear kernels for a sequence of modes of model B whose angular orders 

f l  Me matked h k a B  frame. T h e  modes are d Jong the Mb branch. Corresponding modes dong the LO 
branch are shown in (b). 

by inspection of their shear kernels which are shown for several values of n in Fig. 5(a, b). 
For modes along the LO branch, shear energy is concentrated at the base of the lithosphere 
while for the MO modes the peak is in the mantle as for the homogeneous models, the 
kernels for which were illustrated in Fig. 5 .  Residues for the Laurent series expansions (55) 
of the solution t o  the inhomogeneous boundary value problem are listed for this model in 
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 where we list sy , $ I s ;  and a percentage strength for each mode as the ratio 

The sumin the denominator in this expression for percentage strength is just the total viscous 
contribution to the infinite time response. Inspection of this table clearly shows that the LO 
modes carry an extremely small fraction of the total variance except near the angular degree 
n at which the two modal branches cross. The introduction of this extra mode of relaxation 
is not therefore the most important effect upon the relaxation spectrum which the presence 
of the lithosphere produces. More important is the fact, evident in Fig. 2(b), that the relaxa- 
tion times along the MO branch are sharply reduced at large angular order (short wavelength). 
Rather than decreasing indefinitely, however, the relaxation time approaches an asymptotic 
value for large n, the same asymptote as is obtained for the LO mode. When these two modal 
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Table 6. Distribution of modal excitation strengths for model B .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Si 
rilsi 
Strength (per cent) 

si 
rilsi 
Strength (per cent) 

si 

Strength (per cent) 

Si 

rilsi 
Strength (per cent) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
si 
rilsi 
Strength (per cent) 

Si 

Strength (per cent) 

rilsi 

rilsi 

Angular 
order 

2 

3 

5 

10 

20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100 

MO branch 

0.9610 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 1.25 25 
99.2 

0.8492 
- 1.8024 
98.3 

0.6474 
- 2.1351 
90.0 

0.4191 
- 6.0719 
99.1 

0.2721 
- 10.5121 

98.5 

1.486 1 
- 0.6145 
100.0 

LO branch 

0.3523 

0.8 

0.5049 
- 0.0324 

1.7 

0.1866 

- 0.0098 

- 0.3009 
10.0 

1.2515 
- 0.0220 

0.3 

1.8024 

1.5 

2.2863 
- 0.0003 

0.0 

- 0.1583 

Non-elastic 
amplitude 
2 (rilsi) 

- 1.2623 

- 1.8348 

- 3.0366 

- 6.0939 

- 10.6704 

- 0.6148 

lines coalesce, the residues along the MO branch also go to zero (Table 6 )  which is simply a 
mathematical manifestation of the physically intuitive result noted previously that for 
sufficiently short wavelengths all viscous gravitational relaxation is suppressed by a litho- 
sphere with infinite viscosity. The value of n above which relaxation time first begins to 
decrease with n is determined by lithospheric thickness. The greater the lithospheric thickness 
the smaller the value of n at which its presence is felt. In his analysis of the rebound data 
from Fennoscandia McConnell (1965, 1968) noted this characteristic behaviour and used it 
to determine a lithosphere thickness of about 120 km for that region. 

Fig. 2(c) shows the relaxation diagram for model C which has an inviscid high density 
core but no lithosphere. Again, the introduction of a second layer into the model (this time 
with an expression in terms of viscosity and density rather than in viscosity only) supports 
a second mode of relaxation for each angular order of the deformation. Shear kernels along 
the two modal branches are shown in Fig. 6(a, b) and the branch with longest relaxation 
times has been labelled CO on Fig. 2(c). The reason for this is clear from Fig. 6(b) in which 
the shear kernels are observed to peak adjacent to the core--mantle boundary, identifying 
the modes as core modes, the family of which we denote as CO. Comparison of Fig. 2(c) 
with 2(a) shows that the presence of the core has slightly reduced the relaxation times of the 
mantle modes which have low angular order (large wavelength). For large angular order, both 
modes have relaxation time increasing with n according to the half-space formula (63). The 
residues along the MO and CO branches are listed in Table 7 for a few n values and show that 
the relative strength of the relaxation along the CO branch tends to zero as n increases such 
that for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 10 the presence of the core is no longer felt and the relaxatiQn is governed 
entirely by the MO modes. Comparison of the CO and MO kernels in Fig. 6 for n = 100 shows 
that they are identical. This is simply a numerical artefact of the fact seen in Fig. 2(c) that 
the two modal branches coalesce for large n in this model. 
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The relaxation diagram for model D is shown in Fig. 2(d). This model has an upper 

mantle density jump which is not accompanied by any change of viscosity but has neither 
core nor lithosphere. It is intended to mimic the effect of density jumps introduced by phase 
changes in the transition region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs seen in Fig. 2(d) such a feature again introduces a second 
mode of relaxation for each angular order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. The new modes are labelled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM1 in the figure 

8- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4- 

Table 7. Distribution of modal excitation strengths for model C. 

40 

- 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Si 
riisi 
Strength (per cent) 

Si 
r ih i  
Strength (per cent) 

Si 
r ih i  
Strength (per cent) 

Si 

rilsi 
Strength (per cent) 

Si 

riisi 
Strength (per cent) 

Si 
riisi 
Strength (per cent) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 j 0  

Angular 
order I 

2 

3 

5 

10 

20 

100 

CO branch 

0.4099 

58 

0.4233 

53 

0.4241 

45 

0.3151 

6 

0.1738 

0 

0.0376 
- 0.0110 

0 

- 0.9065 

- 1.2566 

- 1.8347 

- 0.5030 

- 0.0113 

MO branch 

2.2158 

41 

1.5250 
- 1.1079 

47 

0.7613 

55 

0.35 15 

94 

0.1947 

- 0.6489 

- 2.2059 

- 7.6242 

- 16.3348 
100 

0.0428 
- 82.4318 

100 

Non-elastic 
amplitude 

(rilsi) 

- 1.5554 

- 2.3645 

- 4.0406 

- 8.1272 

- 16.3461 

- 82.4429 
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and for all n have longer relaxation times than for those along the MO branch. With the large 
density jump in model D, the M1 mode can carry as much as 49 per cent of the relaxation in 
the modes with small angular order. For n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ 60, however, the M1 mode becomes less 
important and the MO modes dominate once more. The modes labelled T1 and T2 are spur- 
ious in the sense that they are not excited by surface loading. 

Fig. 2(e) shows the relaxation diagram for model E and this demonstrates that the effect 
of increasing the viscosity of the lower mantle is to increase the relaxation times for those 
long-wavelength harmonics which involve this region in their decay. 

The relaxation diagram for the last model F which includes a low viscosity zone extending 
to the planet’s surface is shown in Fig. 2(Q. For large angular order (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 I SO), the relaxation 
times fit the half-space formula (63) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY equal to the viscosity of the low viscosity upper 
mantle. For small angular order (n 5 4) the relaxation times are those given by the homo- 
geneous model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA perturbed slightly to shorter times. For intermediate values of the angular 
order, the MO branch turns towards shorter relaxation times, the same effect which we noted 
earlier as being produced by the presence of a lithosphere. This points out an important 
ambiguity in the interpretation of observed relaxation spectra. Both low and high near-surface 
viscosity effect a spectrum characterized by decreasing relaxation time with increasing 
wavenumber. 

4.5 RELAXATION SPECTRA FOR REALISTIC EARTH MODELS 

In this section we shall describe relaxation spectra for three compressible realistic earth 
models whose elastic properties and density are the same as those in model 1066B of Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Dziewonski (1975). Plots of these properties are shown in Fig. 7, prominent features of 
which are the presence of the solid inner core and the existence of three sharp density 
discontinuities in the upper mantle corresponding (in the order of increasing depth) to: 
(1) the MohoroviEiC discontinuity, (2) the olivine -+ spinel phase change, and (3) the spinel -+ 

post-spinel phase change. Included in Fig. 7(b) are the viscosity profiles which are required 
to complete the specification of the viscoelastic models. Model L1 has a 120 km thick litho- 
sphere, a mantle with a constant viscosity of 1OZ2P and inviscid core; L2 is the same but 
with alower mantleviscosity of 1023P, while L3 is the same as L2 but includes a low viscosity 
zone beneath the lithosphere which is 102km thick and in which the viscosity is lOZoP. 

The relaxation spectra calculated for these models have all been obtained using the com- 
pressible field equations. In Fig. 8 we show the secular determinant for model L1 at angular 
order n = 6 as an illustration. Not all the roots of this transcendental function are physically 
significant but those that are plotted in Fig. 9(a) are members of six prominent modal 
branches labelled MO, M1, M2, CO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1, LO. The C1 branch is due to the presence of the inner 
core, as can be seen by inspection of the shear kernels for this model, but exerts negligible 
influence upon the relaxation as can be seen by inspection of relative relaxation strengths 
listed in Table 8. The M1 and M2 branches are due to the density discontinuities at 671 and 
420 km depths respectively. Inspection of Table 8 shows that MI  is more important to the 
relaxation than M2 and this is because the density jump across 67 1 km is about double that 
across 420 km. The rest of the relaxation diagram is self-explanatory on the basis of the 
results discussed in the last subsection. The CO modes are due to the core and carry about 
40 per cent of the viscous relaxation at n = 2 and about 4 per cent at n = 6. The LO modes 
are due to the presence of the lithosphere and do not participate substantially in the relaxa- 
tion. The MO modes are most important and carry more than 90 per cent of the relaxation 
for n Z 15. The turning of the MO branch to shorter relaxation times is due to the presence 
of the lithosphere. 
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24 

- -  
A - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 22- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

205 

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R.  Peltier 

I 1 , 
/ /  

- 

2,3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 LZ3, 

42,3 
,I 

I I 

The relaxation diagram for model L2 is shown in Fig. 9(b) and inspection reveals all of 
the modal branches found for model L1 although some of these have been considerably 
modified in form. The effect of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1023P lower mantle is seen to increase the relaxation 
times of both CO and C1 by an order of magnitude. The relaxation times along the MO 
branch for n 7 20 and along the M1 branch for n 7 20 are affected likewise. The M2 branch 

-30 
-5 - 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3 -2 -I 0 2 3 4  

LOG10 (- s ) 

Figure 8. The seculm determinant for realistic earth model L1 as a function of inverse relaxation time 
s = T-* and for angular order n = 6. The zeros of the secular function determine the discrete spectrum of 
decay times for each of the normal modes of viscous gravitational relaxation with n = 6. Between the 
dashed lines exists a sequence of interlaced singularities and non-physical zeros. 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t I (bl 

* . . .  . *  ...... ---/7=-] 
* -  ....... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. Relaxation diagrams for the three realistic earth models L1, L2 and L3 are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown respectively in 
(a), (b) and (c). 

is modified only slightly except in the range 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 n 5 50. Along the lithosphere branch 
the modes with n 5 20 show strong interaction with the mantle modes (as evidenced by 
the shear kernels) and now carry a significant fraction of the total viscous relaxation. The 
high viscosity lower mantle also tends to suppress the importance of the CO mode for 
n 5 4 but accentuates its importance for 4 5 n < 9 .  The MO branch is still dominant for 

Table 8. Modal excitation strengths for model L1. 

Si 

Strength (per cent) 

Si 

rilsi 
Strength (per cent) 

si 

Strength (per cent) 

Si 

rilsi 
Strength (per cent) 

Si 

rilsi 
Strength (per cent) 

si 
rilsi 

Strength (per cent) 

Si 

r ihi  
Strength (per cent) 

Si 

rilsi 
Strength (per cent) 

Si 

Strength (per cent) 

rilsi 

r ihi  

rilsi 

16 

n MO 

2.7632 
2 -0.7327 

40 

0.9671 
4 -2.7216 

67 

0.5698 
6 -5.0863 

81 

0.4135 
8 -7.4537 

89 

0.3244 
10 -8.0725 

76.9 

0.2178 
15 -14.0049 

90 

0.1668 
20 -18.5911 

94 

0.1709 
50 -14.5539 

99.3 

0.4466 
100 -2.2162 

100 

M1 M2 

0.00053 0.00001 
- 0.3822 
20 

0.00144 0.00004 
- 0.7695 
19 

0.00262 0.00009 
- 0.9005 
14 

0.00379 0.00014 
- 0.9388 
11 

0.00473 0.00021 
- 1.1263 - 0.0439 
10.7 0.4 

0.00629 0.00040 

7 0.7 

0.00679 0.00061 

4.3 0-7 

0.00387 0.00125 

0.2 

- 1.0892 -0.1126 

- 0.8604 - 0.1310 

- 0.0329 

co LO 

0.3746 0.0782 
- 0.7431 
40 

0.3683 0.1837 
- 0.5840 
14 

0.3404 0.2563 

5 

0.2503 0.3617 

- 0.2760 

0.2140 0.4164 
- 1.2578 
12 

0.1520 0.5152 
- 0.3441 

2.3 

0.1176 0.5818 
- 0.2174 

1 

0.0499 0.6982 
- 0.0595 

0.5 

- z ri/si 

1.8579 

4.075 1 

6.2627 

8.3926 

10.5004 

15.5507 

19.799 

14.646 3 

2.2162 
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466 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 2 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas will be clear by inspection of Table 9 which shows relative relaxation strength for 
all modes belonging to each of several angular orders. 

In Fig. 9(c) is shown the relaxation diagram for model L3 which differs from L2 only in 
the presence of a low viscosity zone beneath the lithosphere. The branches MO, M1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM2, CO, 
C1 have the same origin as in the last models but here the branch LO represents a combined 
effect due both to the lithosphere and to the low viscosity channel. Comparing this relaxation 
diagram with that for model L2 shown in Fig. 9(b) we see that the relaxation times of the 
CO and C1 modes have been shifted very slightly towards shorter times. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM1 and M2 
branches are shifted more strongly in this direction and the lower the angular order the 
larger the shift. Along the MO branch, the effect of the low viscosity zone is to decrease the 
relaxation time with n even more sharply than it previously varied due to the presence of the 
lithosphere alone. Inspection of the shear kernels along this branch shows that for n 2 50 
the MO branch begins to lose its dominance as LO begins to carry a significant fraction of the 
total relaxation. Finally for sufficiently large n (2  150) the two branches cross and MO again 
dominates the relaxation. 

In Fig. 10 we show a superposition of the MO modes for all of the previously discussed 
models and for a fourth model L4 which is identical to L3 except that the low viscosity 
channel has a viscosity of 1 02' P rather than 1 020P. Also shown on this diagram are several 
observational data points. These include different estimates of the relaxation time for the 

Table 9. Modal excitation strengths for model L2. 

Si 

rihi 

Strength (per cent) 

Si 

rihi 

Strength (per cent) 

Si 

Strength (per cent) 

S i  

rihi 
Strength (per cent) 

si 

Strength (per cent) 

Si 

rihi 
Strength (per cent) 

Si 

Strength (per cent) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Si 

Strength (per cent) 

Si 

rihi 

rihi 

rihi 

QlSi 

rihi 

n MO 

0.2571 
2 -0.8211 

44.3 

0.1102 
4 - 1.0083 

24.7 

0.0676 
6 -3.5416 

56.6 

0.0612 
8 -5.8899 

70.2 

0.0647 
10 -8.2332 

78.4 

0.0849 
15 -13.4477 

86 

0.1029 
20 -18.3252 

93 

0.1703 
50 -14.6463 

100 

0.4466 
100 -2.2162 

M 1  M2 

0.00029 0.00001 
- 0.2630 - 0.0835 
14.2 4.5 

0.00085 0.00003 
- 0.4621 - 0.1216 
11.3 3 

0.00147 0.00006 

7.8 2.8 

0.00197 0.00010 

4.6 2.5 

0.0020 0.00014 

6.1 

0.00215 0.00028 

3 

0.00190 0.00043 

2 

0.00156 0.00055 

- 0.4893 - 0.1792 

- 0.3879 - 0.2181 

- 0.6430 

- 0.4637 

- 0.3821 

co LO 

0.0244 0.0762 
- 0.5629 - 0.1272 
30 6.8 

0.0320 0.1784 
- 1.0679 - 1.4153 
26.2 34.7 

0.0307 0.2665 
- 0.8250 - 1.2277 
13.2 19.6 

0.02580 0.3281 

5.3 17.3 

0.0219 0.3651 

- 0.4489 - 1.4480 

- 1.6242 
15.5 

0.0152 0.4340 
- 1.6393 
11 

0.0118 0.4847 
- 1.0926 

5 

0.0050 0.6917 

- Erifsi 

1.85797 

4.0751 

6.2627 

8.3926 

10.5004 

15.5507 

19.7999 

14.6463 

2.2162 
Strength (per cent) 100 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WAVE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANUMBER KH(cm‘l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA467 

I I 
100; 10 100 

ANGULAR ORDER n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. Solidlines illustrate the variation of relaxation time with horizontal wavenumber kH (or angular 
order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI) for the realistic earth models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL1, L2, L3 and L4 which are discussed in the text. Each model is 
described by the relaxation times which obtain along the MO branch of the modal diagram. Model L4 
differs from L3 only in that the low viscosity channel has a viscosity of 10”P rather than the 1OZoP 
which is obtained for L3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso shown are the relaxation times observed by various authors in different 
wavenumber regimes. 

central Laurentide depression. Based on sea-level data from the Ottawa Islands, Andrews 
(1970) obtained a relaxation time of approximately 2000yr. However, Walcott (1980) 
argued for relaxation times in excess of 5000yr. His argument was based upon the large 
gravity anomaly observed over central Hudson Bay and sea-level data from Castle Island and 
Cape Henrietta Maria in south-eastern Hudson Bay. We have assigned these relaxation times 
to angular order n = 6 on the basis that this is the dominant harmonic in the decomposition 
of the Laurentide ice sheet (Peltier & Andrews 1976). Also shown in the figure is Crittenden’s 
(1963) estimate of 4000 yr for the relaxation time of Pleistocene Lake Bonneville. Heiskanen 
and Vening-Meinesz estimate of a relaxation time of 5000 yr for the Fennoscandian depres- 
sion is also included. Superimposed upon these single estimates is the broad spectrum of 
relaxation times inferred by McConnell (1968) from a deconvolution of cross-sectional data 
from Fennoscandia. His estimates extend over the range of angular orders 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 n 5 100 but 
are liable to be extremely inaccurate at both the long- and short-wavelength ends. They do, 
however, show quite unambiguously the decrease of relaxation time with increasing n which 
indicates the presence of a lithosphere, a low-viscosity zone or a combination of both. 

On the basis of this comparison one may be rather strongly inclined to state that model 
L1 is preferred since the models with high lower mantle viscosity are very strongly rejected 
by the Laurentide data. This, of course, assumes that Andrews’ estimate and not Walcott’s 
is most representative of the relaxation at the centre of the Laurentide depression. Similarly, 
the models with sharp low-viscosity zones seem to be rejected by the Lake Bonneville 
observation since they predict far too rapid a decrease of relaxation time with increasing 
angular order. This conclusion may be somewhat premature, however, since the comparisons 
upon which it is based are themselves predicated upon the assumption that only the MO 
mode is significant in determining the relaxation of a harmonic surface deformation of any 
angular order. Results discussed previously in this section demonstrate that this assumption 
is not strictly true. The only way to remove the ambiguity of interpretation which is intro- 
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468 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
duced in the inversion of data using a realistic viscoelastic earth model which supports a 
multiplicity of normal modes of viscous gravitational relaxation for each angular order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is 
to use the model to make direct predictions of the surface observables themselves. These 
observables include relative sea-level histories and present-day free air gravity anomalies. In 
the next section we will illustrate further elaborations of the theory which are required to 
make such predictions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Wu and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R.  Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAViscoelastic response to the growth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand decay of a model ice sheet 

In order to determine the response of the viscoelastic earth to surface loading by a specific 
space-time loading event we are obliged first to determine the response to the point load by 
summing infinite series such as (5). The response to an arbitrary loading event may then be 
determined by superposition (convolution). Prior to summing the series in (5) we express the 
spectral amplitudes U,, V,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@, in terms of surface load Love numbers through (12). We 
showed previously using the normal mode formalism that when the surface load had a 6 (t) 
time dependence the Love numbers h, (t), 1, (t), k, (t)  all had expansions of the form 

h, ( t )  = h: 6 ( t )  + C r r  expf- ST t )  . (72) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 

If the point load is applied at t = 0 and then allowed to remain on the surface, i.e. has a 
Heaviside history, then the induced deformation can be calculated using Love numbers 
obtained from (72) by convolution with a unit step. Denoting these Love numbers by hF(t),  
etc., we obtain 

h 

c 1 

5 
I C  
1 

I 

20 - 

16- 

P 

.................... ..... 

r 
5 _ . _ _ - . _ . _ .  L - 

0 3.33 6.67 10.00 13.33 16.67 "aD 

TIME (K-YRS) 

Figure 11. Decay spectra h;"(t) for realistic earth model L1. The angular order n is marked on each 
decay curve and time is measured in thousands of years. The asymptotic value which is obtained at 
infinite time is shown for each n adjacent to the right hand margin of the graph. Note that even after 
2 X 104yr substantial disequilibrium remains for most angular orders. 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation 469 

In Peltier (1976) the second term on the rhs was denoted by hF3V(t), the viscous part of the 
Heaviside response, and in Fig. 11 we show histories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh:?"(t) for several values of the angular 
order n. These time domain forms are for model L1 discussed in the last section. The symbols 
on the right margin in Fig. 11 show the infinite time asymptotes 

which may be calculated exactly by solving the second-order system of o.d.e.'s discussed in 
Section 3.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we shall see below, having accurate values of the infinite time Love numbers 
is crucial for calculation of the gravity anomaly. 

Green's functions for the Heaviside response are obtained by using forms like (73) for the 
Love numbers in (12) and then summing infinite series of the form (5). We may calculate 
Green's functions for several signatures of the response, and all of these may be written as 
the sum of two parts as 

GH (0, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= GE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt GH*" (0, t) . (74) 

Here we shall be concerned only with the Green's functions for radial displacement and free 
air gravity anomaly which we shall denote by uH and gH 
forms 

respectively and which have the 

(754 

Figs 12, 13 and 14 respectively show the uHiV(O, t )  part of the radial displacement Green's 
function for models L1, L2 and L3 discussed in the last section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll functions in these 
presentations have been normalized by multiplication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a0) for plotting purposes. The 
absence of a singularity 'stronger' than (a8) at 0 = 0 is due to the presence of the lithosphere. 
As discussed in Peltier (1974) the most diagnostic feature present in the Green functions 
themselves, aside from the variation of the rate of decay in the small 0 region, is the 
behaviour of the peripheral bulge. The uniform viscosity mantle supports an inward 
propagating forebulge (Fig. 12) and the inward migration is accompanied by an increase in 
both width and amplitude of this peripheral region. For model L2, which has a high viscosity 
lower mantle, inspection of Fig. 13 shows that the bulge does not migrate nor does its width 
change. The amplitude of the bulge, however, increases more rapidly than for the uniform 
mantle model. The effect of a low viscosity zone on the Green functions (model L3, Fig. 14) 
is to cause the bulge to migrate outwards - the opposite of the sense of motion in the 
uniform mantle case. 

By convolving Green's functions (74) over a realistic space-time deglaciation history one 
may obtain a prediction of the Earth's response to such an event. Here we shall restrict con- 
sideration to ice loads with simple geometric forms which may nevertheless serve as useful 
approximations to actual unloading events. The first model we shall discuss is one in which 
the ice sheet is approximated as a disc load of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Let 0 be the centre of the disc and 
Q be a point of observation outside the disc load with l' the angular distance between 0 and 
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0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. I I 10 lo( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. (a) shows several time slices through the viscous part of the Heaviside Green’s function for 
radial displacement for model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL1. The function has been normalized by multiplication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAae to remove 
the geometric singularity for plotting purposes. The number on each curve is time measured in thousands 
of years. Note the inward mjgration of the peripheral bulge as time proceeds for this uniform viscosity 
model. (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshows a threedimensional view of the same Green’s function. 

90, , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

8 

Figure 13. Same as Fig. 12 but for viscoelastic model L2. Note the stationary nature of the collapsing 
peripheral bulge for this model which has a high lower mantle viscosity. 

0 

e 
Figure 14. Same as Fig. 12 but for viscoelastic model L3. Note that the peripheral bulge migrates 
outwards prior to its collapse. 
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfb I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 15. (a) Notation employed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the calculation of the response at point Q outside a circula disc of 
radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. (b) Illustrates the setup of the problem when the point of observation is inside the disc. 

Q (see Fig. 1Sa). Any point P on the disc may be described by 7 ,  the angular distance from 
Q ,  and A the angle PQO. Note that y and A are such that rl G y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ rz and - h(y) G A G h(y) 
where Fl = r - (Y and r2 = r + (Y. If we denote by E the response at Q due to a disc of mass 
L, then 

where G(y,t)  is the Heaviside Green's function and it has been assumed that the disc has 
been placed on the surface at t = 0. Defining a weighting function W(y)  as 

then 

It is a relatively simple problem in spherical trigonometry to determine W(y)  for the disc 
load. If both a and I' are much less than the Earth's radius then the geometry is that of a flat 
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472 P. Wu and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  Peltier 

earth and we may use the usual law of cosines to obtain 

y2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ r2 - (Y2 

2Yr 
X(y) = cos-1 ( 
for r - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa c y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ r + (Y and X(y) defines the boundary of the disc. If r or (Y are large, however, 
then we must employ the spherical law of cosines which gives 

cosa= cosrcosy + sinrsinycosA(y) (79) 

in which case 

For a point of observation inside the disc load (i.e. la1 > Irl), the response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE may be split 
into two parts as 

E h d e ( r , t )  = ~o~-r(211a2L)sinyG(y,t)dy 

a+ r 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a") W(-r)G(y)sinvJY * 

In (82) the first integral represents the response due to a small disc of radius a - r and 
centred at Q ,  whereas the second is the response to the remainder of the disc in which the 
weighting function is W(y) = 252(7). From the spherical law of cosines we have (Fig. 15b) 

COW - COSY cosr  
cosa = 

sin y sin r 
From the law of cosines we have 

1 t c o s a  
cos( 5, = 2 

so that 

sing sin@ - a) 1'2 

siny sin F 1 52 = 2cos-' 

where .$ = (a t y + F)/2. Equation (82) may therefore be written as 

Einside (r, t )  = a2L Joa+r ~ ( y , t )  ~(y)s inydy 

where 

W(y)=211 for O <  y ~ a - r  
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Viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA473 

To determine the response of the Earth to a disc load applied on its surface at t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 we 
evaluate the integral (8 1) or the integral (86) depending upon whether the point of observa- 
tion is inside or outside of the edge of the disc. These simple integrals may be evaluated 
using Simpson's rule. To calculate the radial displacement induced by the disc load we use 
equation (75a) for G ( y , t )  and to calculate the free air gravity anomaly we use (75b). 

5.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR A D I A L  DISPLACEMENT RESPONSE 

In Fig. 16(a,b,c) we show radial displacement response curves for a disc load with radius 
(Y = 15" (about burentide size) and for earth models L1, L2 and L3 respectively. The 
surface deflection is shown for the same sequence of times in each of the three cases and the 
times are themselves given in the .figure legends. The extent of the load is shown by the hori- 
zontal line at zero radial displacement. It is evident by inspection of this figure that the 
nature of the bulge which forms peripheral to the ice sheet itself is just that seen previously 
in Green's functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso evident is the fact that the relaxation proceeds more quickly in 
the central region for model L1 than it does for either model L2 or L3. This is explicable 
quite simply in terms of the higher viscosity of the lower mantle in both of the latter two 
models. Also evident in Fig. 16 is the fact that the submergence in response to the addition 
of the disc load is not monotonic in the central region for model L1. This effect is not 
caused by a numerical error in the calculation. To see how this occurs we may, using the 
spherical harmonic expansion (75a) for the radial displacement Green's function, rewrite our 
previous expression for the response at Q in the form 

@ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dwreesl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa I~SVWSI 

Figure 16. Radial displacement as a function of time and angular distance e from the centre of a surface 
disc load of radius OL = 15" and mass 1 kg. (a), (b) and (c) are for models L1, L2 and L3 respectively and 
the times in each frame are denoted by line intensity: -, t = 4 kyr; - - -, t = 8 kyr; -- * -; 
t =  1 2 k y r ; . . . * . * . . . ,  t =  16kyr; -----, t = -y r .  The horizontal straight linethroughtheoriginshows 
the angular extent of the disc load. Note that the non-monotonic nature of the response for model L1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
the central region is explained in the text. The elastic contribution to the total response is not included on 
these diagrams. 
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( 0 )  (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-20 090- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-20 

16 

ANGULAR ORDER n ANGULAR GRADER n 

Figure 17. Plots of the Love number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh F P V ( t )  (dashed line) and h p ' V ( t )  . Q, (solid line) as a function of 
angular order n. (a is for t = 4 kyr while (b), (c) and (d) are for t = 8, 12 and 16 kyr respectively. The 
Love numbers ,,$ are all for model L1. 
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In Fig. 17 we plot -hf;'>' Q, (a, r) (solid curve) and -h;*"(t) (dashed curve) as a function 
of angular order n for several times following application of the load (Fig. 17a, b, c, d). At 
each time the response may be thought of as equal to the area under the solid curve. For 
T 2 8 kyr the modulus of each term in the series (88) is increasing smoothly. However, since 
the long-wavelength harmonics in L1 have very short relaxation times, the peak at n = 6 
(which dominates the harmonic expansion of the disc with radius OL = 15") ceases to grow for 
8kyr 2 I 2 102kyr. In this range of times, though, the minimum in the series -hy( t )Q,  

continues to deepen since these angular orders have considerably longer relaxation times as 
will be seen by reference to the relaxation diagram for this model shown previously in Fig. 11. 
This is the source of the non-monotonic relaxation under the disc for model L1 which is 
observed in Fig. 16(a). The only additional feature of interest in these disc load solutions is 
the fact that the maximum depression is not obtained under the centre of the disc itself but 
is rather found just inside of the disc edge. This is a consequence of the presence of the litho- 
sphere and of the fact that the disc load has a square edge. As we shall see momentarily, this 
effect does not occur for ice sheets which have a more realistic parabolic topography. 

Solutions for such topographies are shown in Fig. 18(a, b, c) in which parabolic approxi- 
mations to the Lake Bonneville, Fennoscandia and Laurentide loads have been constructed 
and all calculations have been performed using viscoelastic model L1. The water load used in 
the construction of Fig. 18(a) for Lake Bonneville is that estimated by Crittenden (1963) 
who obtained a maximum depth of the lake of about 305 m corresponding to a mass of 
approximately 1016kg. Inspection of the calculated response in Fig. 18(a) shows that the 
maximum amplitude of the response predicted by the model is only about 12 m as compared 
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8 (degrees) 

J 

Figure 18. Same as Fig. 16 except for parabolic loads with mass and spatial extents comparable to (a) 
Lake Bonneville, (b) Fennoscandia, and (c) Laurentide. The viscosity model employed for each calculation 
is L1. Note that for the parabolic load the response at the centre of the Laurentide ice sheet is now 
monotonic in time although the rate of sinking is so slow after 12kyr that it cannot be distinguished from 
the 16 kyr curve. 

to the observed maximum of 64m. Therefore, although L1 predicts a relaxation time close 
to the observation, the predicted amplitudes are considerably underestimated. The reason 
for this is clearly that the lithospheric thickness in L1 is excessive for the basin and range 
region and this leads to a suppression of the viscous relaxation. If we are to fit the total 
deflection at this site the lithosphere can be at most 40 km thick. This modification of the 
model results in a marked increase in the relaxation time for the dominant wavelengths in 
the response and so must be corrected for by the introduction into the model of a low- 
viscosity zone in the region immediately beneath the lithosphere. 

In the construction of Fig. 18(b,c) for the approximate Fennoscandia and Laurentide 
scale loads, the parabolic profiles were taken to have maximum thicknesses of 2500 and 
3500m respectively based upon the ice sheet reconstructions in Peltier & Andrews (1976). 
As shown in Wu & Peltier (1982) which is concerned with detailed comparisons with the 
observational data, both of these maximum thicknesses are somewhat excessive and so the 
response amplitudes should not be taken too seriously. The main points to note here are that 
for the parabolic ice caps the maximum response is obtained at their centres and the 
displacement in the central region is monotonic in time. 

In Fig. 19(a,b,c) we show the ‘displacement remaining’ at the centre of these parabolic 
ice sheets as a function of time and for each of the viscosity models L1, L2, L3. The loads 
are placed on the surface at t = 0 and the ‘displacement remaining’ is calculated as the 
difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 = 0, t )  -u(0 = O,-)] between the instantaneous radial displacement and that 

KYRS 

Figure 19. Time dependence of the radial displacement remaining at the centre of three parabolic ice 
loads for viscosity models L1, L2 and L3. (a) is for the parabolic approximation to the Lake Bonneville 
load, (b) is for Fennoscandia, and (c) for Laurentide. On these semi-logarithmic plots the relaxation 
curves would be straight lines if the relaxation were perfectly exponential. 
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which will obtain in the limit of infinite time when the system has achieved isostatic equilib- 
rium. This characteristic of the response is closely related to the free air gravity anomaly 
which we will discuss below, and the joint dependence upon the scale of the load and the 
viscosity model can be understood directly from the relaxation diagrams for the different 
viscosity models which were discussed previously. With reference to Fig. 19(a), for example, 
the characteristic angular order for the Lake Bonneville load is so high that only the MO 
modes are excited for models L1 and L2 and only the LO mode is excited for L3. The 
predicted response therefore decays almost exponentially (i.e. as a straight line on the semi- 
logarithmic plot in Fig. 19a). In Fig. 19(c), on the other hand, the dominant angular order 
for the Laurentide ice sheet is low and a spectrum of modes is excited. The decay curve for 
L1, for example, is at first dominated by the relatively short relaxation times of the MO and 
CO modes. After about 8 kyr, however, the MO and CO excitations have relaxed and the 
remaining history is dominated by the much longer relaxation times associated with the M1 
and M2 modes. The decay is therefore strongly non-exponential, even though the viscosity 
of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL1 model is constant throughout the mantle. That realistic viscoelastic earth models 
may exhibit such behaviour is a point which is apparently not widely understood. This 
increase of apparent relaxation time with time is a characteristic of the response of this 
model which could easily be confused as being a direct indication of non-linear rheology. 
The response characteristics shown in Fig. 19(b) for Fennoscandia are intermediate between 
those of the smaller and larger scale loads. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2 F R E E  A I R  G R A V I T Y  RESPONSE A N D  T H E  EFFECT O F  IN IT IAL  ISOSTATIC 

DISEQUILIBRIUM 

The free air gravity anomalies associated with such schematic loading events may be 
calculated as above, the sole difference being the use of Green's function (75) for the free air 
anomaly in place of that for radial displacement in equations (8 1) and (86). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of 
one such calculation is shown in Fig. 20 for the model Laurentide load and viscoelastic 
model L1. Numerical data for the gravity anomaly at the centre of the Laurentide scale load 
calculated in this way for modeh L1 and L2 are listed in column 2 of Tables lO(a) and (b) 
respectively. These calculations are for the response to a parabolic ice sheet placed on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
10 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6Ydegrees) 

Figure 20. Same as Fig. 16 but for the free air gravity anomaly produced by a disc load of radius 15" on 
the surface of model L1. 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA477 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 10. (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAg for Laurentide and viscosity model L1. 

4: load 
added at 
t = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0 
4 - 84 
8 - 98 

12 - 100 
16 - 100 
m - 127 

(b) Ag for Laurentide and viscosity model L2. 

0 
4 
8 

12 
16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 

0 
- 33 
-51  
- 63 
- 71 
- 127 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ag: equilibrated 
load removed 
a t t = 0  

- 127 
- 43 
- 29 
- 27 
- 21 

0 

- 127 
- 94 
- 76 
- 64 
- 56 

0 

4: nonequilibrium 
load removed 
a t t = O  

- 99 
- 29 
- 16 
- 14 
- 14 

0 

- 86 
- 65 
-53 
- 43 
- 36 

0 

surface at t = 0 modified by subtraction of the infinite time response. The result of this 
calculation is a theoretical prediction of the uplift remaining and associated free air gravity 
anomaly which would exist had the ice sheet been in isostatic equilibrium with the under- 
lying planet immediately prior to the unloading event. In order for this calculation to accord 
precisely with reality, the actual ice sheets would have to be resident on the Earth’s surface 
for an infinite time prior to melting and this was certainly not the case. The oxygen isotopic 
data from deep sea sedimentary cores (Broecker & Van Donk 1970) discussed in Sabadini & 
Peltier (1981) has established that major continental ice sheet readvances have occurred on a 
time-scale of about 10’yr with the growth time-scale being very much longer than that for 
disintegration. In the remainder of this subsection we will employ the viscoelastic formalism 
to estimate the effects upon radial displacement and gravity anomaly which initial disequilib- 
rium associated with such cyclic loading could have. 

As we have seen previously, all of the viscoelastic impulse response Green’s functions may 
be written in the form 

m m  

G(O, t )=GE(0)G( t )  + rr exp(-syt)Pn(cosO) 
n = Q  j = 1  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is angular order, l/sy is the relaxation time for the jth mode and rr the correspond- 
ing residue. If L (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  is the load at location 0 and time t then the response at time t is just 

u ( e , t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj‘ G(t - t‘)*L(t‘)dt’ 
-m 

where the * denotes spatial convolution over the loaded surface. Suppose that at t = 0 the 
load at 8 is ho(0) while for t < 0 the ‘prehistory’ of the loading event is L,  (0, t )  and for t > 
0 until the present the load is ho + h (0, t), i.e. 

L ( 8 , t )  = L p ( 8 , t )  for t <  0 

= h o t h ( 8 , t )  for t >  0 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0,O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAho(0) and h(8,O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Wu and W. R.  Peltier 

0. For t > 0 we therefore have 

0 

u(e,t) = G(t - t’)*L,(t’)dt’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ho*G(t - t’)dt’ t G(t - t’)*h(t’)dt’ . (91) 

The second term on the rhs of (91) may be identified with the convolution of the Heaviside 
Green’s function (74) over the loaded surface, i.e. ho*GH(t)  whereas the third term is the 
response to the deglaciation phase of the load cycle. This third term would be -ho *GH (t)  if 
all of the load were removed instantaneously. 

The first term on the rhs of (91) is the response due to the prehistory Lp(B,t) .  Making 
use of (90) it may be rewritten as 

- m  ry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1  Sl  

G(t - t’)*Lp(t’)dt’ = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&n(B) exp(-srt) 

This expression for FY(8)  is greatly simplified if all sites have the same prehistory so that 
L ,  ( 8 ,  t )  = ho(8)hp (t)  in which case the expression which replaces (92a) is 

J -m n 

where 

0 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-, sr exp(sr t’)h,(t’)dt’ . 

The functions f i n  now contain all 

(93b) 

the information concerning the prehistory of loading. If 
the ice sheet had been left on the Earth’s surface for an infinite time prior to melting so that 
the system was in isostatic equilibrium at t = 0 then h p ( t )  =H(r  - t,) where H is the 
Heaviside step function. With t ,  = - 00 it then follows from (93b) that 4” = 1. If the system 
were in isostatic equilibrium initially we would then have 

using 

G H ( 0 , t ) = G E ( 8 ) + C  C I  [l -exp(-~Tt) ]P~ 
n j ST 

equation (94) can be written as 

rn 

rn 
h ( t )  = ho * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcL Pn + G(t - t’)*h(t‘)dt‘ 

n j 

or 

u(t)= ho * GH(t  = -)+ G(t - t‘)*h(t’)dt‘. (95) 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA479 

Equation (951 shows that the isostatic response to the removal of a load ho(8) which is in 
equilibrium at t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 may be expressed as the sum of the infinite time (initial) response and 
the forced response. If the initially compensated load were removed instantaneously at t = 
0 then from (95) the response for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt > 0 would be 

C(t)= ho* G H ( t = m )  -ho* C H ( t ) .  (96) 

If the melting of the Laurentide ice sheet could be approximated by the instantaneous 
removal of the previously discussed parabolic load then Fig. 19(c), which was constructed on 
the basis of (96), shows the way in which the depth of the initial depression would decrease 
as a function of time for each of the viscosity models L1, L2 and L3. The corresponding 
variation of the free air gravity anomaly with time for models L1 and L2 is shown in column 
2 of Tables lO(a) and (b) respectively. The ICEl melting chronology of Peltier & Andrews 
(1976) has the period of most rapid melting at 10-12 kyr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABP. If we take the predicted 
gravity anomaly at 12 kyr as the prediction of the model for the present day, then it is quite 
clear from Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 that the model with high lower mantle viscosity (L2) must be rejected 
since it predicts a present-day free air anomaly of - 64 mgal, which exceeds the observed 
anomaly of -30 to -40mgal (Walcott 1970) by about a factor of 2 .  From column 2 of 
Table lO(a), however, we see that the uniform mantle viscosity model L1 fits this observa- 
tion rather nicely if the assumption of initial isostatic equilibrium is valid and if the simple 
parabolic approximation to ICEl is an adequate approximation to the history of unloading. 
The assumption of initial isostatic equilibrium cannot be strictly true, however, since the ice 
sheet did not reside on the Earth’s surface for infinite time prior to its disintegration. How 
close the initial state actually was to equilibrium will depend upon the ratio of the residence 
time to the relaxation time. 

We may directly assess the influence of initial isostatic disequilibrium as follows. Our 
general expression for the radial displacement response was (9 1 -93) 

m m r!‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u( t )  = h,,* 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi” exp(-s;t)P, tho*GH(t )  G(t - t’)*h(t’)dt’. 

n = o  j = 1  sj 

It therefore follows that the correction to the response u(t)  which would obtain if initial 
isostatic equilibrium had not prevailed is 

u(t)  - u(t)  = -h,,*E(t) (97) 

where the error (or correction) Green’s function E(8, t )  is defined as 

From (97) it is clear that we may correct the prediction U ( t )  for the effect of ‘memory’ of 
the previous loading history (prehistory) simply by subtracting from U ( t )  a correction deter- 
mined by convolving the load at t = O(ho) with E(8,t). To determine E(8, t )  from (98) we 
require the hn defined in (93b) and these depend in turn upon the prehistory h, (t). As we 
will argue in the following paragraphs it turns out that we can in fact construct a reasonable 
approximation to this prehistory on the basis of recently obtained isotopic information. 

This information derives from the observed variability in the ratio of isotopic concentra- 
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(016/018) of the stable isotopes of oxygen found as a function of depth in sedimentary 
cores taken in the major ocean basins (Fig. 21a). Although it was originally believed (Emiliani 
1955) that this variability was a direct reflection of Pleistocene temperatures, it was subse- 
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KYR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABP 

I I 

TIME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 21. (a) Oxygen isotopic ratio as a function of time from a deep sea sedimentary core (Hays et al. 
1976). (b) Time dependence of the loading history employed to construct the error Green's function 
employed to assess the effect upon the theoretical predictions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitial isostatic disequilibrium. 

quently established (Imbrie & Kipp 1971) that the isotopic ratio reflected for the most part 
the variation of northern hemisphere ice volume. Broecker &van Donk (1970) were among 
the first to establish on the basis of these data that the northern hemisphere glacial-deglacial 
cycle is very nearly periodic with a time-scale of approximately 105yr. Kukla et al. (1981) 
have most recently reviewed the signature of ice sheet growth and disintegration which is 
characteristic of each cycle. This signature, which is discussed in somewhat more detail in 
Hays, Imbrie & Shackleton (1976), is characterized by a very slow build-up of the major ice 
sheets over about lo5 yr followed by an extremely rapid disintegration. This suggests that a 
good approximation to the prehistory is the sawtooth waveform shown in Fig. 21(b) and 
represented mathematically as 

(t t kAt) 

A t  It, (t) = , -kAt G t < - (k  -1)AZ (99) 

with At = 105yr the period characteristic of a single ice sheet advance. Substituting this 
expression in (93 b) we find 

(t' t kAt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f i n  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf sf exp(sj' t ')  dt' 

k=l -kAt  A t  

where N is the number of cycles in the prehistory. Since the present glacial age has continued 
for about 2 million years, a time short compared to the continental drift time-scale 
of 10'yr on which significant changes of polar continentality might be expected to occur, 
yet long compared to the duration of a given glacial epoch (105yr) we may safely assume 
N = 20 in computing the r. Direct evaluation of the above integral yields 

f i n  = exP(-srAt) - (1 - s r A t )  1 - exp(-NsyAt) 

srAt ' [ 1 -exp(-$At) 

The ratio in the second bracketed term in (100) represents the effect on the fi" of the 
memory of the past N cycles. Note that if sf At is large, which is to say that characteristic 
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Viscous gravitational relaxation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA48 1 

relaxation time is short compared to the build-up time of the ice sheet At, thenfJ? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- 1 and 
the mode (j, n) is very nearly in isostatic equilibrium at t = 0. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 then &" = 0.58 
providedN> 2,and the response in thismode would be just that for a reduced load 0.58h0(B) 
which was initially in equilibrium. If, however, NsT At < 1, then&" - NsY At12 and by t = 0 
the response is but a small fraction of what it would be in equilibrium. 

In constructing the correction Green's functionE(6, t )  we have calculated the 4" assuming 
N =  30, although for either viscosity model L1 or L2 the results are essentially unchanged 
for N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 20. Free air gravity anomalies at the centre of the model Laurentide load, corrected 
in this way for initial isostatic disequilibrium, are listed in the last columns of Table lO(a) 
and (b) for models L1 and L2 respectively. For model L1 the correction is about 13 mgal 
while for L2 it is near 21 mgal. It is quite clear on the basis of these comparisons that the 
correction of the free air anomaly for the effect of initial disequilibrium may be extremely 
important and increases with the viscosity of the deep mantle. It has not been possible to 
quantify this idea previously because it had not been recognized that the oxygen isotope 
data provided accurate control on the time-scale of previous glaciation-deglaciation cycles. 

A more detailed examination of the size of the correction as a function of the viscosity of 
the deep mantle is provided by Fig. 22 in which we plot the free air anomaly at t = 12 kyr 
as a function of the mantle viscosity beneath 670 km depth. The upper curve on this figure 
gives the free air anomaly under the assumption that isostatic equilibrium prevails initially, 
whereas the lower curve is the same prediction including the effect of isostatic disequilibrium 
at t = 0. Also shown on this diagram is the present-day observed anomaly of 30-40mgal. 
Inspection of this figure shows that when isostatic equilibrium is assumed initially, the 
model with a constant mantle viscosity of 10z2P fits the observed free air anomaly very well. 
As the lower mantle viscosity is increased, however, the anomaly predicted for the present- 
day monotonically approaches an asymptotic value near 100 mgal which is near the maximum 
initial anomaly of 127mgal. If the Laurentide ice sheet had been in equilibrium prior to 

- 100- - 
0 

1 

t -1 
0- -.-l-l 
loz2 loz3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloz4 loz6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v IN LOWER MANTLE (poise) 

Figure 22. Plot of the presentday gravity anomaly in mgal at the centre of a disc load of Laurentide scale 
as a function of the viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the lower mantle. The upper curve shows the anomaly which would 
obtain if initial isostatic equilibrium prevailed while the lower curve shows the effect of initial isostatic 
disequilibrium upon the predicted anomaly. Also shown by the horizontal hatched region is the anomaly 
observed over Hudson Bay today which is 30-40mgal. The viscosity is given in units of poise and it 
should be noted that the effect of initial isostatic disequilibrium is to allow models with two different 
possible values for the lower mantle viscosity to fit the observed free air anomaly equally well. 
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482 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
disintegration then the Earth could not, therefore, have a lower mantle viscosity much in 
excess of that in the upper mantle. One would be hard pressed otherwise to explain the 
observed free air anomaly. 

With a lower mantle viscosity even as high as 1023P, however, characteristic relaxation 
times are no longer short compared to the time-scale of lo5 yr which separates successive 
interglacials and the assumption of initial isostatic equilibrium is invalid. The lower curve 
in Fig. 22, which shows the predicted present-day free air anomaly corrected for initial 
disequilibrium, shows that in this case the anomaly is not a monotonically increasing 
function of the viscosity of the deep mantle. In this case the predicted anomaly agrees with 
the observed for either of two quite widely spaced values of the lower mantle viscosity. The 
first of these, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 x P, is close to the value of 10z2P which fits the observed anomaly 
when initial equilibrium is assumed. The second root, v i  = 5 x loz5 P, is very much higher 
and exists as a possible solution because one may trade-off the degree of initial disequilibrium 
against the magnitude of the deep mantle viscosity. This analysis shows very clearly that a 
single observation of the free air anomaly associated with a specific deglaciation event 
provides an ambiguous datum in so far as its ability to constrain the viscosity of the deep 
mantle is concerned. It has not been possible previously to quantify the extent of this 
ambiguity because the value of the oxygen isotope data in this connection was apparently 
unrecognized. It is fortunate that the ambiguity may be removed by simultaneously con- 
straining the mantle viscosity profile with relative sea-level data. 

To appreciate the complementary nature of relative sea-level and free air gravity data we 
note that the former are effectively measurements of radial displacement with respect to a 
local zero since the heights of relict beaches are measured with respect to present-day local 
sea-level. These data therefore provide no information concerning the amount of uplift 
(submergence) which has yet to take place before isostatic equilibrium is restored. The free 
air gravity anomaly on the other hand, being an absolute measurement, provides a direct 
estimate of the degree of current disequilibrium. The two types of measurement are 
influenced, therefore, to a completely different extent by the degree of isostatic disequilib- 
rium which exists prior to the onset of melting. This may be shown algebraically by using 
(97) to compute 

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R .  Peltier 

where tp is used to denote the present time. The expression on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlhs of (101) is the radial 
displacement relative to that at t = tp which is just the quantity which is recorded (to a first 
approximation) in the relative sea-level data. The correction of the relative displacement for 
the effect of initial isostatic disequilibrium is given by the third term on the rhs of (101) in 
the form of a convolution of the initial load over a difference of error Green’s functions. 
From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(98), the expression in square brackets in (101) is just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( t )  -E(tp)= C 1 (1 -?)? exp(-syt) (1 -exp [-sy(tp -t)]) Pn(cos8). 

Each term in the expansion for the difference Green function is therefore reduced by the 
factor [ 1 - exp(--s; (tp - t))] from the value which it has in the error Green’s function itself 
and this factor is clearly zero when t = 1,. The size of the effect is illustrated by Fig. 23 in 
which we show relative displacement as a function of time at the centre of the model 
Laurentide load for viscosity models L1 and L2. For each viscosity model we compare the 
response curve computed on the basis of the assumption of initial equilibrium to that which 
includes the effect of the degree of initial disequilibrium implied by the particular viscosity 

m m  r,!’ 
(102) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n=O j=1 
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KYRS 

Figure 23. Time dependence of the relative displacement at the centre of the parabolic Laurentide scale 
load for viscosity models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL1 and L2. The load is removed instantaneously at 12 kyr BP model time. Solid 
lines show the response obtained under the assumption of initial isostatic equilibrium while the dashed 
curves include the effects of isostatic disequilibrium estimated using the approximate prehistory shown in 
Fig. 21. Note that the effect of initial disequilibrium does not greatly affect the predicted relative 
displacement response. The solid rectangles, circles and triangles show the relative sea-level data points 
obtained by radiocaxbon analysis of ancient beaches at Ottawa Islands, Churchill and Castle Island respec- 
tively. These sites are near what was the centre of the Laurentide ice sheet. 

model. Inspection of this figure shows that the effect of initial disequilibrium (dashed 
curves) on the response for either viscosity model is very much smaller than the difference in 
response due to the difference in lower mantle viscosity in the models themselves. This is a 
very important result since it assures us that viscosity models rejected on the basis of RSL 
calculations done on the basis of the assumption of initial isostatic equilibrium cannot be 
brought back into contention by invoking initial isostatic disequilibrium. In Fig. 23 we have 
included data points from radiocarbon dated beaches on the Ottawa Islands in Hudson Bay, 
from Castle Island and from Churchill. To the extent that our model deglaciation history is 
an adequate approximation to the actual melting history it is then clear that the actual 
mantle viscosity profile should be intermediate between the L1 and L2 models. This is con- 
firmed on the basis of the free air gravity data shown in Fig. 22 which require an increase of 
the lower mantle viscosity to a value near 5 x 1OZ2P. To make such tentative conclusions 
firmer than this requires the more thorough analysis of the complete RSL data set which is 
provided in Wu & Peltier (1982). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 Conclusions 

The analysis provided in the present paper has focused upon several fundamental properties 
of the global model of glacial isostatic adjustment which has been developed in previously 
cited papers which began with Peltier (1974). Those properties which have not received 
detailed discussion elsewhere include: (1) the effect of compressibility upon the Love 
number spectra and relaxation diagrams, (2) the importance of the lithosphere on the 
short-wavelength response, particularly in eliminating the non-geometric singularity at 0 = 0 
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484 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the infinite time response, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3)  the long relaxation time modes which are supported by 
the small density jumps in the mantle associated with solid-solid phase transitions. 

The most important new result obtained in the present paper, however, concerned 
calculation of the small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs asymptotes of the Love number spectra which are required to 
define the isostatic response of the viscoelastic earth model. The accurate calculation of these 
asymptotes was shown to be crucial to the calculation of the free air gravity signal associated 
with a particular deglaciation event. They were determined by solving a simple second-order 
ordinary differential equation to which the full spheroidal set of field equations reduces in 
the limit that the Laplace transform variable s tends to zero. This differential equation is in 
fact the same one which describes the quasi-static response in the fluid outer core, which 
should not be surprising since in the isostatic limit the entire Earth (with the exception of 
the lithosphere) is effectively inviscid. 

Given an accurate method of calculating the isostatic response of the viscoelastic earth we 
have also been able to provide, for the first time, a quantitative assessment of the effects to 
be expected in consequence of deviations from isostatic equilibrium prior to ice sheet 
disintegration. We argued that oxygen isotopic data from deep sea sedimentary cores could 
be used to provide an accurate assessment, for a given viscosity model, of the degree of 
disequilibrium because they demonstrate quite conclusively: (1) that the time-scale between 
successive interglacials is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 105yr, and (2) that the history of successive glaciations has a 
sawtooth form. Using this information we formulated the theory in such a way that predic- 
tions were made as the sum of the response which would be realized if initial equilibrium 
obtained and a correction (dependent upon the viscosity model) due to initial disequilibrium. 
The formulation was employed to demonstrate the characteristically different way in which 
relative sea-level and free air gravity data depend upon the degree of initial disequilibrium. 
This is of fundamental importance in understanding the ‘quality’ of the constraint upon the 
mantle viscosity profile which the free air signal provides. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier 
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