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Abstract. We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG)

methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which

is suited as a control input to a shock capture mechanism. Using an artificial viscosity in the latter

role, we obtain a DG scheme for the numerical solution of nonlinear systems of conservation laws.

Building on work by Persson and Peraire, we thoroughly justify the detector’s design and analyze

its performance on a number of benchmark problems. We further explain the scaling and smoothing

steps necessary to turn the output of the detector into a local, artificial viscosity. We close by

providing an extensive array of numerical tests of the detector in use.
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1 Introduction

Discontinuous Galerkin methods [14, 31, 43, 48] are a high-order accurate, geometrically flexible,

and robust means of approximating solutions of systems of hyperbolic conservation laws. For

linear conservation laws, these schemes easily deliver highly accurate solutions without much

effort. For nonlinear hyperbolic systems, the situation is more complicated. If the solution of the

system remains smooth for the entire time under consideration, and if thereby the decay of modal
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coefficients is fast enough, the method may be used with little modification for a so-called “nodal

approach”. Optionally, aliasing error in the computation of integrals for stiffness and mass matrices

can be avoided by the introduction of quadrature schemes of sufficient order [31].

If however the solution does not stay smooth for long enough periods of time, the arising

discontinuities pose a number of problems which have been the subject of intense study since the

early days of scientific computation and numerical analysis. [e.g. 25, and references therein] Our

goal is to seek out a method that is able to reliably detect the occurrence of Gibbs phenomena

(which represent the main issue with the discontinuous solution) in the context of the discontinuous

Galerkin method. In this paper, the subsequent mitigation of the phenomenon is then achieved

through a simple artificial viscosity.

Many authors have proposed methods to capture shocks within a DG setting, by different

methods. Flux limiting, which has been both successful and popular with Finite Volume practitioners,

was combined with DG immediately in conjunction with the resurgence of interest in the method

in the late 1980s. [10, 13, 14, 15, 16, 18, 39, 40, 56, 63]. A common theme to limiting is that the

solution is modified in some way to retain desirable properties such as positivity and freedom from

spurious oscillation, and in doing so, reaches various (often low) orders of accuracy.

Artificial viscosity methods, on the other hand, take the position that the only hope of resolving

a discontinuity by a high-order approximation lies in smoothing it out. These methods date back

to [57], were first used in the context of finite difference methods [41], and then spread into finite

element literature (see, e.g., the study by [34] for a review) and were also applied to time-dependent

discontinuous Galerkin methods very early on [5], and have since enjoyed continuing popularity

[e.g. 11].

One obvious improvement on global artificial viscosities is a more selective application of

smoothing, guided by a detector. There has been a recent resurgence of interest in such approaches

[4, 46] in the context of DG. The methods discussed in this article aim to improve on these latter

schemes, where we would like to emphasize that our detector is not intrinsically tied to guiding the

application of an artificial viscosity. With appropriate rescaling, it might be suitable in a multitude

of other scenarios requiring discontinuity detection.

Other variants of artificial viscosity methods exist as well. The method of Spectrally Vanishing

Viscosity [e.g. 35, 55] is similar in spirit, but tries to restrict its smoothing action to high-frequency

solution components.

One final approach of dealing with discontinuities is that of adapting the mesh and adding

resolution. It is generally thought that ‘shocks’, i.e. genuine discontinuities, do not exist in nature

[61], and thereby, if only enough resolution were available, the problem of shock capturing would

vanish by itself. While nature may obey this statement, mathematical models of it often do not

(e.g. Burgers’ equation), and so one needs to “help a little”–for example by adding an artificial

viscosity [e.g. 30]. Others contend that the wiggles are worth keeping simply as indicators of

numerical trouble [27]. Further, while adaptivity certainly is a useful technique in capturing shocks

[24, 60, 62], it too depends on a detector that reliably tells the method where refinement is necessary.
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1.1 The Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods [14, 31, 43, 48] are a combination of ideas from Finite-

Volume and Spectral Element methods. We consider DG methods for the approximate solution of a

hyperbolic system of conservation laws

ut +∇ ⋅ F (u) = 0 (1.1)

on a domain Ω =
⊎K

k=1 Dk ⊂ ℝ
d consisting of disjoint, face-conforming tetrahedra Dk with

boundary conditions

u∣Γi
(x, t) = gi(u(x, t), x, t), i = 1, . . . , b,

at inflow boundaries
⊎

Γi ⊆ ∂Ω. We find a weak form of (1.1) on each element Dk:

0 =

∫

Dk

ut'+ [∇ ⋅ F (u)]' dx =

∫

Dk

ut'− F (u) ⋅ ∇' dx+

∫

∂Dk

(n̂ ⋅ F )∗' dSx,

where ' is a test function, and (n̂ ⋅ F )∗ is a suitably chosen numerical flux in the unit normal

direction n̂. Following [31], we may find a so-called ‘strong’-DG form of this system as

0 =

∫

Dk

ut'+ [∇ ⋅ F (u)]' dx−
∫

∂Dk

[n̂ ⋅ F − (n̂ ⋅ F )∗]' dSx. (1.2)

by integrating by parts once more. We seek to find a numerical vector solution uk := uN ∣Dk
from

the space P n
N(Dk) of local polynomials of maximum total degree N on each element, where n is the

number of equations in the hyperbolic system (1.1). We choose the scalar test function ' ∈ PN(Dk)
from the same space and represent both by expansion in a basis of Np := dimPN(Dk) Lagrange

polynomials li with respect to a set of interpolation nodes [58]. We define the mass, stiffness,

differentiation, and face mass matrices

Mk
ij :=

∫

Dk

lilj dx, Sk,∂�
ij :=

∫

Dk

li∂x�
lj dx, (1.3a)

Dk,∂� := (Mk)−1Sk,∂� , Mk,A
ij :=

∫

A⊂∂Dk

lilj dSx. (1.3b)

Using these matrices, we rewrite (1.2) as

0 = Mk∂tu
k +

∑

�

Sk,∂� [F (uk)]−
∑

F⊂∂Dk

Mk,A[n̂ ⋅ F − (n̂ ⋅ F )∗],

∂tu
k = −

∑

�

Dk,∂� [F (uk)] + Lk[n̂ ⋅ F − (n̂ ⋅ F )∗]∣A⊂∂Dk
. (1.4)

The matrix Lk used in (1.4) deserves a little more explanation. It acts on vectors of the shape

[uk∣A1
, . . . , uk∣A4

]T , where uk∣Ai
is the vector of facial degrees of freedom on face i. For these

vectors, Lk combines the effect of applying each face’s mass matrix, embedding the resulting facial
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Figure 1: Construction of the Lifting Matrix Lk.

values back into a volume vector, and applying the inverse volume mass matrix. Since it “lifts”

facial contributions to volume contributions, it is called the lifting matrix. Its construction is shown

in Figure 1.

It deserves explicit mention at this point that the left multiplication by the inverse of the mass

matrix that yields the explicit semidiscrete scheme (1.4) is an element-wise operation and therefore

feasible without global communication. This strongly distinguishes DG from other finite element

methods. It enables the use of explicit (e.g., Runge-Kutta) time stepping and greatly simplifies

parallel implementation efforts.

2 Basic Design Considerations

This article describes a method for detecting (and also capturing) shocks in the context of DG

methods. One particular motivation for us was our recent work on the efficient mapping of DG

onto massively parallel throughput-oriented computer architectures [36], where we demonstrated a

method to quickly compute the vector A(x) for a linear discontinuous Galerkin operator A and a

state vector x using graphics hardware (i.e. Graphics Processing Units or “GPUs”). The present

article describes one stepping stone on the way to generalizing the applicability of GPU-DG to

nonlinear problems.

In briefly explaining the unique environment present on GPUs, we seek to inform the reader

on the considerations that guided our approach. On wide-SIMD, parallel architectures such as the

GPUs of [36], memory is at a premium and scattered memory access is particularly expensive. As a

consequence, we argue that matrix-free methods such as the one of [36], if they can be implemented

efficiently, will always hold a significant performance advantage over approaches that have to build,

keep in memory, and constantly access a pre-built sparse matrix for A, because such a computation

is necessarily bound by the speed at which matrix entries can be streamed into the core, where

they are then used exactly once and discarded [7]. A matrix-free approach has far more freedom

to exploit local structure and re-use data. We will therefore focus our investigation on matrix-free

methods.

This choice has important ramifications. One consequence of it affects the trade-off by which one

chooses between implicit and explicit time stepping. Consider the case of implicit time integrators,

in which one must constantly solve large linear systems of equations. Direct, factoring solvers

for sparse matrices are as yet unavailable on massively parallel hardware, and even if they were,
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they would doubly suffer from the issues that sparse matrices encounter. One therefore naturally

looks towards iterative methods for solving large sparse systems. For the complicated linearized

systems arising from the nonlinear hyperbolic conservation laws we are targeting in this article,

these methods generally need help in the form of a preconditioner in order to be efficient. This is

the next implication of the choice of matrix-free methods: One automatically chooses to not use

the substantial body of literature showing how a preconditioner may be built from a known sparse

matrix. Instead, one needs to invest further work designing and testing preconditioners (using e.g.

multi-grid or domain-decomposition methods), and, in addition to the design time spent, these

preconditioners may carry significant additional computational expense, typically through their

communication needs. In addition, Krylov methods (which are frequently used to solved the arising

large, sparse linear systems) in particular involve global reductions (in the form of inner products)

which are known to not achieve peak performance on graphics processors [29]. Worse, the nonlinear

PDEs we are targeting in this paper require a nonlinear system of equations to be solved (likely by

Newton iteration, which in turn requires Jacobians to be evaluated).

This collection of drawbacks and uncertainties in the application of implicit time integration on

massively parallel hardware makes it seem opportune to examine the use of explicit time steppers,

which were already used with good success in [36]. We aim to find out if the single big disadvantage

of explicit methods, namely their small time step restriction, can be offset by the judicious choice of

methods combined with the advantages conferred by the hardware.

Since the scheme we are aiming to design involves the use of artificial viscosity, the scaling of

the explicit time step is typically given by

Δt ∼ 1

�max

N2

ℎ
+ ∥�∥L∞

N4

ℎ2

, (2.1)

where �max is the largest characteristic velocity and � is the magnitude of the viscosity, ℎ is the

local mesh size and N is the approximation’s polynomial degree [31]. Within (2.1), the numerical

diffusion time scale N4∥�∥L∞/ℎ2 can be rather damaging, as it contains discretization-dependent

factors at high exponents.

Luckily, (2.1) does not tell the entire story. For example, we expect the occurrences of high

viscosity � to be localized in both space and time. Localization in space could conceivably be dealt

with using local time stepping, but this is beyond the scope of this article. Localization in time

on the other hand is easily dealt with by the use of time-adaptivity [e.g. 19]. Adaptivity in time is

particularly important for explicit time stepping of artificial-viscosity-enhanced PDE solvers.

One further aspect of the time discretization should be considered: Much of the effort in

this research is targeted at mitigating the effect of oscillations in the spatial discretization of a

conservation law that trace their roots back to the polynomial expansions used for them. Time

discretizations, however, are equally based on polynomials, and many varieties of so-called Strong

Stability Preserving (SSP) time integrators have been devised to mitigate oscillations originating

in temporal expansions [51]. Even embedded pairs of SSP Runge-Kutta methods are available

[26]. Based on initial experiments, it appears that in the setting of this work, spatially-generated

oscillations by far dominate their temporal cousins at the time step sizes encountered. Thus the use

of SSP methods does not have an appreciable effect on the reported results.
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In summary, the emergence of massively parallel hardware along with the use of purposefully

chosen, adaptive time discretizations may help explicit methods be competitive with implicit

methods for the integration of large-scale nonlinear systems.

3 Applications and Equations

3.1 Advection Equation

At the very simple end of the spectrum of hyperbolic conservation laws, the advection equation

∂tu + v ⋅ ∇xu = 0 transports its initial condition along its one characteristic, described by the

velocity vector v. We will apply artificial viscosity to this PDE as

∂tu+ v ⋅ ∇xu = ∇x ⋅ (�∇xu).

Here, and in all further equations, it is important to write the viscosity in “conservation” form

∇x ⋅ (�∇xu). The desired consequence of this is that the resulting DG method will be conservative

[1].

In DG discretizations of this equation, we use a conventional upwind flux in a strong-form DG

formulation. The diffusion term ∇x ⋅ (�∇xu) is discretized by a first-order (“dual”) interior penalty

method [1], with the gradient being computed in strong form, and the divergence computed in weak

form. The diffusive fluxes are given by

u∗
N := {uN}, �∗

N := {�∇x,ℎuN} −
N2

ℎ
� JuℎK ,

where �N is the discretization of �∇xu.

3.2 Second-Order Wave Equation

The wave equation ∂t2u+ c2△u = 0 is valuable for testing artificial viscosity methods because it

is the simplest system where the effects of two coupled characteristics (in 1D) may be observed.

We rewrite this PDE as a first-order system of conservation laws and apply artificial viscosity to this

system to obtain

∂tu+ c∇x ⋅ v = ∇x ⋅ (�∇xu), (3.1a)

∂tv + c∇xu = ∇x ⋅ (�∇xv), (3.1b)

where we have again been careful to use the conservative form of the diffusive term. The vector

diffusion term ∇x ⋅ (�∇xv) is to be read as the diffusion � being applied to each component

separately. The discontinuity sensor to be described below operates on the scalar component u. In

DG discretizations of this equation, we again use a conventional upwind flux in a strong-form DG

formulation. The diffusion terms are discretized in analogy to the preceding section.
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3.3 Euler’s Equations of Gas Dynamics

Lastly, the system of conservation laws that justifies the effort spent on this study, Euler’s equations

of gas dynamics, broadly applies to compressible, inviscid flow problems. As in Section 3.2, we are

again choosing to use a single artificial viscosity � that applies to all components, such that we get

the viscosity-endowed system

∂t�+∇x ⋅ (�u) = ∇x ⋅ (�∇x�), (3.2a)

∂t(�u) +∇x ⋅ (u⊗ (�u)) +∇xp = ∇x ⋅ (�∇x(�u)), (3.2b)

∂tE +∇x ⋅ (u(E + p)) = ∇x ⋅ (�∇xE). (3.2c)

The discontinuity sensor to be described below operates on the component �. In contrast to [46], we

find that a Navier-Stokes-like physical viscosity provides insufficient control of oscillations in �.

In DG discretizations of this system, a local Lax-Friedrichs (or Rusanov) flux

n̂ ⋅ F ∗
N := n̂ ⋅ F (u+) + F (u−)

2
− �max

2
(u+ − u−),

in weak-form DG is commonly used. The diffusion term is discretized as in Section 3.2. As above,

a quadrature exact to degree 3N is used to integrate the nonlinearity.

4 A Smoothness-Estimating Detector

Detectors for the selective application of artificial viscosity have been built in a large variety of

ways. The most popular, perhaps, is sensing on the L2 norm of the residual of the variational form

[5, 33]. [30] employs a similar indicator that includes sensing of the primary orientation of the

discontinuity and performs anisotropic mesh refinement based on this data.

Other detectors in the literature employ information gathered not on the whole volume of the

domain, but only on element faces [6]. Specializing further, some methods use the magnitude of the

facial inter-element jumps as an indicator of how well-resolved the solution is and to what degree it

has converged [4, 23]. A further approach to shock detection repurposes entropy pairs, objects from

the solution theory for scalar conservation laws, for the purposes of shock detection [28].

Our approach most directly traces its lineage to work by [46], which addresses one crucial

shortcoming in much of the above work: scaling. Many of the quantities discussed clearly relate

directly to how well-resolved (and smooth) the approximate solution of the system is. It is however

rarely clear how large a value of the quantity in question indicates that a problem exists, and a

variety of ad-hoc scaling choices are proposed, often by the maximum of the quantity found across

the domain, or by the element-local norm, but without assigning an explicit meaning to the scaled

quantity.

The method of [46] also performs scaling by the element-local L2 norm ∥qN∥L2(Dk) of the

discretized value of the quantity qN to be sensed on. On each element Dk, it obtains a value

Sk :=
(qN , �Np−1)

2
L2(Dk)

∥qN∥2L2(Dk)

, (4.1)
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where {�n}Np−1
n=0 is an orthonormal basis for the expansion space [see e.g. 20, 37] numbered from

0. Simply put, Sk reflects the (squared) fraction of qN ’s mass contained in the highest mode of

the expansion, relative to all mass present on the element. [46] then invokes an analogy to Fourier

expansions, where a continuous function (roughly) can be recognized by having Fourier expansions

in which the nth mode’s magnitude scales at most as 1/n2. In doing so, the issue of scaling has

conveniently been solved– it is now understood what Sk measures and what value it is supposed to

take on for which degree of smoothness. Based on this analogy, they argue that Sk should have a

magnitude of 1/N4 for qN to be continuous, or, alternatively, that smoothing by artificial viscosity

should activate if Sn > 1/N4.

They achieve this activation through a sequence of mapping steps. First, they take the logarithm

sk := log10 Sk

to obtain a quantity that scales linearly with the decay exponent, which they put in relation to a

quantity s0 that they claim should scale as 1/N4. We believe this is a typographical error in their

paper, because for proper comparability, s0 should scale with the logarithm of 1/N4. Through the

application of a mapping, they obtain the final per-element viscosity

�k(sk) = �0

⎧





⎨





⎩

0 sk < s0 − �,
1
2

(

1 + sin �(sk−s0)
2�

)

s0 − � ≤ sk ≤ s0 + �,

1 s0 + � < sk,

(4.2)

where �0 is the maximum viscosity, which [46] suggest to scale with ℎ/N and � is the width of the

activation “ramp”.

The focus of the remainder of this article is to identify a number of issues and make a number

of improvements to this method of finding an artificial viscosity.

4.1 Estimating Solution Smoothness

Before we begin our discussion of the refinements to the method, let us set the stage by discussing

the type of numerical method at which the to-be-designed detector is aimed. As was already

discussed, for methods of low approximation order (and polynomial degrees N ⪅ 2), the flux

limiting literature provides plenty of alternatives for shock capturing, and therefore will not be the

main target area for our work. Since our method, like the work of [46], will try to extract smoothness

information from the modal expansion of the solution, it is our hope that the expansion at these

degrees already contains enough smoothness information to be viable as a basis for an artificial

viscosity. Lastly, at degrees N ⪆ 5, there is guaranteed to be sufficient smoothness information,

though the time step restriction (2.1) may make these approximations somewhat impractical.

We begin our deconstruction and rebuild of the Peraire-Persson estimator by examining the

assumption that, like for Fourier series, smoothness can be estimated by modal decay. In Fourier

series, this can be justified by viewing what happens if a derivative of an expanded function is

taken (and hence smoothness is reduced)–the nth coefficient’s magnitude gets multiplied by n. This
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results in the identity

∥

∥

∥

∥

d

dx
einx
∥

∥

∥

∥

Lp((−�,�))

= n
∥

∥einx
∥

∥

Lp((−�,�))
for p ∈ [1,∞]. (4.3)

A polynomial analog for (4.3) is provided by Bernstein’s inequality [9, 59]

∣

∣

∣

∣

d

dx
P (x)

∣

∣

∣

∣

≤ n√
1− x2

∥P (x)∥L∞([−1,1]) for P ∈ P n([−1, 1]), x ∈ [−1, 1]. (4.4)

While it conveniently exhibits the same scaling as its Fourier counterpart, unfortunately, this estimate

breaks down near the domain boundaries. Markov’s inequality [[ibid.]]

∥

∥

∥

∥

d

dx
P (x)

∥

∥

∥

∥

L∞([−1,1])

≤ n2 ∥P (x)∥L∞([−1,1]) for P ∈ P n([−1, 1]). (4.5)

extends the estimate out to the domain boundary, at the expense of a larger scaling. Further, it may

be argued that if one wants to transfer the knowledge gained from (4.5) to a modal setting, L∞ is

the wrong norm, and one should consider the L2 norm instead to be able to benefit from Parseval’s

identity. Fortunately, an L2 analog of (4.5) is available [59, and references therein]

∥

∥

∥

∥

d

dx
P (x)

∥

∥

∥

∥

L2([−1,1])

≤
√
3n2 ∥P (x)∥L2([−1,1]) for P ∈ P n([−1, 1]), (4.6)

known as an inverse inequality. Taking into account (4.4) and (4.6), the polynomial analogy to the

Fourier case is therefore expected to carry over well for non-smoothness occurring on the interior of

each finite element, whereas for non-smoothness at the domain boundary, the smoothness measure

will likely differ.

Having examined the viability of modal decay as an estimator for smoothness, we seek to make

the notion of modal decay more precise than (4.1). We presume that, for the modal coefficients

{q̂n}Np−1
n=0 of a member qN of the L2-orthonormal approximation space spanned by {�n}Np−1

n=0 , modal

decay is approximately representable as

∣q̂n∣ ∼ cn−s. (4.7)

Taking the logarithm of the relationship (4.7) yields

log ∣q̂n∣ ∼ log(c)− s log(n),

an affine relationship whose coefficients s and log(c) may be found through least-squares fitting,

satisfying
Np−1
∑

n=1

∣log ∣q̂n∣ − (log(c)− s log(n))∣2 → min! (4.8)

Observe that the decay rate of (4.7) has rather little to do with the presumed magnitude of the

remainder term of an expansion, on which most a-priori error estimates for finite element solutions
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Figure 2: Modal portrait for an approximant of a (discontinuous) Heaviside jump function. Subfig-

ure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows the modal

coefficients of a Legendre expansion of the function in (a), the processing of these coefficients, and

the unprocessed and postprocessed smoothness estimates.

are based–these start with an assumption of sufficient smoothness. There is a connection, however.

Mavriplis [45], in the context of mesh adaptation, has used a similar least-squares fit to the modal

decay, defining a continuous function q̂(n) through the found fit. She then proceeds to estimate the

remainder term of the expansion as

∥q − qN∥2L2(Dk) ≈
(

q̂2N
2N+1

2

+

∫ ∞

N+1

q̂(n)2

2n+1
2

dn

)

.

In a similar vein, Houston and Süli in [32] use an l2 fit like (4.8) as a criterion for ℎp-adaptive

refinement. They obtain the approach from a discussion of results in approximation theory [17].

The least-squares procedure (4.8) yields an estimate s of the decay exponent. If the analogy

with Fourier modal decay holds up, one would then expect s ≈ 1 for a discontinuous q, s ≈ 2 for

q ∈ C0 ∖ C1, s ≈ 3 for q ∈ C1 ∖ C2, and so forth. Figure 2 shows a first attempt at determining

whether this is really the case by examining an interpolant of a Heaviside jump function H as shown

in Figure 2(a). Figure 2(b) shows the magnitudes of the first ten modal coefficients along with the

fitted curve (the dashed red line). The obtained decay exponent s, shown in the legend next to the

dashed red line, matches the expectation well, giving a value of exactly 1.

Continuing this line of experimentation, we would like to move on to an interpolant of a “kink”

function q(x) := xH(x). The same observations as for the Heaviside function are shown in Figure

3. Unfortunately, the figure reveals a rather powerful shortcoming of the modal fit method as

developed so far. An odd-even effect draws the coefficients for the odd modes of number three

and greater to zero, leading to machine zeros (≈ 10−15) in those approximate coefficient numbers.

These “fully converged” coefficients fool the estimator into an anomalous estimate of far more

smoothness than is actually present, leading to an estimated decay exponent of about seven–far too

high.
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Figure 3: Modal portrait for an approximant of a C0 non-differentiable “kink” function.

It is unfortunate that the fit can be misled that easily, but a close look at Figure 3(b) will have

already revealed to the attentive reader that this is an easily recoverable issue. Realize that the fit

tries to model modal decay, i.e. the shrinking of modal coefficient magnitudes ∣q̂n∣ as n increases.

The model (4.7) that is fitted to the decay only generates monotone modal decays. Figure 3(b) is

characterized by a strongly non-monotone mode profile, and this is precisely what is misleading

the estimator. Consider this: Given a mode n with a small coefficient ∣q̂n∣, if there exists another

coefficient with m > n and ∣q̂m∣ ≫ ∣q̂n∣, then the small coefficient ∣q̂n∣ was likely spurious, just like

the near-zero coefficients in Figure 3(b) were spurious. These spurious coefficients should hence be

eliminated from the fit, and this is what a new procedure, termed skyline pessimization, achieves.

From the modal coefficient magnitudes {∣q̂n∣}Np−1
n=0 , it generates a new set of modal coefficients by

q̄n := max
i∈{min(n,Np−2),...,Np−1}

∣q̂i∣ for n ∈ {1, 2, . . . , Np − 1}. (4.9)

The effect of the procedure is that each modal coefficient is raised up to the largest higher-numbered

modal coefficient, eliminating non-monotone decay. Since odd-even effects in modal portraits

(such as the one of Figure 3(b) are a common phenomenon, there is a slight modification in (4.9)

accounting for the last mode, which is forced to also be larger than the second-to-last mode. This

would become an issue if, for example, only the first nine modes of Figure 3(b) were used, in

which case the smallness of the last coefficient would again cause an artificially high smoothness

exponent. Once skyline pessimization has been performed, decay estimation (4.8) is applied in the

same fashion as above, yielding a corrected decay estimate.

The effect of skyline pessimization is shown in the modal portrait of Figure 3(b) as a dotted

line that appears to “truncate” the bars representing modal coefficients at the level of the largest

higher-numbered coefficient. Further, the fitted decay curve is shown in green, along with the

resulting estimated decay exponent, labeled as “SL”. With skyline pessimization in place, the

estimated smoothness exponent for the “kink” example becomes 1.67–reasonably close to the

expected value of 2.
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Figure 4: Modal portrait for a function consisting of only the highest representable Legendre mode

�Np−1 in an expansion of length 10.

The next-smoothest test of the estimator we consider is a truncated polynomial q(x) := x2H(x).
Obviously, q ∈ C1 ∖ C2. As in the “kink” case, the modal decay exhibits a pronounced odd-even

discrepancy (not shown) that leads to spuriously high “raw” smoothness exponent estimate of about

13. After skyline pessimization, the estimate assumes nearly exactly the expected value, three. The

three artificial tests conducted so far confirm the premise on which the estimator is built, namely

that the smoothness of a function represented by a Legendre expansion can be accurately estimated

solely by examining its coefficients.

By presenting a number of further tests, we hope to clarify the behavior of the estimator as

designed so far. A particularly interesting case is shown in Figure 4, which shows the estimator

applied to the highest mode present in the Legendre expansions of length 10 which we have been

considering. In a sense, this is the most oscillatory, and thereby the least smooth, function that the

expansion can express. After skyline pessimization, this function is assigned a smoothness exponent

of zero–which in a Fourier setting would correspond to white noise.

The next two tests are concerned with very smooth functions (cos(3 + sin(1.3x)) and sin(�x))
and confirm that the estimator recognizes them as such. While the smoothness values (both around

four) assigned to them are not as meaningful as the results in the low-smoothness examples, this

is not necessarily a problem. As long as the estimator can sharply pick up non-smoothness on a

reliable scale (and keep the smooth examples clear of this area), it is performing satisfactorily for

its purpose.

The second-to-last test highlights a behavior of the detector that could be considered a failure

mode. Consider a constant function perturbed by white noise of a much smaller scale. As discussed

above, the detector ignores the constant and only ‘sees’ white noise, yielding a smoothness value

of about zero. This behavior is undesirable, as the detected smoothness value may depend on

the presence or absence of mere floating point noise. One root of this problem is the removal of

constant-mode information from the estimation process, causing the estimator to not have a “sense
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Figure 5: Modal portrait for an approximant of a (discontinuous) jump function, offset from the

center of the element.

of scale”, i.e. keeping it from noticing that the noise is “small” compared to the remainder of the

solution. In the following, we present one way to re-add this “sense of scale” by distributing energy

according to a “perfect modal decay”

∣b̂n∣ ∼
1

√

∑Np−1
i=1

1
n2N

1

nN
(4.10)

for N the polynomial degree of the method, where the normalizing factor ensures that

Np−1
∑

n=1

∣b̂n∣2 = 1.

The idea is to consider the coefficients

∣q̃n∣2 := ∣q̂n∣2 + ∥qN∥2L2(Dk)
∣b̂n∣2 for n ∈ {1, . . . , Np − 1} (4.11)

as input to skyline pessimization instead of the “raw” coefficients ∣q̂n∣2. This amounts to adding

baseline modal decay scaled by the element-wise norm that will ‘drown out’ the floating point

noise.

For the sake of exposition, baseline decay was not introduced initially. The reader may convince

himself that its introduction does not unduly modify experimental results so far by examining the

estimated decay exponents given as “BD+SL” in the past graphs and comparing to the pure-skyline

values given as “SL”.

This completes the discussion of the design of the detector. Now might also be a good time to

point out a known shortcoming in its design that was already anticipated in the motivating discussion.

The issue relates to the discussion of mode scaling with decreasing smoothness initiated earlier in

this section. Consider Figure 5, which shows decay estimation data for the same Heaviside jump
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function as Figure 2, but shifted to the element’s edge. The data in the figure confirms the earlier

conjecture that a function with a sharply localized non-smoothness might result in modal decay

exponents that differ by up to a factor of two, depending on where the non-smoothness is located

inside the element–the measured smoothness exponent for the shifted Heaviside function is only

0.57, compared to 1.05 after all corrections above. Additional confirmation comes from the fact

that the final smoothness estimates for boundary-shifted versions of the kink and the C1 spline are

s = 1.19 and s = 2.24 respectively (not shown). This relates in striking ways to the scaling of the

DG CFL condition (2.1), and like in its case, an entirely practical remedy for this issue is not yet

known.

Based on the shown examples, it should be clear that even the unassisted decay fit is a more

robust smoothness estimator than the single-mode indicator (4.1), if only for the simple reason

that it considers a much broader set of modal data. But we have shown that even this fairly robust

indicator can give poor results in surprisingly common cases. We feel that this strongly supports

the statement that the decay fit indicator with skyline pessimization and added baseline decay

represents a more practical–if slightly more expensive–way of obtaining smoothness information

on a numerical solution.

5 From Smoothness to Viscosity

5.1 Scaling the Viscosity

This section assumes that the output of the indicator is an estimated decay exponent s, approximating

the decay of the solution’s modal coefficients as ∣ûn∣ ∼ n−s. We are seeking to design an activation

function �(s) whose value is the viscosity coefficient.

For the interpretation of the decay exponent s, recall the targeted scaling of the smoothness

exponent s, where (roughly) s = 1 would indicate a discontinuous solution, s = 2 would indicate a

C0 solution, s = 3 a C1 solution, and so forth. Among the chief nuisances of polynomial approxi-

mations that this work seeks to remedy is the Gibbs phenomenon, which occurs for discontinuous

solutions (s = 1). We therefore expect to have �(1) = �0, where �0 is the maximum value of � and

dictates its scaling. Merely continuous functions still pose somewhat of a problem for polynomial

approximation, so we arbitrarily fix �(2) = �0/2, and finally we fix �(3) = 0, as we prefer that C1

solutions should not be modified by viscosity.

Given the activation map �k(sk) of (4.2) with the fixed values s0 = 2, the map �(s) := 1− �k(s)
with the fixed values s0 = 2 and � = 1 provides such a ramp. (Observe that in (4.2), decreasing

values indicate more smoothness, while this work uses the opposite convention.) Because of the

close attention paid to precise scaling of the smoothness s, we were able to fix values for the ramp

location and width parameters � and s0.
To find an appropriate value �0, the behavior of the diffusion term needs to be investigated. To

this end, we examine the fundamental solution of the diffusion equation ut = �△u, the heat kernel.

Adopting the probabilistic standard deviation � as a measure of width, the heat kernel after time t
has a width of � =

√
2�t. Considering some unit t of time, the conservation law will propagate

information to a distance of �, where � is some local characteristic velocity. Observe that viscosity
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propagates the bulk of its mass at a non-linear square-root pace, while the conservation law observes

a linear speed. One therefore needs to pick a reference time scale t as well as a reference distance at

which the two propagation distances are to coincide.

Choosing � = ℎ/N after t = (N/2)Δt, and approximating Δt ≈ ℎ/(�N2), one obtains

�0 =
�2

2t
= �

ℎ

N
. (5.1)

This reproduces the value of [4] and simultaneously provides some more detailed insight into its

meaning. We would like to note that � = ℎ/N is probably too ambitious a goal, as this would only

smooth discontinuities to a with of about the distance between two nodal points–likely too little as

Figure 2 shows. A choice of � = 3ℎ/N has proven to be more realistic.

For a system of conservation laws, there remains the question of which characteristic velocity

should be chosen for �. This choice has important implications as, e.g. in the Euler system, contact

discontinuities propagate with stream velocity, whereas shocks propagate at sonic speeds. In a

one-dimensional setting, [49] convincingly argues that the best course of action is to perform

smoothing in characteristic variables, so that each wave receives the amount of smoothing specified

by the scheme, e.g. as given in (5.1). Observe that doing may work well in one-dimension and for

low-order multi-D finite volume schemes, but it is less clear how it might be applied in a genuinely

multidimensional situation. A simple and functional strategy is to choose � to be the maximum

characteristic velocity �max. The simplicity of this strategy comes at a price, however: returning to

the example of the Euler equations, contact discontinuities have their �0 set higher than would be

necessary from this analysis, and our numerical experiments will reflect this.

Thus the �max-based scaling is not perfect. It works, in the sense that all test examples run

successfully using it, but some can benefit from an additional ‘fudge factor’. For example, while

problems involving Burgers’ equation (not shown) work well with an unmodified scaling in a

’picture norm’ sense (little oscillation, least smoothing), most subsonic Euler problems benefit from

the application of an additional factor of 1/2. This is not entirely unexpected, given the above

discussion.

5.2 Smoothing the Viscosity

The artificial viscosity �(x) obtained so far is a per-element quantity, with no guarantees on how it

might vary across the domain. In particular, since the viscosity is constant on each element, it will

invariably be discontinuous.

Now observe how the viscosity is employed in the equations of Section 3. In particular, observe

that in order to maintain conservativity, the viscosity occurs inside a derivative. Great care is

required in the correct numerical solution of a diffusion equation with discontinuous viscosities

using discontinuous Galerkin methods. [22, 44, 47] describe various precautions that need to be

taken to avoid non-conservativity and non-consistency.

[23] also notice the issues caused by localized, discontinuous viscosities and propose an adapted

flux term to “strengthen the influence of neighbouring elements and [improve] the behaviour of

the method”. [4], through numerical experiment, also arrive at the conclusion that a discontinuous
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viscosity causes issues and show a marked decrease in H1 error for smooth viscosities. Since one is

at considerable liberty to choose the viscosity �(x), we agree that it is best to choose a � that does

not include discontinuities, to avoid this entire complex of issues.

Therefore, given that the detection infrastructure built up so far works in an element-by-element

fashion, one needs to introduce a post-processing step that somehow smoothes out the generated �.

In doing so, one again has a wide array of choices. [4] propose a diffusion equation (effectively

“diffusing the diffusivity”) with time-relaxation to obtain a viscosity that is smooth in both time and

space. Unfortunately, this choice is unsuitable given the design choices for explicit time stepping

laid out in Section 2–to achieve sufficient smoothing of the viscosity, one needs to choose a large

diffusivity for it, which results in a very stiff system of ODEs.

One important question in the design of a successful smoothing method is, precisely how smooth

must the result of the smoothing be? In computational experiments relating to artificial viscosity, we

have found that there does not seem to be an advantage to having the viscosity � ∈ Ck for k > 0.

Based on these considerations, the method employed in the experiments in the next section

proceeds as follows:

1. At each vertex, collect the maximum viscosity occurring in each of the adjacent elements.

2. Propagate the resulting maxima back to each element adjoining the vertex.

3. Use a linear (P 1) interpolant to extend the values at the vertices into a viscosity on the entire

element.

In our experience, this method is cheap, reasonably straightforward to implement even on GPUs,

and it satisfies the design requirements set forth above.

6 Experience with and Evaluation of the Scheme

6.1 Advection: Basic Functionality, Interaction with Time Discretization

The first set of results we would like to discuss relates to the advection equation (Section 3.1).

The examples in this section examine the advection of the function u(x) := 1[0,5) over an interval

(0, 10).
[40] suggests that the advection equation is particularly suited to testing shock capturing schemes

for two reasons: First, because it is the simplest PDE that can sustain a discontinuous solution, so

that the behavior of the method can be observed in a well-understood setting, isolated from other

characteristics and nonlinear effects. Second, because discontinuities in it are not self-steepening,

in analogy to contact discontinuities in the Euler equations, it makes a challenging example to be

treated with artificial viscosity: Once a discontinuity is unduly smeared by viscosity, nothing will

return it to its former, sharp shape.

Figure 6(a) displays the behavior of the unmodified discontinuous Galerkin method as described

in Section 3.1. As expected, a strong Gibbs-type overshoot is observed, although it is worth noting

that the used upwind fluxes already provide enough dissipation of high-frequency modes to prevent
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Figure 6: Spatial shock capturing behavior of the artificial viscosity scheme on an advection

equation.

the solution from becoming useless. This example, and all examples that follow in this subsection,

were run at polynomial degree N = 10 on a discretization using K = 20 elements.

Next, Figure 6(b) displays the result of the same calculation once the artificial viscosity ma-

chinery as described above is enabled. Discontinuities are resolved within eight points, i.e. within

less than one element (containing Np = 11 points) and have no visible overshoots. (Note that as an

expected consequence of the clustering of the nodes towards element edges, points appear spaced

closer together where the discontinuity touches an element boundary.) Element boundaries are

shown as dashed lines for orientation. Figure 6(b) displays the solution after only a brief amount of

simulation time has passed. It turns out that the solution–at least visually–settles into its final form

and does not change much even after a large number of round-trips. The steepness of the solution is

retained as in Figure 6(b), and the number of points that are required to resolve the discontinuity

remains stable.

Figure 7(a) sheds a new light on this “settling” observation and the observed increased sensitivity

of the detector near element boundaries that was discussed above. It shows the maximum viscosity

∥�∥L∞ found anywhere on the domain, graphed versus simulation time. If the observation of

“brief-settling-then-steady-state” were entirely true, then one would observe no sensor activations

whatsoever after “settling” has occurred. This is not what is observed here. Instead, one sees a slowly

decaying train of viscosity activation spikes. It turns out that each of these spikes coincides with a

discontinuity crossing an element boundary. This again confirms the observation that the detection

scheme is inhomogeneous in space, i.e. it judges solution smoothness differently depending on

whether a discontinuity is located in the interior of an element or at its boundary. Since the sensor is

only exposed to the non-smoothness for very short periods at a time, according to Figure 7(a) it

takes considerable time (t ⪆ 12 in the example) and a number of viscosity “spikes” until a profile is

achieved that does not trip even the overly sensitive version of the detector. It is to be expected that

the final profile is twice smoother than would be required if the oversensitivity did not exist.

As a last observation on the behavior of the method on this exceedingly simple problem,
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Figure 7: Interaction of the shock-capturing artificial viscosity with the time discretization.

we would like to examine its interaction with the adaptive time stepper. The examples were

computed using the well-known Bogacki-Shampine embedded Runge-Kutta method of third order

[8] (“ode23” in Matlab). 7(b) shows the adaptively-chosen time step Δt as a function of the step

number. The stable advective time step is clearly visible, as is the initial “settling” period discussed

above, with a variety of time step reductions occurring along the way. Some of these coincide

with element transitions of discontinuities, but the situation is more ambiguous (and noisier) than

in the case of viscosity activations. The figure does make one thing amply clear, however: an

artificial-viscosity-based shock capturing scheme using explicit time stepping must use time step

adaptivity, or it will not be competitive.

6.2 Waves: Shock Spreading and Spurious Coupling

The next, more complicated problem for which we examine the behavior of the proposed artificial

viscosity is the wave equation, described in Section 3.2.

We would like to set the stage for our experimental results by considering the context of recent

work [12], who show (under a number of additional assumptions) that for a DG computation of a

linear advection equation at second order using a second-order total-variation-diminishing (TVD)

time discretization, pollution of the numerical solution by the shock by time T stays localized to an

area of size O(
√
ℎT ) ahead of and an area of size O(

3
√
Tℎ2) behind the discontinuity. Although

they only show this for a scalar advection equation, the wave equation (3.1) and its discretization

may be transformed into two decoupled advection equations, and hence the result applies in this

case as well.

We will study the pollution of the solution by examining its pointwise empirical order of

convergence to the known analytic solution in space and time, starting from the initial condition

u(x, 0) = 2 + cos(5�x) + 4 ⋅ 1[−0.3,0.3](x), v(x, 0) = 0,
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(a) EOC for the wave equation with a discontinu-

ous initial condition without artificial viscosity.
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(b) EOC for the wave equation with a discontinu-

ous initial condition with artificial viscosity.

Figure 8: Empirical order of convergence for the wave equation with discontinuous initial conditions.

subject to Neumann boundary conditions, on a domain Ω = (−1, 1) up to a final time T = 0.6, with

a wave speed c = 1.

Figure 8 shows the resulting convergence plots, obtained with and without artificial viscosity. As

expected through the work of [12], the inviscid DG scheme of Figure 8(a) achieves full convergence

away from the discontinuities, but also shows a slowly-growing zone of non-convergence near the

discontinuities, again matching predictions.

Unfortunately, results are not as favorable once artificial viscosity starts to act on the scheme.

Outside the region that interacts with the discontinuities, convergence is roughly as before. However

inside the interacting regions, convergence does improve again away from the discontinuity, but it

does not recover the full order of the scheme. This reduction in order is in line with results obtained

for finite-difference solutions downstream of a slightly viscous shock by [21] (see also [38]). The

observation further underscores the importance of the wave equation as a test example for shock

capturing schemes. Once the PDE is rewritten in as a system of first-order conservation laws, the

single added viscosity of (3.1) induces a cross-coupling that appears to destroy accuracy.

Note that such behavior cannot be observed in the advection equation, or, generally, any purely

scalar conservation law, since these equations have only one characteristic wave, and hence the

pollution caused by the artificial viscosity cannot spread, but propagates along with the solution.

This might lead one to suggest an obvious “fix” for the issue: The first-order system (i.e. the

left-hand side of 3.1) can easily be transformed into characteristic variables, where it takes the form

of two advection equations that only couple at the boundary, such that the issue disappears [49]. As

we have already discussed, proposing this is as a general remedy is however a bit disingenuous, as

it cannot work properly in multiple dimensions. Another idea that one might have to try and avoid

the reduction in accuracy is to use separate viscosities for each of the variables. According to our

experiments, this does not help, as the cross-coupling of the system persists.

Next, it seems unlikely that this problem is specific to the artificial viscosity constructed in this

article, or to discontinuous Galerkin methods, for that matter. It should be investigated whether all
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Figure 9: Sod’s problem with artificial viscosity: solution and x-t convergence.

artificial viscosity schemes proposed so far in the literature suffer from this shortcoming.

6.3 Euler’s Equations

In this section, we will carefully examine the behavior of the artificial viscosity method introduced

above on Euler’s equations of gas dynamics, starting with the classical exact solution of the Riemann

problem given by Sod [53] as the first example.

Figure 9(a) shows computational results, at polynomial degree N = 5 on K = 80 elements, in

direct comparison with the (L2 projection of) the exact solution, for the density � and the pressure p,

at the final time T = 0.25 of the computation.

While the figure above gives an impression of the desired solution and a first impression of the

performance of the method, it is perhaps more enlightening to examine an analog to the convergence

in space and time of Figure 8 in the gas dynamics setting. Figure 9(b) provides this. As above, the

computation was carried out at polynomial degree N = 5, at a variety of mesh resolutions ranging

from K = 20 to 320 elements across the domain. Like in the linear case, convergence away from

the shock region is good, while in the central, shock-interacting ‘fan’, it hardly exceeds order 1.

In particular, it is worth noting that convergence along the profile of the smooth rarefaction wave

is also no better than order 1. Given the results obtained for the wave equation, this is not very

surprising, and it confirms that the issues observed on linear problems persist in the nonlinear case.

A closer look at the numerical solutions in the poorly-converged region of 9(b) offers a revealing

insight, shown in Figure 10 for a high-resolution case (N = 7, K = 641) and a low-resolution case

(N = 5, K = 81). On the constant parts of the solution to the Riemann problem, we observe small

“wrinkles”. Figure 10(a) provides a sense of scale, while the extreme close-up of Figure 10(b) shows

the phenomenon in detail. In both the high- and the low-resolution case, the oscillation’s wave

length roughly agrees with the size of an element. Further, it is remarkable that the magnitude of the

oscillation appears to grow, rather than shrink, with increased resolution, which seems to indicate

76



A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

0.45 0.50 0.55 0.60 0.65 0.70
x

0.25

0.30

0.35

0.40

0.45

ρ

N=7 K=641

N=5 K=81

(a) Close-up view of the contact discontinuity in

Figure 9(a) at low and high numerical resolutions.

Interpolation nodes for the low-resolution case

are shown as dots.

0.63 0.64 0.65 0.66 0.67 0.68 0.69
x

0.414

0.416

0.418

0.420

0.422

0.424

0.426

0.428

ρ

N=7 K=641

N=5 K=81

(b) Extreme close-up view of the tip of the con-

tact discontinuity in Figure 10(a), at low and high

numerical resolutions.

Figure 10: Element-scale oscillation exhibited by the artificial viscosity scheme.

N = 4 N = 5 N = 7 N = 9 EOC

ℎ/1 9.982 ⋅ 10−3 7.934 ⋅ 10−3 6.522 ⋅ 10−3 5.567 ⋅ 10−3 0.70

ℎ/2 5.442 ⋅ 10−3 4.231 ⋅ 10−3 3.395 ⋅ 10−3 2.921 ⋅ 10−3 0.75

ℎ/4 2.945 ⋅ 10−3 2.219 ⋅ 10−3 1.778 ⋅ 10−3 1.568 ⋅ 10−3 0.76

ℎ/8 1.548 ⋅ 10−3 1.166 ⋅ 10−3 9.488 ⋅ 10−4 8.329 ⋅ 10−4 0.74

ℎ/16 8.087 ⋅ 10−4 6.006 ⋅ 10−4 5.121 ⋅ 10−4 4.598 ⋅ 10−4 0.66

ℎ/32 4.207 ⋅ 10−4 3.111 ⋅ 10−4 2.806 ⋅ 10−4 — 0.69

EOC 0.93 0.95 0.92 0.92

Table 1: L1 error and convergence data for the Sod problem of the Euler equations of gas dynamics.

“EOC” stands for the empirical order of convergence, obtained as a least-squares fit to the data.

that convergence below the margin provided for by the oscillation might not occur. (Convergence

will be examined in some detail below.) The phenomenon is observed on all constant areas that

are inside the fan of characteristics emanating from the shock at time t = 0. So far, we do not

understand the cause of this phenomenon, nor is it known whether there is a connection between

these wrinkles and the reduced convergence observed in Section 6.2. One might speculate that,

again, the detector’s spatial inhomogeneity is to blame. While we are as yet unsure of the source

of the phenomenon, we would like to note that post-shock oscillations of this nature have been

observed and studied even in schemes that do not use element-based decompositions [2].

Beyond the spot testing conducted so far, we have also carried out a more comprehensive

convergence study on the Euler equations applied to the Sod problem. The raw L1 error data as

well as empirical convergence order results obtained from least-squares fits are shown in Table

1. The data was gathered at a variety of polynomial degrees N and with K = 20 elements at the

coarsest level, with uniform refinements thereafter. The data seems to support about a full order

of convergence in ℎ = 1/K. No improvement in convergence occurs as the order is increased.

Further, the data supports less than a full order of convergence in N , indicating that an addition
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Figure 11: Solutions of classical test problems for the Euler equations using the artificial viscosity

scheme.

of elemental resolution at present is a more effective way of getting a more accurate solution than

increasing the size of the local approximation spaces, especially considering that the computational

complexity grows superlinearly in N . At the resolutions examined, the influence of the oscillations

(“wrinkles”) observed above does not appear to have contributed a significant part of the error–given

their observed behavior in response to resolution changes, they would likely have represented a

“bottom” to convergence at some fixed error magnitude. That issue aside, the observed convergence

data appears to be as good as one might reasonably expect. While convergence of higher order

would of course be desirable, the method as it presently stands is not designed to be able to achieve

this. Through some experiments on polynomials, we have reason to believe that convergence of

order one in N is achievable and thereby a goal for future research.

In addition to the problem of [53], which has furnished the basis for all tests so far, we have

also conducted tests using other available solutions for the Euler equations. One such solution

that is rather similar to the Sod problem is that of [42] in that it also originates from a Riemann

problem. Figure 11(a) demonstrates that the scheme can successfully compute a correct solution

to the problem. Lax’s problem prominently features a contact discontinuity, which is prone to

smearing, as was discussed above. The contact discontinuity in the figure appears somewhat more

smeared than the Sod contact discontinuity at a similar scale.

A further basic benchmark test for the method applied to the one-dimensional Euler equations

was proposed by [50, Example 8] to highlight the need for high-order methods in properly capturing

the interaction of shocks with smooth wave-like features. Considering the gathered convergence

data, we cannot claim that the method is of high order away from discontinuities once such areas

enter the domain of influence of a location where artificial viscosity was applied. Nonetheless, it is

still instructive to see that the method is capable of keeping the computation stable and delivering

a correct result at least in the “picture norm”, as evidenced by Figure 11(b). This example is
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commonly considered challenging, and it is encouraging that the method is able to stabilize the

computation and give a meaningful result without excessive smearing.

As a final validation of the detector’s design on the Euler equations, it is important to examine

whether it will recognize smooth solutions and leave them untouched, preserving high-order

accuracy. We have tested this using the smooth isentropic vortex test case of [64] with the result

that as soon as sufficient resolution is available, the detector does not activate anywhere at any time

during the solution process.

7 Conclusions and Future Work

What sets the shock detection method of this article apart is its focus on reliable scaling, with a

further emphasis on explicit, local, GPU-suited calculation in the context of discontinuous Galerkin

methods. Despite a focus on remaining issues, we contend that in this niche the method is reasonably

successful. Its construction introduces several new concepts, such as a more precise interpretation

of the correspondence between polynomial decay and smoothness, as well as methods like skyline

pessimization, baseline decay, and P 1 viscosity smoothing.

The study of the method’s behavior on simple problems (such as linear waves and transport)

was–in our opinion–quite revealing, and it should be investigated in how far other shock capturing

methods are susceptible to the same problems.

On more complicated nonlinear problems, results were, in our estimation, encouraging. For

example, the method manages to stabilize the computation of the shock-wave-interaction example

and other important benchmarks, without introducing excessive smoothness. Further investigation,

using the rich pool of tests available in the shock capturing literature [3, 52, 54, 61] will doubtlessly

give further insight into the method’s strengths and weaknesses as well as help to further improve it.

In addition, we have been exploring the necessities and pitfalls involved in generalizing the method

to multiple dimensions. Initial tests showed promising results, which we will report in a future

article.
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