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VISCOUS SHOCK WAVE TRACING,
LOCAL CONSERVATION LAWS,
AND POINTWISE ESTIMATES
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Abstract

We introduce a new approach to decompose a system of
viscous conservation laws with respect to each characteristic wave
structures. Under this new decomposition, the global wave inter-
actions of the system are reduced to coupling of nonlinear waves
around constant states outside shock region and a scalar conser-
vation law in the shock region to determine the behavior of local
internal shock layers. The behavior is characterized by the motion
of the viscous shock fronts. It is analyzed by the local conserva-
tion laws. We also introduce generalized diffusion waves to localize
waves in initial data.

We prove stability of a viscous shock layer of 2x2 system;

and obtain the optimal rate of convergence.

1. Introduction

We are interested in the stability problem of a viscous shock profile ¢(z—
st) connecting a shock wave (u_,u4) for a system of viscous conservation

laws

up + f(u)y = Uy, u € R™. (1.1)
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Here, the system u; + f(u), = 0 is a strictly hyperbolic system:

A(u) < -+ < Ap(u),
f(u) rj(u) = Aj(u) rj(u),
Li(u) f'(u) = Aj(u) i (u).

where \j(u), rj(u), and l;(u) are the j-th eigenvalues, right eigenvector,
and left eigenvector of f/(u). A shock wave (u_,u,) pertaining a genuine
nonlinear characteristic field \; is a two-valued weak solution of w¢+ f(u), =

0 satisfying both the Rankine-Hugoniot Condition,

fluz) = flug) =s (u— —ug), (R-H)

and Lax’s entropy condition,

{)\Z(u) > s > Ai(uq), (Lax)

)\Z'Jrl(qu) >8> )\i,l(u,).

Here, s is the speed of the shock wave (u_,uy). Due to the Lax’s entropy
condition, we call (u—_,uy) an i-th shock wave. A shock profile ¢(z — st) is

a travelling wave solution u(z,t) = ¢(z — st) of (LI connecting (u—, u4):

—s ¢/+f/(¢) ¢/ :¢//’

lim ¢(x) = uxt.

r—+o0

The stability problem of ¢(z — st) has been studied by energy estimates,
[, 8], “], (3], [6], [18]. Particularly in [7] and [14], the stability prob-
lem is analyzed through detailed wave interactions; and the nonlinearity is

effectively analyzed.

In this paper, we introduce local conservation laws and wave front trac-
ing to decompose the solution of ([L1]) into the form u(z,t) = V(x,t) + ¢(x —

st — (1)

L+st
/L+ t{u(m,t) — ¢(x — st — W(t))} de = Z Cj(t) rj(u—) + Z Cj(t) rj(ug),
- ol (1.2)
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where L is sufficiently large to essentially contain the shock layer, and
(u—,uy) is an i-th shock; and C}(t) are real-valued functions.

The function ~(t) is the wave front of u(x,t); and it represents the mo-
tion of viscous shock fronts due to the nonlinear wave interactions. Indeed,
v(t) essentially depends on the local structure of V(x,¢). With this concept
of wave fronts, one can efficiently obtain an optimal convergence rate of the
solution to the shock profile. This wave front tracing approach requires the
presence of a local structure. However, we do not need to require the ini-
tial data u(z,0) — ¢(x) to have such a local structure such as the condition
|u(z,0) — ¢(z)| < O(1)(Jz] + 1)~3/2. We need to introduce a generalized
nonlinear diffusion wave O(z,t) to localize the initial data of V(x,0):

00+ f(u—+0)y — Oy = E(z,t)(ugy —u_), (1.3)
1©(x,0) — [u(z,0) — ¢(z)]]| <del a>o0. (1.4)

Here, E(x,t) is a real-valued function with a compact support in [—1, 1] and
with the decaying structure in time

sup |E(z,8)] < O()2(1+ 57121 + )71,
zeR €

€= s —us;
0 is the magnitude of the perturbation:

d = sup [Ju(z,0) — ¢()|;
zeR

and « is a positive number independent of € and 4. So, for the decomposition

the perturbation V(z,t¢) has a local structure in the initial data, ().

Wave front tracing have been introduced to study time asymptotic be-
haviors of viscous conservation laws, [2], 5], [4], [12], [13], [15], [17], and [20].
The coupling of wave front and wave interactions could result in a sub-linear
phenomenon. Such coupling was studied in a singular behavior of Burgers
equation in the quarter plane (see [9]) and in a coupling of viscous shock
profile and viscous rarefaction wave (see [13]).
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The approach of pointwise estimates was originated from [7]. Such ap-
proach gives a rather detailed structure of solution. With the detailed struc-
ture one can analyze the nonlinear couple effectively. Thus, various types
of nonlinear viscous problem can be studied by the pointwise estimates, see

&, [a), ).
For the purpose to illustrate the role of localization of initial data, local

conservation laws, and wave front tracing we consider a 2x2 system with the
following setting;:

Settings of the problem

ut+f(u)x_uzz:0au€R2, (15)
(u—,uq) : a stationary 2-shock shock wave: s =0, (1.6)
lo —usll =, (17)
¢(z) : a stationary profile of (LX) connecting (u_,u4), (1.8)

eIl for 2 >0
_ 5 . '
[u(2,0) = ¢()] < {(1 + |2]) 73/ for = )
e_‘x‘ fOI‘ Xz 2 Oa
0:(u(z, 0) — da))] < 6 {u +Jal) 2 for Y

Here, the parameters € and § are assumed sufficiently small
e, 6/ < 1.

The wave front v(t) will satisfy

1(8) = 7(00) + O(1) G(L+1)72

Remark 1.1. The assumptions € < 1 and u € R? are not necessary
for the wave front tracing. It is interesting to relax those conditions in the
future. Indeed, under this frame work many problems related to interactions
of different structures such as shock layers to boundary layers, shock layers
to rarefaction lagers are possible to study, e.g. [13].

Main Theorem. Suppose that 5= ® and € are sufficiently small. Then,
there exist an uniformly bounded function v and constants €, J > 1 such
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that

lim sup [lu(z,t) — oz —~(1))]| = 0,

=00 2R

lim () exists,
t—00

€6 J|log €|
o, 1) = 8 = 2OV € s for o < T2

Remark 1.2. Before this research, the optimal rate of convergence is
O(1)t~1/2. This may appears to be inconsistent with our present result.
However, in the previous approaches the wave front is fixed to be the time

asymptotic wave front (cc0). The perturbation satisfies
[u(z,t) = d(x—~(00))|| < [Juz,t) =z =)+ [[¢(x =7 (1)) — p(z —7(0)].-
This results in

[u(z,t) = ¢z —v(c0))|| < 0(1)6%(1 +1)7Y2 for |z| < Je ! loge|.
Thus, our result is consistent with the old approaches.

In our analysis for obtaining the Main Theorem, we introduce two sets
of variables V(z,t) and W(z,?):

2
V(z,t) = ZVj(x,t) ri(u—),
j=1
We(z,t) = V(z,t),

2
Wz, t) =Y W (z,t) ri(¢(x — (1)),
JZ‘; y 7 (1.11)

2
VI (2, t) = > Wh(x,t) [i(u) - rr(dla — y(t)))
k=1

+ ZW’“(m, t) Li(u_) - Oprp(d(x —~(1))).
P

Here, the variable W(x, ) is considered in the region of shock wave only.

We will introduce Theorems A and B before proving the Main Theorem.
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In Theorem A, we make a weak assumptions on both V2(x,¢) in the
region of shock wave z > st — Jy and v(t). Under this weak assumption, one
can obtain a global estimate of V!(z,t), a semi-global estimate of V?(x, ) for
x < st — Jy, and a weak estimate of |[W(z,?)|| in the region of shock. In the
analysis, we also introduce a special decomposition for the V. It separates
the function V into two parts V; and V_.. The part V. decays slower and
contains smaller norm. In contrast to this, V1 decays faster and contains

larger norm.

In Theorem B, under the necessary conditions of Theorem A we can
obtain sharper estimates about both V2(z,t) in the region of shock wave and

Y(t).
Thus, the necessary conditions of Theorems A and B yield the optimal
rates of ||[V(z,t)|.

In Section 3 and 4, we will outline the constructions of the generalize
diffusion waves and the sketch of the proof of Theorems A and B. In Section
5, we will provide the technical lemmas needed for proving the theorems.
Finally, in the last sections we will give the detailed proof of the theorems.

2. Preliminaries

Notation 2.1.

)\;!:E)\j(ui), j=1,...,n

A4 () = —A¥ tanh (AZ ).

Suppose that the strength, €, of the shock (u_,u4 ) is sufficiently small.
The eigen vectors are normalized

L) ) (ri (), () = 1.

Then, one has the following analytic structure of the shock profile ¢(¢) :

A = w, (2.1)
¢/ (€]l < O(1) € = KIIFOwED, (2.2)

for k=0,1
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24k =M (1+0(e)[¢] 0,

8’; [Al(qﬁ(&)) — A—(ﬁ)} ‘ <o(1 {ZQJrk ior £€>0, " 2
2tk o= A (1+0E)IE for ¢ > 0,

0% | \(0(6)) = A+ ()] ‘ <0Q) {62% for £ < 0. 0

Structure due to the stationary 2-shock (u_,uy)

Since (u—_,uy) is taken to be a stationary 2-shock of the 2x2 system

(CH), the Lax’s entropy condition becomes

s =0,

Al <0,

A <A <0< Ay,

Ay = - (1+0() = %(1 +0(1)e).

There are two characteristic curves entering the shock from the right of the
shock; one characteristic curve catching up with the shock from the left
of the shock; and one characteristic curve leaving to the left of the shock.
Combine this property with our initial condition that there essentially no
waves in front of the shock in the initial data. We can conclude that time-
asymptotically there are no waves in front of the shock. So, we only need to

take care the waves behind the shock; and decompose the vector ro(u_) as

follows
ro(u_) =" (uy —u_)+c ri(u_),
(_J07 t)
dy _ . =/ /
2= Concentration of 4'(c) ¢'(z — (1))

L Concentration of

=9(—Jo—y,t—0;>\574)
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where ¢* are real-valued constants satisfying
(2.5)

u_) into the

The coefficients ¢t actually are the scattering data of a vector o
shock wave (u_,u ). ¢~ is the reflection coefficient; and ¢ is the absorbing

coefficient into the shock.

3. Generalized Diffusion Waves
x)|| does not decay

Due to (L) and ([CI0), the initial data ||u(zx,0)
fast enough outside the shock wave region. We will take out a nonlinear

wave O(z,t) from u(x,t) — ¢(x) such that the resulted wave has a localized

structure in the initial data.
Before we outline the construction of O(z,t), let’s introduce the follow-

ing notations:

Notation 3.1.
_(ean?
Hj(f,T;)\,D)EifoerO,
m
i@ tA) = (lz—At2+1)",
{ x— At [1+e(x— A7 )]}aforxe[)\l_t—i-\/f,O]

0 else,
1 + 62t -,

¢ T for lz| <1,
0 for |z| > 1,
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Due to ([LY)) and ((CI0), one needs only to localize the initial data for z <
—1. We will take out the waves in region x < —1, that is, v*(z,0) rq(u_) +
X—(2)v%(x,0) r2(u_). In the same time, we also need to maintain the total
masses of the residue waves parallel to (u— — uy). This can be done by
finding a function ¥(z) with supp ¥ C [—1,1] and

/R Yo (@) ©2(@,0) ro(us) — W(a) ma(us) de || (ug —us).  (3.1)

2
Thus, we consider the vector-valued function ©4(z,t) = Z O (x,t) ri(u_):

j=1
(é%)t + ()‘5 é%)z - (é%)zz =0,
(3.2a)
03 (z,0) = v*(z,0)
01(x,1) = x-(z) ©F(x,1),
S (x,t) = (03 4+ (A5 %) — (09) s, (3.2b)
Ef(w,t) =ct - S (a,t), & (z,t) =c - & (x,t).
(6%% + ()‘1_ 6%)%‘ - (@i)xz - _@ﬁl_(xvt)v
(3.2¢)
01(z,0) = v!(z) + U(z).
O1(x,t) = O1(z,t) ri(u_) + OF(x,t) ra(u_). (3.2d)

The function ©%(x,t) is devised to absorb the initial data v?(x,0). The
behavior of this function is not proper when x > —1, because the trans-
portation term in ([BZal) does not contain the structure of shock profile. We
need to cut off the part of ©2 for > —1 by multiplying the cut-off function
X— (). It results in an extra truncation error &1 (x,t)rs(u—) when one substi-
tutes x_ ©7 into (BZal). One can decompose the truncation error &7o(u_)

into two parts
Sra(us) =& (uy —u) + & ri(us).

The component & 71 (u—) will not interact with the viscous shock profile,

and it will travel away the region of shock wave according to the behavior
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of (BZd). This results in the following property of ©;(z,1):

0101+ 0, f (u_)0y — 0201 = &' (uy —u_),
supp(EE(-,1)) € [-1,1],
|lv(x,0) — ©1(z,0)|| =0 for x < —1,

v(z,0) — ©1(z,0)| <6 e 1 for & > —1,

[ 0 =000) de | (us ~ o).
\/R

We will need to use Lemma 5.12 to estimate ©1(z,t).

The function ©1(z,t) localizes the initial data of v(x,0) linearly. In
order to effectively localize the initial data, we need a nonlinear localization.
One needs to consider the following sequence:

(DF): + (Ag D)o — (Df)aw = (A2[0:] — A2[Oi-1])a, (3.30)
D?(x,0) = 0, .

where A (U) = f(u- +U) — f(u_) — f'(u_) U
1,1 B B
- / / £ (u_ + €E8U) - (U, U) dédé,
0 0
2
N0 =) AUy (un),
j=1

Oy =0,
Oi41 =D +06; fori > 1,
D} (z,t) = x—(z) D} (=,1),
Gir1(2,1) = (D) + (A D} o — (D7 )aw+(A2[O] = A%[0;1]),
ot = ot

i+1 =C - Eit1, i1 =c i,

{ D)i+ A DDa = Dea+ (A O = A [Oimt])e =,
]Dil (z,0) =0,

(3.3b)

D;i(z,t) = D} (x,t) ri(u_) +D? ra(u_).
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In the above iteration, the updated waves ©; eventually nonlinearly localize
the initial data; and leave a sequence of waves &; (u4 — u_) to interact with
the shock profile.

In the updating procedure, we need to solve a sequence of initial value
problems in ([B3al) and (B30). We will need to use Lemmas 5.2, 5.4, 5.5, 5.8,
5.12, and 5.13 to analyze the convergence of this sequence. In particular, we
need a special cancellation from equations itself in order to obtain a proper
decaying rate in time for D?(z,t), see (GId).

Finally, we define the diffusion wave O(x,t) as follows

O(z,t) = lim O;(x,t);

Z;OO ' (3.4)
O(z,t) = Z O/ (z,t) rj(u_)
j=1
and it satisfies
O+ f(O+u_)y — Oy = E(x,t) (uy —u_), (3.5)
|O(x,0) —v(z,0)] =0 for x < —1,
li(us) - (v(z,0) — O(x,0)) =0 for z > 1,
(3.6)

/R o, 0) — O, 0) da || (uy —u_),
E(x’t) = Z;}il éaz‘Jr(x’t)'

Theorem DW (Diffusion Wave). Suppose that both 6/e* and € are suf-
ficiently small. Then, the sequence {D;};>1 converges and there exists a

constant ¢ satisfying
for j=0,1,2
020" (2, )], 18261 (x,1)|

09+ (2, A7, D) + e n(z,t) (2| +1)9/2  forz <1,

AT A

epl(t) e 2 forx >1,

<0(1) 6
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| [0 @ A D) ren(e (2 +1) 2 for 2 <1,
04D} (x, 1) < O(1) § (ce)’ (AT A )]
_ Ay TA )T

ept(t)e P for z>1;
forj=0,1
0,07 (z,1)], 0567 (x, 1)

0 forx > 1,

<O0()¢ 1
<ﬁ + Q(SC)) [Hl(x,t;)\g,D) + ¢3/2(:C,t; )\2,)] forz <1,
|04 (2, t)]

10 forx>1,
< O0(1) § (ce)

(ﬁ + Q(ﬂf)) [0 (z,t; Ay, D) + V32 (z, t; 23] forx <1,

Supp(.%(-,t)) - [_17 1]7 Sg}g’(g@(xut” < O(l) 0 giil pl(t)a

where € = de* < 1 and D > 4.

Corollary 3.2. The function E(x,t) satisfies

B 1)] < 0(1) 2272 1,

€

By adjusting the wave front properly, we may assume that

/ O(z,0) — v(z,0) dz = 0. (3.7)
R

4. Local Conservation Laws and Wave Front Tracing

When we take out the generalized diffusion wave O(z, t), from ([BH) there
is a wave E (uy —u_) left in the region of shock. This wave will residue and

result in H (t) phase shift in the shock profile. The function H(t) satisfies

H'(t) :/RE(:C,t) dx.
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We denote the total phase shift

4.1. System of equations with wave fronts

We set

5/(/Eamdx> dr,

5

Ht)=01) 2 | pl(o) do,

/ ’ /o1 (4.1)
H'(t) = 0(1) 2 p\(1),

Az, t) = ¢z — H(t) —7(1)),
o (x,t) = Az, t) + O(z,t),
V(z,t) = u(x, t) — o (x,1).

The function V(x,t) satisfies

Vi+ (f'(A)V)y = Vap = =[((IN + Ip) [V] + I, [0] 4+ I2[7]) , + I3[7]] (4.2)

where

/ Ef' (o + EEV)(V,V) dedé,

)(
/ £ () (V. V) ded,
LV = [f'(«) - f'(A)] VY,
1 1_ B B
0= /0 /0 EL" (u_+EEO) — (6 £60)](0, O)dEdE+(f'(u_) — f'(A))©
(4.3)
L= [ B0 (e — )+ HO S - HO 30 dy (4.)

I3[y =7'(t) ¢'(x — H(t) = 7(t)),
L[V = (f(u-) = f'(A) V. (4.5)
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The term N[V] is a quadratic nonlinear term. Here, N[V], Io[V], I1[0],

and I5[¥] are all functions of (x,t); and satisfy

IN[V](, )] < 0@) V(= 1),
[o[V](z, )| < O1) [[©(z, )] - [[V(2, )],

(4.6)
[11[©](x, )] < O) |©(x, )| - [|o(x — H(t) = 5(t) — u-]],
La[5)(e )] < O(1) € |H (5] el HO=3011+000,
If ||7]lco <1, then by Corollary 3.2, ([@l), and ()
) Bl <O e e 2O o],
lla(u_) - Ia[7](x, )| < O(1) § p'(t)[e e P2 [2I0FOWe) (g)},

where Ay = (1 + O(1)¢)$.

4.2. Local conservation laws

Since the shock wave (u_,uy) is a stationary 2-shock, the local conser-
vation defined in (CZ) becomes

L
/ V(a,t) dz = Cy(8) r(u_) || 1 (u).

—L

We set L = Jy = 2¢ !|loge| J with J > 1. On the other hand, the wave
structure ||V (z,0)|| decays exponential fast. Eventually, there is almost no
wave contained in the region = > Jy. We can relax the upper limit in the
above integral sign to redefine the local conservation laws for a 2-shock wave

(u—,uy) of a 2x2 system as follows:

Definition 4.1.(Viscous Wave Front due to Local Conservation Laws)

The function % is chosen to satisfy

[e.9]

» V(y,t) dy || r1(u-) (4.8)

where Jy = 2Je 1| loge|.
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Since the wave structures of V essentially is contained in the region of
left to the shock wave, we consider the following decomposition regarding
the background field u_

2
V(z,t) = ZVj(:c,t) rj(u—) for x € R,t >0,
j=1

J
V(1) = ) [V (2, 1)].
7j=1

Integrate ([E2) over [—.Jy, 00) with respect to z and multiply it with lo(u_)

from the left, and use
[A(=To) —u—| = O(1) ¢'*/
to yield that

(=3 V24 [V2] + O) (V] - [Aal + Vel - [& = u_]))],__,,
7 (Ol (u-) (g —u) +O(1) e+ OW e hO]
= 0(1) I [VI(=Jo, 1) + [|NIV]| + Lo [V]] + [ 11[6]| + T [3]]]

r=—Jo '
(4.9)
This results in the equation of 7/(t):
- A, V2(—Jo,t) + V2(=Jo,t
iy = 2D L1+ 0(9)
TV (=Jo, t V(=Jo, )

€

From this expression, the dominant term for determining the behavior
of #/(t) is due to V2(—Jo,t). It illustrates the interactions between shock
layer and its far fields.

We also need to consider the following variables W* to analyze V in the

region of shock.

W(z,t) = —/ V(y,t) dy for x > —Je loge|, t >0
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2
)= W(x,t) r5(A), (4.11)
7j=1
2

[W(2,t) = [W(z,1)].
7j=1

The relationship between W7 and V7 is
2 .
ZV z, t)rj(u ZW] z, 0)rj(Alx, t)) + W (x,t)0,r;(A(x, 1)).
j=1

With the conditions r;(u) = 7;(A) + O(1)[|A —u_|| and [lu— — u || = 2¢, we
have that

VI (2, t) = Wo(x,t) + O(1) €|[V(z,t)|| + O(1) € |W(x,1)|. (4.12)

The system for W(z,t) is

Wit f1(A) Wo = Wop = —((N +I0)[V]+ 11 [0]+ Io[7]) =¥ (t) (Alz, ) —u-).
(4.13)
The equations for V¢ and W' are

Wi+ Ai(A)W, — W,

2
= ;(A) - ZWJ' (H'(t) +7'(¢) )\i(A))rj(A)z)
j=1

2
Hi(A)- (Z 2W, TJ(A)erWjTj(A)m) —((N + 1) [VHIl[@]HQM)]
j=1
—7'(#) li(u-) - (uy — ¢z — H(t) = 5(1))). (4.14)

The condition () becomes a condition for W(z,t) at x = —Jy. We apply
the expansion A(—Jy,t) =u_ + O(1) € e~z [JotHO)+Y(1)]

o0

W2(—Jo,t) = —ZQ(A(—JO,t))/_J V(x,t)dz

= (~la(us) + O(1)¢ ¢ Pt HO 1) / V(z, t)dz

—Jo
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e ¢ MO Ol g (— gy )]
to obtain that

W2(—Jo,t) = O(1) € [W|(=Jo, t). (4.15)

For the variable V(x,t), we need to break (f'(A)V), in ([E32) into (f'(u—)V+
[f'(A) = f'(u—)]V)s; and then diagonalize it as follows

(V")t+(A-‘ Ve = (Ve
= —li(u_) - ({L4[V]+(N+1Io) [V]+1,[0]+ 12 [7]} +1I3[7]), i = 1,2, (4.16)
with the initial data

/ V(z,0) dz =0,
R

0 for |z| > 1,

[V(z,0)| < 6{

1 for |z] < 1.

0 for z < —1,
WQ(x,O)\ <$
el for z > —1.

The integral representations of the variables V¢(z, t):

- / 61 (@ — ;A7 V(. 0) dy
R

+ !ﬂg[@]w ERA +Z]P ] (4.17)
where
z/ [ 0=t =i\ ) () - TO]) . dy
T4 [y / /01 — oA, 4) - (Li(us) - Is[¥)) (y,0) dy do,

Hému,t)z/o/Rel(x—y, o7, 4) - (1(us) - Ts)) (4, ) dy do
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I [V](z, ) = /Ot/Re;(x oyt — oA 4) - ((u) - Ta[V]) (y, ) dy do,
L [V](z, ) = /Ot /Re;(x Syt oA 4) - (L) - ToV]) (9, 0) dy do,
G0 = [ [ 3wt = 017 0) - () NIV 0) dy o,

ng[wx,t)z/o /R%(x—y,t—a;)\i_,ll)-(li(u_)-N[V])(y,U) dy do.

In order to obtain a proper decaying rate of V2(—.Jg,t), one needs carefully
analyze the representation in [EIM) with ¢« = 2. To be precise, we want
to have some cancellation in 12[0], I2[V], and IZ[V]. This cancellation is
particularly due to the nonlinear coupling from the V' field to V2. We
need a proper decomposition of V! as the following in order to handle the

cancellation properly.

2
Ve(z,t) =Y Vi(z,t) ri(us), Vi(z,t) =0,
i=1

Voi(z,t) =V(z,t) — Vi(x,t),
Vi =LA+ L[Va] + I[Va].

(4.18)

In this decomposition, we have separated the quadratic nonlinearity N |[V]
from the nonlinear term N [V]. So that, we can have a higher order estimates
on V1. This function has a lower decaying rate in time and a smaller L'

norm in time compared to V}T . The functions V1§ satisfies

{ ONVZAA 0V =0V = —li(u-) - (LNl + To[VAl}, ). )

Vi(z,0) =0.

In the following we impose a general theorem for the function V1.

Let €9 > 0 and w(z,t) be the solution of

Wt + AN Wy — Wag = —l1(u_) - (f//(A)(G,w r1(u_)) + Nw rl(u_)])z + S, 1),
w(z,0) =0,
1S(z, )| < e pt(t) e P2 121,

(4.20)
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Lemma P. Suppose that both ey and & are sufficiently small. Then, the

function w(z,t) satisfies

pl (t) e~z 1z|(1+0(e)) for z >0,
108 w(z, t)] < O(1) —2  min (A7 [,t~CFD/2) TH(t) 8z, t; Ay, D)

Ay - i
< + min (\/ |y P21 (2] + 1)_%) nt(z,t) for z <0,

where 1 = 0,1, 2.

4.3. Scheme for constructing the ansatz of V(z,t)

The system ([IH) contains an unknown variable 4’; and from I0) the
behavior of 4’ essentially is dominated by the variable V2(—.Jy,t). The vari-
ables V2(—Jy,t) and 4’ are coupled each other. Indeed, these two variables
are weakly coupled when both Jy and 1/4 are sufficiently large.

(_J07 t)

Concentration of 7'(c) ¢/(x — y(t))

L Concentration of

=9(—Jo -yt =035, 4)

From the above figure, the essential domain of dependence for V2(—.Jy, )
is separated from the concentration of 5'(¢)Ay(y, o). Thus, the influence of
from 7/ (o)A, (y, ) to V2(—Jy,t) is proportional to ML, This influence

can be neglected when €L is sufficiently large.

In this scheme we will construct the dominant behavior of V through

the following procedures.

1. The leading ansatz of V?(x,t) in z > 0.
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We drop the terms ((N—i—IO)[V] +1I, [@]) +I3[7] from Z). Then, the

€T
system () becomes conservative system. The resulted system is sufficient
to give the behavior of V?(z,t) for #+ > —O(1)e!. So, we consider the

following scalar equation:

{atUg + 8, (Na(z, )UR) — D202 = —ly(u_) - I1[A]a, 421)

U3 (x,0) = V2(2,0),

where Ao(7,t) = la(u_)f'(A)rz2(u_). The solution U(z,t) decays exponen-
tially fast in space but algebraically in time. This function UZ(z,t) is eval-
uated by Lemma 5.17.

We will show that

|V2(z,t)| < O(1)U(,t) for z > 0.

2. Vi(a,t).

Since the function Ug (x,t) decays exponentially in space, the main con-
tribution to V?(—Jy,t) is due to nonlinear coupling from V!(z,¢). The func-
tion V!(z,t) can decomposed into two parts. The dominant behavior is
similar to the solution of the initial value problem

(U} + OTU e = (U)ae = ~ti(u) - (L[UG ra(u-)] + 7))

T
U}(:c, 0) = Vi(z,0).
(4.22)
This is (EI6) with ¢ = 1 and with all the source terms replaced by —Iy(u_) -
(I4[U2 ro(u_)] + I2[4])z. The function U}(:c, t) is evaluated by Lemma 5.13.

Next, we evaluate the solution UZ(—.Jy,t) of the following equation at

= —Jy:

U+ AUz — (Uf)aw = —la(u_) - N[U} r1(u_)]a, 123)
Ui(x,0) =0.
The function U}% is evaluated by Lemma 5.6.

o
The function / |U?(—J0,t)| dt is almost equal to ||5'[|;:. By EID),
0
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we define
Ay UF(=Jo.t) = 8,U7 (o, t)
2¢ '

Y (t) =

Next, we use this function to construct the slower decaying term of V':

(Usl)t + (Al_Usl) - (Usl)m: = ll(u—) '13[’_)/f]7

Us(z,0) = 0.

Ul is evaluated by Lemma 5.13.

S

Finally, we will show that
Vi (@, 1) < O) [[UL (@, 0] + U}, ). (4.24)

3. V2(x,t) for & < —Jo & 7' (t).
We consider the problem
(U)e+ (A3 Uf)e = (U)aew = =0 N{(U; +UF) r1(u-)],

(4.25)
UZ(z,0) < [V2(x,0)].

In the evaluation of UZ(—Jy,t), we need the cancellation similar to that
derived in (EI4) in order to handle the effect due to 9, N[U} r1(u_)] and to

obtain the decaying rate ¢t~3/2.

From the function U?, we define

2¢

Fa(t)
We will show that
V2 (2,8)| < O()|U (2,1)] for = < —Jp,

7 ()] < O)7a(®)].

(4.26)

Remark 4.2. For the variable UZ(—Jo,t), one needs an extra cancel-
lation on @, N[U! r1(u_)] in order to obtain the rate of decaying t~3/2 in

time.
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4. V(x,t) for x € [~Jo + 1,0].

The construction of this ansatz is a little different from the other. We
need to consider the following equation which is modified from (EI4]) with
1= 2:

(W24 Da(b) W2 - W2
= Xo(u) - [ [O)+ Tala] — 7 (s — bl — H(H)—5 (1))

W2(,0) = Io(u_) - / SV, 0) dr, (4.27)

72 (—Jo, 1) < O(L)e” |UF (0, 1)},
[[0:772(= 7,0, 6)] < |[UF(—Jo,1)].

The function #,2(z,t) will give the ansatz of V?(x,t) for z € [~Joy + 1,0]:
V2 (2, 8)] < O #2(w,1)| for o € [~y +1,0].

The evaluation of #,2(x,t) is a combination of the lemmas in Subsection 5.2.

Remark 4.3. The equation ([Z1) itself is an ill-posed boundary value
problem. However, our purpose is not the existence of the solution. In stead,

we are performing a priori estimate of such solutions.

4.4. Global stability of viscous shock layer

In the previous subsection, we have mentioned the scheme for construct-
ing the ansatz V. With the ansatz, we proceed to establish the Theorems
A and B. Here, we omit the calculation of the ansatz and just state the

necessary conditions of Theorems A and B.

In the construction, we have ignored some nonlinear terms. Now, we
will show that the ansatz is still valid for the full nonlinear problem. In
the following Theorem A, both the sufficient conditions and the necessary
conditions are the ansatz, but we relax the coefficient of the ansatz in the
sufficient condition to a rather large constant in order to handle the nonlinear

term.

Theorem A. Let C < |loge|. Suppose that § < €5, that the solution V
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of B2) satisfies

A |z
V2(x,t) < 2K pl(t)e” 2 (1HOWM9

-1
62| log ¢f? ¢! [1 + 6\/2} for x € [—Jy, 0],

t0—03 1 gl
tt {1 + 6\/2} (1+0(¢) for x>0,
(4.28a)
for x € [—Jy,00), and that the function 7' (t) satisfies that
52 1 2 -1
7t <cC <@ ¢! [1 + eﬁ} 6t pl(t)) , (4.28D)
€

where Jy = 2¢ 1 J with J > 1 and Kq is a constant independent of e.

Then, there exist €, o = O(1) such that

V2, (2, )] (4.29a)

A7 |2|(140(€))

5\/5 ptt)e =2 forxz >0,

6T (¢) min <\/E, %) 01 (z,t; A7, D)+ min <\/E, ﬁ) n(x,t)
<€ 2| log €|? _
<@ Slosel Oge‘ {Jz = At| (1+eyx—/\;t\%>} Yfor At + Vi< <0,

_ 1 82| log e[?
6 T1(t) min (\/E, %> 01 (z,t; AL, D)+ %93/2(:@7&; A, D)
[ for x < ATt+ VA,

fori=20,1,2

< (o, 1)
A 2| 100 ¢|3 0z, t: A7, D 4 EAnY
02 (2, < Bl < (%21, D) j) o=

. (ol +1
€ pl(t)e_)\;‘x‘(l-"_o(e)) fOT €T 2 O’
(4.29b)

10, V2|(z, ), [V2|(z,t) <€ 6 €'/? pl(t) e P2 I2I1+0(0)/2 (4.29¢)

52| log e2 | ¥**(@,t:25) for x € [\t = o),
+ 6=

03(z,t; A1, D) for x < A\t
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[6*1 + logel” Hgﬁgds} for z € [—Jy, 0],
W|(2,8) < €6 pL(¢) (4.29d)
) p 5 |log ef? _
|:€_1 + 73&56 i| 6_>‘2 ‘x‘(l-ﬁ-o(e)) fOT €T 2 O’

for any fized constants D' > D > 4.

Remark 4.4. In the evaluation of the ansatz V1(z,¢) in @24)). we have
ignored the effects of I1[0] (a small given source term), I[V] (a weakly linear
source term)!, N[V] (a the nonlinear term), and I4[V—Ug r1(u_)]. Since all
those terms contain small parameters so that we can relax the coefficient C' in
the sufficient condition of Theorem A and the coefficients € and %5 = O(1)
in the necessary condition are still valid.

About the domain of the ansatz V?(z,t), in Theorem A we use the
system (EZI0) to approximate (E2). So, we have ignored the structure of
shock wave in the compressive field. Thus, a sharper estimate of V?(x,t) is
only valid in regions far away from the shock layer.

About the decomposition V. and V_1, when one apply a cancellation
to obtain a better decaying rate of V2(—.Jy,t), one needs to handle either
Vl

LV or VIV We choose the former one. It is a solution of nonlinear
s T—XXT

scalar equation without coupling so that we can analyze it precisely.

Theorem B. Suppose that the solutions V and W satisfy (E25al), E29d),
and E29d)). Then, there exists a constant Cy > 0 such that

62|loge|2

7 (1) < G 1+ evt) ! (4.30)
6 Ay |z](1+0(e))
W2|(2,8) < Co2 pHt)e " x (4.31)
€
Ay |z][(1+0(e))
+C, 52‘10g5‘3t 114 e/ e 3 for z > 0,
1 for = € [—Jy, 0],
9 1 A [2[(14+0(€)
|V=(z,t)] <2Kg0 p(t)e 2 (4.32)
Ay 2| (1+0(e))
52 1 3 _ 2 R T AR
+ CO ‘ 0og 6‘ t_l(l + 6\/%)—1 € 2 for x > Oa

€ 1 for z € [—Jy,0].

IThe ansatz for Io[V] contains a factor §2. So, we classify the effect from this term as a weak
term.
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Remark 4.5. This theorem gives the ansatz V?(z,t) in the shock re-
gion with information V?(—.Jy,t) obtained from the necessary condition of
Theorem A. This theorem uses the variable W(z, t) in order to encounter the
structure of the compressive field in the shock region effectively in the linear
stability level. Finally, we obtain that this necessary condition is stronger
than the sufficient condition of Theorem A.

Theorem C.(Local Existence Theorem) Suppose that 0 is sufficient

small. Then, there existence T > 0 independent of t such that whenever

E23D), @29d), and @E32) are true for t € [0,T], then the condition ([E23al)

is true fort € [0,T + 7].
The proof of this theorem is a standard procedure. We omit it.

Proof of the Main Theorem.

Proof. We will prove the Main Theorem by inductions. By Theorem
C, there exists 7 > 0 such that ([E2Ral) and @28D) is true for ¢ € [0, 7).
Thus, Theorem A and Theorem B show that the Main Theorem is true for
t € [0,7]. We suppose that for some k£ € N the Main Theorem is true for
t € [0, k7]. Then, from Theorem C we can conclude that ([28al) and (280
are true for ¢ € [0,(k + 1)7]. Combine this conclusion, Theorem A, and
Theorem B. It follows that the Main Theorem is true for ¢ € [0, (k + 1)7].
So, for all k£ € N the Main Theorem is true for ¢ € [0, k7. O

5. Technical Lemma

5.1. Dissipation of waves

0%(z, t; 1, D) = (t +1)7/2 e*%, (5.1)
D (x,tp) = [(@ = p(t+ 1) + -+ 1772, (5.2)
V(@) = [(@ = ple+ 1) + (E+ 177, (5.3)
pM(t) = [VI+t 1+

for 0 <t; <ty <t, (5.4)

1999 (2, 45 8y, to; N, i, D)
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t2 9 4 _lyme-A@—o)?
- / / (t—o) Pt —g+1)"5e DT - 0%(y, s; p, D)dydo,
t1
JOBY (2 bty b3 A, u, D) (5.5)
to ly—z—A(t—a))?
- / /(t — )R oy 1)FeT PEa -y (y, s, D)dydo,
t1

. 1 for o > 2
re(t) = / (c+1)"2do=0(1) log(t+1) for a = 2 (5.6)
’ (t+1)2=0/2 for o < 2,
. min(l'(t),I'%(e72)) for a < 2,
re@t) = / p*(0) do = O(1) { min(I'2(t),|log €|) for a = 2,
’ 1 for a > 2,

t
JMQ%mepxmzwz/:/9ﬂ@—y¢—ap&Eﬁ%ﬂ@¢nuX1+orﬂ%wmx
0JR

(5.7)
W () = 0 for x < A] tora >0, (5.8)
(ko = ATt + )7 for o € [A] £,0],
0 f <At > 0,
gy =4, IS T (59)
(|| + et + V)~ for z € [A] ¢,0],
to (z—y=A] (t=0))?
398 (@ bty tg; D / / (t—o) PRe” DT US(y,0) dydo
t1
(5.10)

for0§t1§t2<t,
K9Pz, t;t1,t9,\, D) (5.11)

to x o a €
/ / (t—o+1)"3 (=) F+1/2¢ lemgpaucal (0 + 1)~ 3D dydo.
t1

Q2
H?xl,az;ﬁ(m’t;D) E//_ Qﬂ(x—y’ — oA D)p (U) dy do,
1

Kaﬁ(xt)\Du //05 r—yt—o,\,D)p (J)e—u|y\dyda (5.12)
(z—y—X " (t— o))2
%aiﬂ(x’t;tl’t% /tQ/ I Ve (y, o307 ) e -9 dydo,
7 t1 )\ o t—O’)IB/Q 7

(5.13)
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_(e—y=A; (t=0))?

., t2 > (s eyl
K5 (@, tta, 23 D /t / (o) 0%(y, 03 A;, D) e 10 dydo,
1

(5.14)

Most of the following lemmas are due to [7]:
Lemma 5.1. Suppose that o >0, 6 >~v >0, and 8 —~ < 3. Then,

192,10, A, A D) = O(L)[(t + 1) PHV2ret(i 41
+(t +1)FD2D 1 4 1)]0Y (2, t; A, D). (5.15)

In particular,

O(xz,t;\, D) for « > 3,5 =1,
1902, 4:0,t; A\, \; D) = O(1 (5.16)
03/2(z,t;\, D) for a > 2.5, = 2.

Lemma 5.2. Suppose that « > 1, 3>~ >0, B —v <3, and A < p.
Then for any given constant E > D,

I959 (2,10, A, i; D)

= O(1)(t + 1) PFV2re= (/£ 1)0(x, t; N, D)

+O1)(t + 1)V 2P0 (i3 1)0(, t; p, D)
0forx<At+1)+vVt+1lorz>pt+1)—vVt+1

O)[(t + 1)=AHD2Ta= (3 — A1) (x, t; \, E)

+ 9 +(ut — ) CAD2 (g — \p)(atD)/2 (5.17)
+(t + 1)AN2T Y (it — 2)0(x, t; p, E)]

for \t+1)+vVEi+1l<z<pult+1)— i+l

In particular,

¢%(:c,t;)\) fora=2,8=1,

(z,t; )\)+1E%(x,t;u) fora=3,8=2.
(5.18)

IO"B’V(:C, t;0,t; N\, u, D) = O(1)
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Lemma 5.3. Suppose that B < 3. Then for any positive constant

E>D

JBY (2, 4;0,0; A, A, D)
= O(D)[(t+1) A2 14 1)0(z, t; N, E)+TP7 Lt + D)9 (2, 1 N)]. (5.19)

In particular,

Y2z, ;N fora>25, B=1,

JOP (2, 4,0,4;X, D) = O(1)  p(x, ;) fora>1,8=1,  (5.20)

W3 (x,t0)  fora>25, =2

Lemma 5.4. Suppose that o > 1,3 > 3> 1, and A < u. Then, for

any given constant £ > D,

Jo"ﬁ”(ac,t; 0,t; A\, i, D)

= O)((t+ DAL (VX ) + (t+ 1) TPt + 1)0(x, t; N, E)

+(t+ DRI Ve 1) 0(a, £ p, B)

OM)[(t + 1)=FHD2 (g — Ap)(—20+2)/2

(L (L4 bgy) VP02 2 (g + 1)

+TA1(t 4+ 1) (Jo — M| 4 | A = pt) =@ + ((¢ + 1)BHD2020 (1 4 1)
+(t+ 1)L T

+(t + 1)(F20 D281 £ 1)) (x, t; ), F))

forx < Xt —Vt+1, (5.21)
O)[(t + 1)BHD2re= (¢ — \YO(x, t; \, F)

+(put — )N (1 — Ap) (et D/2 (= X)) TOTB (¢t 4 1)]

for M4+ Vi+1l<az<put—Vi+1,

O(1)(w — pt) T~ ({552

for x> ut + vVt + 1.
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In particular,
Y3 (2, t;0) fora>2,5=1,
JO0 (.10, X, p, D) = O(1) § 0(x,t; A, D) + 97 (2,6 \) for a > 4,6 =1,

B2 (z, 6 N) + P2 (2,6 1) fora>3,8=2.
(5.22)

Lemma 5.5. Suppose that A < u, ay, ag, 6> 1. Then,
J0¢170¢2;ﬂ(x’t; A, 1, D)
(2 —At|~o [t*%rmz (t)+TP-1 ()t —o2] +TF(t)g% 2o (2, ;A\, D)

202t a1 (4) 98 (2, t; N, D) for x — Mt < —/1,

(3T t20e=1(g) 4 4= H D11 for |z — M| < VA,
<0(1)

08(z,t; \, D) [202tar—1(p) 4 g2azten—l(g ¢\ D')DA(¢)

Ha — M|~ {5 T202(¢) + 2B (1)}

o — Xt|mo2 g8 (z 1,4\, pw, D) for o € (Mt 4 VE, ut — M,
where D' > D.

Proof. Let E' > 1.
Case. © — M < —/t

t—1
/ / +/ 0°(x—y,t—0, X\; D)o~ 29 (y, 0, p)dydo
1 y—Ao< Tt y—Ao> Ig—f‘t

B/

t—1 _ i —Qo t—1 _—oo—
< o(1) / (t—o)" 2o da—i—/ o
1 1

|z — At|™

e D't

(t—o)

(a1—1) (z—Xt)?
2

do

B
2

=72 D202 (¢) 4 D81 ()02
|x — At|

0(1) + DA ()92t (g ¢\, D)

+I2ezter(y) 68 (2, 4; N, D')
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Case. |7 — M| < V.

</ /t 1)/9ﬁx_y’t_")‘D) 2 (y, 0, p) dy do

A
)
=

Fa1+2a2—1(t) Fﬁ—l(t)
S O(l) |: ﬁ + 20¢2+o¢1:|
t2 t— 2

Case.  — At > /1.

t—1 LAl t—1
[ RS U A ) §
1 ly—Xs| <7 1 ) ez

><0ﬁ(ac —y,t —o,\; D)o” 2 (y, 0, 1) dy do

P T _(zf)/\t)Q
< 0Q1) / z S
1 (t—o)2
\z
o2 At| T — At|T 2™
+/ e A = e LT
1 (t—o) 2 LAl (t—o)2

IN

O(1) [9%, t; A, D22 tea=l(p) 4 g2eatea— (o (¢)

o — AT TOB (g 0,8 u)]

ap—1

O(1)|z — M|~ [t~ 7T 1 (t) + T TF(1)]. 0

Lemma 5.6. Suppose that « > 1 and 1 < 3 < 3. Then, for any E > D,

37 (2,40, D)
(=72 T L(t) 4+t~ T T-1(t)) 01z, 1; Ay, D) for z < \]
= 0(1){ J¥P(z,t;1,t — 1; A7, AT, D) for = € [A] ¢,0] (5.23)

(AL —/\ )z|

02*(x,t;0,D) e~ 2 forx >0,
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Si’g(x, t;0,t; D)

AT A EAT D)
2

e 0%z, t; A\, D) for x < A\] ¢,

= 0(1)
JoB(x, 1, — 1505, A], D) for x € [\] t,00)

354 (2,;0,4; D)

(1072 EAT 0l _ _
e 2 0°(z,t; A, D) for x < A\] ¢,
— o(1) JoB(x, 1, — 1307, Ay, D) for © € [A\] t,0],

2
_ _ T
Qg A2l eT aDt

mforxzo,

e

358 (2,0, D)
(A =25 )(m—A7 1)
_ om0 @BALD) e
JOP(z,t:1,t — 1; Ay, Ay, D) for x € [A] t,00).

for x < A ¢,

265

(5.24)

(5.25)

(5.26)

Remark 5.7. This Lemma is a consequence of straightforward calcu-

lations. We omit it.

Lemma 5.8. Suppose ay, ag, 8 > 1. Then,

"

AT

H31702§,3(x7t; D) <0){ for ()‘71 - )t <z <0,

B (z=251)2
e Dt

t—1 1
=L
1 Jt—o

\forwﬁ(%—)\g)t.

t
0° (, t; )\Z,D')/ I'“Y(o)p* (o) do
0

Lo,
+f\tac—)\2_t\ (t—o)" 2 p*2(0)do

2 (o)™ (o) do

Lemma 5.9. Suppose that > 0,3 > 83—~ >0, v >0, and X a

positive constant. Then, there exists a positive constant C' such that for any
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fized positive constant E > D + O(1)e and a bound O(1) independent of e,

Ko"ﬁ’v(az,t; 0,t; D)
-8
[(t+1)"z

(z4+1) 72" (A\t—2)" %(1+6\/—x+1)_1+Fﬁ_1( D (t41)"2e Cex
T (e )(t+ 1) =% e Celr=M for 0 < & < At + 1) — VA4,

(t+1)"F [Tt + 1)e 0 + To(VET 1)1 + ev/D) ]
+(t+1)"20F Lt 4+ 1)e 9 for |z — M| < VEF 1,

— 0(1) _aoag?
(14175 o1+ Vi) e e

+(t+1)2(z — \t)"2e Cele—A
HTo (e V)eCelo—dil =0t 4 252 =252
o — a) 2T Cee) (¢4 1) 3 (DO (e )
D=1t 4 1))eCete= "5

forz > ANt+1)+Vt+1.

a(t—l—l)e*et—l—(t—i—l)_%l“ﬁ*l(e*l)]e_% for z < D,

2
1
2

a—2 de(x—At)

(5.27)

In (B20), the term T(v/t+ 1) and TP~1(t 4 1), respectively, can be inter-
changed with T*(e™') and TP~ (e '). The estimates (527 immediately yield
the following:

@D%(x,t;)\) fora>1,8=1,

6_%¢%(.%',t; A)+6(z,t; A, D) for a > 3,0 =1,

KB (2,40, t; A, D) =0(1)
Y(x,t;\) for a > 1,08 = 2,

lnew%(x,t; A) fora>2,0=2.
(5.28)

Lemma 5.10. For a > 1 and 8 > 1, the function %?{fﬁ(:c,t;(),t; D)

satisfies

%7 (@, 4,0, ;D)
< 0(1) [f%w%x,t; AD) +0%(x, 07, D) + € K2P(2,4,0,8; D) .
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By the decomposition

_ _cly Ao
clyl o %e" D for y > =4,
W yoixn) B <o) . K
Y (y, 0507 )e” 20 fory < 257,
it follows
t—1 ely
/ / = +/ 0P (@ =yt — oA, D) v (y,03M]) e e D dydo
1 y<52 Syt
t—1 elAjy
< 0(1)/1 /<Ala 0%(x — y,t — o3 A\[, D) Yy, 050 ) ee” D dydo
Y=>—5—

t—1
+O(1)/ / _ 0P —yt—0o;A\,D)ec ™ e*%dyda
1 y>

)\10'
2

IN

O(1) [t 9@t A]) + 0%, 607, D) + € K2 (2,40, A7, D) |

Lemma 5.11. For a,( > 1,

K (2,0, D) < O(1) e K**P(x,1;0,t; D)

€ \Al_\t

o a (z=A] 1)
+0(1) (ETI 0P (x,t;\],D') +ee ot 2 TP L (t)e™ i ) .

Proof. By the decomposition

ely

0“(y,0;A,D) e D

<0(1)

it follows

t—1
/ /Ag—i-/ . Hﬁ(x—y,t—J;)\l_,D)Ha(y,U;Al_,D)ee*%dyda
1 vy Juzth
t—1 €A ]y
< 0(1)/ / - 0P (x—y,t—o; \[, D)0%(y, 03 \[, D)ee™ D dydo
1 Jy<==
ely

t—1
+0(1) / / — 0P(x —y,t —o;A\{,D) ea e D dydo
1 Jy>
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t—1 2
B— o— e|Ao (z=Xt)
< 0(1) [t_l/Q/ (t—a)_Tla_Tlee_ D2 do e Dt
1

+e K28 (2 t;0,t; AL, D). O

Lemma 5.12. Suppose that o, 8 > 1, and X < 0. Then,

t—1
/ 0°(x,t — o, A\, D) p*(0) do
0

( (e 2y _ 7
(pIA(r) te ra(t)tl/Q) (L4 [e) ™ e fora >0,

p*(x—At) P (x—At) 8 . N
- + — - +6 .’L',t7 )‘7D F x )\t
NPT T 5 (o) 55 ( )T )

<O(1){ for M+t <z <0,

poz 3 - e
AL (A (+)1)6—1 +tP2TOE) for lx — M| < VA,

0% (x,t; A, D) T(t) for x < Xt — V1,

(5.29)

where D' > D.

Proof. By (3.15) in the Lemma 3.3 of [10], we have that for A # 0 and

D=0(1)

z2 2o

e Do a1 1 _al
/ ————do=—e VD, (5.30)
0 dro ‘)“
Through this identity, we can have that for ¢ = 0,1
12 )\20'

x| P TR 1 _ Dl
e P 5.31
| [t 7= e (5:51)

dro

This yields that for all £ > 0

/t 0'(z,0;\, D) do < % (5.32)
0 A



where D = (1 — E~1)2D.
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Case. >0
t—1
/1 0% (x,t — o, \, D)p®(0) do
1)</t /t/z> alxt—UOD) I
t/2 At — )P~ 1°¢
217

\
O 1 ei D/ t—1 o _M
< W(/t'/2 p (t/2) 01(x7t_0_,0’D,)e =

) p®(o)do

do

022
1
2| x|

(& D’ a(t) .
- e (B + e )

Case. Xt + vVt <z <0.
Let £ > 1.

t+ox x—t)/E
/ / / 0/8(.%.’ t— g, )\, D) pa(o—) do
t+3x (z=Xt)/

t—1 Ql(x t— o\ D)
S/ o (= At) do
|z = At —o)P!

+/t+2$)\ Hl(xt—O')\D) a(x_)\t> p
g
@=x0)/E (2] + 1)(B-1)/2 p E

(x=Xt)/E Ql(x,t, )\,D)
+ / 6'(z,t,\, D)
1

5 p"(0) do
(o)
oc(-T—)\t) ( ) 01(1‘,75,)\7[)) T (z >\t)
o | e,
MDDy ey ™ ()
| p(x — At) pa (If)\t)
o) (2] +1)7-1 £

+0ﬂ(ac t:\, DI (x — )\t)]
A2 (e +1) 2

269
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Case. |7 — M| < V.

t—1 t/2
/ —|—/ 0% (z,t — o3\, D) p®(0) do
t/2 1

(o 2 _
— 0(1) [W (”;t(‘i{ 1))ﬁ1 s ra(t/2)]

ot _
< o() L ot £f|(+)1>ﬁ1 s ram} |

Case. © — M < —/t

_(@=xpn)?

t—1 t—1 =
05(x,t — o; A, D)p° d</ ¢ (g)d
/1 @t =osAD)po)o < | o e =g O
0 (x,t; N, D) /t _
< 72 p%(c) do < O(1) 65(z, t; A, D') T%(¢). O
N (o) (1) 67( ) T(t)

Lemma 5.13. Suppose that |\| # 0, v > €, a, 3 > 1. Then, the function
I?O"ﬂ(x, t; \, D;v) satisfies
CaseA. |\ =0(1), A<0,

When 0 <t < 1/_1,

v|z]

Ko"ﬁ(x t; A\, D;v) <O pX(t) e 2
+0(1 {m1n< >95 1 (2, t;\, D)+ vt~ 2 V‘x;\”}
Ve_u\; [ ()Fﬂ 1( )—|—Fa(t) %6_%] forx >0,
-1 At
vo 17 [FOPT OO ] forae 0,
v At
{ -5 )+ TP )efépa(t)] for x € [At, E]’
v|z—\t| _B-1o,, B—1 _vt o
S [T T e (1) forw <
When t > 1/71,

v|z|

KP(a,t;), D;v) < O(1) vp*(t)e™ =

+ O(1)T*(t){min <% >6?ﬂ Ya,t; 0\, D)+t~ %e_w}
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( _viz|

ve  z [pa(t)Fﬁfl(t) + f‘a(t)t*%e*%t} for x>0,
1

p*(t) min((|z| + 1)7%, v 2 ) forxz € [&,
+0(1) 51 At :
t= 2 p%x — At) for x € [\, —],

2
_v]z—Xt|

ve 2 {t_%fa(t) + Fﬂ_l(t)e_%pa(t)] for x < At;

0,

Case B. A=0(1)e,v>€e A>0, 2<0
[?O"ﬂ(x,t;)\,D;l/)

o 2,
S 0(1) (p|)f|t) + 67% I‘Cl(t)tl/2) l/maX(l, |)\|ﬁ72) 671/|z|/2.

Proof. We can treat I?“?ﬁ(x,t; A, D;v) as

I?O"ﬁ(x,t; A Div) = /

t—1
(/ 0°(x —y,t — o, \; D) p*(0) dg> v el dy.
R 1

This Lemma is consequence of the convolution of ve*1*l with flt L (z,t—
o,A\, D) do. Consider the convolution of ve VIl and the upper bound of
flt_l 05(z,t — o, \, D) do by Lemma 5.12. Then, this lemma follows. O

5.2. Technical lemmas for compressive fields

Denote G4 (z,t;y,0) the Green functions of the following two linearized

Burgers equations:

up + Ap () uyp — ugy = 0. (LB)

By Cole-Hopf transformation, we can have the Green functions G4 (z,t;y,0):

AF z—y)?
cosh (2731) oy ] (t—0))?
G+(fI,',t;y,0’) = + N 4
cosh (%) dr(t — o)
Ay z—y)2
cosh (27?/) e (4@5/3,) Ay (t—0))?
G_(z,t;y,0) = — e~ 1 . (5.34)
cosh ()‘2—290> dr(t — o)
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We use G_(z,t;y,0) to approximate the Green function of the linear prob-

lem:
ug + (A2(p(x) — 8) Uy — ugy = 0.

The truncation error of G_(z,t;y,0) for the backward equation:

T(x, t;y,0) = — (95 + Oy(Xa() — ) + OS)G, (z,t;y,0)

= —0y [(M2(6(y)) — s = A-(y)) G-(x,t;y,0)]

A7 Iyl (140(0))

=01 e T G_(z.t;y,0)
ef’\27|y‘(1+o(€)) for Y S 07

+0(1)e?0,G_(z, t;y,0) - (5.35)
1 for y > 0.

T.(z,t;y,0) = O(1) 3 2 [91(1+0(€)) 0.G_(z,t;y,0)

AFWIAH0@)  fop 4 < 0
‘ Y ="5.36)

+9,0(1) €2 90,G_(x,t;y,0) -
,0(1) ¢ 9,6 >{1 oy

From the definition of G_(z,t;y,0), we have that

0:G_(z,t;y,0)

oy @ew? (5 -0)?
)\5 sinh %y) e 4(i—o) 1
- _ — 0,G_(x,t;y,0)

2 A, T
4y/m(t — o) cosh” %=

= O(1) \ye 2l oY (|l —y|,t — ;05 ,4) — 9,G_(x,t;y,0).  (5.37)

The expansion of the Green function G_(z,t;y,0):

Case z < 0,y < 0. (5.38a)
( G_= O(1) 0 (x —y,t — ;)5 ,4),

9y,G_= O(1) [N\ye ¥ G_ 40,0 (x — y,t — 0375, 4)],

2G—= O()[(\ye P ¥)2G_+ X e N2 ¥9, 0 (z — y,t — 0 A5, 4)

—1—8591(:6 —y,t =03y, 4)],
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Case z > 0,y < 0. (5.38b)

7

G_= O(1) e P2l oMz —y,t — 03 A5, 4),
9,G_= 0(1) [Nye Pevl G_ e P2l 9,01 (z — y, t — 0305, 4)],
2G—= 0(1) [(Aye Pv2 G_ 4 Nje Pael=Pavl 9 0 (x — y, t — 035, 4)

el 9201 (z — y,t — 325, 4)],

Case x > 0,y > 0. (5.38¢)
(G= O() 0z -yt — 03 -A5,4),
0,G_= 0O(1) [)\276_“\279' G- + 9y0(x — y,t — 0;—X3,4)],

92G—= 0(1) [()\Q*G—P\;y\) G- + My e Pvlg 0t (x — y, ¢t -5, 4)
{ +020M (x —y, t — 03 =Ny, 4)] ,
Case x < 0,y > 0. (5.38d)
G_= O(1) e el 9l (x — y,t — ;= )5, 4),
0yG_= O(1) [\ye ¥l G_ + el 901 (z — y,t — 05— N5, 4)],
92G—= 0(1)[()\56_‘)‘2_?/‘) G_+Xye P2 l=Xaulg ol (z—y, ¢ -5, 4)
te Az 2 82‘91(‘T - ya )‘2 ’4-)]

Lemma 5.14. For y € [—Jy, 0] the function G_(xz,t;y,0) satisfies
Case. —Jy <z, y <0,

N1 +0)1+evo+1)] " do (5.39)

p
Ay lz—y|

lloge| [(1+8)(1+eVT+0)] e "7 forz<y,
| log €| [(1 +6)(1+ey1 —|—t)]_1 forz €[y, y+ %],

loge| |4+ 5] fora e ly+ 25ty + 774,

(x5 1)2

[(1+t)(1+e\/1+t)]71—Hloge\ H—i—ﬁ] e~ @ forx>y+ At
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Case. >0; —Jy<y<0

/t 0.G_(z,t;y,0)[(1+0)(1+e Vo + 1)]_1 do
0

_ Ay lz—y|
2
|loge| e 2 ol e~

(1+1)(1 + eV/t)

< o(1)

(5.40)

Proof. By (B31]), we have that

t
/0 10,0Y(z — y,t — 0, Ay, 4)| do

<O()e =z T, (5.41)

Case. = < y.

By (B40) and (B38al), we have that

t/2 t
'(/ +/ )azmx,t;y,o) (1 +0)(1+ev/TT o) do
0 t/2

06[0,%}

< O(1) max |8xG(x,t;y,a)|/02[(1+J)(1+ex/l+0)]1 do
+0(1) /tt 10,G_(2,t;y,0)| do - [(1 + )1+ ev/1+1)] 7!

< O(1) |loge€| e‘kg‘;_y‘
(I+t)(1+ev/1+12)

Ayt
Case. y<z<y+ =3 &ax<0.

t/2 t
'(/ +/ )amc_@,t;y,a) (1 +0)(1+ev/TT0) L do
0 t/2

< O(1) max |0,G—_(z,t;y,0)| /05[(1 +o)(1+evl+ J)]_l do

o€l0, 5]

+0(1) /tt 10,G_(2,t;y,0)| do - [(1 + )1+ ev/1+1)] 7!
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O(1) |log €|
T A+t ey/T 1)

Case. z € [y+ %,y—l—)\Q]&ng.

‘ (/m +/t ) 0,G_(z,t:,0) [(1+ )1 + VI 0) " do
0 t)2

< O(1) max \6 G_(z t;y,a)]/:[(l—i-a)(l—i—evl—i-a)]1 do

JE[O

1)/z 0,G— (2,19, 0) do - [(1+B)(1 + ey/TTH)] "

-1

< O(1) |log | (t% + \/t€—|——1> +0(1) [(t F1)(1+eViT 1)}

Case. z>y+ A t& z<0.

t/ ¢
‘(/2+/’)@G(aa%anu+axr+wﬁ+@rhw
0 t/2

< O(1) max (0,6 (s t;y,a)]/OQ[(l—i—a)(l—i—e\/l—i-a)]1 do

UG[O
1)[ 10,G_(z,t;y,0)| do - [(1+)(1 4+ eV/1+1)]

1 € C(@=ag )P
O(1) |loge| 75+1+\/t+—1 e~ 4

+O(1) [(t F1)(1+ eVt 1)}_1

IN

Case. x>0,y e [—Jy,0].

From (B38D) and (&41),

‘(/t/QJF/: ) 0.G_(2,t:,0) (14 0)(1 + VI T o)~ do

t/2
< e~ 2 Il / / )\ 0 (x —y,t —\y,4)
t/2

-1
+0,0 (x — y, t =Xy ,4)} [(1 +0o)(1+ eﬁ)} do

Ay lz—

i [(1+t)(1+e\/%)rl. O

< O(1) |loge| e
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The following two lemmas are consequences of Lemma 5.14.

Lemma 5.15. The function G_(x,t;y,0) satisfies

Ay

t 0 —1
/ / 0,G_(2.1:9.0)] (0 + DA+ eva)| dydo
0 —Jo

(1ogel + [y | 2 +Jo]) [t + DL +evD)]  for 2 <0,

<01 _
. log | e~ ol [(1+t)(1+eﬂ)] " for > 0.

Lemma 5.16. For x > —Jy + 1, the function G_(x,t;y,0) satisfies

\ /Ot 0,0,G—(,t; —Jo, 0) | {(a +1)(1 + e\/E)]_l do

J|log e2[(1+ ) (1 + eyTF1)] " for x € [~Jo, 0],
_ Ay lz—y|
J|loge|? e~ |zl e= :

(1+8)(1+ V1)

<O(1)

for x > 0.

Lemma 5.17. There exists Kqg > 2 which is independent of € such that

t _ Ko A5 lal
// |8xG,(x,t;y,a)| e~ N2 \y|(1+0(6))p1(0.)dyd0. < —067 2
0JR €

p'(t),

A2

t ||
/0 /R 10,6 (2t 7, 0)| o) - Ta[3](y, 0)] dydor < Ko e 2 (O 51 1)

for all t >0, where I[3] is defined in ([E2).

Proof. We use the formula (34)) for the Green function G_(x,t;y,0).

So, we have that

€ 1 C@—yp? () (t-0)

X z|
-—2— ) e 8(t—0) 1

63;G_(.’L',t;y,0') < O(l) e 2 (‘ﬂ‘k’/‘)(

Vt—o t—o

This yields

t—1 -
/ / 0.G_(z,t;y,0) p(c) e 2 W 2dydo
0 R



2009] SHOCK WAVE TRACING 277

IN

Ay le| =1 _
O(1) e” % / {6 + 1 }pl(a) O (t=0) 4,
0 t—o

< wpl(g) e*@_ (5.42)

€

The function I3[¥](y, o) satisfies

e vl 1 A5 | e~ 22 vl
Vo(l+ e2o)

From the above two, it follows

I12[7)(y, o) < O(1)

; where |\; | = %(1 + O(1)e).

o) 1y
V(1 + th) '

This concludes the lemma. O

t—1
/ /OG (z,t;y,0) I2(y,0) dy do <

6. Proofs Theorems DW, A and B

Proof of Lemma P

Proof. The integral representation of the solution w(zx,t) is

)= [ [0t — o () [F@@.wn o)

+N[w]] (y,0)+ S0y, ))dyda (6.1)

Y

By Lemma 5.13 with (o, 8) = (1,7 + 1) and (\,v) = (A, A, ) we have that

t
o / / 01z —y,t — 0: A, 4)S(y, 0)dydo
0 R

pl(t)efx\2_|1‘|(1+o(6)) for €T Z 0’

: =1 4=(i—1)/2 Pl gl S\~
- o min (]A7],¢ )T 00 (2, t: AT, D)

M2l 4 min (1 /Ay mini-1)(|z| + 1)*%)

L xnl(x,t) for x <0.

(6.2)

When both § and ¢y < A5, the effect from the nonlinear term N[w], and
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f"(A)(©,w) are much less than the source term S(z,t). Then, a standard

Picard’s iteration,

— /t/ 0L (x —y,t — o3 A\ ,4) - <l1(u)~ [f”(A)(@,wk—lTl(uf))
o Jr

+N{w]] (0.0) +s<y,o>)dydo, (6.3)

y
will prove this Lemma. We omit the details of this proof. (]

Proof of Theorem DW

Proof. Let E' € (0,1) and E = 4/(1 — (E)?).

From the definition of ©%(z,t),

O a.t) = ( / - )e%x—y,t; A5 402y, 0)dy
Wi>Eleagtl Jlyl<Bla-xg]
= O(l)é[wgﬂ(x,t; Ay + 0z, t; A;,E)]

Therefore,
) 0 for x> 1,
O%(z,t) = { 01 (e.1:05 B) + 2ot )\2_)], (6.4)
0 for = > 1,
10,02 (2,1)| = 02 (7,805, 2B) + 72322, t;07)  (6.5)
&z, t) = O(1)do(x,t)p'(t),
& (a,t) = O(1)deo(w, t)p' (1)

By Lemma 5.12 with («, 3) = (1,1), we have that
0 = [ 06T 0 [0 0.0 + vy

t
+/ / 0 (z —y,t — o3 A\, D)E (v, 0)dydo
0 YR
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- 0(1)5[01(x,t; AT E) + 932z, t; )\1_)]
¢
+O(1)5/ 0 (x5t — o3 A[, 4)ep! (0)do
0

0L (z,t; 2\, E) + V32 (z, t; A7) forx < ATt
O(1)6{ 0z, t; A, E) + en'(z,t) for A\t <z < 1,(6.6)

IN

ept(t)e” M2 gl (z ;AT E) for x> 1.
Differentiate the above with respect to x, we obtain that
10,01 (1),
02(z,t; A, E) + t 203/ (2, 6 A]) for z < A[t,

= O(1)0 4 0*(z,t; A\, E) + ent(z,t)(|z] + 1)7% for \{t <z < 1,(6.7)
ept (t)e M2 (|2 +1) " 402 (2, ;AL E) for x> 1.

In order to evaluate D?, we need some extra cancellations from the equations.

First, we need to handle the nonlinear terms .4 [01] as follows

1 1 B ) ) B
Hog= 3 /0 /0 6 (u_ + €600} 01 dédEry (u_)

1<i,j,k<2

where 'ﬁ];(u) = U (u_) " (w)(ri(u_),rj(u_)). We define

t 1l
’LZ = / / (/ / 91(:C—y,t—a;)\l;,4)
0 JR 0 0

€[5 -+ 6600)(©10])(3.0)] ded€ )y

The function D?(x,t) can be represented as

DYz, t) = Y i(a,t). (6.8)

1<i,j<2

From the above estimates of ©1 and ©%, we have that

O} (z,1)0% (. 1)
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_ _()\1—)2t

_91(55,75; AL E)+ ?/)3/2(x,t;)\1_)} I:e —\/42E (1 t)_3/2]
for z < A't,

r % 1

0'(z,t; A, E) + enl(w,t)] [ S+ (14 1) 732
2 ) -
< o) for x € [A\[t,A\]t/2],

_ 7(/\_)2z ]
—— epl(t)} [91(56,75; Ay, E) + 32 (x,t; A7)
~for z € [A\[t/2,1],

0 for x > 1.

This, p®(t) < e 2%(1 +¢)73%/2 and n®(z,t) < e 293 (2,1; A} ) yield that
01(z,1)01(z,1)
52 [04(36,75; AL E) + 32 (x, t; A;)t*3/2} for x < \['t,

52 [04(x,t; ALE) + 6—1¢3/2(x’t; )\1—)153/2]
< O(M)S  for z € AT, AT t/2],

52 1B (x, 15 Ny ) for & € [A\[t/2,1],
L 0 for z > 1.

Substitute (A, 1) = (A;,A]) into Lemma 5.2 with (o, §) = (4,2) to yield
that

t
/ / 2z — gt — 0:35)0M(y, 03 A, E)dydo — O(1)0¥2(x, 125, (6.9)
0 JR

and substitute (A, ) = (A5, ;) into Lemma 5.4. with (o, 5) = (3,2); and
Lemma 5.5. with (8, a1, a0) = (2,3/2,3/2) to yield that

t
/ / . 0*(x — y,t — o3 Ay )W (y, 03 Ny )dydo
0 Jy>-%
= O™ (.t 27), (6.10)

t
/0 / ape @m0t = N W y,0305) (0 + )7 Pdydo
Y

2

< Ot Y432 (2,1, 05). (6.11)
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By combining (63), (EI0), and (EIT), we have that

. . 52 _
i3, (x, 1), 435 (2, 1) < O(l)?¢3/2(;c,t; A7) (6.12)

By Lemma 5.3 with (A, u) = (A, A5) and (o, 8) = (3,2),

iy (x,t) = O(1)82¢%2 (2, t; A7). (6.13)

For the term 42, we need to consider that

t
it (z,t) = / /Hl(x—y,t—a;AQ,4)(%121@%(9%) dydo
0 JR Y

t
o /0 /R 0 (. t—03 Xy 4Oy (4, 0)] - O (3, 0)%: dydo

2 {0, + )‘an - 85}@%(?/,0)2

t
— 0 (z—y, t—o; N\, ,4)E, — — dydo
fo eI

t Oy + A\ 0y — 92101 (y,0)?
+/ /91(:C—y,t—a;)\2_,4)(€121{ 10y = 9}61(9,9) dydo
0 JR

(A1 = A7)

= J1+J2+ 73 (6.14)

By the estimates for ©1(z,t),

||@193(:C5 t)”@%(:t?, t)2

([1+e 275 + e 04, t; A, 2B) + e 3393 (2,6 A7)
for x < A['t/2,
€373 (|| + 1) 2 2 [08(90,15; Ay, 2E)+t"24h3 (x, ¢; /\;)]
for x < [A\{t/2,—1],

()% —|A] 2]
{ <e3p3(t)+e_ 4B >e_ sz for ¢ > —1.

By Lemma 5.2 with (o, 5) = (4,1), (A, 1) = (A\;,A]); and by (B2Z2) with
(o, B) =(9/2,1), (A, ) = (A5, A7), we have that

t
/ / 01z — y.t — 005, 4)[O1y (4, 0) | O3 (y, ) ?dydo
0 Jy<ijo/2

0(1)(2—2 [el(x,t; Ay E) + 932 (a, t; /\;)]. (6.15)
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When y € [A{t/2,0] and ¢,7 > 0, we may treat ¢t=* and ¢"(z,t;\;) as
P (z,t; A] ) and P/ (x,t; A} ) respectively. Then, by Lemma 5.2, with (o, 8) =
(8,1), (A ) = (A3, Ar); and by BZ2) with (o, 5) = (17/4,1), (A, p) =
(A, A7),

t pr—1
[ [ 0 ut =0, 011, (0,0) |00 dudo
0 JA[o/2

53

< 0% [0 (0,105, B) + (@, 1:07)]. (6.16)

By Lemma 5.13 with v = O(1) and A = A,

t
/0 / et = iy )0 0.0) 630 Py

t
< 0(1) / 0l (z —y,t — o3 My, 4) [63/)3(0) + e_o(l)"} e~ Ol gy do
0 Jy>-1

2.3 —1,-0(1)t —-0(1)e?t| ,—| A5 x| <
< o) [e p(t)+e e +e ]e 2% for x <1, (6.17)
O(1)e2p?(t) 4 e Le Ot for z > 1.
From (&1H), (6T14]), and (EI7) we have that
53
1 <05 [0 @, 25, B) +v*2(2,07)] (6.18)
€
By integration by parts,
! 1 1 2
32 =00) [ [ 101, 0|0, (6 1.t = 0335, )0} (.0

t
—o(1) /0 /R 6@ — gyt — 030y, B)||Ouy (3, 0) O} (4, 0)?dydo
t
Lo(1) /0 /R 6'(x—y,t—0: Ay, E)|O1, (4, 001, (4.0)0} (3, 0)dydor(6.19)

Similar to (EI8]), we have

3

o < O G [0 (0,105, )+, 1:37)]. (6.20)
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By the equation for ©1(z,t) in ([B2d), we have

Jjz = 0(1) /Ot/RHI(:c—y,t—a;)\Q,4)(@%(3/,0)601(y,a)—i—@%y(y,J)Z)dydo
_ 43 (6:21)
Since
Ol(a.t) - |67 (,0)] < 8e*p*(t)o(x),
by Lemma 5.12 with A = A5, D = O(1), and (o, 8) = (2, 1), we have

. 52 _
X35 SO X ¥ (2,8 ;). (6.22)

In the evaluation of j3, we need to use (f1); and break the function 7(y, o)?
(14 |y|)~* for y < 0 as follows

n(y,0)*(1+[y))~"

0 for y < A\{o + /o,
-2
< 0(1) [\/\y—)\faﬂy—)\fa\] o=t fory e A\ o+ Vo, \[0/2],
PPo)(lyl+ 17! for y € [y 0/2,0].

Then, by Lemma 5.8 with (aq, g, 8) = (2,2,1), we have that for x <1

t 0
/ / 61z — y,t — o3 Ay, D) (Jyl + 1)~ (g, 0)dydo
0 JA[o/2

%[01(36,15; Ay, D)+ pt(jx — )\2_\)} for (3 — At <z <0,

< 0(1) (6.23)

7(30—%51&)2 A= 3
e D't (%\/E + W) f01" X S (Tl - )\2 )t
For y € [\{ 0, A\ 0/2],
(lyl+ D)% (y,0) <OM)o P (y, 03 A7) < O(L) (y, 03 A7).

Then, by Lemma 5.4 with («, 8) = (4,1) will have that

t AT o/2 2
/ / ' (91(36—31,75—0;)\2_,4)77 (y’a)dyda
0 JATo Y
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< 0% [0 g D) + 0¥ 15)].

So, we have that

2
x-33 < OW S [0 1:05, D) + 02, 1:7)].

For the term 43, (x,t), by Lemma 5.1 with (a,8) = (2,2) and Lemma 5.3
with (o, 8) = (3,2) it follows

i35 (x, 1) < O(1)5? [01(90,15; Ay, E) + %% (a,t; )\2_)].

2

As a consequence of the estimates of t;;, there exist ¢p and ¢; which are

independent of ¢ and € such that

5[91(56,75; Ay, EB) + @b3/2(x,t;A5)} for x <1,

0 for x > 1,
(6.24)

D%(‘T’t) = X*D%(‘T’t) < cp€

where € = §/¢*.

This also yields that
&(x,t) < credpt(t)o(x),
&5 (2.1) < eredep (t)ola).

By similar procedures, we will have that

|02 (, 1)
5% + Q(w)} (91(90,15; Ay, E) + 43 (z,t; )\2‘)) for < 1,
0 for x > 1.

For the term Di(x,t), we have the representation

t
D (x,t) = Z iilj(x,t) +/ / 0L (x — y,t — o3\, 4)E, (y,0)dydo.
1<4,j<2 0 JR

The ways of estimating 41, is similar to that in ([BEI3), so we omit the calcu-

lation, here. The method to estimate 41, is similar to that for obtaining 43,
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in (BT2). We omit it, too. We have that
s , J _ _
h it i) < 0 ( 202w, t37) 4 00107 ).

The way of estimating i3,(z,t) is rather simpler compared to the estimate

of 42, (x,t) in the following sense:

t
i (1) < 0(1)52/0 / 10,0 (@ =yt = AT )
y<
X [92(@/,0; Ay, 4) + 3 (y, 050y ) | dydo

03/2(x,t; A\, E) + 3% (x,t; A7) for o < A[t+ V4,
< O(1)02 0, t; AT, E) + pl(z — AJt) for z € [A[t,0],
gl

e = pl(t) for z > 0.

By Lemma 5.13 with v =1 and (o, 8) = (1,1), it follows

t
/ / 0t (x —y,t — o3\, 4)E, (y,0)dydo
0 JR

01 (z,t;\[, E) for z < A\[t — V1,
< O(1)0e 0Nz, t; \[, E) +ep(x — A\[t) for \[t+vVEi<z <1,
pl(t)e*w‘li*’\;)g”'/2 for x > 1.

So, we conclude that

Gl(x,t;)\I,E)+@Z)3/2($,t;)\f) for z < A\t + V1,
D! (z,¢)<O(1)6e{ 0'(z,t; A7, E) + en(z,t) for A\t -+t <2 <0, (6.25)

_ X Al

ep(t)e P for z > 0,
and similarly,
D1 (2, 1)

% [Hl(x,t; AL E) + 932 (x,t; A;)} for x < A\t + V4,
< O(1)d€ \/\;\T [Hl(x,t; ALE) + en(w,t)} for <At+Vt<z<0,

A =g |z

epl(t)e” 2 for z > 0,
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So, the theorem is true for D; when ¢ = 1. Through the above procedure for
obtaining the estimates for ||Dy(z,t)||, one can show the theorem is true for
all 7 > 1. U

Proof of Theorem A.

Proof. If we can find a constant ¢ to satisfy ([29), then this theorem
is proved. So, we may assume the existence of such a constant 4 which
satisfies

% < |loge|. (6.26)

Combining ([29) and [E2]), we obtain a global ansatz for the behavior of V
in space and time. Then, through the Green functions ' (x —y,t — o; A; 5 4)
one has the following integral representation of V* for i = 1,2:

6
V(o t)= [ 0 @it AT AV (0, 00+ [T [0] + B+ B LV . 1),
j=4
(6.27)
We introduce a partition of unit matrix to localize the structure of shock:

Pi(z) = x4(x — Jo)ra(u-) - lo(u_), Py=1-"P;.
We will regroup the representation for V!(x,t) as that in (EIX)
Vl(xa t) = V}T(‘Tz t) + Vll(xz t)’

™

@m+@mw%m@mm

<

—
&
~

N~—
Il

Vi(z,t) = /Rel(x —y,t; A\, 4)V(y,0)dy

+[Bie] + 1) + TPV .0

+ []1}1 [PoV] + (BIV] - B[VA]) + (T[V] - Hé[vﬂ])] (2,1).(6.28)
By Lemma P with €y = 6 we have such a %, = O(1) to satisfy ([EZ205).

In the representation of V!, in (EZH), the functional I1[0] + I3[y] +
I}[P,V] is independent of the constant ¥. This functional will give the
dominant ansatz of V}r L
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We proceed to establish the estimates for V_..

By Theorem DW and (E3),
I11(6](, 1)|| < O(1)dep’ (£)e = 1H10FOL,

By Lemma 5.13 with (o, 8) = (1,2), v = A5, and A = A], it follows that

min (% \/E>f1(t)01(x, t; A7, D)
Hel.n<os{ +min( Ao vEnten  forz<o. (62

\/Epl(t)e—kg\x\(l-l-()(e)) for x > 0,
Apply Lemma 5.13 with (o, 8) = (1,2) and v = X; and v = 1 to the

estimates in () for I2[7] to yield

eL2(1)0%(z,t; A7, D) + ——n'(x,t) for z <0,
e
3/2pL(1)ez lol(1+0(e) for z > 0.
(6.30)
By (E2Ra)) for V2,

11 (u_) - I4[P1V](x,t)| < O(1)|log e|edp! (t)e A2 #1(1+0(0)
Then, by Lemma 5.13 with (o, 5) = (1,2) and A = A\] it yields

13[P1V](,1)]

min (V, —d—)n' (2. 1)
< O(1)|logeld ¢ + min <\/E, %)fl(t)el(x,t; A{,D) for x <0, (6.31)

Vept(t)e 2 1#1(1+0(€) for > 0.
The estimates (29), (E30), and ([@3T) yield that

(I ©]] + B3] + T [P1V]) (2, 1
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( A7 121(140())
5\/e|log e|pt(t)e™ " = for x > 0,
ST1(1)| log | min (ﬁ, %)Hl(x, t;A7, D) 6.32)
+ J] log €| min (\/E, |1|+1)n(x,t) for \{t -+t <z <0,

oT1(t)| log €| min <\/E, ﬁ)@l(az,t; A, D) for x < \[t+7t,

For the other functionals, we substitute ([229al) and {29D]) with ¢ <

|log €| into Ii[P3V], IL[V] — I}[V,], and T§[V] — I§[V,]. Due to the choice

Jo = € |loge|J with J > 1, we have that

le= 22 1210+ (3 — Jo )V (x,1)| < et —3/2= 32 121(0+0()/4

On the other hand,

e OO VL (2. 4)] < O(1)% Vel log ddp! (t)e 32 Iel1+0()/4

< O(1)Ve|log €]26p" (t)e~ 32 l#1(1+0()/4,

2 3
e~ A2 12401yl (1 1)|| < O(l)gMpl(t)e—%;\w\(1+0(6))/4

52“0g€’4 1
— P (

Pe~ 347 1#l(1+0(©)/4,

By combining the above three estimates, we have

|PoV(@,t)]| < 00O (W (@, 1)] + [x— (2 = Jo)| [V (. 1))

< O(1)8]log e[2v/ep (t)e=3z [211+0(©)/4,

35

Then, by Lemma 5.13 with (o, 3) = (1,2) and A = A\|, v = =3*, we have

[L3[P2V)(x, 1)

min (\/E, \/lmllﬁ) n'(z,t)

< 0(1)d|loge[>v/e{ + min (ﬁ,i>f1(t)61(x,t; A[,D) forz <0, (6.33)

NG
\/Epl(t)e—BA2_|$|(1+O(5))/4 for z > 0.
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For the term I[V] — 1L [V,], it follows

() - (I (V] = I [Va]) (@)
- ‘ll(u_)-I5[V,rL](x,t)‘

03(x,t; A7, D) 052(x,t; N7, D
S O(l)(g|10g€|52[ ( 621 )+ ( 63 1 )+771(CC,7§)2:|

03(z,t: \7,D)  0°2(z,t; 77, D
< O(l)|loge|252[ (z 621 )+ (@ 3 ! )+n1(x,t)2]. (6.34)

This yields that

|log €|2626°%/2 (z,t;A\] ,D)
€3

for z < )\ft+\/f,

Hl _Hl < 1 52| log |2 _
V=BV (a.t)] < 0§ Pl por a7t 4 Vi< <0,

[log [~ 1og:2\252 pl(t)e 2 1#l+0() for 2 > 0.

(6.35)
For the term TE[V] — I§[V,],
N[V] = NIV,]| < |NIV] = NV]| + |NV] - N[V,]
< O)(IVF + [V |- V). (6.36)
By assuming that § < €%, we have that
03(z,t;A], D) for z < A\t + /1,
03(z, ;A\, D) + 03 (2, A}
V(1) < o()sze d T @ EALD) R A (6.37)
+3(z,t;A]) for A\{t+ vVt <z <0,
£79/2 ¢=212l(140(0) for 12 > 0,
(5262(9%(.%',t; M, D) + 0e03(z,t; A\, D)
forx < A\t + Vi,
52€205 (2, t: A7, D) + dep® (, t: A\
V][V, | <o) €O @EAL D)+ 0eu(@ b Ay) (6.38)

for z € [\t +Vt, —Jo),

det=3 for = € [—Jy, 0],
Set—3e= 22 [2I(+0(9) for 2 > 0.
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The above two estimates yield that

(I5[V] — Tg[V]

(2.1) < |(B[V] = B[Va]| (2, 8). (6.39)
So, (632), (€33), (635), (E39) conclude that

VL, (z,1)]

( A l21(140())

5/€|log e|p1(t)ef% for x > 0,

ST1(1)| log ¢| min (\/E, %)el(x, A7, D)
+ ¢/ log €| min <\/— m) x,t)

—1
52| loge|? oy oy —42
for \{t+ vt <z <0,
ST1(1)| log ¢| min (\/E, %)el(x, A7, D)
1 Ploee 4312y 127, D)

for z < )\ft+\/f,

For estimating V2, we need to use the estimate (f40) and (E23H) with
%o = O(1); and assume € < |loge| for (EZId). Then, we decompose 13[0],
I2[V,], and I2[V] — I3[V,]:

11] //6 x_yv J)‘Qv)

x (OO lafu ) () (ri(u), 75 (u-) ) (y,0)dydo,

t
5/ /Hl(x—y,t—a;)\Q,él)
0o Jr

X (O Ha(u) " (A) (i), 1 (1)) ) (v0)dydo,

t
ﬂ%;i[V,Vw]E/ /Hl(x—y,t—a;)\Q,él)
0 JR

< (Vi Vi) £ (8) ()1 (0-)) (. )y
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Then, regroup ([E2Z1) as follows

Vat) = [ 01— pnti V(. 0)dy
(1,11 (6] + B, [Va] + B[V] + 28, [V, V] ) (3, 1)

+ Y Bylelet) + (B8R +BA + L) @)
(il,?)?ﬁj(?i)

+ (BIVis] + B o[Va] + 2B [V, Vi] + B[V 1]

+IBIV] - BV])) (2, ). (6.41)

The procedure for estimating ]Iil- nel +(B[Y])+ B[]+ 14 [V]) + (TE[V,L]
) _ apdam B

+IE [ Vo] + 2185 [V, V] + B[V, 1]+ (IE[V] — [§[V])) essentially is identical to

the procedure for obtaining ([-29al). We omit the details and just state the

result:

I3 + B[] + L[V]|(z,1)

5’2 pl (t)e A2 [#I(H0(D/2 for X[t < 2 < —Jp,
< 0(1) (6.42)
5€J/2p1 (t)ef)\;‘x‘(1+o(6))/2 fOI' T S )\Itv

| > B0l + BVl + BalVa] + 2BV, Vi)

)

HI§[Ves] + (IG[V] = IE[V]) | (2, 1)

Plloge y3/2(z, £ A7) for At < @ < —Jo,
<omg .- (6.43)
%gﬁ—‘e%,t; A1, D) for x < A\t
We need to apply the procedure for obtaining i3, in (EI4) to IZ.,[0] +
]Ial[V,r] +12[Va] + 2ﬁ%;1 [V, V] in order to obtain a sufficient decaying rate of
V?2(—Jo,t). However, we need to modify the procedure in order to obtain the

optimal rate for I, [V, V,]. So, we need to rewrite dyly(u_)f"(A)(r1(u_),
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1 (u— ))V,W}Tl as follows

By [la(u_) £ (A) (r1 (u), r1 (u=))VEVLL]

—a0 _ 52
= DO ) ) 1 ). (s VAV

AT — Ay
a0 = ) (), )VEVLL]. (64
)\1 - )\2
-5 _ a2
Oy + AL 0y — O [lg(u,)f”(A)(Tl (u_), Tl(uf))V}rV,lrL] (6.45)

AL = Ay

+0,[0(1) i (u) (Fo[Via] + (6] + Ia[7] + Li[V] + N[V] = N[V,]) V}
FO(VELO,VE]+O(0)h () (To]Vps ]+ 11 [6]+ Io[3] + L [V]+ N[V]
~N[VA)8,VL + 0(1)e2e2 WIAFOED (4 _)(Io[V 1] + I,[0]+I2[7]
+L4[V]+N[V] = N[V Vo2l (un) £ (8) (ri (u-), r(u-)) V7 05 V7].

By (2 and {3,
ﬁ%;l[vvvﬂ']
t —
0 JR

+VL0,VE+ b () - { (T[] + (To[Va] + N[VA]),) VL

+ (Io[Vyi] + I1[0] + I2[7] + I4[V] + N[V] = N[V,]) 0, VL

+e? e 2 WO 1 (4 ) (T[V i) + 11[O] + Lo[y] + 14[V]

FN[V] = N[V )V + [ (8) (1 (), 1w ) V2 02V | (9,0) dydo

+O(1)/0 /Ray91(x —y,t—oy Ay, )l (us) [IO[VWL] + I1,[0]

+I5[3] + L[V + N[V] = N[V | Vi(y,0) dy do. (6.46)
Finally, by the technical lemmas in Section 5 we can have that

RV, Val(z,1) < § €/ pl(t) 2 1el0500)/2
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Pl y3/2(a,t:07)  for @ € ATE — A,
o (6.47)
03(z,t;A], D) for z < Ayt

The rest of the proof for [BZ29d) is similar to the proof for [E29al). We omit
it; and conclude there exists ¢ = O(1) to satisfy ([E29al).

The estimate [29d) is a consequence of [EZX)) and [ZJ) in the region
T > —Jo. ]

Proof of Theorem B.

Proof. In this theorem, we need to show that there exists a constant

C = 0O(1) to satisfy [EZal) and E23L]).

By substituting (E29al), (£290)), and ([EZ9d) into (EI). Then, it results
in the existence of C7 = O(1) to satisfy ([E23Dl):

52 1 2 -1
7 ()] < Cy (% ¢ [1 + e\/ﬂ ) e‘épl(t)) : (6.48)

Now, we need to consider the variable W(x,¢). The relationship between
V(z,t) and W(z,t) is due to [EI):

Wy(z,t) = V(x,t).
This yields that

Wi (z,t) = Vi(z,t)+ O(1) [W|(z,t) e 22lel1+0M))

‘ ‘ (6.49)
Wi(—Jo,t) = Vi(—Jo,t) + O(1) &+ [W|(=Jo, t).

Since we want to have a sharper estimate for V2(x, ) only, by the relationship
in (ET) the structure of V2 is dominated by W2. We are interested in the
variables W2 (z,t) and W?(z,t) only.

From (EETH), we have the data for W2(—Jy, t):
W(=Jo, 1) = O(1) €1 [W|(=Jo, ). (6.50)
From (EET4), we have the equation for W2(x, t):

W2 + Xo(A)9,W? — 9?W? = .7 (x,1) + S (x, 1), (6.51)
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where the function .7 (x,t) and .2 (x,t) are

Sz, 1) = lo(u) - Io[7). (6.52)

[ A2(x,t)] < OQ) [ [W](a,t) (IH'(1)] + 17 (1)) + € |V](x,1)
+¢¥ (Wi (a, t)] e OO (N + 1o)[V]| + | 11[0]]] (2, 1)
HY' (1) la(u-) - (uy — bz — H(t) = 3(1)))] (6.53)

Under the condition ([f28al) with C' < |log €| and the conditions ([290]) and
@29d), for x > —Jy the functions .7 (z,t) and S(z,t) satisfy

‘yQ(xut)‘
< O(1) [6% |log elp*(t) + 6¢2|log e[2p* (1) + 6% [log e[* p2(t)] e~ #1140
D108 21 4 eva) 2 4 62 [loge? p2(0) + 822()
0 gel” p p
2 2
Mt Y1+ evt)™! for x € [—Jp, 0],
[Flogel OgE‘ 21+ ev) 2+ 6 [log ef? p2(2) + 022 (1)
2 2 _
+5 |10g €| 1+ eVt) 7Y e M2 BIAH00) for 2 > 0.

We consider that
t [e’s)
/ G_(2,t;y,0)[0s W2+ A2 (A) 0, W — 07 W? — .1 — 7] (y, o) dydo = 0.

Here, G_(z,t;y,0) is the green function of (LB) given in (34). Then,
through integration by parts and (B33):

[ee] t poo
W(z,t) — [ G_(x,t; y,U)W2(y,0)dy+// T(z,t;y,0)W(y, 0)dydo
—Jo 0J—Jy
t
+/ [G,(ﬂz,t; —Jo,0) W;(—Jo, o) — 0yG_(z,t;—Jo,0) W2(—Jo, a)} do
0
t [e%e)
—/ G_(z,t;y,0) (S + F)(y,0)dydo = 0, (6.55)
—Jo

where T'(z,t;y,0) is the truncation error of G_(z,t;y,0) defined in (B3H).
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By (E34)), we have that

t oo
|t tipoyw?.0) dyas
0 —Jo
t oo _
= / / O(1)e® e W+0D g G _(x,t;y,0) W2 (y,0) dydo
0 —Jo
t oo _
+/ / O(1)? e W+0©)g G (,t;y,0) Wi(y,a) dydo
0 Jo
t 0
+/ / 0(1)e*9,G_(x,t;y,0) W;(y,a) dydo. (6.56)
0 —Jo
In the RHS of ([E5H), the variable W2(y, o) satisfies (29d)); the variables
W2(—Jo,t) and W2(—Jo,t) satisfy [EB0) and I with the function

|W|(—Jo,t) satisfying ([29d]). So, combined with (GEH) we have that

(W2 (2,t) < / 102G (x,t;y,0) W(y,0)| dy+O(1)[T+B+S1+82] (1),

—Jo
(6.57)
where

t oo B
T(xz,t) = /0 /J 2| log €||0,G—(z, t;y, 0)|[6p" (0)e 2 WIAHO©D) gy
—J0

t roo _
[ [ 20,6 (w tiv. o) log i (o) € 5O 2y,
0 J—Jy

t
/ |0:G_(x,t; —Jy,0)| [
0

52| log €|?
B(z,t) —

[ (1+evo)] ™

t
+ [ 10:0,G_(x,t; —Jo, o) €’ |log e|6p* (o) do, (6.58)
0

t e’}
Si(2,1) = /0 / 10.G-a. i) A0 dyde,
—J0

t )
Sa0.t) = [ [ 0.6 (o tiv.0) Saly. o) dydo
0 J—Jy
By Lemma 5.17,

IT(z,t)] < O(1) el log e| de™= 1172 pl (1),



296 TAL-PING LIU AND SHIH-HSIEN YU [September
By &35)

| 1065, 0P 0,00y < b 1) €312
—Jo

By Lemma 5.16,

—1
(52“6% +6e!2 |log e]3> [(t +1)(1+evt+ 1)} for ze[—Jyp+1,0]
B —1
=3 12l(1+0(e)) (Wlfifdu(sd*?ylogeﬁ) [(t—i—l)(l—i—e\/—t—i—l)} for 2> 0.

By Lemma 5.17,

g lal

Si(x,t) < Ko 8 p'(t) e 2

By Lemma 5.17 and Lemma 5.15, we have

ISa(z,t)| < O(1) €| log e|dp' (£) e 21172
0 for x > 0,

+0(1) 52| logel?
S+ 1)(1+eV/itl)

The above five estimates yields estimates for W2. By the relation EIZ)

with |[W(z,t)|| from E29d) and with ||V(z,t)| from Z9) and E2F), we
conclude the estimate of V2(z,t) for Theorem B. The estimates W?(x, ) is
a by-product. We omit it. O

for x € [—Jy, 0].
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