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ABSTRACT 

For realistic speech animation, smooth viseme and 
expression transitions, blending and co-articulation 
have been so far studied and experimented widely. 
In this paper, we describe an approach for speech 
animation by smooth viseme transition. Though this 
method cannot form an alternative to the co-
articulation phenomenon, it certainly takes us a step 
nearer to realistic speech animation. The approach is 
devised as a result of the Principal Component 
Analysis of facial capture data extracted using an 
optical tracking system. The system extracts the 3D 
positions of markers attached at the specific feature 
point locations on face to capture the facial 
movements of a talking person. We form a vector 
space representation by using the Principal 
Component Analysis of this data. We call this space 
the “viseme space”. We use the viseme space to 
generate convincing speech animation and to make 
smooth transitions from one viseme to another. As 
the analysis and the resulting viseme space 
automatically consider the dynamics of and the 
deformation constraints on the facial movements, 
the resulting facial animation is very realistic. 

1. INTRODUCTION 

The goal of facial animation systems has always 
been towards obtaining a high degree of realism 
using optimum resolution facial mesh models and 
effective deformation techniques. Various muscle 
based facial models with appropriate parameterized 
animation systems have been effectively developed 
for facial animation [1,2,3]. The Facial Action 
Coding System [4] defines high-level parameters for 
facial animation, on which several other systems are 
based. Most facial animation systems typically 
follow the following steps 

• Define an animation structure on a facial model 
by parameterization. 

• Define “building blocks” or basic units of the 
animation in terms of these parameters, e.g. 
static expressions and visemes (visual 
counterparts of phonemes). 

• Use these building blocks as key-frames and 
define various interpolation and blending 
functions on the parameters to generate words 
and sentences from visemes and emotions from 
expressions. The interpolation and blending 
functions contribute to the realism for a desired 
animation effect. 

• Generate the mesh animation from the 
interpolated or blended key-frames. 

Given the tools of parameterized face modeling and 
deformation, the most challenging task in facial 
animation is the design of realistic facial expressions 
and visemes. In order to produce highly realistic 
facial animation, advanced techniques such as opto-
electronic capture and laser scanners have been 
used. Contrary to the previously described key-
frame approach, in such methods the movements of 
the facial feature points are captured for every 
frame. The animation parameters derived from this 
captured data are retargeted to the facial model to 
obtain animation. It is not always practical to apply 
such motion capture data for a “performance driven 
facial animation”, because it is often restricted by 
the availability of the performer and complexity of 
the equipment involved, which often needs tedious 
calibration and set-up. However, the output of such 
motion capture session can be used to design the 
above-mentioned “building blocks” of the facial 
animation thus ensuring an adequate degree of 
realism at the basic unit level. 

The complexity of the key-frame based facial 
animation system increases when we incorporate the 
natural effects such as co-articulation for speech 
animation and blending between a variety of facial 
expressions during speech. The use of speech 
synthesis systems and the subsequent application of 
co-articulation to the available temporized phoneme 
information is a widely accepted approach [5,6]. Co-
articulation is a phenomenon observed during fluent 
speech, in which facial movements corresponding to 
one phonetic or visemic segment are influenced by 
those corresponding to the neighboring segments. 
Two main approaches taken for co-articulation are 
by Pelachaud [7] and Cohen and Massaro [8]. Both 
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these approaches have been based on the 
classification of phoneme groups and their observed 
interaction during speech pronunciation. Pelachaud 
arranged the phoneme groups according to the 
deformability and context dependence in order to 
decide the influence of the visemes on each other. 
Muscle contraction and relaxation times were also 
considered and the Facial Action Units were 
controlled accordingly. Cohen and Massaro defined 
non-linear dominance functions for the facial control 
parameters for each of the visemes and then used a 
weighted sum to calculate the control parameter 
trajectories for co-articulated speech animation.  

Though these approaches result into satisfactory 
animations, we aim to show that statistical analysis 
of the actual facial movement data would help in 
improving the realism and robustness of the speech 
animation techniques. We consider the Principal 
Component Analysis (PCA) as a powerful tool for 
achieving this goal. Use of PCA on the facial motion 
capture data for facial animation has been 
previously tested. Kuratate et al [9] used PCA and 
Linear Estimator algorithm to drive the facial 
animation from opto-electronically captured facial 
movement data. Their main goal was focused on 
extracting the complete facial mesh animation from 
the movement of the sample tracking points on the 
face. They used the complete mesh vertex data 
obtained from laser range scanner as an input to 
PCA, analysis input vectors consisting of 8 static 
face configurations. Arsal et al [10] described an 
algorithm to extract the face point trajectories 
starting from a phonetically labeled speech signal. 
They tracked the subject’s face using a multi-camera 
triangulation system. The principal components 
extracted from the tracked data were used as a 
compressed representation of this captured data 
along with the Line Spectral Frequencies (LSF) of 
the speech signal in a codebook. For each speech 
frame, a codebook search was performed to find the 
matching speech parameter values, and the 
corresponding PCs for the matched codebook entry 
were then subsequently used to get the face point 
trajectories.  

Unlike these two approaches for facial animation, 
our motivation behind using PCA is to study the 
dynamics of the facial feature points during fluent 
speech, in addition to reducing the dimensionality of 
the data. We capture optical tracking data of a real 
person speaking a number of sentences from a 
database of phoneme rich sentences.  The data 
acquisition for this purpose has been explained in 
Section 3 of this paper. The Principal Component 
Analysis of this captured data enables us to build a 
viseme space. In Section 4, we give a brief 
introduction to the PCA technique and explain how 
we use it on our captured data. As will be seen, the 
viseme space not only reduces the dimensionality of 

the data but also offers more insight into the 
dynamics of the facial movements during normal 
conversational speech. More importantly, it allows 
real-life like transitions between various 
components of speech animation (visemes), an 
important component of co-articulation. This is 
elaborated in Section 5. We begin by a brief 
description of the MPEG-4 facial animation 
standard we are using. 

2. MPEG-4 FACIAL ANIMATION 

 

Figure 1: MPEG-4 feature points related to speech 

pronunciation 

In this section we briefly explain the use of MPEG-4 
facial animation standard [11]. The Facial Definition 
Parameter (FDP) set and the Facial Animation 
Parameter (FAP) set are designed to encode facial 
shape, as well as animation of faces thus 
reproducing expressions, emotions and speech 
pronunciation. The FDPs are defined by the 
locations of the feature points and are used to 
customize a given face model to a particular face. 
They contain 3D feature points such as mouth 
corners and contours, eye corners, eyebrow centers, 
etc. FAPs are based on the study of minimal facial 
actions and are closely related to muscle actions. 
Each FAP value is simply the displacement of a 
particular feature point from its neutral position 
expressed in terms of the Facial Animation 
Parameter Units (FAPU). The FAPUs correspond to 
fractions of distances between key facial features 
(e.g. the distance between the eyes). Thus, once we 
have the displacements of the feature points from 
the neutral position, it is very easy to extract the 
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FAPs corresponding to the given facial animation. 
Figure 1 shows the locations of the feature points as 
defined by the MPEG-4 standard. As these 
parameters are normalized, they specify facial 
animation, irrespective of the shape and size of the 
model. We use the MPEG-4 compatible facial 
animation system as described in [12]. 

3. DATA ACQUISITION 

A commercially available optical tracking system 
(VICON 8) is used to capture the facial movements 
[13]. We use the selected MPEG-4 feature points for 
facial tracking as shown in the Figure 2. For the 
capture, we used 6 cameras and 27 markers of 3 
millimeter diameter corresponding to the MPEG-4 
feature point locations. We obtain the 3D 
trajectories for each of the marker points as the 
output of the tracking system. As we focus on 
speech animation, out of the 27 markers shown in 
the Figure 2, only 8 markers along the outer lip 
border, 2 markers on the chin, and 4 markers on the 
cheeks are used for the statistical analysis. These are 
the most important ones in order to capture the face 
movements during normal speech. The movements 
of the eyes and eyebrows can be controlled 
independently to the lip region movements in the 
facial model, and thus are not considered for 
analysis. The speaker is made to speak fluently 100 
randomly selected sentences from the TIMIT 
database [14] of phoneme rich sentences. The head 
movement of the speaker is not restricted, and thus 
we need to compensate for the global head 
movements in order to obtain the local deformations 
of the markers. For tracking global head 
movements, 3 additional markers on a headband are 
used. 

 

 

 

 

 

 

 

Figure 2: Placement of markers for selected feature points 

We use the improved translation invariant method to 
extract rigid movements of the head from the 
tracked data [15]. Because the 3D points obtained 

from the motion capture system have sufficient 
accuracy, a linear algorithm is sufficient for this 
application instead of iterative algorithms based on 
the least square procedure. Once the global head 
movements are extracted, the motion trajectories of 
all the selected feature point markers are 
compensated for the global movements and the 
absolute local displacements for each are calculated. 
The recordings are also made for static mouth 
shapes for individual phonemes, which later serve as 
the basic building blocks of the speech animation. 
For each of the phonemes, a vector of 3D positions 
(compensated for global head movements) of the 
selected 14 markers is extracted. Their use in 
generating speech animation is explained in the 
subsequent sections. 

4. DATA ANALYSIS 

As explained in Section 3, for each of the 14 
selected markers, 3D positions are obtained for each 
frame. Thus, we have a vector of 42 components for 
every frame (3 coordinates for each of the 14 
selected markers for a frame). Thus each vector in 
3D space is represented as 

d=(x1, y1, z1, x2, y2, z2,… xn, yn, zn)
T ∈  R3n,       n=14 

It can be easily observed that the data is highly 
interdependent, because of the very nature of the 
facial movements. For example, the displacements 
of the points around the lip area are highly 
correlated to each other, and to the jaw movements, 
as they cannot be physically moved independent of 
each other. The lower lip movements are directly 
linked to the global movements of the jaw. In 
addition, there can be local movement of the lips 
independent of the jaw movement. Similarly, 
movement of the corner lips as in lip puckering and 
lip sucking directly affects the movement of the 
cheeks. However, just observing the capture data in 
the form of 3D position trajectories does not 
enlighten us much about how these movements are 
inter-related. This inter-relation is the key factor for 
realistic animation and we employ PCA to extract 
this relation that occurs due to natural constraints. 

4.1 Principal Component Analysis 

PCA is a well-known multivariate statistical analysis 
technique aimed at reducing the dimensionality of a 
dataset, which consists of a large number of 
interrelated variables, while retaining as much as 
possible of the variation present in the dataset. This 
is achieved by transforming the existing dataset into 
a new set of variables called the principal 
components (PC). These are uncorrelated and are 
ordered so that the first few PCs retain the most of 
the variation present in all of the original dataset. 
We explain the basic concepts behind the PCA here 
for completeness. This description is based on [16].  
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Let x be a vector of p random variables under 
consideration. In order to study the correlations 
between the p random variables, it is not trivial to 
observe the data as is, unless p is very small. Hence, 
an alternative approach is to look at a fewer derived 
variables, which preserve most of the information 
about these variations. The first step is to look for a 
linear function α1´x of the elements of x which has 
maximum variance, where α1 is a vector of p 
constants; α11, α12, …..,α1p, and ´ denotes transpose, so 
that 

α1´x = α11x1 + α12x2 + … + α1pxp = ∑p
j=1 α1jxj (1) 

Next, look for a linear function α2´x, uncorrelated 
with α1´x, which has maximum variance, and so on. 
Thus at the kth stage, a linear function αk´x is found 
which has maximum variance subject to being 
uncorrelated with α1´x, α2´x, …, αk-1´x. The kth 

derived variable, αk´x is the kth Principal 
Component (PC). Like this, up to p PCs can be 
found, but it is hoped that the number of PCs found 
is much less than p.  

To find the PC’s, let us consider that the random 
variables x has a known covariance matrix, C. This 
is the matrix whose (i,j)th element is the covariance 
between the ith and jth elements of x when i≠j, and 
the variance of the jth element of x when i=j. It turns 
out that, for k = 1,2,…,p, the kth PC is given by  

zk = αk´x 

where αk is an eigen vector of C corresponding to 
its kth largest eigen value λk. Furthermore, if αk is 
chosen to have unit length (αkαk´ = 1), then var(zk) 
= λk, where var(zk) denotes the variance of zk. Thus, 
from the point of view of the implementation, 
finding the PCs is equivalent to finding the eigen 
vectors of the covariance matrix C. For the 
derivation of this result, the reader is referred to 
[16].  

We use the entire set of motion trajectory data of the 
3D positions of the selected markers as an input to 
the PCA analysis. Thus, each input vector is 42 
dimensional. As a result of the PCA on all the 
frames of the captured data, the matrix T whose 
columns are the eigen vectors corresponding to the 
non-zero eigen values of the above mentioned 
covariance matrix C, forms the transformation 
matrix between the 3D vector space and the 
transformed viseme space. Thus, each 42 
dimensional vector d can be mapped onto a unique 
vector e in this space.  

e=Td                                           (2) 

The inverse transformation is appropriately given by 

d=T
T
e                                        (3) 

where T
T denotes the transpose of the matrix T. 

Each distinct viseme is represented as a point in this 
transformed multidimensional space. The very 
nature of the dynamic speech input data makes it 
sure that the transitions between these points in the 
newly formulated viseme space correspond to the 
real-life like transitions of the markers in 3D 
position space. We exploit this for smooth and 
realistic speech animation. The next subsection 
explains what these “abstract” principal components 
represent in real life. 

4.2 Contribution of principal components 

Figure 3: Influence of the first four principal components 

Once we obtain the principal components, we can 
easily establish their role in generating facial 
animation. We notice that the last three eigen values 
of the covariance matrix of the input data are zero, 
and thus the dimensionality of the space is directly 
reduced to 39. In addition, 99% of the variation has 
been accommodated in only the first 7 principal 
components. In general for any dataset, the principal 
components may or may not represent any real-life 
parameters. We notice however that, for the facial 
capture data; they are closely related to facial 
movements. For this, we allow only one principal 
component to vary at a time keeping others at the 
default neutral position. Then we apply an inverse 
transformation (Equation 3) to obtain the 3D 
position of the markers. From these 3D positions, 
the MPEG-4 FAPs are extracted.  

Figure 3 shows the influence of the first four 
principal components. They are related to the 
opening jaw (a), lip protrusion (b), lips opening (c), 
and vertical movement of lip corners (d) as in 
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smiling. Note that these movements are not local, 
meaning that the jaw opening does not only result in 
the vertical displacement of the jaw, but also the 
rotation movement, as in real life. Also, the lip 
opening affects movement of cheeks. These 
principal components can be used to define a new 
parameter space for facial animation and a more 
intuitive interface for the designers of the facial 
animation. These parameters will be directly linked 
to the correlated facial movements. 

5. SPEECH ANIMATION 

In this section, we turn to the most important result 
of the analysis explained so far. Speech animation 
typically makes use of temporized phonemes 
extracted from either real or synthetic speech as the 
building blocks. These phonemes are mapped onto 
visemes for which facial animation parameters are 
pre-defined. In this section we address the problem 
of realistic speech animation by using the viseme 
space to obtain smooth transition between visemes 
thus resulting into realistic speech animation.  

 

Figure 4: Generating facial animation from speech 

We look at an application where synthetic or real 
speech is used along with phoneme segmentation to 
generate speech animation. As explained in Section 
2, for all the phonemes (or visemes) used for speech 
animation, we transform the 3D position vectors into 
the newly generated viseme space. These essentially 
form the key-frames of the speech animation, one 
key-frame corresponding to each phoneme in the 
speech. These key-frame visemes have been 

captured separately during the same session as that 
of the continuous speech capture. Thus, the captured 
speech data is mainly used for analysis and for 
deriving the viseme space, and not for directly 
obtaining the keyframes. The key-frames are 
positioned at 30% of the total duration from the start 
of that phoneme. This value was chosen 
experimentally, and can be controlled in an 
animation. We then use the cubic spline 
interpolation to get the trajectories for all the frames 
of the PCs for a speech animation sequence. The 
interpolated trajectories are then transformed back to 
the 3D position space and the FAPs are calculated. 
This “marching” through the viseme space results in 
realistic speech animation. This process is not an 
alternative to “co-articulation” (e.g. the overlaps are 
not considered); however, the results obtained 
demonstrate the high degree of realism in the 
resulting speech animation. Thus, this method can 
be used as a sub-step in co-articulation algorithms to 
enhance the overall results. 

Figure 4 demonstrates the whole processing 
pipeline. In case of the previously used co-
articulation algorithms, the interpolation between 
the phonemes is done in the 3D position space, or on 
the facial animation parameters. In such case, it is 
difficult to explicitly consider the inter-relations 
between these parameters with respect to each other. 
When interpolation is done in the viseme space, this 
interrelation is automatically considered. The 
interpolation in viseme space takes into account the 
actual transitions reflected in the 3D position space, 
as each principal component is responsible for 
highly correlated facial movements. This 
automatically ensures realistic animation.  

 

Figure 5: Spline interpolation for the Principal Components 

Figure 5 shows the interpolated principal 
components in the viseme space. The phoneme 
segmentation for the sentence “Bright sunshine 
shimmers on ocean” was extracted using automatic 
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speech recognition. One key-frame is assigned per 
viseme. Note that these PCs are not expressed to the 
scale here, but we show the overall distribution for 
fluent speech sample. 

6. CONCLUSION 

We have carried out statistical analysis of the facial 
feature point movements. As the data is captured for 
fluent speech, the analysis reflects the dynamics of 
the facial movements related to speech production. 
The results of the analysis were successfully applied 
for a more realistic speech animation. Use of 
MPEG-4 feature points for data capture and facial 
animation enabled us to restrict the quantity of data 
being processed, at the same time offering more 
flexibility with respect to the facial model.  

We would like to further study the effect of using 
various time envelopes for the transitions in the 
viseme space. It is important to combine the viseme 
transition method proposed here with the co-
articulation methods, instead of using linear or non-
linear time envelopes that are manually defined. It is 
further interesting to observe that mixing of 
expressions during speech animation can be handled 
using this technique. In this case, the addition 
between the expressions and viseme vectors should 
be done in the viseme space. Current efforts are in 
the direction of evaluating the results obtained for 
such “expressive speech”. 

7. ACKNOWLEDGEMENTS 

This work is supported by the EU ACTS Interface 
project. We are thankful to the MIRALab staff for 
their valuable support and help. We would like to 
give special thanks to Chris Joslin for proof reading 
this paper and to Tom Molet for his help in data 
capture. 

8. REFERENCES 

1. F. Parke, "Parameterized Models for Facial Animation", 

IEEE Computer Graphics and Applications, Vol.2, No. 

9, pp 61-68, November 1982. 

2. K. Waters, "A Muscle Model for Animation Three 

Dimensional Facial Expression", Computer Graphics, 

Vol. 21, No. 4, pp 17-24, July 1987. 

3. D. Terzopoulos, K. Waters, "Physically Based Facial 

Modelling, Analysis and Animation", Journal of 

visualization and Computer Animation, Vo. 1, No. 2, pp 

73-90, 1990. 

4. E. Friesen WV (1978), Facial Action Coding System: A 

Technique for the Measurement of Facial Movement, 

Palo Alto, California: Consulting Psychologists Press. 

5. B. Grandstrom, "Multi-modal speech synthesis with 

applications", in G. Chollet, M. Di Benedetto, A. 

Esposito, M. Marinaro, Speech processing, recognition, 

and artificial neural networks, Springer, 1999. 

6. D. R. Hill, A. Pearce, B. Wyvill, "Animating speech: an 

automated approach using speech synthesized by rule", 

The Visual Computer, 3, pp. 277-289, 1988. 

7. C. Pelachaud (1991), Communication and 

Coarticulation in Facial Animation, PhD thesis, 

University of Pennsylvania, 1991. 

8. M. M. Cohen, D.W. Massaro, "Modelling co-

articulation in synthetic visual speech", in N. M. 

Thalmann and D. Thalmann, Models and techniques in 

Computer Animation, Springer-Verlag, 1993, pp. 139-

156. 

9. T. Kuratate, H. Yehia, E. V-Bateson, “Kinematics-based 

synthesis of realistic talking faces”, Proceedings 

AVSP’98, pp. 185-190. 

10. L. M. Arsal, D. Talkin, “3-D face point trajectory 

synthesis using an automatically derived visual 

phoneme similarity matrix”, Proceedings AVSP’98. 

11. Specification of MPEG-4 standard, Moving Picture 

Experts Group, http://www.cselt.it/mpeg/. 

12. S. Kshirsagar, S. Garchery, N. Thalmann, “Feature Point 

Based Mesh Deformation Applied to MPEG-4 Facial 

Animation”, Deformable Avatars, Post-Proceedings of 

Deform’2000 Workshop on Virtual Humans, Geneva, 

Switzerland, Nov. 29-20 2000, Kluwer Academic 

Publishers, pp. 24-34. 

13. VICON Motion Systems http://www.vicon.com 

14. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 

http://www.ldc.upenn.edu/Catalog/LDC93S1.html. 

15. W. Martin and J. Aggarwal, Motion Understanding 

Robot and Human Vision, Kluwer Academic Publishers, 

1988. 

16. I. T. Jollife, Principal Component Analysis, Springer 

Verlag, New York, 1986. 

 

AVSP 2001 International Conference on Auditory-Visual Speech Processing

35


	CDROM Navigation
	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	Previous Search Results
	Next Search Hit
	------------------------------
	Exit Acrobat
	------------------------------
	No Other Papers by the Authors
	------------------------------


