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Abstract

Objective—Adipose tissue dysfunction, characterized by dysregulation of adipokines production

and/or secretion, has been implicated in the pathophysiology of type-2 diabetes mellitus, a

metabolic complication closely related to gestational diabetes mellitus (GDM). Recently, an

association between circulating maternal visfatin, a novel adipokine with metabolic and

immunoregulatory properties, and impaired glucose metabolism as well as with altered fetal

growth, has been proposed. The aims of this study were to determine whether there is an

association between maternal plasma visfatin concentration, GDM, and a large-for-gestational-age

(LGA) newborn.

Study design—This cross-sectional study, included pregnant women at term in the following

groups: 1) normal pregnancy and an appropriate-for-gestational-age (AGA) neonate (n=54); 2)

normal pregnancy and an LGA newborn (n=47); 3) GDM and an AGA newborn (n=56); 4) GDM

and an LGA newborn (n=45). The study population was further stratified by first trimester BMI

(<25 vs. ≥25 kg/m2). Maternal plasma visfatin concentration was determined by ELISA.

Parametric and non-parametric statistics were used for analysis.

Results—1) Among women who delivered an AGA neonate, the median maternal plasma

concentration of visfatin was higher in patients with GDM than in those with a normal pregnancy;

2) Among women with a normal pregnancy, those who delivered an LGA neonate had a higher

median maternal plasma visfatin concentration than those who delivered an AGA neonate; 3)

among patients with normal BMI, there were no significant differences in the median maternal

plasma visfatin concentration between the four study groups; and 4) maternal GDM, as well as

delivery of an LGA neonate were independently associated with a higher maternal plasma visfatin

concentrations.

Conclusion—The linkage between increased maternal circulating visfatin and the presence of

GDM or delivery of an LGA neonate supports the hypothesis that perturbation of adipokines

homeostasis may play a role in the pathophysiology of GDM or excess fetal growth.
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Introduction

Pregnancy is a unique condition characterized by transient physiologic insulin

resistance21;24;25;30–32;58;65;105;109;114;158;167;177 which progresses with advancing gestation

and approaches that of non-pregnant patients with type-2 diabetes mellitus (DM).18

Teleologically, this physiological adaptation is aimed to facilitate delivery of nutrients to the

fetus.104;165 The implicit paradigm that has been governed the understanding of the

metabolic adaptation during pregnancy, was that insulin resistance should be attributed to

the “diabetogenic” effect of placental hormones, such as human placental lactogen (hPL),

estrogen, and progesterone. Indeed, both in vivo and in vitro studies support this

view.11;13;41;90;91;159;166;169 However, during the last decade, with the recognition of

adipose tissue as an active endocrine organ, an alternative paradigm for the pathogenesis of

insulin resistance has been emerged.12;51;77;78;155;186;190 Indeed, a solid body of evidence

support the central role of adipose tissue in the regulation of energy homeostasis as well as

in metabolism and inflammation in pregnant and non-pregnant

subjects.8;9;28;51;68;83;88;89;93;99;118;126;128;136;162–164;178;185;187;194

Visfatin is a 52 kDa adipokine, which is preferentially produced by visceral adipose

tissue63;82;174 and corresponds to the previously identified growth factor for early B cell,

termed pre-B cell colony-enhancing factor (PBEF).86;124;149;170;198 Recently, the metabolic

effects of visfatin have been highlighted. Indeed, in vitro, adipocytes exposure to glucose

increased their secretion of this adipokine.73 Moreover, visfatin exerts insulin-like activity

as a growth factor for osteoblasts.195 Plasma concentrations of visfatin are higher in patients

with type-2 DM36;53;116;171 as well as in obesity19;35;55;56;72;87;171;203 than in normal

subjects, and have a positive correlation with body mass index (BMI)19;35;113;171 and waist-

to-hip ratio.36 Collectively, these data suggest that visfatin has a role in the physiology and

pathophysiology of glucose metabolism.

Only handful of studies have addressed the maternal concentration of visfatin in human

pregnancy.34;50;52;71;101;112;120;121;125 Furthermore, data regarding circulating maternal

concentrations of visfatin in patients with gestational diabetes mellitus (GDM) are both

scarce and conflicting. Indeed, maternal visfatin concentrations (plasma/serum) were

reported to be higher101;112 and lower34;71 in patients with GDM than in normal pregnant

women. Interestingly, maternal plasma concentrations of visfatin are significantly elevated

in patients with fetal growth restriction than in those with an appropriate-for-gestational-age

(AGA) neonate. Thus, the aims of this study were to determine whether there is an

association between maternal plasma visfatin concentration, GDM, and a large-for-

gestational-age (LGA) newborn.

Materials and Methods

A cross-sectional study was conducted by searching our clinical database and bank of

biological samples, and included pregnant women at term in the following groups: 1) normal

pregnant women who delivered an AGA newborn (n=54); 2) normal pregnant women who

delivered an LGA newborn (n=47); 3) women with GDM who delivered an AGA newborn

(n=56); and 4) women with GDM who delivered an LGA newborn (n=45). Women with

multiple pregnancies or fetal congenital anomalies were excluded.
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All women provided written informed consent prior to the collection of maternal blood

samples. The utilization of samples for research purposes was approved by the institutional

review boards of Wayne State University, Sotero del Rio Hospital and the Eunice Kennedy
Shriver National Institute of Child Health and Human Development (NICHD/NIH/DHHS).

Many of these samples have been previously employed to study the biology of

inflammation, hemostasis, and growth factor concentrations in normal pregnant women, and

those with pregnancy complications.

Definitions

The inclusion criteria for normal pregnancy were: (1) no medical, obstetrical or surgical

complications; (2) intact membranes; (3) delivery of a term neonate (>37 weeks) with a birth

weight above the 10th percentile;7 and (4) a normal oral 75-g oral glucose tolerance test

(OGTT) between 24–28 weeks of gestation based on World Health Organization (WHO)

criteria.3;6

All women underwent a 75-g OGTT between 24 and 28 weeks of gestation. Diagnosis of

GDM was based on the World Health Organization (WHO) criteria of fasting plasma

glucose ≥126 mg/dl (≥7.0 mmol/L) or plasma glucose ≥140 mg/dl (≥7.8 mmol/L) two hours

after the 75-g OGTT.3;6 GDM patients were treated with diet. LGA newborn was defined as

an infant with birth weight above the 90th percentile.7;69 The first trimester BMI was

calculated according to the following formula: weight (kg)/height (m)2 and patients were

classified according to the definitions of the WHO. 2 A normal weight was defined as BMI

between 18.5 and 25 kg/m2 and overweight/obese as BMI ≥ 24.9 kg/m2.

Sample collection

Maternal blood samples were collected at clinical visit. The gestational ages of sample

collection were ≥37 weeks for all women included in the study. Blood was centrifuged at

1300 × g for 10 minutes at 4°C. The plasma obtained was stored at −80°C until analysis.

Human Visfatin C-terminal immunoassay

Concentrations of visfatin in maternal plasma were determined using specific and sensitive

enzyme immunoassays purchased from Phoenix Pharmaceuticals, Inc (Belmont, CA, USA).

Visfatin C-terminal assays were validated in our laboratory for using human plasma prior to

the conduction of this study. Validation included spike and recovery experiments, which

produced parallel curves indicating that maternal plasma matrix constituents did not

interfere with antigen-antibody binding in this assay system. Visfatin enzyme immunoassays

are based on the principle of competitive binding and were conducted according to

recommendation of the manufacturer. Briefly, assay plates are pre-coated with a secondary

antibody and the non-specific binding sites have been blocked. Standards and samples were

incubated in the assay plates along with primary antiserum and biotinylated peptide. The

secondary antibody in the assay plates bound to the Fc fragment of the primary antibody

whose Fab fragment competitively bound with both the biotinylated peptide and peptide

standard or targeted peptide in the samples. Following incubation, the assay plates were

repeatedly washed to remove unbound materials and incubated with a streptavidin-

horseradish peroxidase (SA-HRP) solution. Following incubation, unbound enzyme

conjugate was removed by repeated washing and a substrate solution was added to the wells

of the assay plates and color developed in proportion to the amount of biotinylated peptide-

SA-HRP complex but inversely proportional to the amount of peptide in the standard

solutions or the samples. Color development was stopped with the addition of an acid

solution and the intensity of color was read using a programmable spectrophotometer

(SpectraMax M2, Molecular Devices, Sunnyvale, CA, USA). Maternal plasma

concentrations of visfatin C were determined by interpolation from individual standard
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curves composed of human visfatin peptide. The calculated inter- and intra-assay

coefficients of variation for Visfatin C-terminal immunoassays in our laboratory were 5.3%

and 2.4%, respectively. The sensitivity was calculated to be 0.04 ng/mL.

Statistical analysis

The Shapiro–Wilk and Kolmogorov-Smirnov tests were used to test for normal distribution

of the data. Data are presented as median and interquartile range (IQR). Non-parametric

methods were used to perform the statistical analysis for parameters which were not

normally distributed and comparisons among groups were performed using the Kruskal–

Wallis test with post hoc test by Mann–Whitney U test. Parametric tests were used for

analysis of those parameters that were normally distributed and the comparisons among

groups were performed using one-way ANOVA with Bonferroni adjustment for the

calculated p-value in order to maintain the significance level at 0.05. Multiple linear

regression analysis was used to determine which factors were significantly and

independently correlated with maternal plasma visfatin concentration (after log

transformation). The following parameters were included in the model: maternal age,

maternal BMI, gestational age at blood collection, GDM and LGA. The statistical package

employed was SPSS 14 (SPSS Inc., Chicago, IL, USA). A p-value of <0.05 was considered

statistically significant.

Results

The clinical and demographic characteristics of the study groups are presented in Table 1.

Patients with GDM and an AGA neonate (p=0.01) or those with GDM and an LGA neonate

(p<0.01) had a higher median maternal age than normal pregnant women with an AGA

neonate.

Maternal plasma visfatin concentration in women with a normal pregnancy

Visfatin was detected in the plasma of all subjects. There was a significant difference in the

median maternal plasma visfatin concentration among the groups (p=0.006, Kruskal-

Wallis).

Among women with a normal pregnancy, those with an LGA neonate had a higher median

maternal plasma visfatin concentration than those with an AGA neonate (LGA 19.5 ng/mL,

IQR 16.2–22.0 vs. AGA 16.6 ng/mL, IQR 12.2–19.7, p<0.01; Figure 1). Among women

who delivered an AGA neonate, the median maternal plasma concentration was higher in

patients with GDM than those with a normal pregnancy (GDM: 18.3 ng/mL, IQR 15.9–22.0

vs. normal pregnancy 16.6 ng/mL, IQR 12.2–19.7, p=0.01; Figure 1).

Maternal plasma visfatin concentration in women with gestational diabetes mellitus

Patients with GDM who delivered an LGA neonate had a higher median maternal plasma

visfatin concentration than those with a normal pregnancy and an AGA neonate (GDM

+LGA 19.7 ng/mL, IQR: 16.2–23.1 vs. normal pregnancy+AGA 16.6 ng/mL, IQR 12.2–

19.7, p<0.01; Figure 1). There were no significant differences in the median maternal

plasma visfatin concentration in women with a normal pregnancy and an LGA neonate and

patients with GDM who delivered either an LGA or AGA neonate (p=0.9 and p=0.3,

respectively; Figure 1).

Patients with GDM who delivered an AGA (p=0.002) or an LGA neonate (p<0.001) had a

higher median maternal BMI than those with a normal pregnancy and an AGA neonate.

Similarly, patients with GDM and an LGA neonate (p=0.02) had a higher median maternal

BMI than those with a normal pregnancy and an LGA neonate (Table 1). The rate of
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overweight/obese women was higher in patients with GDM who delivered an LGA neonate

than in those with a normal pregnancy who delivered an AGA neonate (p=0.03).

Maternal plasma visfatin concentration in normal and overweight/obese

pregnant women with a normal pregnancy—Among overweight/obese women with

a normal pregnancy, those with an LGA neonate had a higher median maternal plasma

visfatin concentration than those with an AGA neonate (LGA: 18.8 ng/mL, IQR: 16.5–22.4

vs. normal AGA 13.7 ng/mL, IQR 10.4–19.6, p=0.003; Figure 2); however, such difference

was not detected among women with a normal weight (p=0.12).

Maternal plasma visfatin concentration in normal and overweigh/obeset

pregnant women with gestational diabetes mellitus—Overweight/obese patients

with GDM, either with an AGA (17.9 ng/mL, IQR: 15.4–22.3) or an LGA neonate (18.1 ng/

mL, IQR: 15.0–22.4), had a higher median maternal plasma visfatin concentration than

overweight/obese women with a normal pregnancy who delivered an AGA neonate (13.7

ng/mL, IQR 10.4–19.6; p=0.01 and p=0.03, respectively; Figure 2); however, such

differences were not observed when normal weight patients with GDM, either with an AGA

or an LGA neonate, were compared to normal weight women with a normal pregnancy and

an LGA neonate (p=0.96 and p=0.29, respectively). In addition, among normal weight

women with GDM, there was no significant difference in the median maternal plasma

visfatin concentration between those who delivered an AGA and those who delivered an

LGA neonate (p=0.43).

In order to further study the association between maternal plasma visfatin concentration and

possible confounding factors, a multiple linear regression analysis was performed.

Gestational diabetes mellitus (p=0.03) and the delivery of an LGA neonate (p=0.008) were

independently associated with higher maternal plasma visfatin concentrations after

correction for first trimester maternal BMI, maternal age, and gestational age at blood

collection (Table 2).

Discussion

Principal findings of the study

1) Among women who delivered an AGA neonate, the median maternal plasma

concentration of visfatin was higher in patients with GDM than in those with a normal

pregnancy; 2) among women with a normal pregnancy, those who delivered an LGA

neonate had a higher median maternal plasma visfatin concentration than those who

delivered an AGA neonate; 3) among patients with normal BMI, there were no significant

differences in the median maternal plasma visfatin concentration between the four study

groups; and 4) GDM, as well as delivery of an LGA neonate were independently associated

with a higher maternal plasma visfatin concentrations.

Visfatin is a novel adipokine with metabolic and immunoregulatory properties

—Visfatin, a highly conserved 52 kDa molecule, was originally cloned in 1994 from human

peripheral blood lymphocytes,170 and its homologous proteins have been reported in

bacteria,123 invertebrate,138 fish61 and mammals.94;124;127;142;143;148–151;170;198 This

adipokine enhances the effect of IL-7 and stem cell factor on pre-B-cell colony formation,

hence it was named pre-B-cell enhancing factor (PBEF).170 Recently, visfatin/PBEF was

reported to be produced by adipose tissue,19;38;60;75;173;174 thus included in the growing

family of adipokines. While preferentially produced by visceral fat depot,82;174;184 the

expression of visfatin is not limited to adipose tissue. Indeed, it can be expressed in placenta,
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fetal membranes,95;124;142;143;148–151 myometrium,48 bone marrow, liver, muscle,170 heart,

lung, kidney,170 macrophages,43 and neutrophils.86;170;198

The physiologic role of visfatin in humans has not been fully elucidated; however, it has

been proposed that this adipokine has a regulatory role in glucose metabolism and

inflammation. The following features about visfatin suggest that this protein have a

regulatory role in glucose homeostasis: 1) in vitro, adipocytes secrete visfatin in response to

glucose exposure;73 2) administration of glucose to human subjects results in increase

circulating visfatin concentration;73 3) obesity is associated with increased circulating

visfatin concentration,19;35;55;56;72;87;171;203 and plasma concentrations of this adipokine are

positively correlated with BMI19;35;113;171 and waist-to-hip ratio;36 4) consistent with the

aforementioned reports, serum concentration of visfatin in humans are positively correlated

with the amount of intra-visceral fat as determined by computerized tomography scan;171 5)

plasma concentrations of visfatin are higher in patients with type-2 DM36;53;116;171 or

metabolic syndrome55;56 than in normal subjects; and 6) a visfatin promoter polymorphism

is associated with a susceptibility to type-2 DM.204

Evidence in support of the immunoregulatory effects of visfatin includes: 1) the production

of proinflammatory cytokines (e.g. IL-6, TNF-α, IL-1β) by human monocytes, is up-

regulated by visfatin in a dose dependent manner;137 2) the expression of visfatin is

increased following exposure to proinflammatory mediators such as TNF-α (in

monocytes,43 macrophages84 and neutrophils86), IL-6 (synovial144 and amniotic epithelial

cells148) and IL-8 and granulocyte/macrophage colony stimulating factor (in neutrophils86);

3) visfatin expression is increased in cells retrieved by bronchoalveolar lavage from patients

with acute lung injury198 and from lung tissue of animals models of acute lung injury;199

similarly, its expression increases in neutrophils from septic patients;86 4) polymorphisms in

the visfatin gene are associated with an increased (−1001G) or decreased (−1543T) risk of

developing ARDS in septic shock patients than wild-type homozygotes;10 and 5) patients

with chronic inflammatory disorders such as inflammatory bowel disease137 and rheumatoid

arthritis153 have higher circulating visfatin than normal subjects.

Adipose tissue dyfunction: a novel mechanism of disease for gestational

diabetes mellitus—Incapacity of the adipose tissue to meet the metabolic demands has

been suggested as a putative mechanism of disease for type-2 DM.67;106 According to this

hypothesis, one of the core components of adipose tissue failure is impaired production and/

or secretion of adipokines. Indeed, several lines of evidence support a causality linkage

between dysregulation of adipokines and type-2 DM: 1) mice deficient in

adiponectin,103;119;140;196 leptin,39;80 or TNF-α189 have insulin resistance; in addition, the

administration of leptin,26;74;156 adiponectin16;59;196 or neutralization of resistin181 corrects

insulin resistance in obese and diabetic mice; 2) polymorphisms at the locus of

adiponectin,57;70;76;81;110;132;139;182 resistin,131;152 visfatin,204 or leptin receptor168 are

associated with insulin resistance and type-2 DM; and 3) patients with type-2 DM have a

higher plasma concentrations of resistin,62;129;202 TNF-α,44;135 RBP-437;197, CRP54;160 and

a lower concentrations of adiponectin,79;97;160;191 than normal subjects.

Gestational diabetes mellitus is defined as a carbohydrate intolerance of varying severity,

with onset, or first recognition during pregnancy.1;27;64;65;134;147 This adverse metabolic

state affects 1–10% of all pregnancies,4;5;14;22;27;29;45;65;66;109;147 and is associated with

maternal, fetal and neonatal

complications.5;15;17;20;23;33;40;42;45;47;85;96;100;133;141;145;146;157;172;179;180 Similarly to

type-2 DM, adipose tissue failure, characterized by altered maternal circulating

concentration of adipokines (e.g. TNF-α,49;78;107;154;161;186;190;201 CRP,128 leptin9;93;99;128

and adiponectin9;98;162;185;192;194), has been implicated in the pathophysiology of GDM.
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Indeed, during pregnancy, maternal serum concentrations of several adipokines are

correlated with clinical indices of insulin resistance (e.g HOMA).28;99;118;128;163 Moreover,

women with low circulating adiponectin concentrations192 or high circulating concentrations

of CRP176;193 during early pregnancy are more likely to develop GDM than those with

normal concentrations of these adipokines. Collectively, these findings suggest that

adipokines play a role in the pathophysiology of GDM.

Visfatin in human pregnancy—There are only few reports regarding circulating visfatin

concentrations in pregnant women.34;50;52;71;101;112;120;121;125 Mastorakos et al.125

conducted a longitudinal study in which maternal serum visfatin concentrations were

determined in 80 normal pregnant women at 10–12, 24–26 and 34–36 weeks of gestation.

During the first trimester, visfatin concentrations were negatively correlated with percentage

of fat mass and hip circumference. However, during the second and third trimesters, serum

concentrations of this adipokine were not correlated with these surrogate markers of adipose

tissue quantity. The authors suggested that the progressive increase in insulin resistance with

advancing gestation can be compensated by a sustained increase of visfatin secretion by the

adipose tissue.125 Fasshauer et al.50 reported that during the third-trimester, women with

intrauterine growth restriction (n=18) had a higher mean maternal plasma visfatin

concentration than those with an AGA neonate (n=10). The same group reported that

patients with preeclampsia in the third-trimester (n=15) had a higher mean maternal serum

visfatin concentration than normal pregnant women (n=20)52 and that maternal circulating

visfatin was negatively correlated with HOMA-IR, but not with maternal age or BMI.52

The association between maternal plasma visfatin concentrations and

gestational diabetes mellitus—We report herein that GDM is independently associated

with increased maternal plasma visfatin concentrations. Studies regarding maternal

circulating visfatin in patients with GDM are scant and inconsistent: both increased101;112

and decreased34;71 maternal visfatin concentrations were reported. Our findings are in

agreement with those of Krzyanowska et al.101 who reported a higher maternal circulating

visfatin in 64 patients with GDM than in 30, mostly overweight, normal pregnant women at

28–30 weeks of gestation. Subsequently, Lewandowski et al.112 reported higher maternal

visfatin concentrations in 16 patients with GDM compared to 20 normal pregnant women at

28 weeks of gestation. In contrast, Chan et al.34 demonstrated that patients with GDM

(n=20) in the late second trimester have a lower mean visfatin serum concentration than

normal pregnant women (n=20). Haider et al.71 reported similar results in 10 patients with

GDM and 10 aged-matched controls at the same gestational age (24–28 weeks). Differences

in study design may contribute to explain the differences among studies. In particular, the

number of subjects, gestational age at enrolment, differences in BMI and neonatal birth

weights, differ between the studies.

The association between maternal plasma visfatin concentrations and

neonatal birthweight—The independent association between the delivery of an LGA

neonate and elevated maternal plasma visfatin concentrations is a novel finding. Previous

reports have underscored the association between fetal growth restriction (FGR) and

increased maternal circulating visfatin. Fasshauer et al.50 reported that mean plasma

maternal visfatin in the third trimester is higher in patients with FGR than those with an

AGA newborn. This finding was corroborated by Malamitsi-Puchner et al.120 Of interest, in

the latter study, cord blood visfatin concentrations did not differ between SGA and AGA

neonates.120 The same group121 reported that among patients with a normal pregnancy and

an AGA neonate, the mean cord blood visfatin concentration was similar and positively

correlated with the mean maternal visfatin concentration; furthermore, the mean cord blood

visfatin concentration was positively correlated with neonatal birthweight. Based on these
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findings, the authors proposed that a passive transplacental transfer of visfatin is

probable.120;121 López-Bermejo et al.117 reported a negative association between cord blood

visfatin concentrations and indices of fetal size only in mothers who smoked, indicating that

cord blood visfatin concentrations may be, in part, under the regulation of maternal factors.

Taken together, these findings suggest that visfatin have a role in the metabolic crosstalk

between maternal and fetal compartments. The strong association reported herein, between

the delivery of an LGA neonate and elevated maternal plasma visfatin concentrations in

mothers with and without GDM further support this hypothesis.

Visfatin concentrations in GDM and LGA neonate: maternal metabolic status

vis-à-vis neonatal birthweight—Several explanations can account for the association of

increased maternal plasma visfatin concentration and GDM or the delivery of an LGA

neonate:

1. Insulin resistance and impaired glucose metabolism in women with GDM and/or
LGA neonate: Insulin resistance is accompanied by increased visfatin production

and/or secretion. Indeed, polymorphysms in the visfatin gene204 are associated with

insulin resistance and type-2 DM. In vivo clamp studies in humans demonstrated

that hyperglycemia increases circulating visfatin concentrations.73 Moreover,

circulating visfatin concentrations in patients with type-2 DM are higher than in

normal subjects.36;53;171 Given the insulin-mimic effect of visfatin, it has been

proposed that the increased concentrations of this hormone in the context of insulin

resistance, reflect a compensatory mechanism aimed at ameliorating the functional

consequences of insulin deficiency.116 Collectively, these reports suggest an

association between insulin resistance and elevated visfatin. This explanation can

also be applicable, in part, to women with an LGA neonate and without GDM since

minor abnormalities of glucose metabolism, even in the absence GDM, have been

implicated in patients with neonatal overgrowth.92;108;111;115;130;200

2. . Overdistention of fetal membranes in patients with an LGA neonate: In vitro
studies have established a causality between stretching of human fetal membranes

and increased expression, production, and secretion of visfatin.95;142;143;149;150

Indeed, the visfatin gene is up-regulated in response to stretching of human fetal

membranes.142;143 Moreover, visfatin has been shown to be secreted from amniotic

epithelial–like cell line.150 Recently, it has been demonstrated that both expression

and secretion of visfatin increases after prolonged stretching of the fetal

membranes.95 Consistently, an increased immuno-staining for visfatin was

demonstrated in the amnion of twins and triplets.95 Thus, it is tempting to speculate

that the increased maternal plasma visfatin concentrations are derived, in part, from

the stretched fetal membranes of women with LGA fetuses. In addition, expression

of visfatin in human placenta have been reported;170 thus, an increased secretion of

visfatin from larger placentas of LGA fetuses can also account for our findings.

Collectively, transplacental transport, increased placental mass, and overdistation of fetal

membranes may account for the increase in maternal plasma visfatin concentrations in

pregnant women with an LGA neonate.

Disparity in circulating maternal visfatin between normal and overweight/
obese pregnant women - the role of maternal metabolic state and neonatal

weight—As opposed to overweight/obese pregnant women, those with a normal BMI had a

comparable median maternal visfatin concentration, regardless of their metabolic state

(GDM) or neonatal birthweight. Consistent with our findings, Tsiotra et al.188 reported that

visfatin mRNA expression from human peripheral monocyte-enriched mononuclear cells is
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significantly elevated in type-2 diabetic women, compared to healthy control women,

independently of the presence of overweight/obesity.

The association between circulating visfatin and overweight/obesity is still under debate.

Several studies argued in favor of this association: serum visfatin concentration correlates

with the amount of visceral fat depot,171 waist-to-hip ratio,36 and BMI.19;35;113;171

However, these reports were challenged by other investigators who failed to find a positive

correlation between circulating visfatin and either visceral fat mass19 or

BMI.36;46;50;53;87;102;122;175;183;203 Currently, the exact physiologic and pathophysiologic

role of visfatin is not fully elucidated, as reflected from this inconsistency in the literature. In

the present study, first trimester BMI was not independently associated with maternal

plasma visfatin concentrations after correction for confounding factors. Thus, a cause and

effect relationship between BMI and maternal circulating visfatin concentrations data can

not be discern. However, we were able to extend the abovementioned observations by

demonstrating that the similarity between circulating maternal visfatin in normal and

overweight women is unvaried even in the presence of GDM and/or LGA neonate.

Conclusion

The linkage between increased maternal circulating visfatin and the presence of GDM or

delivery of an LGA neonate support the hypothesis that perturbation of adipokines

homeostasis plays a role in the pathophysiology of GDM and excess fetal growth.
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Figure 1. Comparison of the median maternal plasma visfatin concentrations between women
with and without GDM and/or an LGA fetus

The median maternal plasma visfatin concentration was higher in patients with GDM, either

with an AGA or with LGA fetus, than that of those with a normal pregnancy and an AGA

fetus. Likewise, pregnant women with a normal pregnancy and an LGA fetus had a higher

median maternal plasma visfatin concentration than those with a normal pregnancy and an

AGA fetus.
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Figure 2. Comparison of the median maternal plasma visfatin concentrations between normal
and overweight/obese pregnant women, with and without GDM and/or an LGA fetus

Among overweight/obese patients, the median maternal plasma visfatin concentration was

significantly higher in patients with GDM, either with an AGA or with LGA fetus, than that

of those with a normal pregnancy and an AGA fetus. Likewise, overweight/obese pregnant

women with a normal pregnancy and an LGA fetus had a higher median maternal plasma

visfatin concentration than those with a normal pregnancy and an AGA fetus. In contrast,

there was no significant difference in the median maternal plasma visfatin concentration

among pregnant women with normal weight. Within each study group, the median maternal

plasma visfatin concentration was comparable between normal and overweight/obese

pregnant women.
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Table 1

Clinical and demographic characteristics of the study population

Normal pregnancy
AGA neonate (n = 54)

Normal pregnancy
LGA neonate (n = 47))

GDM AGA neonate (n
= 56)

GDM LGA neonate (n
= 45)

Maternal age (years)*, # 27 (22–30) 28 (22–32) 32 (24–36) 30 (25–35)

BMI (kg/m2)*, #, § 23 (22–25) 24 (22–28) 26 (22–29) 27 (23–32)

BMI ≥ 25# 17 (31.4%) 21 (44.6%) 36 (64.2%) 30 (66.6%)

Gestational age at blood
sampling (weeks)

39 (38–40) 39 (38–40) 38 (38–40) 38 (38–39)

Gestational age at delivery
(weeks)

39 (38–40) 39 (38–40) 39 (38–40) 38 (38–39)

Birth weight (g)#, &, $, ‡ 3390 (3150–3612) 4170 (4050–4415) 3455 (3235–3717) 4190 (4030–4410)

*
p<0.05 – Normal pregnancy+AGA vs. GDM+AGA

#
p<0.05 – Normal pregnancy+AGA vs. GDM+LGA

§
p<0.05 – Normal pregnancy+LGA vs. GDM+LGA

&
p<0.05 – Normal pregnancy+AGA vs. Normal pregnancy+LGA

$
p<0.05 – GDM+AGA vs. Normal pregnancy+LGA

‡
p<0.05 – GDM+AGA vs. GDM+LGA

Values are expressed as median (IQR) or as number (percentage); AGA – Appropriate for gestational age; LGA – Large for gestational age; GDM

– Gestational Diabetes Mellitus; BMI – Body Mass Index
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Table 2

Linear regression analysis of factors associated with maternal plasma visfatin concentrations

Factor Beta Significance

Delivery of LGA neonate 0.193 0.008

GDM 0.174 0.032

Maternal BMI −0.120 0.115

Gestational age at blood collection 0.106 0.154

Maternal age 0.027 0.728

LGA: large for gestational age; GDM: gestational diabetes mellitus; BMI: body mass

index
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