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Abstract—We introduce VA-Point-MVSNet, a novel visibility-aware point-based deep framework for multi-view stereo (MVS). Distinct

from existing cost volume approaches, our method directly processes the target scene as point clouds. More specifically, our method

predicts the depth in a coarse-to-finemanner.We first generate a coarse depthmap, convert it into a point cloud and refine the point cloud

iteratively by estimating the residual between the depth of the current iteration and that of the ground truth. Our network leverages 3D

geometry priors and 2D texture information jointly and effectively by fusing them into a feature-augmented point cloud, and processes the

point cloud to estimate the 3D flow for each point. This point-based architecture allows higher accuracy, more computational efficiency

andmore flexibility than cost-volume-based counterparts. Furthermore, our visibility-awaremulti-view feature aggregation allows the

network to aggregatemulti-view appearance cues while taking into account visibility. Experimental results show that our approach

achieves a significant improvement in reconstruction quality compared with state-of-the-art methods on the DTU and the Tanks and

Temples dataset. The code of VA-Point-MVSNet proposed in this work will be released at https://github.com/callmeray/PointMVSNet.

Index Terms—Multi-view stereo, 3D deep learning

Ç

1 INTRODUCTION

MULTI-VIEW stereo (MVS) aims to reconstruct the dense
geometry of a 3D object from a sequence of images and

corresponding camera poses and intrinsic parameters. MVS
has been widely used in various applications, including
autonomous driving, robot navigation, and remote sens-
ing [1], [2]. Recent learning-based MVS methods [3], [4], [5]
have shown great success compared with their traditional
counterparts as learning-based approaches are able to learn to
take advantage of scene global semantic information, includ-
ing object materials, specularity, 3D geometry priors, and
environmental illumination, to get more robust matching and
more complete reconstruction. Most of these approaches
apply dense multi-scale 3D CNNs to predict the depth map
or voxel occupancy. However, 3D CNNs require memory
cubic to the model resolution, which can be potentially pro-
hibitive to achieving optimal performance. While Tatarch-
enko et al. [6] addressed this problem by progressively
generating an Octree structure, the quantization artifacts
brought by grid partitioning still remain, and errors may
accumulate since the tree is generated layer by layer. More-
over, MVS fundamentally relies on finding photo-consistency

across the input images. However, image appearance cues
from invisible views, which includes being occluded and out
of FOV (Field ofView), are not consistentwith those fromvisi-
ble views, which is misguiding for accurate depth prediction
and therefore needs robust handling.

In this work, we propose a novel Visibility-Aware Point-
based Multi-View Stereo Network (VA-Point-MVSNet),
where the target scene is directly processed as a point cloud,
a more efficient representation, particularly when the 3D
resolution is high. Our framework is composed of two steps:
first, in order to carve out the approximate object surface
from the whole scene, an initial coarse depth map is gener-
ated by a relatively small 3D cost volume and then con-
verted to a point cloud. Subsequently, our novel PointFlow
module is applied to iteratively regress accurate and dense
point clouds from the initial point cloud. Similar to
ResNet [7], we explicitly formulate the PointFlow to predict
the residual between the depth of the current iteration and
that of the ground truth. The 3D flow is estimated based on
geometry priors inferred from the predicted point cloud
and the 2D image appearance cues dynamically fetched
from multi-view input images (Fig. 1). Moreover, in order
to take into account visibility, including occlusion and out
of FOV, for accurate MVS reconstruction, we propose a
number of network structure alternatives that infer the visi-
bility of each view for the multi-view feature aggregation.

We find that our VA-Point-MVSNet framework enjoys
advantages in accuracy, efficiency, and flexibility when it is
compared with previous MVS methods that are built upon
a predefined 3D cost volume with a fixed resolution to
aggregate information from views. Our method adaptively
samples potential surface points in the 3D space. It keeps
the continuity of the surface structure naturally, which is
necessary for high precision reconstruction. Furthermore,
because our network only processes valid information near
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the object surface instead of the whole 3D space as is the
case in 3D CNNs, the computation is much more efficient.
The adaptive refinement scheme allows us to first peek at
the scene at a coarse resolution and then densify the recon-
structed point cloud only in the region of interest (ROI). For
scenarios such as interaction-oriented robot vision, this flex-
ibility would result in saving of computational power.
Lastly, the visibility-aware multi-view feature aggregation
allows the network to aggregate multi-view appearance
cues while taking into account visibility, which excludes
misguiding image information from invisible views and
leads to improved reconstruction quality.

Our method achieves state-of-the-art performance on
standard multi-view stereo benchmarks among learning-
based methods, including DTU [8] and Tanks and Tem-
ples [9]. Compared with previous state-of-the-arts, our
method produces better results in terms of both complete-
ness and overall quality.

This article is an extension of our previous ICCV
work [10]. There are two main additional contributions in
this work:

1) We design the novel visibility-aware multi-view fea-
ture aggregation module, which takes into account
visibility when aggregating multi-view image fea-
tures and thus improves the reconstruction quality.

2) We create a synthetic MVS dataset using path tracing
renderer to generate accurate visibility masks, which
are not available from incomplete ground truth depth
maps captured by 3D sensors. We present an exten-
sive and comprehensive evaluation of our work on
both synthetic dataset and real dataset, and analyze
the effectiveness of each component, in particular our
novel visibility-awaremulti-view feature aggregation
module, in our network through comparison and
ablation study.

2 RELATED WORK

Multi-View Stereo Reconstruction. MVS is a classical problem
that had been extensively studied before the rise of deep
learning. A number of 3D representations are adopted,

including volumes [11], [12], [13], deformation models [14],
[15], [16], and patches [17], [18], [19], which are iteratively
updated through multi-view photo-consistency and regulari-
zation optimization. Our iterative refinement procedure
shares a similar idea with these classical solutions by updat-
ing the depth map iteratively. However, our learning-based
algorithm achieves improved robustness to input image cor-
ruption and avoids the tedious manual hyper-parameters
tuning.

Occlusion-Robust MVS. Since MVS counts on finding cor-
respondences across input images, image appearance from
occluded viewswill causemismatches and reduce the recon-
struction accuracy. Vogiatzis et al. [20] addressed this prob-
lem by designing a new metric of multi-view voting which
considers only points of local maximum and eliminates the
influence of occluded views on correspondence matching.
Further, Liu et al. [21] improved themetric by usingGaussian
filtering to counteract the effect of noise. COLMAP [22] and
some following works [23], [24] handled this problem by
dataset-wide pixel-wise view selection using patch color dis-
tribution. Our network learns to predict the pixel-wise visi-
bility for all the given source views and use the prediction in
multi-view feature aggregation, which can be trained end-
to-end and improve the robustness to occlusions.

Learning-Based MVS. Inspired by the recent success of
deep learning in image recognition tasks, researchers began
to apply learning techniques to stereo reconstruction tasks
for better patch representation and matching [25], [26], [27].
Although these methods in which only 2D networks are
used have made a great improvement on stereo tasks, it is
difficult to extend them to multi-view stereo tasks, and their
performance is limited in challenging scenes due to the lack
of contextual geometry knowledge. Concurrently, 3D cost
volume regularization approaches have been proposed [3],
[28], [29], where a 3D cost volume is built either in the camera
frustum or the scene. Next, themulti-view 2D image features
are warped in the cost volume, so that 3D CNNs can be
applied to it. The key advantage of 3D cost volume is that the
3D geometry of the scene can be captured by the network
explicitly, and the photo-metric matching can be performed
in 3D space, alleviating the influence of image distortion
caused by perspective transformation, which makes these

Fig. 1. VA-Point-MVSNet performs multi-view stereo reconstruction in a coarse-to-fine fashion, learning to predict the 3D flow of each point to the
ground truth surface based on geometry priors and 2D image appearance cues dynamically fetched from multi-view images and regress accurate
and dense point clouds iteratively.
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methods achieve better results than 2D learning-based
methods.

More recently, Luo et al. [30] proposed to use a learnable
patchwise aggregation function and apply isotropic and ani-
sotropic 3D convolutions on the 3D cost volume to improve
the matching accuracy and robustness. Yao et al. [31] pro-
posed to replace 3D CNNs with recurrent neural networks,
which leads to improved memory efficiency. Xue et al. [32]
proposed MVSCRF, where multi-scale conditional random
fields (MSCRFs) are adopted to constraint the smoothness of
depth prediction explicitly. Instead of using voxel grids, in
this paper we propose to use a point-based network for MVS
tasks to take advantage of 3D geometry learning without
being burdened by the inefficiency found in 3D CNN
computation.

Besides depth map prediction, deep learning can also be
used to refine depth maps and fuse them into a single con-
sistent reconstruction [33].

High-Resolution & Hierarchical MVS. High-resolution MVS
is critical to real applications such as robot manipulation and
augmented reality. Traditionalmethods [17], [34], [35] gener-
ate dense 3D patches by expanding from confident matching
key-points repeatedly, which is potentially time-consuming.
Thesemethods are also sensitive to noise and change of view-
point owing to the usage of hand-crafted features. Hierarchi-
calMVS generates high-resolution depthmaps in a coarse-to-
fine manner, which reduces unnecessary computation and
leads to improved efficiency. For classic methods, hierarchi-
calMI (mutual information) computation is utilized to initial-
ize and refine disparity maps [36], [37]. And learning-based
methods are proposed to predict the residual of the depth
map from warped images [38] or by constructing cascade
narrow cost volume [39], [40]. In our work, we use point
clouds as the representation of the scene, which explicitly
encodes the spatial position and relationship as important
cues for depth residual prediction and also is more flexible
for potential applications (e.g., foveated depth inference).

Point-Based 3D Learning. Recently, a new type of deep
network architecture has been proposed in [41], [42], which

is able to process point clouds directly without converting
them to volumetric grids. Compared with voxel-based
methods, this kind of architecture concentrates on the point
cloud data and saves unnecessary computation. Also, the
continuity of space is preserved during the process. While
PointNets have shown significant performance and effi-
ciency improvement in various 3D understanding tasks,
such as object classification and detection [42], it is under
exploration how this architecture can be used for MVS task,
where the 3D scene is unknown to the network. In this
paper, we propose PointFlow module, which estimates the
3D flow based on joint 2D-3D features of point hypotheses.

3 METHOD

This section describes the detailed network architecture of
VA-Point-MVSNet (Fig. 2). Our method can be divided into
two steps, coarse depth prediction, and iterative depth
refinement. First, we introduce the visibility-aware feature
aggregation (Section 3.1), which reasons about the visibility
of source images from image appearance cues and aggre-
gates multi-view image information while considering visi-
bility. The visibility-aware feature aggregation is utilized in
both coarse depth prediction and iterative depth refinement.
Second, we describe the coarse depth map prediction. Let I0
denote the reference image and Iif gNi¼1

denote a set of its
neighboring source images. Since the resolution is low, the
existing volumetric MVS method has sufficient efficiency
and can be used to predict a coarse depth map for I0
(Section 3.2). Then we describe the 2D-3D feature lifting
(Section 3.3), which associates the 2D image information with
3D geometry priors. Finally we propose our novel PointFlow
module (Section 3.4) to iteratively refine the input depth map
to higher resolutionwith improved accuracy.

3.1 Visibility-Aware Feature Aggregation

The main intuition for depth estimation is multi-view
photo-consistency, that image projections of the recon-
structed shape should be consistent across visible images.

Fig. 2. Overview of VA-Point-MVSNet architecture. The visibility-aware feature aggregation module aggregates the multi-view image appearance
cues to generate visibility-robust features for coarse depth prediction and depth refinement separately. A coarse depth map is first predicted with low
GPU memory and computation cost and then unprojected to a point cloud along with hypothesized points. For each point, the feature is fetched from
the multi-view image feature pyramid dynamically. The PointFlow module uses the feature-augmented point cloud for depth residual prediction, and
the depth map is refined iteratively along with up-sampling.
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Thus, features of multiple input views are aggregated
together for later depth prediction. Various methods for fea-
ture aggregation have been proposed, such as average [43]
and variance [4]. However, previous methods are not able
to handle invisible views and can lead to incorrect feature
matching. So we design novel feature aggregation struc-
tures that take visibility into consideration.

Let F0 denote the reference view feature, Fiði ¼ 1; . . .;NÞ
denote the source view feature, and C denote the generated
feature. The multi-view feature aggregation processes fFig
to generateC

C ¼ fðfFigÞ; i ¼ 0; . . .;N: (1)

We observe that effective multi-view feature aggregation
structures should meet the following properties:

� Arbitrary number of views. As the number of input
views can be different for training and evaluation,
the feature aggregation should be generalizable to an
arbitrary number of views.

� Unordered. 3D reconstruction is irrelevant to the
order of input views. Thus our feature aggregation
module should be invariant to the permutation of
source view feeding order.

� Differentiable. As shown in Fig. 2, the feature aggre-
gation module serves as an interface between image
feature extraction and 3D geometry inference. It has
to be differentiable such that the whole framework
can be trained end-to-end.

� Robust to invisibility. The invisible views will
obstruct the photo-consistency across views for
ground truth surface. Under the multi-view photo-
consistency assumption, depth estimation can be
wrong if we try to match the feature of invisible
views, including occlusion and out of FOV. In other
words, the feature aggregation process needs to take
each input view visibility into consideration.

Following the above philosophy, we compare feature
aggregation operations applied in recent works [4], [43] and
propose novel aggregation structures to address the visibility
issue. See Fig. 3 for visualization. The average operation
(Fig. 3a) applied in [43] meets some properties, but it
expresses no information about photo-consistency across
views and cannot handle the visibility problem. The element-
wise max-pooling operation (Fig. 3b) also does not take into
account the relationship of appearances between the reference
view and source views. The variance operation (Fig. 3c) used
in [4] measures the appearance difference across all views but
does not count for the visibility issue.

Vis-Avg. We first propose the visibility-aware average
operation (Fig. 3d) by including a network to infer the visibil-
ity for each source view.Note that pixels are all visible for the
reference view F0. Each source view Fi is concatenated with
the reference view F0 to predict the relationship separately.
The subsequent average operation combines the learned
relationship across all source views and generatesC.

Vis-Max. Similarly, a visibility-aware max-pooling opera-
tion (Fig. 3e) is designed by replacing the average opera-
tion with max-pooling. From the relationship between

Fig. 3. Different structures of multi-view feature aggregation. (a) ‘avg’: average operation applied in [43]; (b) ‘max’: element-wise max-pooling opera-
tion; (c) ‘var’: variance operation applied in [4]; (d)‘vis-avg’: our visibility-aware average operation; (e) ‘vis-max’: our visibility-aware max-pooling oper-
ation; (f)‘vis-var’: our visibility-aware variance operation. “Shared MLP” stands for multi-layer perceptron with shared weights for all input features.
Batchnorm and ReLU are used for all layers except the last layer.
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the reference view and each source view, the max-pooling
operation is able to preserve the most significant one for
further depth prediction while excluding others, which
improves the robustness to potential causes of mismatches
like occlusion and highlights.

Vis-Var. Furthermore, we propose a visibility-aware vari-
ance operation (Fig. 3f)

C ¼

PN
i¼0ðvi � Fi

2Þ
PN

i¼0 vi

�

PN
i¼0ðvi � FiÞPN

i¼0 vi

 !2

; (2)

where vi 2 0; 1½ � is the visibility mask of view i. Note that
v0 ¼ 1 as we predict the depth map in the reference view.
For source views, a neural network module is applied for
visibility prediction. The visibility module architecture is
explained in the paragraph below. Our ‘vis-var’ operation
measures the appearance variance across all visible views
explicitly.

As demonstrated in [20], for visible views, the correlation
between the reference view and source view with regard to
depth shows a significant local maximum at the correct
depth. To utilize this observation, our visibility prediction
module (Fig. 4) warps the source feature map into different
depth planes at the reference camera. The projected source
view feature is concatenated with the reference view feature
and the normalized depth edk. The visibility module takes
the compromised feature and aggregates processed depth
plane features using max-pooling operation. Note that max-
pooling operation can handle an arbitrary number of depth
planes during training and evaluation. The visibility predic-
tion module can be trained either in a supervised fashion or
an unsupervised fashion as in Section 4.1.3.

3.2 Coarse Depth Prediction

Recently, learning-based MVS [3], [4], [43] achieves state-of-
the-art performance using multi-scale 3D CNNs on cost

volume regularization. However, this step could be
extremely memory expensive as the memory requirement is
increasing cubically as the cost volume resolution grows.
Taking memory and time into consideration, we use the
recently proposedMVSNet [4] to predict a relatively low-res-
olution depthmap.

Given the images and corresponding camera parameters,
MVSNet [4] builds a 3D cost volume upon the reference cam-
era frustum. Then the initial depth map for the reference
view is regressed through multi-scale 3D CNNs and the soft
argmin [9] operation. In MVSNet, feature maps are down-
sampled to 1=4 of the original input image in each dimension
and the number of virtual depth planes is 256 for both train-
ing and evaluation. On the other hand, in our coarse depth
estimation network, the cost volume is constructed with fea-
ture maps of 1=8 the size of the reference image, containing
48 and 96 virtual depth planes for training and evaluation,
respectively. Therefore, our memory usage of this 3D feature
volume is about 1=20 of that in MVSNet. Moreover, the visi-
bility-aware feature aggregation (Section 3.1) is adopted for
the cost volume construction, where MVSNet utilizes ‘var’
which does not count for the visibility issue.

3.3 2D-3D Feature Lifting

Image Feature Pyramid. Learning-based image features have
been demonstrated to be critical to boosting up dense pixel
correspondence quality [4], [44]. In order to endow points
with a larger receptive field of contextual information at
multiple scales, we construct a 3-scale feature pyramid. 2D
convolutional networks with stride 2 are applied to down-
sample the feature map, and each last layer before the
downsampling is extracted to construct the final feature
pyramid fF1

i ;F
2
i ;F

3
i g for image Ii. Similar to common MVS

methods [4], [43], feature pyramids are shared among all
input images.

Dynamic Feature Fetching. The point feature used in our
network is compromised of the aggregated multi-view
image featureCp with the normalized 3D coordinates in the
world spaceXp. We will introduce them separately.

Image appearance features for each 3D point can be
fetched from the multi-view feature maps using a differentia-
ble unprojection given corresponding camera parameters.
Note that features F1

i ;F
2
i ;F

3
i are at different image resolu-

tions, thus the camera intrinsic matrix should be scaled at
each level of the featuremaps for correct featurewarping. The
feature of view i is generated using concatenation

Fi ¼ concat½F1
i ;F

2
i ;F

3
i �: (3)

To form the features residing at each 3D point, we aggre-
gate the multi-view features using the visibility-aware
feature aggregation module (Section 3.1) and do a concate-
nation of the aggregated feature and the normalized point
coordinates

Gp ¼ concat½Cp;Xp�: (4)

This feature-augmented point Gp is the input to our Point-
Flowmodule.

As shall be seen in the next section, since we are predict-
ing the depth residual iteratively, we update the point

Fig. 4. Network architecture of the visibility prediction module. The module
takes as input the feature map of reference view F0 and that of source view
Fi, and outputs the visibility mask for view i. “SharedMLP” stands for multi-
layer perceptron with shared weights across all pixels, such that the visibil-
ity of each pixel is predicted independently. The element-wise sigmoid
function is applied on the last layer to constrain the output in the range of
½0; 1�. Normalized depth is computed by edk ¼ dk � dmin

� �
=ðdmax � dminÞ.
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position Xp after each iteration and fetch the point feature
from the multi-view images, an operation we name as
dynamic feature fetching. Note that this step is distinct from
cost-volume-based methods, by which the fetched features
at each voxel are determined by the fixed space partition of
the scene. In contrast, our method can fetch features from
different areas of images dynamically according to the
updated point position. Therefore, we can concentrate on
the regions of interest in the feature maps, instead of treat-
ing them uniformly.

3.4 PointFlow

Depth maps generated from Section 3.2 have limited accu-
racy due to the low spatial resolution of 3D cost volume.
We propose PointFlow, our novel approach to iteratively
refine the depth map.

With known camera parameters, we first unproject the
depth map to be a 3D point cloud. For each point, we aim to
estimate its displacement to the ground truth surface along
the reference camera direction by observing its neighboring
points from all views, so as to push the points to flow to the
target surface. Next, we discuss the components of our
module in detail.

Point Hypotheses Generation. It is non-trivial to regress the
depth displacement of each point from the extracted image
feature maps. Due to perspective transformation, the spatial
context embedded in 2D feature maps cannot reflect the
proximity in 3D euclidean space.

In order to facilitate the modeling of network, we propose
to generate a sequence of point hypotheses f~pkg with different

displacements along the reference camera direction as shown
in Fig. 5. Let t denote the normalized reference camera direc-
tion, and s denote the displacement step size. For an unpro-
jected pointp, its hypothesized point set f~pkg is generated by

~pk ¼ pþ kst; k ¼ �m; . . .;m: (5)

These point hypotheses gather the necessary neighborhood
image feature information at different depths, and combine
the image information with spatial geometry relationship,
which helps the network to infer the displacement.

Edge Convolution. Classical MVS methods have demon-
strated that local neighborhood is important for robust
depth prediction. Similarly, we take the strategy of recent
work DGCNN [45] to enrich feature propagation between
neighboring points. As shown in Fig. 5, a directed graph is
constructed on the point set using k nearest neighbors
(kNN), such that local geometric structure information could
be used for the feature propagation of points.

The edge convolution is defined as

G0
p ¼ tu

q2kNNðpÞ
hQ Gp; Gp �Gq

� �
; (6)

where Gp;Gq are the input features of center point p and
neighbor point q, G0

p is the output feature of point p, hQ is a
learnable non-linear function parameterized by Q, and tu is a
channel-wise symmetric aggregation operation. There are
multiple options for the symmetry operation, including max-
pooling, average pooling, and weighted sum. We compared
max-pooling and average pooling and observed similar per-
formance after tuning hyper-parameters carefully(see Fig. 13).

Flow Prediction. The network architecture for flow predic-
tion is shown in Fig. 6. The input is a feature-augmented
point cloud, and the output is a depth residual map. We use
three EdgeConv layers to aggregate point features at differ-
ent scales of the neighborhood. Shortcut connections are
used to include all the EdgeConv outputs as local point fea-
tures. Finally, a shared MLP is used to transform the point-
wise features, which outputs a probability scalar with soft-
max among hypothesized points of each unprojected point.
The displacement of the unprojected points are predicted as
the probabilistic weighted sum of the displacement among
all point hypotheses

Ddp ¼ EðksÞ ¼
Xm

k¼�m

ks�Probð~pkÞ: (7)

Note that this operation is differentiable. The output depth
residual map is obtained by projecting the displacement back,

Fig. 5. Illustraion of point hypotheses generation and edge construction:
For each unprojected point p, the 2m point hypotheses f~pkg are gener-
ated along the reference camera direction. Directed edges are con-
structed between each hypothesized point and its kNN points for edge
convolution.

Fig. 6. Network architecture of the proposed PointFlowmodule.
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which will be added to the initial input depth map for depth
refinement.

Iterative Refinement With Upsampling. Because of the flexi-
bility of our point-based network architecture, the flow pre-
diction can be performed iteratively, which is much harder
for 3D cost-volume-based methods, because the space parti-
tioning is fixed after the construction of cost volume. For
depth map DðiÞ from coarse prediction or former residual
prediction, we can first upsample it using nearest neighbor
to higher spatial resolution and then perform the flow pre-
diction to obtain Dðiþ1Þ. Moreover, we decrease the depth
interval s between the unprojected points and hypothesized
points at each iteration, so that more accurate displacement
can be predicted by capturing more detailed features from
closer point hypotheses.

3.5 Training Loss

Similar to most deepMVS networks, we treat this problem as
a regression task and train the networkwith theL1 loss, which
measures the absolute difference between the predicted depth
map and the ground truth depth map. Losses for the initial
depthmap and iteratively refined ones are all considered

Loss ¼
Xl

i¼0

� ið Þ

s ið Þ

X

p2Pvalid

DGT pð Þ �D ið Þ pð Þ
�� ��

1

 !
; (8)

wherePvalid represents the valid ground truth pixel set and l
is the iteration number. The weight � ið Þ is set to 1.0 in train-
ing for all the iterations.

4 EXPERIMENTS

We now present an extensive and comprehensive evaluation
on both synthetic and real data. Due to the fact that the depth
captured for real data is usually not complete and accurate,
which is indispensable for visibility mask computation, we

first generate a small synthetic dataset to justify the effective-
ness of our visibility-aware multi-view feature aggregation
structures (Section 4.1). Second, we evaluate our VA-Point-
MVSNet on the DTU benchmark [8] (Section 4.2). Then we
provide detailed experiments to analyze our network design
(Section 4.3). At last we show generalizability and potential
applications of our network (Sections 4.4 and 4.5).

4.1 Experiments on Synthetic Data

4.1.1 Dataset Generation

We generate a synthetic dataset as shown in Fig. 7 using the
YCB object dataset [46]. We first generate physically-plausi-
ble densely cluttered layouts for multiple objects using the
physics simulator MuJoCo [47]. Then each scene is rendered
with 9 given camera configurations. We use path tracing
renderer for realistic looking. The resolution of rendered
images is 512� 512. The intensities and positions of lights
are set randomly for each scene. We create 400 training
scenes and 100 testing scenes. The networks are trained
with the 3 views with red or blue border in Fig. 7 and tested
with source views chosen from the 8 views that can be novel
to the networks. Since the visibility only depends on the
local photo-consistency, we assume the networks are able to
learn to infer the visibility from the local image information
even for views that are unseen in the training set.

4.1.2 Comparison of Multi-View Aggregation Structures

All the 6 structures in Section 3.1 are trained and evaluated
on the synthetic dataset. The coarse prediction network is
trained alone for 40 epochs, and then, the model is trained
end-to-end for another 176 epochs. The batch size is set as 4.
The number of views is set as 3 and 7 for training and evalua-
tion, respectively. Percentage of inliers of depth map (Dd <
d;Dd < 3d) are used as evaluation metrics and comparison
result is shown in Table 1. dc ¼ 19:15mm; df ¼ 0:375 � dc ¼

TABLE 1
Comparison Results of Predicted Depth Accuracy for Different

Multi-View Feature Aggregation Structures

Coarse depth map

structure < dc < 3dc
Invis
< dc

Invis
< 3dc

Fully-vis
< dc

Fully-vis
< 3dc

avg 0.8931 0.9842 0.8226 0.9652 0.9170 0.9907
max 0.9347 0.9887 0.8744 0.9725 0.9552 0.9943
var 0.9187 0.9862 0.8099 0.9507 0.9499 0.9964

vis-avg 0.9478 0.9917 0.9032 0.9817 0.9630 0.9951
vis-max 0.9462 0.9908 0.9016 0.9806 0.9615 0.9943
vis-var 0.9242 0.9878 0.8315 0.9577 0.9510 0.9965

Refined depth map

structure < df < 3df
Invis
< df

Invis
< 3df

Fully-vis
< df

Fully-vis
< 3df

avg 0.7847 0.9485 0.8107 0.9353 0.9130 0.9866
max 0.8863 0.9652 0.8396 0.9443 0.9553 0.9913
var 0.8679 0.9636 0.8054 0.9384 0.9524 0.9926

vis-avg 0.9035 0.9706 0.8636 0.9518 0.9581 0.9902
vis-max 0.8982 0.9721 0.8643 0.9493 0.9602 0.9902
vis-var 0.8899 0.9665 0.8407 0.9391 0.9529 0.9908

Inlier ratios are used as metrics. “Invis” stands for areas in the reference view
that are invisible in at least one source view, and “Fully-vis” stands for areas
that are visible in all source views. dc ¼ 19:15mm; df ¼ 7:18mm.

Fig. 7. Illustration of our synthetic dataset: rendered images for 9 known
camera configurations, image with red border is the reference view,
images with blue border are the source views used for training.
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7:18mm for coarse depthmap and refined depthmap respec-
tively, which are the depth intervals between virtual planes
or point hypotheses. The hyper-parameter 0.375 is chosen
empirically based on the experiments on the synthetic dataset
and DTU dataset. Our visibility-aware multi-view feature
aggregation module can improve the depth prediction accu-
racy significantly, especially in areas that are invisible in
source views, because by taking into account the appearance
difference between the reference view and each source view,
our module can aggregate visible multi-view appearance
effectivelywhile excludingmisguiding invisible views.

4.1.3 Supervised Learning Versus Unsupervised

Learning

In our ‘vis-var’ structure, we predict the visibility mask of
each source view explicitly. Given the complete and accurate
depth maps generated from the synthetic data, we obtain the
ground truth visibility masks through cross-check (Fig. 8).
Our visibility prediction is supervised by the ground truth
mask. An L1 loss term for visibility prediction is added to
our depth prediction loss (8) as

Lvis ¼ �vis

X

p2Pvalid

VGTðpÞ �VpredðpÞ
�� ��

1
; (9)

whereVGT is the ground truth visibility mask which equals
1 at visible pixels and 0 at invisible ones. The weight �vis is
set to 0.01 in training.

Table 2 compares the predicted depth accuracy of super-
vised learning with unsupervised learning. Furthermore,
we add the result using ground truth visibility masks for
training and evaluation to validate the effectiveness of visi-
bility masks. Although unsupervised learning achieves bet-
ter overall prediction accuracy, supervision on visibility
mask improves the prediction accuracy in invisible areas.
Moreover, the result of ground truth masks achieves the
best accuracy for invisible regions, which demonstrates
accurate visibility masks are crucial for MVS reconstruction.

4.1.4 Ablation Study on Visibility Prediction Module

In order to help the network distinguish the spatial order of
virtual planes before max-pooling, we concatenate the nor-
malized depth of each plane with warped features. Table 3
shows the ablation study result, which demonstrates the
effectiveness of introducing depth information for visibility
prediction.

4.2 Experiments on DTU Benchmark

4.2.1 Dataset Introduction

The DTU dataset [8] is a large-scale MVS dataset, which
consists of 124 different scenes scanned in 7 different light-
ing conditions at 49 or 64 positions. The data for each scan
is composed of an RGB image and corresponding camera
parameters. The dataset is split into training, validation,
and evaluation sets following MVSNet [4].1

4.2.2 Implementation Details

Training. We train VA-Point-MVSNet on the DTU training
dataset. For data pre-processing, we follow MVSNet [4] to
generate depth maps from the given ground truth point
clouds. During training, we set input image resolution to
640� 512, and number of views toN ¼ 3. The input view set
is chosenwith the same view selection strategy as inMVSNet.
For coarse prediction, we construct a 3D cost volume with
D ¼ 48 virtual depth planes, which are uniformly sampled
from 425 mm to 921 mm. For the depth refinement step, we
set flow iteration number l ¼ 2, with depth intervals being
8 mm and 4 mm, respectively. The number of nearest neigh-
bor points is 16. We use RMSProp [48] of initial learning rate
0.0005 which is decreased by 0.9 for every 2 epochs. The
coarse prediction network is trained alone for 4 epochs, and
then, the model is trained end-to-end for another 20 epochs.
Batch size is set to 4 on 4NVIDIAGTX 1080Ti graphics cards.

Evaluation. We use D ¼ 96 depth layers for initial depth
prediction and set flow iterations l ¼ 3 for depth refinement.
We predict the reference view depth map for each N ¼ 5

view set. Then we fuse all depth maps to point clouds using
the same post-processing provided by [4]. The image reso-
lution for evaluation is 1280� 960.

Implementation of kNN. Naı̈ve kNN of point cloud of N
points can be memory-consuming with OðN2Þ complexity.
However, we notice the kNN of a point tend to come from
its nearby 2D pixels in the depth map. By leveraging this
fact and taking the hypothesized points into consideration,

Fig. 8. Ground truth visibility mask: (a) reference view; (b) source view;
(c) ground truth visibility mask computed by checking depth consistency
between (a) and (b), green represents visible and red represents
occluded.

TABLE 2
Comparison Results of Supervised Learning and Unsupervised

Learning of Our ‘vis-var’ Structure

< d < 3d
Invis
< d

Invis
< 3d

Fully-vis
< d

Fully-vis
< 3d

supervised 0.8899 0.9665 0.8407 0.9391 0.9529 0.9908
unsupervised 0.8930 0.9661 0.8397 0.9378 0.9534 0.9901
ground truth 0.9037 0.9738 0.8560 0.9471 0.9604 0.9924

d ¼ 7:18mm:

TABLE 3
Ablation Study on Introduction of Normalized
Depth in Our Visibility Prediction Module

< d < 3d Invis < d Invis < 3d Fully-vis < d Fully-vis < 3d

w/ depth 0.8899 0.9665 0.8407 0.9391 0.9529 0.9908

w/o depth 0.8856 0.9628 0.8307 0.9333 0.9488 0.9901

d ¼ 7:18mm:

1. Validation set: 18 scans {3, 5, 17, 21, 28, 35, 37, 38, 40, 43, 56, 59, 66,
67, 82, 86, 106, 117}. Evaluation set: 22 scans {1, 4, 9, 10, 11, 12, 13, 15, 23,
24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110, 114, 118}. Training set: the other
79 scans.
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we restrict the kNN search of each point from the whole
point cloud to its k� k� ð2mþ 1Þ neighborhood. Further-
more, we parallel the distance computation by using a fixed
weight 3D kernel.

Post-Processing. Similar to MVSNet [4], our post-process-
ing is composed of three steps: photo-metric filtering, geo-
metric consistency filtering, and depth fusion. For photo-
metric filtering, we use the predicted probability of the most
likely depth layer as the confidence metric and filter out
points whose confidence is below a threshold. The filtering
threshold is set to 0.2 and 0.1 for coarse and our PointFlow
stage, respectively. For geometric consistency, we calculate
the discrepancy of predicted depths among multi-view pre-
dictions through reverse-projection. Points with discrepancy
larger than 0.12mm are discarded. For depth fusion, we take
the average value of all reprojected depths of each point in
visible views as the final depth prediction and produce the
3D point cloud.

4.2.3 Benchmarking

We evaluate the proposed method on the DTU evaluation
dataset. Quantitative results are shown in Table 4 and Fig. 9,

where the accuracy and completeness are computed using
the official code from the DTU dataset, and the f-score is cal-
culated as mentioned in [9] as the measure of the overall per-
formance of accuracy and completeness. While Gipuma [49]
performs the best in terms of accuracy, our VA-Point-
MVSNet outperforms start-of-the-art in both completeness
and overall quality, and our visibility-aware feature aggrega-
tion can improve the reconstruction completeness signifi-
cantly. Qualitative results are shown in Fig. 10. VA-Point-
MVSNet generates a more detailed point cloud compared
with MVSNet. Especially in those edgy areas, our method
can capture high-frequency geometric features.

4.3 Network Design Analysis

4.3.1 PointFlow Iteration

Because of the continuity and flexibility of point representa-
tion, the refinement and densification can be performed iter-
atively on former predictions to give denser and more
accurate predictions. While the model is trained using l ¼ 2

TABLE 4
Quantitative Results of Reconstruction Quality on
the DTU Evaluation Dataset (Lower is Better)

Acc. (mm) Comp. (mm) Overall (mm)

Camp [50] 0.835 0.554 0.695
Furu [17] 0.613 0.941 0.777
Tola [51] 0.342 1.190 0.766
Gipuma [49] 0.283 0.873 0.578
SurfaceNet [3] 0.450 1.040 0.745
MVSNet [4] 0.396 0.527 0.462
R-MVSNet [31] 0.383 0.452 0.417

Ours-‘var’ 0.361 0.421 0.391
Ours-‘vis-var’ 0.379 0.374 0.377
Ours-‘vis-avg’ 0.475 0.467 0.471
Ours-‘vis-max’ 0.359 0.358 0.359

Fig. 9. F-score, accuracy, and completeness of different distance thresh-
olds on the DTU evaluation dataset (higher is better). For a fair compari-
son, we upsample the depth map predicted by MVSNet to the same
resolution as our method before depth fusion (288� 216 to 640� 480).
The reconstruction results of Gipuma [49] and SurfaceNet [3] are not
publicly available.

Fig. 10. Qualitative results of Scan 9 of DTU dataset. Top: Whole point cloud. Bottom: Visualization of normals in zoomed local area. Our VA-Point-
MVSNet generates detailed point clouds with more high-frequency components than MVSNet. For a fair comparison, the depth maps predicted by
MVSNet are interpolated to the same resolution as our method.
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iterations, we test the model using iteration ranging from 0
to 3. For each iteration, we upsample the point cloud and
decrease the depth interval of point hypotheses simulta-
neously, enabling the network to capture more detailed fea-
tures. We compare the reconstruction quality, depth map
resolution, GPU memory consumption and runtime at dif-
ferent iterations, along with performance reported by state-
of-the-art methods in Table 5. We use ‘var’ feature aggrega-
tion structure for the comparison. The reconstruction qual-
ity improves significantly with multiple iterations, which
verifies the effectiveness of our method. Note that our
method already outperforms the state-of-the-art after the
second iteration. Qualitative results are shown in Fig. 11.

4.3.2 Feature Aggregation Structure

In this section, we validate the effectiveness of different
multi-view feature aggregation structures with regard to the
number of views. All the structures can process an arbitrary
number of input views. Although the model is trained using
N ¼ 3, we can evaluate the model using either N ¼ 2; 3; 5; 7
on the DTU evaluation set as shown in Fig. 12.

When the number of input views increases from 2 to 5, the
reconstruction qualities of all the structures improve, which
is consistent with common knowledge of MVS reconstruc-
tion. However, when the number of input views increases
from 5 to 7, the qualities of ‘var’ and ‘vis-var’ drop, which
demonstrates that image information from unideal views
may lead to corrupted reconstruction if the visibility issue is
not considered. The qualities of ‘vis-avg’ and ‘vis-max’ keep
improving forN ¼ 7, validating the effectiveness of our visi-
bility-awaremulti-view feature aggregation structures.

4.3.3 Ablation Study

In this section, we provide ablation experiments and quan-
titative analysis to evaluate the strengths and limitations
of the key components in our framework. For all the fol-
lowing studies, experiments are performed and evaluated
on the DTU dataset, and both accuracy and completeness are
used to measure the reconstruction quality. We set the iter-
ation number to l ¼ 2, use ‘var’ feature aggregation struc-
ture, and all other experiment settings are the same as
Section 4.2.3.

TABLE 5
Comparison Result at Different Flow Iterations Measured by Reconstruction Quality

and Depth Map Resolution on the DTU Evaluation Set

Iter. Acc. (mm) Comp. (mm) Overall (mm) 0.5mm f-score Depth Map Res. Depth Interval (mm) GPUMem. (MB) Runtime (s)

- 0.693 0.758 0.726 47.95 160�120 5.30 7219 0.34
1 0.674 0.750 0.712 48.63 160�120 5.30 7221 0.61
2 0.448 0.487 0.468 76.08 320�240 4.00 7235 1.14
3 0.361 0.421 0.391 84.27 640�480 0.80 8731 3.35

MVSNet[4] 0.456 0.646 0.551 71.60 288�216 2.65 10805 1.05

Due to the GPU memory limitation, we decrease the resolution of MVSNet [4] to 1152� 864� 192.

Fig. 11. Qualitative results at different flow iterations. Top: Whole point cloud. Bottom: Zoomed local area. The generated point cloud becomes
denser after each iteration, and more geometry details can be captured.
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Edge Convolution. By replacing the edge convolution in
Equation (6) with geometry-unaware feature aggregation

G0
p ¼ tu

q2kNNðpÞ
hQ Gq

� �
; (10)

where the features of neighbor points are treated equally
with no regard to their geometric relationship to the cen-
troid point, the reconstruction quality drops significantly
as shown in Table 6, which illustrates the importance of
local neighborhood relationship information (captured by
Gp �Gq) for feature aggregation.

euclidean Nearest Neighbor. In this part, we construct the
directed graph using points belonging to adjacent pixels in
the reference image, instead of searching the kNN points,
which leads to decreased reconstruction quality. The reason
is that, for images of 3D scenes, near-by pixels may corre-
spond to distant objects due to occlusion. Therefore, using
neighboring points in the image space may aggregate irrele-
vant features for depth residual prediction, leading to
descending performance.

Feature Pyramid. In this part, the point cloud only fetches
features from the last layer of the feature map, instead of
from thewhole feature pyramid. As shown in Table 6, in con-
trast to the relatively stable performance for changing edge
convolution strategies as discussed above, the drop will be
significant in the absence of the other two components,
which demonstrates the effectiveness of the leveraging con-
text information at different scales for feature fetching.

Point Hypotheses. We choose m ¼ 2; 3 for the training and
m ¼ 1; 2; 3 for the test, and conduct the evaluation on the
DTU evaluation set [8]. Table 7 shows the comparison result.
Our proposed algorithm achieves the best reconstruction
quality in terms of completeness and overall quality when
the number of point hypotheses is the same as training.

We also directly regress the depth residual without the
facilitation of point hypotheses and the comparison result is
shown in Table 8. Although the direct regression is also able
to improve the reconstruction quality after each iteration, it
is still worse than the flow prediction facilitated by point
hypotheses, which shows the necessity of neighborhood
image feature information to accurate flow prediction.

4.3.4 Reliance on Initial Depth Maps

Our method uses state-of-the-art approaches to get a coarse
depth map prediction, which is then iteratively refined by
predicting depth residuals. We find that our approach is
robust to noisy initial depth estimation in a certain range
through the following experiments. We add Gaussian noise
of different scales to the initial depth map and evaluate the
reconstruction error. Fig. 13 shows that the error increases
slowly and is smaller than MVSNet within 6 mm noise.

Fig. 12. Influence of number of input views on reconstruction quality on
the DTU evaluation set for different multi-view aggregation structures.
‘vis-avg’ and ‘vis-max’ fail to predict reasonable depth whenN ¼ 2.

TABLE 6
Ablation Study on Network Architectures on the DTU

Evaluation Dataset, Which Demonstrates the
Effectiveness of Different Components

EDGE EUCNN PYR Acc. (mm) Comp. (mm)

@ @ @ 0.448 0.487
@ @ � 0.455 0.489
@ � @ 0.455 0.492
� @ @ 0.501 0.518
@ � � 0.475 0.504
� @ � 0.574 0.565
� � @ 0.529 0.532

EDGE denotes edge convolution, EUCNN denotes grouping by nearest neigh-
bor points in euclidean distance, and PYR denotes the usage of image feature
pyramid.

TABLE 7
Ablation Study of Different Number of Point
Hypothesesm on the DTU Evaluation Set [8]

Point Hypotheses Acc.(mm) Comp.(mm) Overall(mm)

1 0.442 0.515 0.479
2 0.448 0.487 0.468
3 0.468 0.499 0.484
3 (m=3) 0.453 0.497 0.475

(The model is trained withm ¼ 2 except the last one.)

TABLE 8
Comparison Result of Direct Regression and Point

Hypotheses on the DTU Evaluation Set [8]

Overall error (mm) Direct regression Ours

Iter0 0.751 0.726
Iter1 0.756 0.712
Iter2 0.501 0.468
Iter3 0.464 0.391

Fig. 13. Reconstruction error w.r.t. initial depth map noise. AVG denotes
average pooling in EdgeConv, MAX denotes max-pooling in EdgeConv.
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4.3.5 Comparison to Point Cloud Upsampling

Our work can also be considered as a data-driven point cloud
upsampling method with assisting information from multi-
view images. Therefore, we compare our method with PU-
Net [52], where multi-level features are extracted from the
coarse point cloud to reconstruct an upsampled point cloud.

We use the same coarse depth prediction network as in
our model, and train PU-Net to upsample the coarse point
cloud.We use the same joint loss as mentioned in their paper,
which consists of two losses—the Earth Mover’s Distance
(EMD) [53] loss between the predictedpoint cloud and the ref-
erence ground truth point cloud anda repulsion loss. For eval-
uation, the PU-Net is applied on the coarse predicted point
cloud twice to generate a denser point cloud with 16 times
more points. Quantitative result is shown in Table 9. Our VA-
Point-MVSNet can generate a more accurate point cloud from
the coarse one by inducing flow for each point from observa-
tion of context information inmulti-view images.

4.4 Generalizability of the PointFlowModule

In order to evaluate the generalizability of our PointFlow
module, we test it on the Tanks and Temples intermediate
dataset [9], which is a large outdoor dataset captured in

complex environments. We first generate coarse depth maps
using MVSNet [4], and then apply our PointFlow module to
refine them. The f-score increases from 43.48 to 48.70 (larger is
better) and the rank rises from 45.75 to 32.25 (lower is better,
date: Jan. 30, 2020). Table 10 shows the results of published
learning-based approaches. Reconstructed point clouds are
shown in Fig. 14.

4.5 Foveated Depth Inference

The point-based network architecture enables us to pro-
cess an arbitrary number of points. Therefore, instead of
upsampling and refining the whole depth map, we can
choose to only infer the depth in the ROI based on the
input image or the predicted coarse depth map. As shown

TABLE 9
Comparison of Reconstruction Quality on the
DTU Evaluation Dataset With PU-Net [52]

Acc. (mm) Comp. (mm) Overall (mm)

PU-Net [52] 1.220 0.667 0.943
Ours 0.361 0.421 0.391

TABLE 10
Quantitative Results of Published Learning-Based Methods on Tanks and Temples Benchmark [9]

Method Rank Mean Family Francis Horse Lighthouse M60 Panther Playground Train

P-MVSNet [30] 12.38 55.62 70.04 44.64 40.22 65.20 55.08 55.17 60.37 54.29
VA-Point-MVSNet(Ours) 32.25 48.70 61.95 43.73 34.45 50.01 52.67 49.71 52.29 44.75
R-MVSNet [31] 36.00 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
MVSCRF [32] 37.12 45.73 59.83 30.60 29.93 51.15 50.61 51.45 52.60 39.68
MVSNet [4] 45.75 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69

Fig. 14. Reconstruction results on the intermediate set of Tanks and Temples [9].

Fig. 15. Illustration of foveated depth inference with our proposed
method. Different point density levels are denoted by different colors:
Gray for sparsest, Brown for intermediate, Green for densest.
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in Fig. 15, we generate a point cloud of three different
density levels by only upsampling and refining the ROI in
the previous stage.

5 CONCLUSION

We present a novel visibility-aware point-based architecture
for high-resolution multi-view stereo reconstruction. Instead
of building a high-resolution cost volume, our proposed VA-
Point-MVSNet processes the scene as a point cloud directly.
The PointFlow module concentrates on the neighborhood of
the target surface and refines the predicted depth map itera-
tively, which therefore achieves improved time and memory
efficiency. Experiments on synthetic data and real data
demonstrate that the visibility-aware multi-view feature
aggregation module can improve the reconstruction quality
significantly by considering visibility, and VA-Point-MVSNet
is able to produce high-quality reconstruction point clouds on
benchmarks. Additionally, VA-Point-MVSNet is applicable
to foveated depth inference to greatly reducing unnecessary
computation, which cannot be easily implemented for cost-
volume-basedmethods.
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