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Abstract. The recognition problem for visibility graphs of simple polygons is not 

known to be in NP, nor is it known to be NP-hard. It is, however, known to be in 

PSPACE. Further, every such visibility graph can be dismantled as a sequence of 

visibility graphs of convex fans. 
Any nondegenerate configuration of n points can be associated with a maximal 

chain in the weak Bruhat order of the symmetric group S n. The visibility graph of 

any simple polygon defined on this configuration is completely determined by this 
maximal chain via a one-to-one correspondence between maximal chains and 

balanced tableaux of a certain shape. 

In the case of staircase polygons (special convex fans), we define a class of 

graphs called persistent graphs and show that the visibility graph of a staircase 

polygon is persistent. We then describe a polynomial-time algorithm that recovers 
a representative maximal chain in the weak Bruhat order from a given persistent 

graph, thus characterizing the class of persistent graphs. 
The question of recovering a staircase polygon from a given persistent graph, 

via a maximal chain, is studied in the companion paper [4]. The overall goal of both 

papers is to offer a characterization of visibility graphs of convex fans. 
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1. Introduction 

A polygon P is a sequence P0, . - . ,  Pn-1 of n distinct points in the plane, together 
with the open line segments PiPi§ 1 mod n joining points in P. The polygon is called 
simple if no two of the segments intersect. Two vertices of the polygon are called 
internally visible if the closed line segment between them is either an edge of the 
polygon or lies entirely in the interior of the polygon. The internal visibility graph of 
a simple polygon is the graph whose vertices correspond to the vertices of the 
polygon and whose edges correspond to internally visible pairs of vertices in the 
polygon. 

The problem of characterizing internal visibility graphs of arbitrary simple poly- 

gons, hereafter called visibility graphs, and the related algorithmic problem of 
efficiently recognizing such graphs have remained important open problems in 
computational geometry [13], [16], [21]. The recognition problem for visibility graphs 
of simple polygons: to decide whether a given graph is the visibility graph of some 
simple polygon, is known to be in P S P A C E  [14]. However, at the time of writing, the 
problem is not known to be NP, nor is it known to be NP-hard. From the 
characterization standpoint, Ghosh [16] obtained four necessary conditions for 
visibility graphs of simple polygons but it has been shown that they are not sufficient 
even for triconnected graphs [6]. Further necessary conditions were developed by 

Coullard and Lubiw [9] but they are not sufficient. Abello et al. [6] strengthened 
these results by showing they are not sufficient, even for triconnected graphs, and in 
the case of the conditions of [9], even for planar graphs. A stronger set of necessary 
conditions is offered in [7]. For every graph satisfying these conditions a uniform 
rank 3 oriented matroid is constructed. When this matroid is coordinatizable a 
simple polygon can be recovered whose visibility graph is isomorphic to the given 
graph. The only complete characterizations obtained to date have been for internal 
visibility graphs of spiral polygons [15]. Positive results have also been obtained by 
extending the notion of visibility to other geometric objects such as edges in 
orthogonal polygons [21] and collections of vertical line segments in the plane [23], 
[24]. 

In this paper and its companion, we study visibility graphs of staircase polygons 
[21] also called orthogonal convex fans. This class of graphs is a proper subclass of 
the class of persistent graphs which were introduced originally in [3]. The main 
contribution of this paper is an efficient algorithmic characterization of persistent 
graphs in terms of balanced tableaux of a certain shape. Our characterization offers 
a novel graph theoretical partition of the set of maximal chains in the weak Bruhat 
order of the symmetric group. This is a coarser partition than the one induced by 
semispace equivalence [18] which in turn is the same as the one derived from the 
closure operator defined in [2]. In the sequel paper [4] we study the geometric 
realization of persistent graphs as visibility graphs of convex fans. 

1.1. Overview 

For any polygon whose n vertices constitute a nondegenerate configuration of 
points, the global ordering on the pairwise slopes of the vertices may be represented 
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combinatorially by a balanced tableau of shape n - 1 . . . . .  1. This is done by relating 

the circular sequences of Goodman and Pollack [11], [17], []8] to maximal chains in 

the weak Bruhat order of  the symmetric group [1], [2], [12]. A geometric interpreta- 

tion of a one-to-one correspondence between these chains and balanced tableaux 

(due to Edelman and Greene [12]) gives the desired combinatorial representation 

(Section 3). 

The visibility graph of any  simple polygon defined on a nondegenerate configura- 

tion of points in the plane can be completely determined from the combinatorial 

representation of the underlying configuration (see [5] and [20] for this and other 

related results). For the staircase polygons cohsidered here, the mapping that 

produces the visibility graph from the underlying balanced tableau has a particularly 

simple structure. The obtained graph satisfies a special condition called persistence 

(Sections 2 and 3). From it several key combinatorial properties follow, which are 

then used to exhibit an algorithm that generates any given persistent graph from the 

complete graph (Section 4). This algorithm is then used as a guide for a second 

algorithm that reconstructs, from a given persistent graph, a representative balanced 

tableau, in polynomial time (Section 5). Therefore, balanced tableaux, and their 

corresponding maximal chains in the weak Bruhat order, are partitioned into 

equivalence classes by persistent graphs. This is a combinatorial view of one of the 

main contributions of this paper. If each such equivalence class contains a realizable 

chain, then persistent graphs are precisely visibility graphs of convex fans. It is 

precisely this geometric interpretation what constitutes the main contribution of the 

sequel paper [4]. 

2. Definitions 

A monotone, decreasing sequence of a finite number of alternating horizontal a n d  

vertical line segments that connects a point p on the positive y-axis to a point q on 

the positive x-axis is called a staircase path. A staircase polygon (orthogonal convex 

fan) is a staircase path together with the segments from the origin to p and the 

origin to q. A staircase path with n -  1 vertical or horizontal line segments 

determines a staircase polygon with 2n vertices which we call a staircase polygon of 

order n. Suppose u 0 is the origin, u 1, u z . . . . .  un-1 are the points from left to right 

where the staircase path changes from horizontal to vertical. Let v I = p,  vn = q and 

suppose the points where the path changes from a vertical segment to a horizontal 

one are labeled v 2, v 3 . . . . .  v~_ 1. 
The vertex visibility graph or simply the visibility graph F e = (V, E)  associated 

with a staircase polygon P of order n is constructed as follows. Put V = 

{v 1 . . . . .  v,, u 0, u I . . . . .  u,_l}. For two distinct elements u, v ~ V, (u, v) E E if and 

only if the line segment connecting the corresponding points in the plane is either a 

segment of P itself, or lies completely in the interior of the closed region deter- 

mined by P. It is clear that each of the vertices u i, 1 _< i < n - 1, in F e is of degree 

3 and that u i is adjacent to precisely ui, ui+ l, and u 0, for 1 < i _< n - 1. Also u 0 is 
adjacent to all the remaining vertices. Thus the visibility graph is actually determined 

by the subgraph induced by the vertices v I . . . . .  v,. This induced subgraph is called 
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the core of  Fp and is denoted by ~e.  For  a staircase polygon P, or  order  n, the core 

~'e is a connected graph on n vertices, and since (Vl, v 2) . . . . .  (vn_ a, v~) are all edges 

in F e it has a Hamil tonian path. The problem of studying the combinatorial  

propert ies  of F e is reduced to studying those of ~e.  

Given a graph G, let M(G) denote the adjacency of G. Since M(G) is symmetric 

with zero diagonal, to simplify our exposition in what follows, we only consider the 

array consisting of  the subdiagonal entries of the adjacency matrix and refer to it as 

the matr ix  of G. It is convenient to identify the graph G with its matrix and drop the 

subscript G when the context makes it clear which object is being referred to. In this 

setting the rows and columns of M are indexed as 2 , . . . ,  n from top to bot tom and 

1 . . . . .  n - 1 from left to right, respectively. M(i, j)  refers to the entry on row i and 

column j of M with j < i. The entries M(i, i - 1) for i = 2, 3 . . . . .  n are one. 

2.1. Weak Bruhat Order 

For  n > 2, let S n denote the symmetric group of all permutat ions of the set 

{1 . . . . .  n}. As a Coxeter group, Sn is endowed with a natural  partial order  called the 

weak Bruhat  order  [1], [2], [12]. The weak Bruhat order  is generated by the following 

immediate  successor relation. A permutat ion tr is an immediate successor of a 

permutat ion r if and only if ~" can be obtained from or by interchanging a pair of 

noninverted elements of tr. For example, tr = 2413 has two immediate successors, 

4213 and 2431. The partial  order  < wB is the transitive closure of  this relation. 

(S~, < wn) is a ranked poset  where the rank of a permutat ion is simply its inversion 

number  i(tT) = I{(cri, o)): i < j  and O" i > O)}[. 

Now, let s i denote  the adjacent transposition of the letters in posit ions i and 

i + 1 of a permutat ion in S n. Given a permutat ion ~ ~ S, ,  trs i is the permutat ion 

obtained by switching the symbols ~ri, ~ri+ 1 of t~. Every permutat ion ~r ~ S n is 

representable as a word over the alphabet  {s 1 . . . . .  s n} where the juxtaposition of 

letters serves to express tr as a product  of the si's , the multiplications being 

performed from left to right. Among these representations,  the words that involve 

exactly i ( t r )  transpositions are called reduced words for ~.  Reduced words that 
/ \ 

the maximal e lement  n n -  1 ... 2 1 have length N =  [ n l  and deter- represent  
\ 

mine maximal  chains in (S,,, < w,) in the interval from the identity permutat ion to 

its reverse. 

Z Z  Balanced Tableaux 

Let A = ( h  1 > h 2 ~ . - .  h k > 0)  be a part i t ion of N. The Ferrers' d iagram of h is a 

figure obtained from k left justified columns of squares of  lengths h 1 . . . . .  h k. The 

special parti t ions of  the form (n - 1, n - 2 . . . . .  1) give rise to special diagrams of a 

staircase shape that  we refer  to as SS(n). A tableau of shape A is a filling of the cells 

of the Ferrers '  diagram of  A with the distinct integers from the set {1, 2 . . . . .  N}. 

Consider  a tableau T of staircase shape SS(n) filled with distinct integers from 
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. . . . .  ( ~ ) .  A pair of cells T( i , j )and  T(j,k),  k < j  < i ,  are called mates with 1 
\ - - ]  

respect to the cell T(i, k). A tableau T is said to be balanced if for any three entries 

T(i, j), T(j, k), T(i, k) we have either T(i, j) < T(i, k) < T(j, k) or T(i, j) > T(i, k) 

> T(j, k). In particular, mate ceils in a balanced tableau T cannot have consecutive 

values. The tableau in Fig. 1 is balanced. 

Balanced tableaux of shape SS(n) may be thought of as an alternative encoding 

for maximal chains in the weak Bruhat  order (Sn, < WB). The balanced tableau T 

corresponding to a maximal chain can be constructed by setting T(i, j ) =  l if in 

going from the ( l -  1)th permutat ion in the chain to the l th permutat ion the 

symbols that are interchanged are i and j,  j < i. Edelman and Greene [12] proved 

that this mapping defines a one-to-one correspondence between balanced tableaux 

of shape SS(n) and maximal chains in (Sn, < wB). 

2.3. Skeletons of Balance Tableaux 

Given a balanced tableau T, the hook belonging to a cell T(i, j) is the collection of 

all cells which lie above it in the same column and lie weakly to its right in its row. 

Given a balanced tableau T of shape SS(n) we can construct a binary array M of 

shape SS(n) by putting M( i , j ) =  1 if and only if T(i , j)  is larger than all the 

elements that lie above it in the same column in its hook. Note that by the balance 

property this means that T(i, j) is smaller than all the elements that lie to its right in 

its hook. The resulting array is called the skeleton of the balanced tableau. Figure 1 

shows an example of a balanced tableau and its skeleton. Skeletons of balanced 

tableaux when considered as graphs turn out to belong to a special class of graphs, 

introduced in [3], called persistent graphs. 

2. 4. Persistent Graphs 

Let G be a graph and let M be its adjacency matrix. A maximal length sequence of 

consecutive zeros in a row of M is called a maximal horizontal  interval of zeros. 

Similarly, a maximal length sequence of consecutive zeros in a column of M is called 

a maximal  vertical interval of zeros. A matrix M with M(i, i - 1) = 1 is defined to 

1 1 

2 2 

1 1 3 3 

1 1 1 4 4 27 28 4 

1 0 0 1 5 5 7 8 6 5 

1 0 0 1 1 6 9 17 18 16 26 6 

1 0 0 0 0 117  10 13 14 12 15 11'1 7 
1 0 0 1 0 11 1 8 19 21 22 20 24 23[ 25]8  

Fig. 1. The skeleton of a balanced tableau. 
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be persistent if, for every triple k < j < i such that M(i,  j )  = 1 and M(i,  y) = 0 for 

every y in the range k < y < j, the following conditions hold: 

�9 M ( x , y ) = O f o r j < x < i , k < y < j .  

�9 M ( j , k )  = 1 if M ( i , k )  = 1. 

The matrix in Fig. 1 is a persistent matrix. We say that G is a persistent graph if an 

ordering of the vertices exists such that the adjacency matrix of G is persistent with 
respect to the ordering. 

Intuitively, in a persistent matrix, maximal horizontal intervals of zeros "propa- 

gate upward�9 It can be shown that the above definition also implies that maximal 

vertical intervals of zeros "propagate to the right" as summarized in the following 

proposition�9 

Proposition 2.1. I f  M is a persistent matrix, then for every triple k < j < i such that 

M(j ,  k )  = 1 and M(x ,  k)  = 0 for every x in the range j < x < i: 

�9 M(x ,  y)  = 0 for every y in the range j < x < i, k < y < j. 

�9 M ( i , j )  = 1 i f M ( i , k )  = 1. 

The propagation of maximal horizontal intervals of zeros is called horizontal 

persistence and the propagation of maximal vertical intervals of zeros is called 

vertical persistence. The two notions can be shown to be equivalent and we refer to 

them interchangeably as the persistence conditions when the context makes it clear 

which of the two is being used. 

3. Visibility Graphs of Staircase Polygons are Persistent 

In this section we show that visibility graphs of staircase polygons are persistent. We 

begin by showing that to any staircase polygon, we can associate a balanced tableau 

whose skeleton is identical to the core graph ~e of the polygon�9 
Let C be a nondegenerate configuration of n points in the plane�9 Number the 

points from 1 through n in increasing order of their x-coordinates. The points in P 
[ \ 

�9 [n / l i ne s .  We may construct a tableau T of shape SS(n) tha t  encodes the determine 2 
\ 1 

linear order on the slopes of these lines by putting T(i, j )  = s if and only if the rank 

of the slope of the line through i and j in this linear order is s. This is called the 

slope table of the configuration C. 

Lemma 3.1. Let C be a nondegenerate configuration o f  points in the plane. Then the 

slope table o f  C is a balanced tableau. 

Proof. Compute the circular sequence associated with the configuration using the 

method of Goodman and Pollack [17] with the initial direction of rotation being the 

horizontal. The first half-period of this sequence can be seen to be a maximal chain 

in the weak Bruhat order since the points are numbered according to their 

projections on the x-axis. For any two pairs of points i, j and k, l the transposition 
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between symbols i and j occurs before that of the pair k and l if and only if the 

slope of  the line determined by i and j is less than that of  the line determined by k 

and l. Since the order of transpositions in the second half-period of the circular 

sequence is completely determined by the order of transpositions in the first 

half-period, the order in which the slopes are encountered is completely encoded in 

the corresponding maximal chain in the weak Bruhat order. If T is the balanced 

tableau obtained by applying the bijection of Edelman and Greene [12] to this 

maximal chain, then a straightforward geometric interpretation of the bijection 

shows that the value stored in T(i, j )  is s if and only if the rank of the slope of the 

line through i and j is s. Thus T is identical to the slope table of C. []  

Now let P be a staircase polygon and consider the configuration of points 

1:1,..., v n that constitute the core of P. By the previous lemma, the slope tableau of 

this configuration is balanced and we call this the balanced tableau of  the staircase 

polygon P. 

Lemma 3.2. I f  P is a staircase polygon and T is its balanced tableau, then the skeleton 

of  T is identical to the adjacency matrix of  ~e. 

Proof. Consider a staircase polygon P. Let mik denote the magnitude of the slope 

between points v i and v k. By definition of visibility, v k is visible from v i if and only if 

the line segment joining the two points lies entirely inside P. It is easy to see that for 

staircase polygons this implies that v i is visible from u k if and only if there is no 

index j, k < j < i such that mik < mij .  Thus (vi, v k) is an edge of ~e if and only if 

mik > mj~ for j = i -- 1, i -- 2 . . . . .  k + 1. The ordering of the slopes is completely 

encoded by the balanced tableau of the polygon and thus we have that v i is visible 

from v~ iff T(i, k )  is larger than all the entries that lie above it in its hook. Thus the 

core of the visibility graph of a staircase polygon is identical to the skeleton of the 

balanced tableau of  P. []  

In the remainder of this section we show the first main result of this paper, that 

the skeleton of a balanced tableau is a persistent graph. 

Lemma 3.3. Let T be a balanced tableau and let M be its skeleton. For a triple 

k < j  < i  with M ( i , j ) = M ( i , k ) =  1, if M ( i , y ) = O  for k < y < j ,  then T ( i , j ) <  

T(i, y)  f o r k  < y < j. 

Proof. By induction on y. The base case is y = j - 1. Since M(i, j )  = 1, T(i, j )  is 

smaller than all the elements to its right on row i. So suppose T(i, j - 1) < T(i, j) .  

It follows that T(i, j - 1) is smaller than all the elements which lie to its right on 

row i. Thus M(i,  j - 1) must be one, which is a contradiction. 

Now, suppose that the statement is true for all y > y',  k < y '  < y. Let y = y'  - 1 

and assume T(i, y' - 1) < T(i, j). By the induction hypothesis, T(i, y)  < T(i, j )  for 

y' < y < j. Since T(i, j )  is smaller than all the elements which lie to its right on 

row i we have that T(i, y '  - 1) is also smaller than all the elements which lie to its 

right on row i. Thus M(i,  y'  - 1) = 1 which is a contradiction. []  
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Lemma 3.4. If M is the skeleton of a balanced tableau T, then M is a persistent matrix. 

Proof. Let i , j , k  with k < j  < i  be any triple with M ( i , j ) =  M ( i , k ) =  1 and 

M(i, y)  = 0 for k < y < j as in the definition of the persistence condition. To prove 

that the first condition for persistence holds, suppose that M(x, y) = 1 for some x 

with j < x < i .  Now, T ( i , j ) < T ( i , y )  by Lemma 3.3 and T ( i , y ) < T ( j , y )  by 

the balance property of the mates of  T(i, y). However, T(j, y) < T(x, y) since 

M(x, y) = 1 by assumption, and T(x, y) < T(x, j )  by the balance property of the 

mates of T(x, y). Finally, T(x, j) < T(i, j)  since M(i, j)  = 1. Thus we conclude that 

T(i, j )  < T(i, j)  which is a contradiction. 

The proof for the second persistence condition is similar and is left to the 

reader. []  

From Lemmas 3.4 and 3.2 and the definition of persistent graphs we have the 

following theorem. 

Theorem 3.5. I f  P is a staircase polygon, then the visibility graph of P is a persistent 

graph. 

4. Combinatorial Properties of Persistent Graphs 

In this section we describe several interesting properties of persistent graphs. The 

results are described by the properties of the corresponding persistent matrices. The 

main result we show here is that these matrices can be partially ordered in a natural 

way that allows us to generate any of them in a canonical manner. The genera- 

tion algorithm described here is then used in Section 5 to show the converse of 

Lemma 3.4, i.e., that every persistent matrix is the skeleton of a balanced tableau. In 

the following discussion we consider matrices which are implicitly assumed to be 

adjacency matrices of graphs. Thus we use some graph theoretic terminology in 

referring to these matrices. 

Let G = (V, E)  be a graph and let M be its adjacency matrix. We associate 

vertex vj ~ V with row j and column j of M which represent the adjacency 

information of this vertex. A path (vi0 . . . . .  vik) is a sequence of entries in M such 

that M(ij, ij+ 1) = 1, 0 < j < k. A p a t h  is ordered if ij < ij+ l, 0 < j < k. An ordered 

path 11 = (rio . . . . .  vi~) is defined to be concave if the subgraph induced by rio . . . . .  vi~ 

in G is II. The persistent matrix in which every entry is one is called the clique 

matrix. 

4.1. Factors of a Persistent Matrix 

Suppose M[i, k] is a zero entry in a persistent matrix M. A vertex vj, k < j < i, is 

defined to be a blocking vertex if and only if it lies on the shortest ordered path from 

v k to v i in G. It can be shown from the persistence conditions that such a path must 

be concave. 
The following proposition follows directly from the definition of blocking vertices 

and the persistence conditions. 
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Proposit ion 4.1. I f  M is a persistent matrix and if  vj is a blocking vertex for M(i,  k ), 

then vj is a blocking vertex for every M(i,  r), k < r < j, and every M(s ,  k), j < s < i. 

As a consequence of Proposition 4.1 it can be seen that a vertex vj is a blocking 

vertex for some entry M(i, k)  if and only if M ( j  + 1, j - 1) = 0. Let rio . . . . .  vi~ 

be the blocking vertices in a persistent matrix M and define matrices Miv 

0 < k _< m, called the factors of M as follows. M , ~ ( x , y ) =  0 if and only if 

M ( x , y )  = 0 and vik is a blocking vertex for M ( x , y ) ,  1 _< x < n, 2 _< y < n - 1. It 

can be readily verified that if M is a persistent matrix and Mj is its factor 

corresponding to vertex vj, then: 

1. The subgraphs induced by vertices v 1 . . . . .  v i and vertices vj . . . . .  vn are cliques. 

2. In every row i > j either Mi(i , x) = 0 for all x < j or an entry Mj(i, l), l < j, 

exists such that Mj(i, x) = 1 for 1 < x _<_ l and Mj(i, x) = 0 for l < x < j.  

3. If Mj(i, l 1) and Mi(i + 1, l-z) , i > j and ll, l 2 < j ,  are the entries as described in 

item 2, then l I _< 12.  

4. Mj is persistent. 

The relationship between a matrix and its factors is summarized by the following 

lemma. 

Lemma 4.2. I f  M is a persistent matrix and Mi~, 0 < k < m, are its factors, then 

M = Mio • Mi l  ('~ . ' '  (~ Mira where the binary intersection operation is interpreted as a 

bitwise A N D  on the corresponding positions of  two factors. 

4.2. Reversible Entries 

Given a persistent matrix M, an entry M(i, k)  = 1, k < i - 1, is defined to be 

reversible if and only if the matrix obtained by changing the entry M(i,  k)  to 0 

is persistent. For  example, the entry M(8, 4) is reversible in the matrix in Fig. 1. 

A similar definition can be made for reversible zero entries. 

A key combinatorial  property of persistent matrices is that every persistent matrix 

with at least n one entries has at least one reversible one entry. Intuitively, this 

implies that given any persistent matrix it should be possible to change zero entries 

to one successively until the resulting matrix is the clique matrix, such that each 

intermediate matrix is persistent. We describe an algorithm that works in the reverse 

direction. Starting from a clique matrix K n we present an algorithm that generates 

any given persistent matrix by changing a sequence of reversible one entries to zero. 

Lemma 4.3. Let M(i ,  k )  be an entry in a persistent matrix M, and let M(i ,  l) and 

M(i,  r) be the first one entries in row i to the left and right o f  M(i,  k), respectively. 

Similarly, let M(a,  k)  and M(b,  k )  be the first one entries in column k above and below 

M(i,  k). Then M(i ,  k)  is reversible if  and only if  r = a, M(a,  l) = 1 and M(b,  a) = 1. 

Proof. It is easy to see that if the entry satisfies the given conditions it is reversible. 

Thus we have to show the converse, i.e., that if an entry is reversible it satisfies the 
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above conditions. Since M(i, r) is the first one entry to the right of M(i, k) we apply 

persistence conditions to the maximal interval of zeros M(i, x), k < x < r, and 

obtain that M(r, k) = 1. We have to show that this is the first one entry above 

M(i, k) in column k. So suppose M(y, k) is the first one entry in column k above 

M(i, k) and that y > r. Since the entry M(i, k) is reversible the matrix M '  obtained 

by changing only M(i, k) to zero is persistent. However,  in this new matrix, the 

entries from M'(j  + 1, k) to M'(i, k) are contained in a maximal column of zeros 

and applying persistence conditions we get that M'(i, r)  = 0 which is a contradic- 

tion. That M(j,  l ) =  1 follows from the fact that M(i, k) is reversible and that 

M'(i, l + 1) . . . . .  M'(i, j - 1) is a maximal horizontal interval of zeros in the result- 

ing persistent matrix M' .  That M(b, j )  = 1 can be checked similarly. []  

4.3. Generation of a Persistent Matrix 

We now describe the algorithm that generates any given persistent matrix from the 

clique matrix K~. 

Algorithm I 

Input: A persistent matrix S. 

Output: A sequence M 0 . . . . .  M r of persistent matrices such that 

M o = Kn, M r = S, and each matrix in the sequence has exactly 

one more zero entry than its predecessor.  

M := K ,  ( M  is the current matrix in the sequence) 

F o r j : = 2 ,  n - l d o  

For  i : = j  + 1, n do 

For  k := j - 1 downto 1 do 

If  S(i, k) = 0 and M(i, k)  = 1 and 

vj is a blocking vertex for S(i, k) Then 

Begin 

M(i, k) .'= 0 

Output  M 

End 

In the remainder  of this section we show that when the above algorithm 

terminates,  S = M and that each time an entry in M is changed from one to zero it 

is in fact a reversible entry. Every i teration of  the outermost  do loop in the above 

algorithm is called a phase of the algorithm. The proof  of correctness is by induction 

on the phases of the algorithm. For  phases in which vj is not a blocking vertex no 

changes are made to the matrix M. The key idea behind the proof  is the following 

statement.  

Lemma 4.4. Let Sio . . . . .  Si, be the factors of the input matrix S. I f  viu is a blocking 

vertex, then at the end of  the iuth phase M = K n cl Sio (3 ... N Si . 
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of a phase j. 

Proof. By induction on u. The base case is the clique matrix and is trivial. Thus, we 

suppose, inductively, that at the end of the i u_ lth iteration, the matrix constructed is 

K n n Sio n ... n Si, . We will show that the matrix constructed at the end of the 

i , th  phase is Kn n Sio n ... N Si . 

Consider  initially, the situation at the beginning of the i , th  phase. The matrix M 

at this point  is shown in Fig. 2. In what follows, let i u = j for notational convenience. 

The rectangle defined by the entries M ( x ,  y), j + 1 < x < n, 1 < y < j - 1, is called 

the rectangle of influence in phase j.  These are the only entries changed in this 

phase. We make the following observations: 

1. The subgraph induced by vj_ 1 . . . . .  u n is a clique. 

2. The entries M ( x ,  j - 1), j < x < n, are all one. 

3. For  j > y, if M ( j , y )  = 1, j > y,  then M ( x , y )  = 1 for all x > j.  

Now, assume that  the algorithm has performed correctly so far within the phase 

and is currently changing M ( i ,  k )  from a one to a zero (see Fig. 3). Since the change 

occurs at th is  phase, S(i ,  k) = 0 and vj is a blocking vertex for S(i ,  k) .  By Proposi- 

tion 4.1 vj is a blocking vertex for every S(i ,  r), j < r < k ,  and S(s ,  k) ,  i < s < ]. 

Under  the assumption that the algorithm has performed correctly so far all these 

entries are also zero in the current matrix. Applying the persistence conditions to M 

we have that M ( j ,  k)  = 1. By observation 3 above, we have that the first one entry in 

column k below M ( i ,  k )  is M ( i  + 1, k )  since the entry was one at the beginning of 

the phase and it has not yet been processed by the algorithm in this phase. By 
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observation 2 above we have that M(i + 1, j )  = 1. We have thus satisfied almost all 

the conditions for the reversibility of M(i, k) as stated in Lemma 4.3. The only 

condition remaining to be checked is if M(j, l) = 1 where M(i, l) is the first one 

entry to the left of M(i, k) on row i. 

So suppose M(j, l) = 0. This implies S(j, l) = 0. Applying persistence conditions 

to the maximal horizontal interval of zeros M(i, l + 1) . . . . .  M(i, k - 1) we have that 

M(k, l) = 1. Also it was shown above that M(j, k) = 1. These entries must be one in 

the target matrix S since if they were zero their blocking vertices would have to be 

smaller than j and so they would already have been changed to zero in the current 

matrix. Thus S(k , l )=  1 and S ( j , k ) =  1. Since S( j , I )=O we have that v k is a 

blocking vertex for S(j, l). Also, vj is a blocking vertex for S(i, k). 

We now show that the above implies that S(i, l) = 0 and that v~ is a blocking 

vertex for S(i, l). Suppose, to the contrary, that S(i, l) = 1. Then, since S(k, l) = 1, 

S(j, k ) =  1, and S(j, l ) =  0, the persistence property implies that every S(x, l), 

k < x < j, must be zero. Further, every S(y, l), j < y < i, must be zero. Apply- 

ing persistence conditions to the resulting maximal vertical interval of zeros 

M(k + 1, l) . . . . .  M(i - 1, l) we have that S(i, k) = 1 which contradicts the hypothe- 

sis that S(i, k) = 0. Thus S(i, l) = 0. Further, it is clear that any ordered path from 

v I to v i in S must pass through v k. Thus v k is a blocking vertex for S(i, 1). However, 

this implies that M(i, 1) would have been changed to zero in phase k and thus 

contradicts the fact that M(i, l) = 1 in the current matrix. Thus we have that M(j, 1) 

must be one. Thus M(i, k) is a reversible entry. 
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The algorithm changes any one entry to zero if and only if vj is a blocking vertex 

for the entry. Thus an entry is zero in the rectangle of influence if and only if it is 

zero in the factor S i. The elements from v j , . . . , v  n still constitute a clique since they 

are outside the rectangle of influence and thus the matrix constructed at the end of 

this phase is K~ N Sio (~ ... () Siu. [] 

The time complexity of a naive implementation of the above algorithm can be 

seen to be O(n4). The most expensive step within the innermost loop is to check if vj 

is a blocking vertex for S(i, k). However, it can be shown that this step is equivalent 

to checking if M(i, k)  is reversible. By Lemma 4.3 this can be done in a straightfor- 

ward way in O(n) time, which gives the overall complexity of O(n4). However, this 

can be reduced to O(n 3) by use of a data structure that allows us to check if M(i,  k)  

is reversible in constant time. This is done by maintaining for each entry M(i, k )  the 

position of  the first one entry to its right and left in row i and the position of the first 

one entry above and below it in colmnn j.  Such a data structure can be initialized 

in O(n 2) t ime for tbe clique matrix. It can be seen that each time an entry is 

changed from one to zero the data structure can be updated in constant time 

using Lemma 4.3. Thus the overall algorithm can be implemented to run in 

O(n 3) time. 

5. A Reconstruction Algorithm for Balanced Tableaux 

We show in this section that every persistent matrix is the skeleton of a balanced 

tableau. The main idea is to use Algori thm I developed in the last section to guide 

an algorithm that moves through maximal chains in the weak Bruhat order of the 

symmetric group in such a way that the changes made to the matrix in Algori thm I 

are mirrored in the changes made to the skeletons of the tableaux corresponding to 

these chains. 

5.1. Coxeter Transformations 

Recall from Section 2.1 that maximal chains in (S n, < wB) are uniquely determined 

by their reduced words. There are two types of transformations defined on maximal 

chains via their reduced word representations. 

Proposition 5.1. I f  W is the reduced word corresponding to a maximal chain in 

(Sn, < wa), then: 

�9 The word obtained by interchanging two adjacent symbols sis j in Wsuch  that i and 

j differ by more than one is also the reduced word of  a maximal chain. 

�9 The word obtained by changing three adjacent symbols in W of the form sis i+ l Si to 

si+ 1sisi+ 1 is also the reduced word of  a maximal chain. 



344 J. Abello, O. Egecioglu, and.K. Kumar 

The first transformation is called a Coxeter type I transformation and the second is called 

a Coxeter type II transformation. 

Coxeter proved that maximal chains in (Sn, < wB) form a single orbit under these 

transformations, in the sense that given two maximal chains with reduced words W 

and W' a sequence of Coxeter transformations exists mapping W to W' [10]. 

We first interpret the Coxeter transformations on the balanced tableau represen- 

tations of  maximal chains. The following proposition follows directly from the 

definitions. 

Proposition 5.2. Suppose T is a balanced tableau o f  shape SS(n).  

�9 A type I Coxeter transformation corresponds to switching two entries x and x + 1 

provided they are not in the same row or column. 

�9 A type II Coxeter transformation corresponds to interchanging the entries x - 1 

and x + 1 in two mate cells in T. 

The following proposition describes the effect of Coxeter transformations on the 

skeletons of balanced tableaux. Its proof is straightforward and is omitted. 

Proposition 5.3. Suppose a balanced tableau T' is obtained from a balanced tableau T 

by a Coxeter transformation p. I f  p is o f  type I, then T and T' have the same skeleton. 

I f  p is o f  type II and the interchanged mates are T(i ,  j )  and T( j ,  k),  then T and T' 

have the same skeleton i f  and only i f  there is an index r ~ j with k < r < i and 

T(r,  k )  > T(i,  k). 

Thus Coxeter transformations applied to balanced tableaux can be used to define 

new balanced tableaux with possibly different skeletons. This is the underlying idea 

behind the algorithm that constructs a balanced tableau for a given persistent 

skeleton matrix. We start with the clique matrix which has a particularly simple 

balanced tableau. We then apply certain specific sequences of Coxeter transforma- 

tions in such a way that the underlying skeletons change precisely in the order 

defined by Algorithm I, which derives the given matrix from the clique matrix. These 

sequences of  transformations are defined in the following section. 

5.2. Constructing a Balanced Tableau from a Persistent Matrix 

Let W be the reduced word of  a maximal chain in (Sn, < wB)- A simplicial sequence 

is a maximal subword of adjacent letters in W Of the form Sy sy_ 1 "'" s I for some 

y < n - 1. We abbreviate such a sequence as ~ry. The effect of 7ry on a permutation 

cr is to move the symbol in position y + 1 to the first position. 

Now we define two sequences of Coxeter transformations on maximal chains 

(augmentations and flushes) that contain simplicial sequences. They are the basic 

building blocks of the reconstruction algorithm. 
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Lemma 5.4. I f  W = USxTryU' is a m a x i m a l  cha in  c o n t a i n i n g  a s impl i c ia l  s e q u e n c e  try 

a n d  u,  u '  are ( p o s s i b l y  e m p t y )  subs tr ings  o f  W a n d  x < y ,  t hen  W '  = u~rrySx+ lu '  is a 

m a x i m a l  chain .  

Proof. W can be written as us~sySy_  1 . . .  S x + 2 S x + l S x . . , S l U ' ,  Since x < y ,  the 

sequence of Coxeter type I transformations SxSy, S x S y _ l , . . . ,  sxs~+ 2 transforms W 

into the reduced word USySy_ 1 "'" Sx+ 2SxSx+ 1Sx "'" S lU'. m Coxeter type II transfor- 

mation at SxS~ + l s  ~ gives the maximal chain USy ... s~ + lSxSx + lSx_ 1 "'" s l u ' .  Now the 

sequence of Coxeter type I transformations s x + 1 s~_ 1, Sx + l S x -  2 , . . . ,  s~ + 1 s l  produces 

the chain USySy_  1 "'" S1Sx+ I u '  which is precisely W'  = uTrys~+ lu' .  [] 

Consider a subword sxTry with x < y in the reduced word of a maximal chain. 

The operat ion that transforms the chain W = usxrryU' to the chain W'  = UrrySx+ lu '  

is called an augmentat ion of W at Try. For  example, the augmentation of the chain 

"17"2s2s3q'1"4s3s 2 at 7r 4 produces the chain 7T2s27r4sas3s 2. 

From the proof  of Lemma 5.4, an augmentation is really a composition of 

Coxeter transformations. Further,  any augmentation involves a sequence of Coxeter 

type I transformations followed by a single Coxeter type II  transformation which is 

then followed by another  sequence of Coxeter type I transformations. We refer to 

the .type I transformations as the initial and final sequences of an augmentation and 

the Coxeter type II transformation is unambiguously referred to as the type II step 

of an augmentation. Note that the initial and final sequences of an augmentation 

may be empty if x = y - 1 or x = 1, respectively. 

Similarly, let W = USxVTryU' be a maximal chain in (Sn, < wB) where u, u' are 

(possibly empty) substrings of W and v is a nonempty substring of W. If, for each 

symbol sj in v, x < j and ( j  - x) > 1, then W' = UVSx~ryU' is a maximal chain. We 

refer to the above operat ion that transforms the chain W into the chain W' as 

flushing the symbol s x toward ~v. It, too, is a composit ion of Coxeter transforma- 

tions, this time restricted only to transformations of type I. 

We are now in a position to describe the algorithm that reconstructs a balanced 

tableau for a given persistent matrix (Algorithm II). The basis of the algorithm is the 

procedure developed in the last section for generating the given matrix from the 

clique matrix K n. The clique matrix is the skeleton of the balanced tableau whose 

maximal chain is '/rlTr 2 " "  7 r  n _  1" AS a one entry is changed to zero in the generation 

procedure (Algori thm I), we interpret  this operation via a sequence of flushes and 

augmentations on the maximal chain corresponding to the current tableau such that 

the resulting maximal chain corresponds to a balanced tableau whose skeleton 

differs from the previous skeleton in precisely the entry changed from one to zero in 

Algori thm I. 

Note the close correspondence between Algorithms I and II. Both algorithms 

examine the matrix entries in exactly the same order. Each i teration of the 

outermost  loop for j in the above algorithm is defined as a phase of the algorithm. 

Each iteration of the loop for i is defined as the processing of row i in phase j.  The 

algorithm modifies the tableau only when the conditions of  the if s tatement are 

satisfied, therefore we say a step of the algorithm occurs when it executes the 

corresponding block of  statements. The proof  of correctness of this algorithm takes 

up the rest of this section. 
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Algorithm I I  

Input: A persistent  matrix S. 

Output: A balanced tableau  T whose skeleton is S. 

M .'= K ,  ( M  is the cur ren t  matrix in the sequence)  

W : =  "n'lTT 2 " "  "fin - 1 

T := Tableau(W) 

F o r j  := 2, n - 1 do 

F o r i : = j +  1, n do " 

For  k := j - 1 downto 1 do 

I f  M(i , k )  = 1 and S( i ,k)  = 0 and  

vj is a blocking vertex for S(i, k) Then 

Begin { Wha t  we call a step of the algori thm 

begins here } 

r : = 0  

s := co lumn of the first one entry ot the left of 

M(i, k) (or zero if no such entry exists) 

Repeat 

x = i - k - l + r  

Flush s x toward 7/" i_ 1 

A u g m e n t  W at ~'i-1 

T := Tableau(W) 

M := Matrix(T) 

r : = r  + l 

U n t i l r = k - s  

End {of a step of the algorithm } 

5.3. The Inuariant for Algorithm II 

Consider  a ba lanced  t ab leau  T with skeleton M. Let  M(i, k) be a one entry on  row 

i, and  let M(i, l) be the first one  entry to its left (assume l = 0 if no such entry 

exists). Since M(i, k)  = 1, it follows that  T(i, k) is larger than  all the entries that lie 

above it in its column,  and,  by the ba lance  property,  we can conclude that it is 

' sma l l e r  than  all the e lements  to its right on  its row. In  part icular ,  if M(i, r) is the 

first one  entry  to the r ight  of M(i, k), t hen  T(i, k) < T(i, r). We say that  row i of 

the tableau is well d i s t r ibu ted  if, in addit ion,  T(i, k) < T(i, z) < T(i, r) for all z, 

l < z < k, and  this proper ty  holds for each one  entry M(i, k) on row i. We  say that 

row i of the tab leau  is well d i s t r ibuted  from m 0 if m 0 is the smallest  value on row i 

of T. Row i is said to be  strongly well d i s t r ibu ted  if it is well dis t r ibuted and in 

addi t ion  satisfies the proper ty  that  the i - 1 values on  the row are  consecutive. A 

vertex j in a persis tent  matrix is def ined to be simple if M(i , j )  = 1 for all i > j .  

Given  a maximal  W in (S, ,  < wB) that  conta ins  a simplicial sequence 7rq let 

O(~rq) denote  the position at which the first let ter  (i.e., Sq) of ~rq occurs within W. For  

example,  suppos e  the reduced  word  of a chain is 

SlS2SlS3S4S3S2SlS5S6S5SaS3S2SlS5S4S3S7S6S5S4S3S2S1S3s6s5, 

which can be  wri t ten as "l'l'lTl'2S3q'l'4S5q'l'6SsS4S3q77S3S6S 5. 0(" rg  7 )  = 19 and 0 ( 7 / ' 6 )  = 10. 
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Let W be a maximal chain in (Sn, < wB) and let M be the skeleton of its 

associated balanced tableau T. W (resp. T) is said to be good with respect to j when, 

for every q, j < q < n: 

�9 If q is a simple vertex in M, then there is a unique simplicial sequence 7rq in W 

and row q + 1 is strongly well distributed from O(zrq). 

�9 If  j < q < p and p, q are simple vertices, then O(Trq) < O(rrp). 

Note that if a maximal chain (resp. balanced tableau) is good with respect to j, then 

it is good with respect to j '  for j < j '  < n. 

Recall that a step of Algorithm II is said to occur when the conditions of the if 

statement are met, i.e., M(i, k)  = 1, S(i, k) = 0, and uj is a blocking vertex for 

S(i, k )  for some values of i, j, k such that k < j < i. Each step of the algorithm can 

thus be associated with a unique triple of values of the variables i, j, k and the value 

of j determines the phase in which the step occurs. The steps of the algorithm can 

be ordered according to the sequence of the values taken by these variables. Also 

note that for every step of Algorithm II there is a corresponding step in Algorithm I 

in which exactly one entry in the matrix was changed from one to zero. 

The invariant maintained by Algorithm II is described in the following lemma. 

Lemma 5.5. At  the start o f  each step of  Algorithm II: 

1. The current matrix M is identical to the matrix produced by Algorithm I at the 

corresponding step and M is the skeleton of  the current balanced tableau T. 

2. T is good with respect to j, where j is the phase in which the step occurs. 

The proof that the above invariant is maintained, is the main task in proving the 

correctness of Algorithm II and it takes up most of the rest of the paper. 

5.4. Proof o f  Lemma 5.5 

The proof proceeds by induction on the steps of the algorithm. 

Basis. Consider the start of the very first step of the algorithm. Using the order in 

which the matrix entries are processed by the algorithm, it is readily verified that the 

first step occurs when the algorithm encounters an entry M ( j  + 1, j - 1) = 1 such 

that S( j  + 1, j - 1) = 0 for the first time (i.e., the smallest such j). By Proposition 

4.1, such an entry must always exist (unless the target matrix is the clique matrix) 

and since vj is the only blocking vertex for this entry, this step occurs in phase j. 

At  this point no changes have been made to the initial matrix or tableau. Thus 

the current matrix is the clique matrix K and the current chain is W = 7rlzr 2 "." ~'n- 1- 

The first invariant condition is thus trivially satisfied and it can be verified that the 

tableau corresponding to this chain is good with respect to j, thus satisfying the 

second invariant condition. At this step the repeat loop of the algorithm executes 

once and it augments s I at 7rj. It can be verified that the current chain after this step 
is 

, i T 1 , ' / r  2 - - .  S j _  1 " '"  S2 , ' t r j s2 , lT j+ 1 . . .  ,'lrn_ l ,  

whose matrix has exactly one zero entry in M ( j  + 1, j - 1). 
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Inductive Hypothesis. Assume that the algorithm has performed correctly for t - 1 

steps, t _> 1, and that at the start of the tth step the two conditions of the above 

invariant hold. Also suppose that at this step the algorithm is currently in phase j 

where it is processing entry M(i,  k). At this point, M(i,  k )  = 1, S(i, k) = 0, and vj is 
a blocking vertex for S(i, k). 

We have to show'that  when the repeat loop terminates at the end of the tth 

step: 

1. The matrix M changes in precisely the same entry that would have been 

changed by Algorithm I at step t. 

2. M is the skeleton of the current tableau, which is good with respect to j. 

Inductive Step. In the following claims and proofs we assume implicitly that the 

inductive hypothesis holds at the start of the tth step. For each step u < t, this 

implies that the matrix M at the end of that step was identical to the corresponding 

matrix produced by Algorithm I at that step. Since each step in Algorithm I changes 

exactly one matrix entry from one to zero, for steps u < t we may assume that 

exactly one entry in the matrix was changed from one to zero by Algorithm II in 

each step. Thus, at the start of  a phase the current matrix will be as shown in Fig. 2, 

and at an intermediate point in a phase it will be as shown in Fig. 3. 

Two easy facts about the order in which these entries are changed are implicitly 

used in the proof that follows. They follow directly from the proof of Algorithm I. 

1. If M(i,  k)  and M(i  + 1, k)  are zero in the current matrix, then they were 

changed to zero in the same phase. 

2. If M(i,  k)  = 0 and M(j ,  k)  is the first one entry above M(i,  k)  in the current 

matrix, then M(i ,  k)  was changed to zero in phase j. 

In the initial chain constructed by the algorithm each 7r; is adjacent to "/Ti+ 1 for 

1 < i < n -- 2. However, as the algorithm proceeds, successive augmentations at 7r i 

produce some symbols "in between" 7r i and 7ri+ 1. These symbols may then be 

"consumed" by augmentations at 7ri+ 1- When an entry M(i,  k )  is changed from one 

to zero, the symbol si_ k appears in between ~i-a and rr i (from the description of 

the algorithm, Si_k_ 1 is flushed toward ~ri_ 1 and the subsequent augmentation at 

7ri_ 1 produces the symbol si_ k as per Lemma 5.4). In Claims 5.6-5.9 we use the  fact 

that the inductive hypothesis holds in all steps u < t to deduce the order in which 

these symbols were produced and consumed in all the previous steps. This allows us 

to deduce the structure of the chain W at the start of the tth step. 

Claim 5.6. I f  M(i ,  k )  is changed from one to zero in a step u < t, within a phase 

j '  < j, then every symbol sx, i - k >_ x >_ i - j '  - 2, has been flushed toward zr i_ 1 and 

subsequently augmented at ~'i- 1 in phase j' .  

Proof. Let  M(i,  qo) . . . . .  M(i ,  qt), t < _ j ' - k -  1, be the entries to the right of 

M(i,  k)  changed to zero in phase j '  (in that order). Note that q0 is always j '  - 1 in 

phase j ' .  I f  t = j '  - k - 1, then every element to the right of M(i,  k)  is changed to 
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zero precisely in phase j '  and at each step when an entry M(i ,  1), k + 1 < l < j '  - 1, 

was changed to zero, M(i ,  l - 1) was one. Thus, the repeat  loop in Algori thm II 

executed exactly once in each case, the symbols flushed are precisely si_t_l ,  

k + 1 < l < j '  - 1, and we have the required sequence of augmentations. If t < j '  - 

k - 1, then some of the entries to the right of M(i ,  k )  were changed to zero in 

phases < j ' .  Thus, for some of the entries M(i ,  l), k + 1 < l < j '  - 1, changed to 

zero in phase j ', M( i ,  l - 1) = 0, and s (the position of the first one entry to the left 

of M(i ,  1)) is greater  than l - 1. However, for each such entry, the repeat  loop of 

the algorithm executes l - s times and the symbols flushed are si_ l_ 1+ ,  r = 0 , . . . ,  

l - s - 1, which correspond precisely to the zero entries to the immediate left of 

M(i ,  l). Thus, every element in the required sequence is flushed and subsequently 

augmented. [ ]  

Claim 5.7. I f  a symbol s x with x = i - y - 1 was augmented by the algorithm when 

processing row i at step u o f  the algorithm, with u < t (the current step), then 

M(i ,  y)  = 0 at the end o f  step u. 

Proof. Suppose, in step u, that s x was augmented by the algorithm when it was 

processing an entry M(i ,  k ' )  in phase j ' .  At  this point M(i ,  k ' )  = 1, S(i,  k ' )  = 0, and 

j is a blocking vertex for S(i, k). If k '  = y, then the entry M(i ,  y )  (which was changed 

to zero by Algori thm I at that step) will be zero in the current matrix at the end of 

step u. If  k'  ~ y, then s x would have been augmented by the algorithm at step u 

only if M(i ,  y)  belonged to the block of zero entries in between M(i,  k ' )  and the first 

one entry to its left. Therefore,  the entry had already been changed to zero in an 

earlier step of the algorithm. []  

Claim 5.8. Let M (  i, y )  = 0 in the current matrix and let M(i ,  r) be the first one entry 

to its right. I f  the symbol si_y_ 1 was augmented at ~i-1 by the algorithm at step u with 

u < t, then exactly one o f  the entries M( i ,  q), y < q < r, was changed to zero in that 

step. 

Proof. Si-y 1 is augmented by the algorithm either when M(i,  y )  is changed to 

zero, or the entry M(i ,  y)  is a zero entry that appears in the sequence of consecutive 

zeros between an entry being changed to zero and the first one entry to its left. 

Clearly, such an entry has to be to the left of M(i,  r) and to the right of M(i ,  y). [] 

From the above claims we obtain the following important  result characterizing 

when a symbol appears  between two simplicial sequences ~r i_ l and 7r i. 

Claim 5.9. At  the start o f  step t, a symbol sx with x = i - y appears in between Tri_ 1 

and rr i in the current chain constructed by the algorithm i f  and only i f  M( i ,  y )  = 0 and 

an entry M(i ,  r), y < r, exists such that M(i ,  q) = O, y < q < r, and M( i  + 1, r) = 1. 

Proof. For  the forward direction, suppose an entry M(i ,  r) exists that satisfies the 

required conditions. If there is more than one such entry, choose r to be as small as 

possible. In the consecutive sequence M(i ,  y )  . . . . .  M(i ,  r) of zero entries, in the 
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current matrix, let M(i,  q)  be the last entry changed from one to zero by the 

algorithm before the current step. We first show that r = q. First note that it is 

impossible that q > r since the order in which the entries in a row are processed 

ensures that when M ( i , r )  was changed to zero, all the entries M ( i , y )  . . . . .  

M(i,  r + 1) were already changed to zero. Therefore suppose q < r. Since M(i,  r) = 0 

and it could have been changed from one to zero only after phase r, it follows that 

M(i,  q) was also changed from one to zero in a phase r' > r. Therefore, in the 

current matrix there is a one entry M ( r ' , q )  with r < r ' <  i. However, by the 

persistence condition, since M(i + 1, r ) =  1 this implies M(i + 1, q ) =  1 in the 

current matrix. Nevertheless, this contradicts our choice of r as the smallest index 

satisfying the conditions above. Therefore, M(i,  r) was the last entry in this consecu- 

tive sequence of entries changed to zero. The sequence Si_q, y < q <_ r, was 

produced between 7r i_ 1 and 7r i at this point. The Sg_y which was produced in the 

above step cannot be flushed toward ~r i unless s i_ r is first flushed and augmented at 

7r i. However, if this happens Claim 5.7 implies that M(i  + 1, r) must be zero in the 

current matrix. Therefore, s x remains in between 7r i_ 1 and 7r i in the current matrix. 

Conversely, suppose s x appears in between r i_ 1 and 7r i. By Claim 5.7 M(i, y)  = 0 

in the current matrix. Let M(i,  r) be the first one entry to its right in the current 

matrix. If there is a one entry in the positions M(i + 1, y) . . . . .  M(i + 1, r - 1) we 

are done. So assume that all these entries are zero. Each of the corresponding 

entries on row i are also zero. Therefore, each pair M(i,  q), M(i + 1, q), y < q < r, 

was changed in the same phase. From Claim 5.8 the only time symbol s x could 

appear in between ~ i -  l and 7/" i is when one of the entries M(i, q) y < q < r, is 

changed to zero. However, each time this happens the symbol is removed by 

augmentation at 7rg when the corresponding entry on row i + 1 is changed to zero. 

Therefore none of these symbols remain in between 7r~_ 1 and ~'i which is a 

contradiction. [] 

Using Claims 5.6-5.9 we now deduce the structure of the chain W at the start of 

step t. 

Claim 5.10. At  the start o f  step t the chain W has the form 

W U S i - s S i - s -  1 "'" S i - k S i - k -  1Ur'll'i - 1 w r '  

where v, v' are (possibly empty) substrings o f  W, and every symbol Sy ~ U' satisfies 

x < y a n d y  - x  > 1, wherex = i - k - 1. 

Proof. First consider the situation when i -  1 = j'. This corresponds to the case 

when step t occurs while processing the first row of entries in phase j. At the start of 

phase j the matrix M has the form given in Fig. 2. Since vertices j - 1 and j are 

both simple at this point, the chain at this point had the form w'rrj_ lv'wjw' where v' 

is a (possibly empty) sequence of symbols produced by augmentations at ~rj_ i in 

phases < j. Each symbol in v' corresponds to a zero entry on row j which was 

produced by an augmentation at ~r i_ 1 and since the symbol was not augmented at 7rj 

the corresponding entry on row j + 1 is 1. Also when the entries in row j + 1 are 

processed in phase j all augmentations occur at 7rj. 
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Let M ( j  + 1, k) with k < j be any entry on row j + 1 changed to zero in phase j. 

Since the entry is reversible at the time it is processed, the conditions of I_emma 4.3 

imply that any one entry on row j + 1 with a zero entry in the corresponding column 

of row j must occur strictly to the left of the first one entry to the left of 

M ( j  + 1, k ) .  Therefore by Claim 5.9 M ( j  + 1, k )  is changed to zero in phase j, and 

Sy is a symbol that was in between 7rj_ 1 and 7rj at the start of phase j, then s, with 

x = j - k  satisfies the property that y - x  > 1. Further each such symbol s x is 
present in ~r/_ 1 at the start of phase j. 

Now, whenever an entry is processed on row j + 1 in phase j the chain must have 

the form w s j _ l s / _  2 . . . . .  SxV'~r~w, the symbols in v' being identical to those at the 

start of the phase. The symbols sj_ is/_ 2 . . . . .  s~ are obtained when the symbols 

Sx-1  . . . . .  s~ are removed from 7rj_ ~ by augmentations at 7rj (which must occur 

according to Claim 5.6) in phase j. Therefore the chain has the required form. 

Now suppose i - 1 > j. Since M ( i  - 1, k) = 0, and j is its smallest blocking 

vertex, the entry was changed from one to zero in phase j. Thus the symbol si_ k_ 

was produced in between ~ri_ 2 and 7ri_ 1 at that time. Since M ( i , k )  is one this 

symbol has not yet been augmented by the algorithm in this phase and thus 

still remains in between 7ri_ 2 and 7r i 1 when processing the current entry. If 

M ( i ,  k -  t ) =  0, then M ( i -  1, k -  1) is changed to zero in phase k. Likewise, 

M ( i , k -  1) is changed to zero in phase k. The entries M ( i -  1, k -  2) . . . . .  

M ( i  - 1, s + 1) are changed to zero in phases < k. Finally, if M ( i  - 1, s )  is zero, 

then it is changed to zero in phase j. 

Thus, in phase j, when M ( i -  1, k )  was changed to zero, all the entries 

M ( i  - 1, k - 1) . . . . .  M ( i  - 1, s + 1) were zero and all the symbols S i _ k _ l ,  S i_k_2 ,  

. . . .  S i ~ would have been flushed and subsequently augmented at 7ri_ 2 by the 

algorithm in tha t  order  and appear in between 7ri_ 2 and 7ri_ 1. Thus the chain, at the 

start of processing row i in phase j, can be written as 

WTl'i-21gSi sSi s - 1  "'" S i -k -2S i -k - lb l t l~ t tTg i -1Wr ,  

where u consists of symbols coming from elements changed to the left of M ( i  - 1, k) 

in phase j, the symbols in u' come from elements changed to the right of M ( i  - 1, k )  

in phase j, and the symbols in u" come from elements changed in phases < j. The 

symbols in u" come from elements changed in phases < j. The symbols in u" can 

also be divided into those coming from entries to the right and left of M ( i  - 1, k ) .  

The symbols Sy in u" that come from entries changed to the left of M ( i  - 1, k ) ,  

trivially satisfy the property that y > x and y - x _> 1. However, we need the second 

inequality to be strict. To see that this is so we argue as follows. Suppose that the 

symbol s i _ k _  2 appears in u" (this is probable since M ( i  - 1, k - 1)was changed in 

phase k < j). However, since M ( i ,  k - 1) was also changed precisely in phase k, the 

symbol created when M ( i  - 1, k - 1) was changed to zero would have been con- 

sumed when M ( i ,  k - 1) was changed to zero in the same phase and thus aug- 

mented at ~'i-1 in phase k. Thus the symbol cannot appear in between 7r i_ 2 and 

"/'/'i- 1" 

Now, the symbols in u' and the symbols in u" coming from entries to the right of 

M ( i  - 1, k )  are flushed and augmented when processing the entries to the right of 

M ( i ,  k )  in phase j as per Claim 5.6. Thus the chain has the required form. []  
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We are now ready to examine the behavior of the algorithm once the repeat loop 

begins to execute. This loop executes k - s  times, where M(i ,  s)  is the first one 

entry to the left of M ( i ,  k) .  Figure 4 shows an abstract picture of the changes that 

occur in the tableau in any of these iterations. Figure 5 shows an example of the 

tableau modifications that occur when an augment step is performed, and Fig. 6 

shows the relationship between the changes in the tableau from one iteration of the 

loop to the next. In these figures the shaded rectangle in the matrix indicates the 

entry currently being changed from one to zero. 

We show that in the first k - s - 1 iterations of the repeat loop, the 0-1 matrix 

remains unchanged. However, the Coxeter type II transformations involved in the 

augmentations occur "closer" to the entry T(i ,  k )  after each iteration. Finally, in the 

(k - s)th iteration, the Coxeter type II transformation involves the mates of entry 

T(i ,  k )  thus changing the matrix at position M(i ,  k) .  We show that the tableau 

remains good with respect to j at the end of this iteration. In the intermediate 

iterations, however, the values on row i are not well distributed. We therefore need 

a slightly more general invariant that holds during each iteration of the repeat loop. 

Claim 5.11. A t  the start o f  the rth iteration o f  the repeat loop 0 <_ r < ( k  - s)  the 

following hold: 

1. The value in T( i ,  j )  is the xth largest value on row i where x = i - k - 1 + r. 

2. The number  o f  entries T( i ,  l), s < l < k ,  such that T( i ,  k )  < T( i ,  l) < T( i ,  j )  is 

exactly k - s - r. 

3. T ( i ,  j )  - 1 lies in some column l on row i such that s < 1 < k. 

4. R o w  i is well ordered to the left o f  T(i ,  s). 

5. For  each row q > j the values in row q lie in between O(Trq_ 1) and O(~rq_ 1) + 

q - 1 .  

6. M ( i ,  j )  is unchanged. 
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Proof. We prove statements 1-6 simultaneously by induction on r. 

Basis: r = 0. By the induction hypothesis of the overall algorithm, the balanced 

tableau and the chain at this point are good after j. To prove the statement 1 for 

r = 0, we note that since the values on row i are well distributed, the numbers larger 

than T(i ,  j )  are precisely the i - j  - 1 one entries to its right and the j - k - 1 

zero entries to its immediate left. Thus T(i ,  j )  is the (i - k - 1)th largest value on 

row i. Statement 2 also holds since the k - s  zero entries between T(i ,  k )  and 

T(i,  j )  are precisely the entries that satisfy T(i ,  j )  < T(i ,  l)  < T(i ,  j).  Statements 3 

and 4 also follow from the fact that row i is well distributed. Statement 5 follows 

from the fact that for every q > j vertex q is simple and so every row is well 

distributed from O(~rq). Statement 6 is obvious. 

Inductive Hypothesis (IH1): At the start of the rth iteration 0 < r < k - s - 1 

statements 1-6 hold. 

So, consider the r th iteration (Fig. 4). The symbol flushed and augmented by the 

algorithm in the rth iteration is Sx, x = i - k - 1 + r. By Claim 5.10 the flush step 

can be correctly performed at this step and since this involves only Coxeter type I 

transformations, the matrix remains unchanged at this point. 

Now, we claim that no tableau entry involved in an interchange in the flush step 

lies in a row > j. For each row q > j, the values in row q of the tableau lie in the 

range O(Trq_ 1) . . . . .  0(.?/'q_ 1) + q - 1. Now, Sx, x = i - k - 1, lies between 7"/'i_ 2 and 

7ri- 1 and if Px denotes the position of s x in the chain, then 0(Tri_ 2) < p~ < 0(Tr i_ 1)- 

Since the values interchanged by the Coxeter transformations in the flush step are 

Px, Px + 1, ..:,~O(~r i_ 1) - 1, none of these values can come from rows > j. There- 

fore, no rOW after j is affected by the flush step, and hence all the above statements 

hold after the flush step has been performed. 

By IH1, the xth largest value lies in T(i ,  j).  Let  m denote this value. From the 

definition of Coxeter transformations, we note that if P0 = 0(~-i 1), then the entries 

in the balanced tableau interchanged in the augmentations are precisely those 

containing the values P0 - 1, P0 , - - . ,  P0 + i - 1. 

We now ide0J2ffy where the value P0 - 1 lies. Within 7r i_ 1 the symbol s x occurs 

x positions ~oothe left.~of the symbol s 1. The type II Coxeter transformation in- 

volves the symbog s~, Sx+~, s x. The position of the symbol s x within 7r i_ 1 is m = 

O(7ri_ 1) + i - x .  Thus the type II Coxeter transformation involves the values m, 

m - 1, and m - 2 in the balanced tableau. By IH1, m - 1 lies in an entry T(i,  l), 

s < l < k, and M(i ,  l) = 0. Thus the Coxeter type II transformation interchanges 

the mates T(i ,  j )  and T( j ,  l) of the entry T(i ,  l). By Proposition 5.3 the matrix 

remains u~zl,ca~ged by this transformation which proves statement 6 above. 

Now, it can be seen that after the augmentation: 

�9 T(i ,  l)  is unchanged. 

�9 T( i ,  j )  is reduced by two. 

�9 T(I,  j )  is increased by i - 1. 

o Every other value on row i is uniformly reduced by 1. 

There were exactly r entries in between T(i ,  s) and T(i ,  k )  that were larger than 

T(i ,  j ) .  Since T(i ,  j )  is reduced by two and all other entries in this range are reduced 

by one, each of these remains larger than T(i ,  j).  However, since T(i ,  l) was equal to 
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T(i, j )  - 1 before augmentation and remains unchanged after the augmentation, the 

value in T(i, l) after augmentation is larger than the value in T(i, j )  after augmenta- 

tion. Thus there is one additional value in between T(i, s) and T(i, k) that is larger 

than T(i, j). Thus, at the end of the (r) th  iteration, the number  of entries such that 

T(i, k)  < T(i, l) < T(i, j )  is precisely (k - s) - r. This proves statement 2. To prove 

statement 5, we note that the only row after j affected by the augmentation is row i, 

and that the values in this row remain in the consecutive interval from O('ri'i_ 1) to 

0(zr i_ ~) + i -- 1 after the above ari thmetic operations are performed. Statement  4 is 

true since all the values to the left of T(i, s) were uniformly decreased by one. 

Statement 1 was true at the start of the r th  i teration by IH1. The value in T(i, j )  is 

smaller than the i - k - 1 entries that were larger than it at the start of the 0th 

iteration and the r - 1 entries between T(i, s) and T(i, k). Since T(i, l) is the only 

element in this process that has become larger than T(i, j )  in the r th  iteration we 

have the required value for statement 1. Statement 3 is obvious. [ ]  

The Final Iteration. By the arguments in Claim 5.11, at the start of the (k - s)th 

iteration the value in T(i, k) is T(i, j )  - I and the Coxeter type II transformation 

occurs about the reversible entry M(i,  k)  in the ( k -  s)th iteration and thus the 

matrix changes precisely at M(i, k)  at the end of the (k - s)th iteration. 

We now complete the proof  by showing that the row remains well distributed at 

the end of the last i teration of  the repeat  loop. Since every value to the left of 

T(i, k)  is uniformly reduced by one, we see that if M(i, l o) is the leftmost one entry 

on row i, then T(i , l  o) = O(zri_ i) and every element of the tableau to the left of 

T(i ,k)  remains well ordered.  To see the effect on the rest of the row consider the 

following. If M(i,  k - 2) = 1, the value m - 2 was originally stored in T(i, k - 1) 

and T(i, j )  - T(i,  k - 1) = 2 before the augmentation. Now after the augmentation 

T(i, j )  is reduced by two and T(i, k - 1) is reduced by one. Thus T( i , j )  - 1 is 

contained in T(i, k - 1) after the augmentat ion as required by the well ordering. 

Further, since T(i, k)  remains unchanged, T(i, j )  + 1 is contained in the sequence 

of zero entries to the immediate right of  T(i, j )  as required. The relative distribution 

of the remaining elements remains unaffected as they are uniformly decreased by 

one. If M ( i , k -  2 ) =  0, then the only difference is that the value m -  2 was 

originally stored in one of the zero entries to the left of T(i, k - 2). It is easy 

therefore to establish that the row remains well distributed. 

The only row after j that was affected by the flush and augmentation steps is row 

i, and thus every other row remains well distributed after this step. We have thus 

established that after the repeat  loop terminates: 

1. The matrix M changes in precisely the entry M(i, k)  which was changed from 

one to zero by Algori thm I at step t. 

2. M is the skeleton of  the tableau T which is good after j.  

This concludes the proof  of Lemma 5.5. [ ]  

Since Algorithm II produces the same matrix as Algori thm I after each step, it 

follows that the final tableau produced by the algorithm when it terminates is the 

target matrix S. Thus we have proved that Algori thm II correctly generates a 
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balanced tableau whose skeleton is the given input matrix. This is summarized in the 

following lemma. 

Lemma 5.12. I f  M is a persistent matrix, then a balanced tableau T exists such that M 

is the skeleton of T. 

Lemmas 3.4 and 5.12 give us the main theorem of this paper. 

Theorem 5.13. G is a persistent graph if and only if a balanced tableau T exists such 

that M(G) is the skeleton of T. 

5.5. Complexity of Algorithm H 

Algorithm II thus allows us to reconstruct a balanced tableau from a given persistent 

matrix. The algorithm can be implemented to run in O(n 5) time. In the innermost 

loop, techniques used implementing Algorithm I can be applied to check if vj is a 

blocking vertex for S(i, k) in constant time. The repeat loop executes at most n - 1 

times. If we had to recompute the tableau and matrix at each step, then each of 

these computations could take O(n 2) time thus giving us an overall complexity of 

O(n6). However, using the proof of Lemma 5.5, it can be seen that the changes 

made to the tableau and matrix are in fact localized. There are at most n - 1 

flushes that need to be made in any iteration of  the repeat loop and the augmenta- 

tion involves at most n - 1 interchanges in the tableau. At the end of the augmenta- 

tion the matrix changes in precisely one entry. Thus the overall repeat loop can be 

implemented to run in O(n 2) time without explicit recomputation of the tableau and 

matrix. This gives an algorithm with overall complexity in O(nS). 

6. Closing Remarks 

We have proven that visibility graphs of  staircase polygons are included in the class 

of  persistent graphs. It follows from our characterization of persistent graphs 

(Theorem 5.13) that they partition the set of maximal chains in the weak Bruhat 

order; call this a persistent partition. This is a coarser partition than the one induced 

by semispace equivalence [18] which is in turn the same as the one derived from the 

closure operator defined in [2]. In the companion paper [4], we study the existence of 

a realizable chain in each equivalence class of  our persistent partition. The existence 

of such a realizable chain plus the results of this paper give us an efficient 

algorithmic characterization of visibility graphs of staircase polygons. As a by- 

product we obtain a characterization of visibility graphs of convex fans. This was 

considered a major stumbling block for the general problem because any visibility 

graph can be decomposed into a sequence of  visibility graphs of convex fans. It may 

be interesting to find an easier proof  of the main result of this paper and to 

investigate the optimality of the algorithms presented here. 
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We  ment ion  in closing that  a re la t ion be tween  genera l  visibility graphs and 

or iented mat ro id  realizabili ty has been  established in [7]. 
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