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Abstract

Bad weather, such as fog and haze, can significantly de-
grade the visibility of a scene. Optically, this is due to the
substantial presence of particles in the atmosphere that ab-
sorb and scatter light. In computer vision, the absorption
and scattering processes are commonly modeled by a lin-
ear combination of the direct attenuation and the airlight.
Based on this model, a few methods have been proposed,
and most of them require multiple input images of a scene,
which have either different degrees of polarization or dif-
ferent atmospheric conditions. This requirement is the main
drawback of these methods, since in many situations, it is
difficult to be fulfilled. To resolve the problem, we introduce
an automated method that only requires a single input im-
age. This method is based on two basic observations: first,
images with enhanced visibility (or clear-day images) have
more contrast than images plagued by bad weather; second,
airlight whose variation mainly depends on the distance of
objects to the viewer, tends to be smooth. Relying on these
two observations, we develop a cost function in the frame-
work of Markov random fields, which can be efficiently op-
timized by various techniques, such as graph-cuts or belief
propagation. The method does not require the geometrical
information of the input image, and is applicable for both
color and gray images.

1. Introduction

Poor visibility in bad weather is a major problem for
many applications of computer vision. Most automatic sys-
tems for surveillance, intelligent vehicles, outdoor object
recognition, etc., assume that the input images have clear
visibility. Unfortunately, this is not always true in many sit-
uations, therefore enhancing visibility is an inevitable task.
Optically, poor visibility in bad weather is due to the sub-

stantial presence of atmospheric particles that have signifi-
cant size and distribution in the participatingmedium. Light
from the atmosphere and light reflected from an object are
absorbed and scattered by those particles, causing the visi-
bility of a scene to be degraded.
In the literature, a few approaches have been proposed.

The first approach is to use polarizing filters (e.g. [10, 11]).
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Figure 1. Left: an image plagued by fog. Right: the result of en-
hancing visibility using the method introduced in this paper.

The main idea of this approach is to exploit two or more
images of the same scene that have different degrees of po-
larization (DOP), which are obtained by rotating a polariz-
ing filter attached to the camera. The common drawback of
the methods in this approach is that they cannot be applied
to dynamic scenes for which the changes are more rapid
than the filter rotation in finding the maximum and mini-
mum DOP.

The second approach is to use multiple images taken
from bad weather scenes (e.g.[1, 8, 7]). The basic idea of
this approach is to exploit the differences of two or more im-
ages of the same scene that have different properties of the
participating medium. While the methods in this approach
can significantly enhance visibility, unfortunately their re-
quirements render them unable to deliver the results im-
mediately (have to wait until the properties of the medium
change) for scenes that have never been encountered before.
Moreover, like the first approach, they also cannot handle
dynamic scenes.

The third approach is to use a single image and demand
the approximated 3D geometrical model of the input scene
(e.g. [6, 4]). Compared with the previous two approaches,
this approach resolves the requirements of multiple images;
however, their demand of the approximated 3D geometrical
models is problematic, since the structure of the real world
(both natural scenes and man-made scenes) are significantly
varied. In addition, the method of Narasimhan et al. [6] is
not intended to be automatic, it neeeds user interactions.

To solve the problems, we introduce an automated
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method that only requires a single input image. Unlike
the existing methods that use a single image, the proposed
method does not require the geometrical information of the
input image, nor any user interactions. The method is based
on two basic observations: first, images with enhanced visi-
bility (or clear-day images) have more contrast than images
plagued by bad weather; second, airlight whose variation
mainly depends on the distance of objects to the viewer,
tends to be smooth. Relying on these two observations, we
develop a cost function in the framework of Markov random
fields (MRFs), which can be efficiently optimized by vari-
ous techniques, such as graph-cuts or belief propagation.
The method is applicable for both color and gray images.
A brief overview of the method is as follows. Given an

input image, we first estimate the atmospheric light, from
which we can obtain the light chromaticity. Using the light
chromaticity, we remove the light color of the input im-
age. Subsequently, we compute the data cost and smooth-
ness cost for every pixel. The data cost is computed from
the contrast of a small patch cropped from the image. The
smoothness cost is computed from the difference or distance
of the labels of two neighboring pixels, where the labels are
identical to the airlight values. These data and smoothness
costs build up complete MRFs that can be optimized us-
ing the existing inference methods, producing the estimated
values of the airlight. Based on the estimated airlight, fi-
nally we compute the direct attenuation that represents the
scene with enhanced visibility. Note that, in this paper, we
do not intend to fully recover the scene’s original colors or
albedo. Our goal is to solely enhance the contrast of an in-
put image so that the image visibility is improved.
Very recently, Fattal [2] independently developed a

method that solely requires a single input image. The
method uses a local window-based operation and a graph-
ical model. However, unlike our proposed method, it at-
tempts to separate uncorrelated fields, namely, the object
shading and the particle attenuation.
The remaining of this paper is organized as follows. In

Section 2, we describe the optical model of bad weather,
and derive the model in term of chromaticity. In Section 3,
we explicitly define the problem of visibility enhancement.
In Section 4, we introduce the theoretical solutions of the
problem, followed by Section 5 where we describe the de-
tail of the solutions in practical frameworks. We show some
results on real images in Section 6. Finally, in Section 7, we
discuss our future work and conclude the paper.

2. Optical Model

The optical model usually used in dealing with bad
weather, particularly in computer vision, is described as
[1, 8, 10, 7] :

I(x) = L∞ρ(x)e−βd(x) + L∞(1 − e−βd(x)). (1)

The first term is the direct attenuation, and the second term
is the airlight. I is the image intensity. x is the 2D spa-
tial location. L∞ is the atmospheric light, which is com-
monly assumed to be globally constant, thus it is indepen-

Figure 2. The pictorial description of the optical model

dent from location x. ρ is the reflectance of an object in
the image. β is the atmospheric attenuation coefficient. d
is the distance between an object in the image and the ob-
server. β in the equation is assumed to be constant for dif-
ferent wavelengths. This assumption is common in many
methods dealing with particles that the size is larger com-
pared with the wavelength of light [5], such as, fog, haze,
aerosol, etc. Moreover, β is constant for different spatial
locations in the input image [7, 6]. Note that, I, L∞, ρ

in the equation are color vector (rgb), while the remaining
variables are scalar. Eq. (1) is in principle based on the
Lambert-Beer law for transparent objects, which states that
light travels through a material will be absorbed or attenu-
ated exponentially. Figure 2 shows the pictorial description
of the model. In this paper, bad weather is associated with
haze, mist, fog, aerosol, etc, however it is also can be ex-
tended further to rain or snow, as long as the optical model
can approximately represent the real physical world.

Chromaticity In our method, we intend to use chromatic-
ity to describe Eq.(1), and thus define image chromaticity as
follows:

σc =
Ic

Ir + Ig + Ib

(2)

where index c represents the color channel (which can be
either r or g or b), and this makes Ic become one of the
elements of I.
If we assume that the object is infinitely distant (d = ∞),

according to Eq.(1) the image chromaticitywill depend only
on the atmospheric light (L∞), since e−βd = 0. We call
this ”light chromaticity”, which has definition derived from
Eq.(2):

αc =
L∞c

L∞r + L∞g + L∞b

(3)

Accordingly if we assume that there is no effect of scat-
tering particles (e−βd = 1), implying the absence of the
airlight, then the image chromaticity will depend solely on
the direct attenuation. We call this chromaticity “object
chromaticity”. By deriving from Eq.(2) and (1) we can
write:



γc =
L∞cρc

L∞rρr + L∞gρg + L∞bρb

(4)

Therefore, by using Eq.(3,4), we can rewrite Eq. (1) in
terms of chromaticity:

I(x) = D(x)e−βd(x)
γ(x) + A(x)α (5)

where:

D(x) = L∞rρr(x) + L∞gρg(x) + L∞bρb(x) (6)

A(x) = (L∞r + L∞g + L∞b)(1 − e−βd(x)) (7)

D and A are both scalar values, while γ and α are
normalized color vectors. From their chromaticity
definitions, we can state [

∑

σc = σr + σg + σb = 1],
[
∑

γc = γr+γg+γb = 1], and [
∑

αc = αr+αg+αb = 1].

Atmospheric Light and Light Chromaticity In many
situations of bad weather, particularly in daylight where
the sky is usually overcast, we can ignore the presence of
the sunlight, and assume that the atmospheric light (L∞) is
globally constant. According to Eq.(1), this global value of
L∞ can be obtained from pixels that have the highest in-
tensity in the input image. Since these pixels represent an
object at infinite distant (d = ∞), assuming that the sky
can seen in the image and the image has no saturated pix-
els. Consequently, having the value of L∞ enables us to
obtain the value of the light chromaticity (α), by plugging
the value of L∞ into Eq.(3).

White Atmospheric Light By utilizing the light chro-
maticity (α), we can transform the color of the atmospheric
light of the input image into white color, simply by dividing
every color channel of the image intensity in Eq. (5) by the
corresponding αc:

I ′c(x) = Ic(x)/αc (8)

I ′c(x) = D(x)e−βd(x) γc(x)

αc(x)
+ A(x) (9)

= D(x)e−βd(x)γ′

c(x) + A(x) (10)

where γ′

c is the normalized object chromaticity. I ′c is the
normalized input image that the airlight color is white.
The last equation can be written in term of color vectors:

I′(x) = D(x)γ ′(x)e−βd(x) + A(x)

[

1
1
1

]

(11)

where I′ and γ
′ are color vectors, and the remaining vari-

ables are scalar. Figure 3 shows the result of the normal-
ization, where to be displayable (i.e. the intensity ranges
from 0 to 255) we divide the two sides of the last equation
with a scalar value. In this paper we divide by three. The
last operation does not change the correlation described in
Eq.(11).

Figure 3. Left: Input image. Right: the result of normalizing the
environmental light.

3. Problem Definition

Considering Eq.(11) and assuming that we have the val-
ues of I′(x) and L∞, the goal of this paper is therefore to
estimate the values of D(x)γ ′(x) across the image. These
values represent an image that is not affected by scattering
or absorption.

Through the Airlight The problem of estimating Dγ
′ is

in fact equivalent to estimating A. We can compute Dγ
′

from A using the following steps: first, based on Eq.(7),

e−βd(x) =

∑

c L∞c − A(x)
∑

c L∞c

(12)

where
∑

c L∞c = L∞r + L∞g + L∞b. Second, based on
Eq.(11):

D(x)γ ′(x) =
(

I′(x) − A(x)

[

1
1
1

]

)

eβd(x) (13)

Consequently, instead of directly estimating Dγ
′, we

can first estimate A, which is considerably easier to com-
pute, since it is independent from the object reflectance (ρ),
and is solely dependent on the depth, d (recall that we have
assumed that β and L∞ are globally constant).

4. The Solution of Using a Single Image

The problem described in Sect. 2 is a totally ill-posed
problem: the number of known variables in Eq.(11) is less
than the number of unknown variables. However, there are
some clues or observations that can be considered:

1. The output image,Dγ
′ must have better contrast com-

pared to the input image, I.

2. The variation of the values ofA is dependent solely on
the depth of the objects, d, implying that objects with
the same depth will have the same value of A, regard-
less their reflectance (ρ). Thus, the values of A for
neighboring pixels tend to be the same. Moreover, in
many situationsA changes smoothly across small local



areas. Exception is for pixels at depth discontinuities,
whose number is relatively small.

Aside from the two main observations above, we can
also consider that:

3. The input images that are plagued by bad weather are
normally taken from outdoor natural scenes. There-
fore, the correct values ofDγ

′ must follow the charac-
teristics of clear-day natural images.

4.1. Maximizing Contrast

For the first clue, we quantitatively define image contrast
in association with the number of edges, which can be writ-
ten formally as:

Cedges(I) =
∑

x,c

|∇Ic(x)| (14)

where∇ is the differential operator over x-axis and y-axis.
This equation implies that an image with more contrast pro-
duces a larger number of edges. In other words, clear-day
images have a larger number of edges than those affected
by bad weather: Cedges(Dγ

′) > Cedges(I
′).

From Sect. 2 we know that the values of Dγ
′ can be

obtained from A that is according to Eq.(7): 0 ≤ A(x) ≤
∑

c L∞c(x). Therefore, if we have a small image patch, p,
that contains objects with the same depth and affected by
bad weather, then there is a scalar value A, which can give
the correctDγ

′, whereDγ
′ must follow these constraints:

Cedges(Dγ
′) > Cedges(p) (15)

0 ≤ Dγ′

c ≤ L∞c (16)

The second constraint is the direct consequence of Eq.(4,6),
since 0 ≤ ρc ≤ 1.
Figure 4 shows a natural image in a clear day and the

artificial fog on the image that the airlight (A) is set constant
across the image. We crop the artificial-fog image to have
a small-squared patch (the red box), compute Cedges(Dγ

′)
from all values of A, and plot the correlation of the two
in Figure 5. As can be observed in the figure, the value
of Cedges(Dγ

′) increases along with the increase of A and
declines after reaching a certain peak. This rapid decline is
mainly caused by imposing the second constraint (Eq.(16)).
We argue that the correlation prevails for every im-

age patch taken from any kind of scenes plagued by bad
weather, as long as the image patch has textures in it, im-
plying that Cedges(Dγ

′) > 0. The proof is as follows. Re-
garding Eq.(14,13,12), we can write:

Cedges(Dγ
′) =

∑

x,c

∣

∣(I ′x,c − A)eβd − (I ′x−1,c − A)eβd
∣

∣

= eβd
∑

x,c

∣

∣(I ′x,c − I ′x−1,c)
∣

∣

=

∑

c L∞c
∑

c L∞c − A

∑

x,c

∣

∣(I ′x,c − I ′x−1,c)
∣

∣

Figure 4. Left: a natural image. Right: synthetical fog of the left
image, where A is set constant globally (=153 after the division).

Figure 5. The distribution of the number of edges (of the region
in the red rectangle) with respect to A. y-axis is Cedges([Dγ

′]∗x)
and x-axis is A. The peak is around A = 167.

since L∞ is constant and
∑

x,c

∣

∣(I ′x,c − I ′x−1,c)
∣

∣ has the

same value for the same image patch, then Cedges(Dγ
′)

will be proportional to A. This explains the increase in Fig-
ure 5. However, following the second constraint in Eq.(16)
we setDγ′

c = 0 ifDγ′

c > L∞c, thereforeCedges(Dγ
′)will

decline regardless the increase ofA. Note that, d is indepen-
dent from x, since we assume that A is constant across the
patch.

In our framework to enhance visibility, we use
Cedges(Dγ

′) as our cost function. While the largest num-
ber of Cedges(Dγ

′) does not always represent the actual
value of A, it represents the enhanced visibility of the input
image. As mentioned in the introduction, in this paper we
do not intend to recover the original color or reflectance of
the images in clear days. Our main purpose is to enhance
the visibility of scenes in bad weather, with some degree of
accuracy on the scene’ colors.

4.2. Airlight Smoothness Constraint

According to the second clue, the changes of A across
the image tend to be smooth for the majority of the pixels.
This motivates us to model the airlight (A) using Markov
random fields (MRFs). We write the potential function of



MRFs as:

E({Ax}|px) =
∑

x

φ(px|Ax) + η
∑

x,y∈Nx

ψ(Ax, Ay) (17)

where px is a small patch centered at location x, which is
assumed to have a constant value ofAx (whereAx ≡ A(x)).
η is the strength of the smoothness term, andNx represents
the neigboring pixels of x. We define the first term, which
is the data term as:

φ(px|Ax) =
Cedges([Dγ

′]∗x)

m
(18)

where [Dγ
′]∗x is obtained by plugging every value of Ax

into Eq.(12,13).m is a constant to normalizeCedges, so that
0 ≤ φ(px|Ax) ≤ 1. The value of m depends on the size
of the patch px. The second term (the smoothness term) is
defined as:

ψ(Ax, Ay) = 1 −
|Ax − Ay|
∑

c L∞c

(19)

This equation encourages smoothness for neighboringAx.
To find all values or labels of {Ax}, we have to maximize

the probability distribution of p({Ax}) described in Gibbs
distribution by using the existing inference techniques, such
as graph-cuts or belief-propagation.

5. Computational Methods

In this section, we further explain the detailed implemen-
tation of the framework described in Eq.(17) and discuss
a few other issues for improving the results and computa-
tional time.

5.1. Algorithm

Pseudocode 5.1 shows the detailed algorithm of our
method. Given an input image I, in step 1, we estimate
the atmospheric light, L∞. This can be done by finding a
small spot that has the highest intensity in image I. In step
2, we compute the light chromaticity, α from L∞ by using
Eq.(3). However, to be more accurate, we can estimate α

using an existing color constancy method (e.g. [3]). Having
the value of α, in step 3, we remove the illumination color
of I using Eq.(8), producing I′. We compute the data cost
for every pixel of I′ in step 4. The detail of the algorithm
for computing the data cost is described in Pseudocode 5.2.
Pseudocode 5.2 starts with an iteration of every pixel in

I′. x represents 2D location of a pixel. In step 4.1, we crop
an n × n patch which is centered at a location x. n must
be small enough to make the assumption that the airlight in
the patch is uniform valid, yet not so small that we could
possibly lose the textures or edges information. The patch
size could be 5×5 or 7×7, depending on the size and scale
of the input image. In step 4.2 and 4.2.1, for every possible
value of A, which each of them we call A∗, we compute
the direct attenuation for the patch, [Dγ

′]∗x, using Eq.(13).
Then, in step 4.2.2, we compute the data cost using Eq.(18).

After all of the iterations finish, the function will return the
data cost, φ(px|Ax) for all pixels, where for each pixel,
φ(px|Ax) is a vector with

(
∑

c L∞c−k
)

dimensions. For
clarity, we explain the constant k later in this section.

Algorithm 5.1: VISIBILITYENHANCEMENT(I)

comment: I is the input image

(1) Estimate L∞

(2) Compute α from L∞

(3) Remove the illumination color of I
(4) Compute the data term φ(px|Ax) from I′

(5) Compute the smoothness term ψ(Ax, Ay)
(6) Do the inference, which yields the airlight, A
(7) Compute the direct attenuation,Dγ

′, from A
return (Dγ

′)

Algorithm 5.2: DATACOST(I′,
∑

c L∞c)

for x ← 0 to sizeof(I′)− 1
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(4.1) Crop an n × n patch, px, from I′ centered at x
(4.2) for A∗ ← 0 to

∑

c L∞c − k
{

(4.2.1) Compute [Dγ
′]∗x from A∗ and px

(4.2.2) Compute φ(px|A
∗

x) =
Cedge([Dγ ′]∗)

m

return (φ(px|Ax) for all pixels)

After computing the data cost, in step 5 of Pseudocode
5.1, we compute the smoothness cost using Eq.(19). By ob-
taining both data cost and smoothness cost, we now have a
complete graph in term of Markov random fields. In Step 6,
to do the inference in MRFs with number of labels equals to
(
∑

c L∞c − k
)

, we use the graph-cut algorithm with mul-
tiple labels (i.e. [12]) or belief propagation. In step 7, we
finally compute the direct attenuation for the whole image
from the estimated airlight using Eq.(13). Figure 6, show
the results of the airlight, A, and the correspondingDγ

′.
Up to this point, there are two variables that are not yet

discussed: k (in step 2 of Pseudocode 5.2) and the value
of η in Eq.(17). In Section 4.1., we have mentioned that
0 ≤ A ≤

∑

c L∞c, thus the iteration in step 2 (of 5.2)
should be from 0 to

∑

c L∞c. However we know that, A
=

∑

c L∞c only when the object is infinitely distant, and
in fact, most objects are not at infinity, except for the sky
itself. Therefore A must be smaller than

∑

c L∞c that we
write mathematically as 0 ≤ A ≤

∑

c L∞c − k, where in
our experiments, we set k = 20.
To determine η we can empirically learn from a database

of foggy images and their corresponding clear-day images.
We examine η by comparing images that have been en-
hanced using various η with their coresponding clear day
images, and choose the best η that gives considerably good
results for the majority of the images.

Gray Images For gray images, the algoritm is exactly the
same, except that we skip step 3 (of Pseudocode 5.1), mean-
ing that we do not estimate α and do not remove the illumi-
nation color. Figure 7 show the result of enhancing visibility
for a gray image.



Figure 6. Top: the airlight. Bottom: the direct attenuation.

Figure 7. Left: a gray input image. Right: the enhanced image.

5.2. Label Candidates and Initialization

Graph-cuts and belief propagation are currently the most
efficient techniques to optimize the cost function of MRFs,
unfortunately they still require a considerable amount of

Figure 8. Left: the values of Y. Right: the blurred Y-image.

computational time, particularly when the size of the input
image and the number of labels are large. To speed up the
inference process, we consider two techniques: first, by re-
ducing the number of labels (the dimension of the data cost),
and second, by providing initial values for the airlight.
In Pseudocode 5.2, the number of labels (the dimension

of the data cost, φ(px|Ax)) is fixed, i.e,
(
∑

c L∞c − k
)

,
however we know that not all of these labels are actually
used. For instance, if we have the largest Cedge([Dγ

′]∗)
at A∗ = 200, then it is not possible that the actual A for
the patch is equal to 0 or even 50. Therefore, we reduce
the number of the labels by choosing the nth-largest data
cost and its corresponding A∗, where in our experiments
we defined n = 20.
For obtaining the initial values of the airlight (A), we ap-

proximately estimate it through the Y of YIQ color model,
which is defined as:

Y = 0.257I′r + 0.504I′g + 0.098I′b (20)

We blur the image that is produced by the values of Y and
use this blurred image as the initial values of A. Figure 8
show the values Y , and the blurred Y (the initial airlight).

6. Experimental Results

To demonstrate the effectiveness of our method, we used
real images of outdoor scenes in our experiments. We
did not apply radiometric calibration to our experiments,
however we consider that a camera with gamma correction
turned off will improve the results, particularly for obtain-
ing the appropriate colors with respect to the actual colors in
clear days. The computational time for 600 × 400 images,
using double processors of Pentium 4 and 1 GB memory,
approximately five to seven minutes (applying graph-cuts
with multiple labels).
Top of Figure 9 shows a road scene partially covered by

haze. The middle and the bottom of the figure show the
direct attenuation image and the airlight. In the direct at-
tenuation image, one can observe that a yellow car which
is far away from the camera becomes visible. Figure 10,
which was obtained from the internet, shows an outdoor
scene plagued by fog. The middle and bottom of the fig-
ure show the direct attenuation and the airlight. Figure 11
shows the input image of rainy weather, the estimated direct



Figure 9. Top: input image. Middle: the direct attenuation. Bot-
tom: the airlight.

attenuation, the ground truth, and the estimated airlight. We
consider the image taken in clear weather to be the ground
truth.
The inference for the last result was done by using It-

erated Conditional Modes (ICM) employing the blurred Y-
image as the initial values. Although ICM cannot guarantee
the global optimum, the result shows that the visibility is
considerably improved. This is due to the effectiveness of
our cost function and the initial values.

7. Future Work and Conclusion

For future work, we intend to concentrate on the cur-
rent constraints of our method. First is the halos at depth
discontinuities. One can observe, for instance in Figure 9,

Figure 10. Top: input image. Middle: the direct attenuation. Bot-
tom: the airlight.

there are some small halos surrounding the trees in the im-
age. We suspect that it is due to the patch-based operation
we use; and, this problem should be straighforward to solve
if we know the depth discontinuities of the scenes (which,
in the input image, are obscured by the atmospheric parti-
cles). The second constraint is that, since we optimize the
data cost function and do not know the actual values of A,
the outputs tend to have larger saturation values (of hue-
saturation-intensity) than those in the actual clear-day im-
ages. To overcome this, we intend to incorporate the obser-
vation 3 in Section 4, namely that the outputs must follow
the characteristics of natural images of clear-day scenes. We
hypothesize that these characteristics can be learned statisti-
cally. Finally, we also intend to apply the proposed method



Figure 11. Top: input image. Second from top: the direct attenu-
ation. Third from the top: the ground truth. Bottom: the airlight.
Note that, we increase the intensity of the direct attenuation, since
the input image is considerably darker than the ground truth.

to improve under-water visibility [9] or other turbid media
that have the same optical model.
As a conclusion, we have introduced a method that is

solely based on single images, without requiring the ge-
ometrical structure of the world nor any user interactions.
We believe that many applications, such as outdoor surveil-
lance systems, intelligent vehicle systems, remote sensing
systems, graphics editors, etc, could benefit from our pro-
posed method.
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