
Visibility in Event-Based Systems

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieurs (Dr.-Ing.)

vorgelegt von

Dipl.-Inform. Ludger Fiege

aus Remagen

Referenten: Prof. Alejandro P. Buchmann, Ph. D.
Prof. Dr. Mira Mezini

Datum der Einreichung: 27. Juli 2004
Datum der mündlichen Prüfung: 22. April 2005

Darmstadt 2005, Darmstädter Dissertationen D17

For Biggi,
and Franzi, Flori, and Johanna

Preface

Acknowlegements

Many persons have contributed to this thesis and I want to thank them for their
support. First of all, I have to thank my advisor Prof. Alejandro Buchmann
for his demanding questions, his continuous support, and his patience. With-
out his support this work would not have been possible. My co-advisor Prof.
Mira Mezini managed to point me to the engineering issues, which considerably
strengthened the statements made in this thesis.

Current and past colleagues at database and distributed systems group at
TU Darmstadt provided a wonderful working environment. Especially Mariano
Cilia, Felix C. Gärtner, Gero Mühl, and Andreas Zeidler endured many discus-
sions that helped me forming my ideas, and without Gero the whole Rebeca
project wouldn’t have started at all.

Last but not least, I have to thank my family for all their patience and
support. And it is always good to get a reminder once in a while where real life
takes place.

Publications

Parts of this thesis are based on previous publications. Excerpts of Chapter 2
on the formal specification of event-based systems are published as joint work
with Gero Mühl and Felix C. Gärtner [113, 114, 115]. The discussion about
content-based filters and routing in the Rebeca notifications service is based on
joint work with Gero Mühl [214, 216]. The basis for Chapter 3 was published
together with Mira Mezini, Gero Mühl, Felix C. Gärtner, and Alejandro P.
Buchmann [110, 111, 115]. Some of the routing and security issues are published
in [117]. The disussion of scalability in Chapter 5 is motivated by joint work
with Gero Mühl, Felix C. Gärtner, and Alejandro P. Buchmann [217].

A number of additional publications have been published during the time
this thesis was prepared [45, 75, 105, 107, 108, 109, 215, 272, 290, 291, 305], and
workshop proceedings were edited that are related to this thesis [19] and to the
discussion in Chapter 2 [46, 116].

i

ii

Abstract

In modern IT systems, growing interconnectivity and continuous change demand
a loose coupling of the participating components and services to facilitate sys-
tem evolution. The paradigm of event-based computing and publish/subscribe
communication provide the flexibility and scalability that is required in many
application domains. Examples include mobile systems, monitoring, reactive
system construction, and application integration.

In event-based systems producers and consumers of data interact indirectly.
Producers publish notifications about events they have observed. Consumers
announce their interest in certain kinds of notifications by issuing subscriptions.
An intermediate notification service conveys notifications to those consumers
having a matching subscription. Hence, the data flow in event-based systems is
determined implicitly by set of all notifications and subscriptions.

This decoupling of producers and consumers is one of the main advantages of
this paradigm, but in this generic form it also implies some downsides. There is
no way to differentiate application-level components or to tailor the functionality
of publish/subscribe services. The implied assumption is that such systems
are homogeneous. However, open systems are heterogeneous and will not only
require the middleware to accommodate to different data formats but also to
combine different notification techniques. A one-size-fits-all implementation of
the notification service is obviously not possible.

Unfortunately, current research and available products are primarily focus-
ing on scalability issues in terms of communication efficiency and system size,
whereas problems of system engineering and management are often neglected.
Efficient mechanisms to structure event-based systems are a missing prerequisite
for supporting engineering, management, and heterogeneity. Like in the early
stages of programming language evolution, current event-based systems are typ-
ically characterized by a flat design space, with no structure and global variables
only. While producers and consumers are designed and implemented as usual,
there is no support for the role of an administrator, which is responsible for
orchestrating application components and middleware services.

This thesis identifies the visibility of components and notifications as the
underlying objective that must be achieved for any form of interaction con-
trol. Scoping is introduced as tool for administrators to control visibility and
thus communication. A scope bundles and identifies a group of producers and

iii

consumers. Notifications published in one scope are, at first, invisible in other
scopes. Scopes encapsulate the composed producers and consumers and hide the
internal structure. They localize the relationships between components outside
of the components themselves.

In order to communicate with the remaining system input and output in-
terfaces are assigned to scopes. They determine which internal notifications are
forwarded to the outside, and vice versa. Scopes thus act as a single compo-
nent to the outside system. Furthermore, they can be recursively arranged as
members of other, higher-level scopes. Scopes and components can be arranged
according to a variety of objectives, and at different levels of abstraction. On
one hand, scopes represent common characteristics of the grouped components,
like proximity to a designated location based on geographical coordinates or
IP network topology. On the other hand, scopes delimit components of other
groups that belong to different administrative domains, use other data models
for notifications, or do not have the required security credentials. In the general
case, system engineers and administrators decide how the system is logically and
physically subdivided—scoping is the tool offered to them by this thesis.

Once the structure of an event-based systems is identified, scoped notification
delivery can be customized. Transmission policies are associated with scopes to
refine the rules where matching notifications are delivered, e.g., to forward a
notification only to one out of a set of similar consumers in a scope. Notifica-
tion mappings transform between different data formats used for internal and
external notifications. Together with scope interfaces this allows for a controlled
integration of independently developed and deployed pub/sub applications.

Different aspects of controlling visibility of events are tackled in a large num-
ber of existing products and research contributions. However, so far an approach
orthogonal to the other aspects of publish/subscribe was missing. Scopes pro-
vide the means by which system administrators and application developers can
configure an event-based system. Scopes offer an abstraction to reify struc-
ture and to bind organization and control of routing algorithms, heterogeneity
support, and administrative tasks to the application structure. By providing a
well-defined point of interconnection, scopes may not only delimit the distribu-
tion of notifications within a given service implementation but also act as bridges
between different implementations. They delimit application functionality and
contexts, controlling side effects and interaction. This is of particular impor-
tance as platforms of the future must be configurable not only at deployment
time but also once an application is in operation.

This thesis investigates the scoping concept and its extensions in three steps.
Based on a specification of publish/subscribe semantics, scoping is formally de-
fined using a language adapted from temporal logic. Second, a variety of imple-
mentation strategies are compared that differ in the amount of control exerted
on communication and the type of underlying communication mechanisms, rang-
ing from point-to-point messaging to multicast, from remote procedure calls to
database storage. Finally, a prototype implementation as part of the Rebeca

distributed notification service is described.

iv

Zusammenfassung

Ereignisbasierte Softwarearchitekturen sind wegen ihrer inhärenten Vorteile zu
einem wesentlichen Merkmal großer verteilter Systeme geworden. Die lose Kopp-
lung der beteiligten Komponenten erlaubt es, autonome, heterogene Systemteile
leicht zu integrieren und die Entwicklungsfähigkeit und Skalierbarkeit der ent-
stehenden, komplexen Systeme zu steigern. Es wird zunehmend deutlich, dass
traditionelle Client/Server Ansätze, basierend zum Beispiel auf Remote Pro-
cedure Calls (RPC), diese Anforderungen nur unzureichend unterstützen. Die
ereignisbasierte Verarbeitung verspricht hier sowohl eine höhere Leistungsfähig-
keit als auch flexiblere Architekturen, die sich an veränderliche Anforderungen
anpassen lassen.

In einem ereignisbasierten System kommunizieren Komponenten indem sie
Notifikationen über aufgetretene Ereignisse produzieren und konsumieren. Als
Ereignis wird dabei die Änderung eines im Computer implementierten Modells
bezeichnet. Die betroffene Komponente (Produzent) publiziert daraufhin eine
oder mehrere Notifikationen, die das Ereignis beschreiben. Die Art der Infor-
mationen, die von einem Produzenten veröffentlicht wird, beschreibt eine vorher
verbreitete Ankündigung (engl. Advertisement). Die Notifikationen sind nicht an
bestimmte Empfänger adressiert, vielmehr werden sie an diejenigen Konsumen-
ten weitergeleitet, die vorher ihr Interesse an dieser Art von Nachricht durch
das Veröffentlichen einer entsprechenden Subskription angemeldet haben. Ein
Notifikations-Dienst ist für die Übermittlung der Daten verantwortlich. Die lose
Kopplung ist darin begründet, dass Produzenten nur Informationen über ihren
eigenen Zustand publizieren, d.h. über interne Ereignisse, und keine Kenntnis
über die möglichen Konsumenten haben; sie erwarten somit auch keine direkte
Reaktion auf die veröffentlichten Informationen.

Das Potenzial ereignisbasierter Architekturen wurde sowohl in der Industrie
als auch in der Forschung erkannt. Eine Reihe von Prototypen und Produkten ist
verfügbar (SIENA, JMS, TIB Rendezvous, IBM WebSphere MQ, etc.) und ent-
sprechende Dienste sind Teil moderner Komponentenplattformen, wie z.B. dem
Corba Component Model (CCM) und Enterprise JavaBeans (EJB). Allerdings
lag bisher das Hauptaugenmerk auf der Effizienz der Notifikations-Dienste, wo-
hingegen Entwurf, Programmierung und Administration solcher Systeme wenig
betrachtet wurden. Andererseits hat die Forschung im Bereich Software Engi-
neering frühzeitig die Bedeutung von Kapselung (information hiding) und Ab-

v

straktion erkannt, die maßgeblich die Entwicklung des strukturierten Program-
mierens, des Modul-, Klassen-, und Komponentenbegriffs beeinflusst haben. Ob-
wohl diese Ideen in Request/Reply-basierten Systemen umgesetzt worden sind
(z.B. Corba) fehlen vergleichbare Strukturierungsmechanismen für ereignisba-
sierte Systeme. In der Literatur ist kein Modulkonzept oder Komponentenbegriff
für ereignisbasierte Systeme eingeführt worden und typische Implementierungs-
techniken, wie Publish/Subscribe, führen neben den primitiven API-Aufrufen
keine weiteren (Programmier-) Abstraktionen ein. Ein geeignetes Modulkonzept
kann die Beziehungen zwischen den Komponenten materialisieren. Es stellt so-
mit für den Programmierer und den Administrator ein wertvolles Hilfsmittel dar,
um die Interaktion steuern zu können. Ein Modul bündelt eine Menge von Pro-
duzenten und Konsumenten und kann, versehen mit eigenen Ein- und Ausgabe-
Schnittstellen, als neue, zusammengesetzte, ereignisbasierte Komponente im Sy-
stem teilnehmen.

Sichtbarkeitsbereiche bündeln mehrere Basiskomponenten und beschränken
die Sichtbarkeit von Notifikationen zunächst auf die Konsumenten ein, die sich
im gleichen Bereich wie der Produzent befinden. Zusammen mit einer eigenen
Schnittstellenbeschreibung agieren die Sichtbarkeitsbereiche wiederum als Kom-
ponenten, die in andere Bereichen integriert werden können; sie offerieren ein
Modulkonzept wie es oben gefordert wurde. Um die Interaktion zwischen und
innerhalb der so definierten Sichtbarkeitsbereiche genauer festzulegen, können
Transformationen und Verbreitungsregeln definiert werden. Transformationen
(notification mappings) verändern die Notifikationen, wenn sie die Grenzen eines
Sichtbarkeitsbereiches überqueren. Auf diese Weise können Bereiche mit unter-
schiedlichen Datenmodellen und Repräsentationen voneinander getrennt werden.
Die Verbreitung von Notifikationen kann mit Hilfe von Regeln (transmission po-
licies) beeinflusst werden, die an Bereiche gebunden werden. Sie wählen aus der
Menge der Konsumenten, die im betrachten Bereich eine passenden Subskripti-
on besitzen, diejenigen aus, die eine Nachricht tatsächlich erhalten sollen. Dies
kann man nutzen, um eine 1-aus-n Auslieferung innerhalb eines Sichtbarkeitsbe-
reiches zu implementieren. Zusammengenommen ist der Systementwickler in der
Lage, ereignisbasierte Systeme graduell weiter zu entwickeln und die Leistung
und Semantik des Notifikations-Dienstes an die Struktur einer Anwendung zu
binden und anzupassen.

In dieser Arbeit werden die Anforderungen analysiert, die ereignisbasier-
te Systeme an den Entwurf stellen, und Sichtbarkeitsbereiche (Scopes) als ein
grundlegender Strukturierungsmechanismus eingeführt, der diesen Anforderun-
gen genügt. Neben einer formalen Definition werden eine Reihe von Umsetzungs-
strategien diskutiert, die sich in dem Umfang an Kontrolle unterscheiden, den
sie auf die Kommunikation ausüben. Eine prototypische Implementierung im
Rahmen des Rebeca Projekts demonstriert die Machbarkeit des vorgestellten
Konzepts.

vi

Contents

1 Introduction 1
1.1 Event-Based Systems . 2
1.2 Shortcomings of Event-Based

Communication . 4
1.3 Scoping in Event-Based Systems 5
1.4 Organization . 8

2 Event-Based Systems 9
2.1 Constituents of Event-Based Systems 9

2.1.1 Events and Notifications 10
2.1.2 Producers and Consumers 10
2.1.3 Subscriptions and Filters 11
2.1.4 Event Notification Service 13

2.2 Models of Interaction . 13
2.2.1 Request/Reply . 14
2.2.2 Anonymous Request/Reply 14
2.2.3 Point-to-Point Messaging 15
2.2.4 Event-Based . 15
2.2.5 Comparison . 16
2.2.6 Interaction vs. Implementation 17

2.3 Simple Event-Based Systems . 18
2.3.1 Formal Background . 18
2.3.2 Specification of a Simple Event System 20
2.3.3 Implementation . 26
2.3.4 Correctness . 27

2.4 The Rebeca Model . 28
2.4.1 System Model . 28
2.4.2 Architecture . 29
2.4.3 Filter-Based Routing . 30

2.5 Missing Functionality . 31
2.5.1 Application Scenarios . 32
2.5.2 Engineering Requirements 34
2.5.3 Existing Support . 38

vii

2.6 Discussion . 39

3 Scopes 41

3.1 Visibility . 42

3.1.1 Implicit Coordination and Visibility 42

3.1.2 Explicit Control of Visibility 43

3.1.3 The Role of Administrators 43

3.2 Event-Based Systems with Scopes 44

3.2.1 Visibility and Scopes . 44

3.2.2 Specification . 45

3.2.3 Notification Dissemination 48

3.2.4 Duplicate Notifications . 50

3.2.5 Dynamic Scopes . 51

3.2.6 Attributes and Abstract Scopes 52

3.2.7 A Correct Implementation 53

3.3 Component Interfaces . 56

3.3.1 Scope Interfaces . 56

3.3.2 Event-Based Components 58

3.3.3 Example . 58

3.4 Notification Mappings . 60

3.4.1 Specification . 61

3.4.2 A Correct Implementation 65

3.4.3 Example . 67

3.5 Transmission Policies . 68

3.5.1 Publishing Policy . 68

3.5.2 Delivery Policy . 70

3.5.3 Traverse Policy . 71

3.5.4 Influencing Notification Dissemination 72

3.6 Scoping of Notifications . 73

3.6.1 Dependent Notifications 73

3.6.2 Session Scopes . 74

3.7 Security . 76

3.8 Engineering with Scopes . 76

3.8.1 Development Process . 77

3.8.2 Component Definition . 77

3.8.3 Scope Graph Composition 79

3.8.4 Scope Graph Deployment 80

3.8.5 Management . 80

3.8.6 Scope Graph Language 81

3.9 Discussion . 90

viii

4 Scope Architectures 93
4.1 Architectural Choices . 94

4.1.1 Communication Medium 94
4.1.2 Scope Distribution . 97
4.1.3 Example Architectures . 99
4.1.4 Scope Graph Distribution—Types of Architectures 102
4.1.5 Comparing Architectures 105

4.2 Collapsing Scope Graphs . 106
4.2.1 Collapsing Filters . 106
4.2.2 Filtering Costs in a Pub/Sub Implementation 112
4.2.3 Coping with Graph Updates 113
4.2.4 Filter Aggregation in Databases 115
4.2.5 Evaluation . 115

4.3 Scope Address . 116
4.3.1 Addressing Scheme . 116
4.3.2 The Resulting Overlay Network 117
4.3.3 Evaluation . 118

4.4 Scopes as Event Brokers . 119
4.4.1 One Scope, One Broker 120
4.4.2 Distributed Scopes . 120
4.4.3 Collocating Broker Scopes 121
4.4.4 Evaluation . 122

4.5 Integrate Scoping and Routing 122
4.5.1 Scopes as Overlays . 122
4.5.2 Enhancing Routing Tables 124
4.5.3 Setting Up Routing Tables 125
4.5.4 Scoped Routing . 127
4.5.5 Crossing Scopes . 130
4.5.6 Transmission Policies . 132
4.5.7 Scope Multicast . 133
4.5.8 Evaluation . 133

4.6 Combining Different Architectures 134
4.6.1 Architectures and Scope Graphs 134
4.6.2 Bridging Architectures . 135
4.6.3 Integration with other Notification Services 136

4.7 Discussion . 137

5
�✂✁☎✄☎✁✝✆☎✞

—An Implementation of Scopes 139
5.1 Software Building Blocks . 140

5.1.1 Events, Notifications, Messages 140
5.1.2 Subscriptions and Filters 142
5.1.3 Pub/Sub API . 143
5.1.4 Broker Network . 144
5.1.5 Broker Implementation 145
5.1.6 Channels . 147

ix

x

5.2 Scopes . 148
5.2.1 Scope Interface . 148
5.2.2 Implementation: Broker Scope 149
5.2.3 Management Interfaces 152
5.2.4 Implementation: Integrated Routing 153

6 Related Work 157
6.1 Distributed Systems . 159

6.1.1 Middleware . 159
6.1.2 Communication Paradigms 160
6.1.3 Other Notions of Communication 163
6.1.4 Application Scenarios . 163

6.2 Notification Services . 164
6.2.1 Corba Notification Service 165
6.2.2 Java Message Service . 166
6.2.3 Commercial Systems . 166
6.2.4 Research Prototypes . 168
6.2.5 Other Related Work . 170

6.3 Rule-Based Systems . 171
6.4 Data Management . 171

6.4.1 Active Database Management Systems 171
6.4.2 Reactive Functionality . 172
6.4.3 Heterogeneity and Data Integration 173

6.5 Coordination Models . 173
6.6 Software Engineering . 175

6.6.1 Software Architecture . 175
6.6.2 Software Integration . 176
6.6.3 Component Models . 177
6.6.4 Programming Loosely Coupled Systems 178
6.6.5 Aspects and Reflection . 179

6.7 GUI Design . 179

7 Conclusions and Future Work 181

Bibliography 187

List of Figures

2.1 Event-based system artifacts: interaction versus implementation . 11
2.2 Taxonomy of cooperation models 14
2.3 Interface operations of a simple event system 19
2.4 Black box view of an event system 23
2.5 A possible implementation view of a simple event system 27
2.6 The router network of Rebeca 29
2.7 Call graphs of applications: bipartite single and multi source, and

a general group . 32
2.8 An example stock trading application 35

3.1 A meta model of scopes . 45
3.2 An exemplary scope graph . 46
3.3 Outgoing and incoming notifications 49
3.4 Two ways of generating duplicates 50
3.5 A possible implementation of a scoped event system 54
3.6 Different scope interfaces . 57
3.7 The graph of the stock application 59
3.8 Interfaces of the components in the example application 60
3.9 Recursive definition of the relation (n1, X) � (n2, Y) 62
3.10 Transformation of mappings into components 65
3.11 Architecture of scoped event system with mappings 66
3.12 Three important transmission policies in scope graphs 69
3.13 Scope definition accuracy . 90

4.1 Design dimensions of scope architectures 94
4.2 An implicit implementation shifts visibility control into applica-

tion components. 98
4.3 Scope architectures combine scope graph implementation and com-

munication media. 100
4.4 Steps of scoped notification delivery 102
4.5 Types of architectures, their characteristics, and examples 104
4.6 Comparison of scope architectures 107
4.7 A collapsed sample graph and explicit destinations 108

xi

xii LIST OF FIGURES

4.8 Compute list of scopes in which a notification is visible 110
4.9 Collapsing with visibility roots 110
4.10 Notifications are tagged with the ID of their scope. 117
4.11 An exemplary scope graph . 123
4.12 Scopes as overlays within the broker topology 123
4.13 A flat routing table for broker B1 124
4.14 Enhanced routing tables of B1 incorporating scopes 125
4.15 Scope lookup tables . 126
4.16 overall routing algorithm . 129
4.17 The näıve matching algorithm with mappings 129
4.18 Inter-scope forwarding . 130
4.19 Duplicate scopes to separate QoS requirements 135

5.1 Events, notifications, and messages 140
5.2 Message structure . 141
5.3 Subscriptions and filters . 142
5.4 Components and scopes . 144
5.5 A demo publisher . 144
5.6 Rebeca brokers . 145
5.7 Rebeca routing classes . 146
5.8 An event broker configuration file 147
5.9 Structure of a ScopeJoin notification 150
5.10 Adding a management aspect . 152
5.11 EventBroker management interface 153
5.12 Scope management interface . 153
5.13 Integrated routing scope classes 154

List of Symbols

The following conventions are used for the font shapes of notations: Italic let-
ters A, B, S denote arbitrary artifacts that are described in their context, like
components of the system or arbitrary sets. Second, the caligraphic font shape
C, N, F signifies abstract sets that are usually not stored in a computer. And
finally, a sans serif style A, B, G is used for finite sets that may be explicitly
stored somewhere.

Symbol Explanation Page

P (A) power set of a set A, i.e., the set of all subsets
of A

N set of all notifications 21

n a notification1 in N 21

N∗ extended set of notifications N∗ = N ∪ ǫ with
ǫ /∈ N being the empty notification

�
∗ and

�

are still used inconsistently, e.g., in chap. 2

63

F set of all eligible filters F = {f |f : N → N} 22

F, F1, F2, F
′ filters in F 22

M set of all notification processing functions/
mappings M ⊃ F

63

C set of all simple components 22

x, y, z, c1, c2 denote simple components in C 45

S set of all scopes 45

S, S2, S3, . . . , T, U denote scopes in S 46

K set of all components, K = S ·∪C with S∩C = ∅ 45

A, B, C, D, X, Y, Z
C, C1, C2, . . .

denote arbitrary components 22

1As usual, n may also denote the number of elements of a set, e.g., {c1, . . . , cn}, but only

when its use is unambiguous.

xiii

xiv LIST OF SYMBOLS

Symbol Explanation Page

G = (C, E) scope graph G consisting of set of components/
scopes C ⊆ C and edges E denoting the com-
ponent → scope relationship

46

C � S C
⋆

� S
S ✁ C S

⋆

✁ C
subscope relationship � , i.e., (C, S) ∈ E, and
its transitive closure � ∗

46

IC the base interface of a component C, where
IC = (iIC , oIC) with iIC ⊂ F and oIC ⊂ F

63

IC|S selective interface of a component C w.r.t. a
superscope S

57

IS IS
C interface the scope S imposes on its members,

on C specifically
58

ÎS
C ÎS

C effective interface ÎS
C = IS

C ◦ IC|S 58
iFC

oFC sets of filters describing the input and output
configuration of the interface IC

56

RT, RTB filter-based routing table in general and at a
specific broker B

30

RT
S
B , RT

S member routing table for intra-scope routing 124

STB inter-scope routing table 125

Chapter 1

Introduction

The speed at which business is conducted increases. Customer service is impor-
tant, and mergers as well as joint ventures require flexibility and adaptability of
business infrastructures. With the reduction of coordination and communication
costs, organizational structures are changed more easily and frequently. So even
after the end of the hype about a New Economy, the trend towards more volatile
business structures has neither ceased nor lost its importance [198].1 Services
and data are integrated in ever new constellations so that application architec-
tures are getting more volatile. The transition to loosely integrated distributed
systems requires IT infrastructures that facilitate both scalability and system
evolution.

Consequently, the development of today’s computer systems is mainly in-
fluenced by the effects of networking. Increasing connectivity and size of the
networked systems give rise to a number of issues. A basic requirement is the
availability of scalable communication mechanisms, which are crucial for build-
ing and maintaining these systems. The mechanisms not only have to support
large numbers of components, but also face complex application environments
that are dynamic and subject to unexpected and recurrent change.

A second important aspect of today’s systems is the automation of data
processing. While systems were traditionally designed to respond to interac-
tive user requests, the aim today is to provide increasingly autonomous data
processing to improve functionality and utility. Instead of having human oper-
ators mediate between applications, e.g., to replenish an inventory by manually
reordering goods, directly connected applications are able to initiate replenish-
ment automatically. In this example low supplies initiate activity. In general,
for a computation to be automated, it must be provided with the data necessary
to check for such conditions. Applications are driven by information available
in the system, they are data- or information-driven.

1To foster processes and applications that cross traditional modules of enterprise systems,
SAP, the major enterprise resource planning (ERP) company, has recently identified an “adap-
tive business” strategy to be the key to competitive advantage [36].

1

2 CHAPTER 1. INTRODUCTION

The variability of dynamic networked environments and the automation of
data exchange shifts the focus when dealing with the delivery of data and ser-
vices, moving from a stationary world to one that is in a state of flux. Tradi-
tionally, data and services have been viewed as being stationary in a collection
of objects or databases, with inquiries directed at them in a request/reply mode
of interaction. This concept has led to client/server application architectures
that emphasize explicit delegation of functionality, where system components
access remote functionality to accomplish their own goal. Remote procedure
calls (RPC) and derivative techniques are classic examples [40, 220, 288]; even
the incipient Web services mainly rely on sending requests with the Simple Ob-
ject Access Protocol (SOAP) [270]. These techniques deliberately draw from a
successful history of engineering experience, their principles are well understood,
and they have been an appropriate choice for many well-defined problems. In
the context of dynamic networked systems, however, request/reply has serious
restrictions.

The direct and often synchronous communication between clients and servers
enforces a tight coupling of the communicating parties and impairs scalabil-
ity [125]. Clients poll remote data sources, and they have to trade resource
usage for data accuracy, especially in chains of dependent servers. Unnecessary
requests due to short polling intervals waste resources, whereas long intervals
increase update latency. In addition, request/reply restricts system evolution.
The control flow is encoded in application components, which makes it acces-
sible to engineers but also mixes the actual configuration of the system with
the application logic of individual components. Consequently, the capability to
orchestrate the whole system is limited by the means available to adapt appli-
cation components at runtime. And finally, delegating functionality inevitably
implies a functional dependency on the called service, and on its presence.

The obvious need for asynchronous and decoupled operation led to various
extensions of existing middleware. For instance, Corba and Java 2 Enterprise
Edition (J2EE) were extended with asynchronous invocation methods and no-
tification services [226, 263, 264, 284], and similar features are available in Mi-
crosoft’s COM+ and in the language model of the new .Net platform [187, 247],
too. And database research, software engineering, and coordination theory cor-
roborate the advantages of loosely coupled interaction as well [74, 137, 237, 276].

1.1 Event-Based Systems

Instead of stepwise amending the conventional request/reply mode of interac-
tion, the paradigm of event-based computing takes a contrasting approach and
inherently decouples system components. In an event-based mode of interac-
tion2 components communicate by generating and receiving event notifications.
An event is any occurrence of a happening of interest, i.e., a state change in some

2A more formal definition and the distinction between events, publish/subscribe, and mes-
saging is given in Chap. 2.

1.1. EVENT-BASED SYSTEMS 3

component. The affected component issues a notification that describes the ob-
served event. An event notification service mediates between the components of
an event-based system and conveys notifications from producers to those con-
sumers that have registered their interest with a previously issued subscription.

The power of the event-based architectural style, as it is also called [57],
is that neither the published notifications nor the subscriptions are directed
towards specific components. The notification service decouples the components
so that producers are unaware of any consumers and consumers rely only on
the information published, but not on the producers. Event-based components
are not designed to work with specific other components, which facilitates the
separation of communication from computation. The event-based style carries
the potential for easy integration of autonomous, heterogeneous components into
complex systems that are easy to evolve and scale [28, 275].

In view of the above arguments, the use of events is clearly superior to
request/reply approaches in many information-driven scenarios [124]. In fact,
many improvements of tightly coupled communication converge to an asyn-
chronous approach. For instance, caching data in network nodes [254], callback
handling (observer pattern [129]), asynchronous remote invocations [264] intro-
duce some form of indirection to decouple interaction from computation. The
loose coupling makes applications easier to adapt and integrate, and it allows a
specialized mediator, the notification service, to take care of scalability.

As a consequence, the potential of the event-based style has been recognized
both in academia and industry. The event-based architectural style is becom-
ing an essential part of distributed systems’ design and many applications and
their underlying infrastructures have incorporated event-based communication
mechanisms. Information busses are the basis of many systems [23, 233] and a
number of event notification services were developed (for example [62, 83, 138,
273, 279, 293]) as well as integrated into modern component platforms such as
Corba Component Model (CCM) [225] and Enterprise JavaBeans (EJB) [280].

The range of application domains is broad. Often, applications use event-
based communication to improve scalability or to exploit adaptability. The
classic example certainly is stock monitoring and financial data processing. The
timely and efficient dissemination of stock quotes to many consumers is a pre-
requisite in these systems. Information dissemination in general is the appar-
ent application domain of notification services, which includes control systems,
real-time control systems, monitoring applications, etc. These are examples of
unidirectional data distribution scenarios, which focus on few producers and
many subscribers. Many environments are characterized by their variability
and need to facilitate change. Enterprise application integration (EAI) is an
early adopter of events and information busses [165], which also holds for work-
flow management and collaborations in inter-organizational enterprise applica-
tions [143, 192]. Furthermore, in inherently dynamic environments, like sensor
networks [10, 202], pervasive computing and mobile systems [52, 301], the in-
frastructure always has to cope with reconfigurations, making the event-based
style pertinent here, too [84, 107, 161].

4 CHAPTER 1. INTRODUCTION

However, as soon as the complexity of a system increases and goes beyond the
simple information dissemination domain a number of problems must be solved
for the event-based style to be used as general purpose computing paradigm.

1.2 Shortcomings of Event-Based

Communication

The great majority of existing approaches do not address the need for effective
programming and management abstractions. Design, engineering, and adminis-
tration of event-based systems are mostly disregarded. The indirection of event-
based communication results in the desirable loose coupling and scalability but
also makes system management more difficult. The indirection detaches aspects
of interaction from producers and consumers without making them accessible
elsewhere, so far. Knowledge about the system structure is removed from ap-
plication components, and many problems bound to this structural information
arise in event-based systems for which solutions are known in traditional request/
reply systems. The most evident problems are:3

1. Effects and side effects. The system’s overall functionality is defined only
implicitly as a result of the interaction between all involved components.
The effects of (not) publishing a notification are not known a priori and
adding or deleting producers may affect any part of the system. With-
out any means to control the interaction any change inevitably requires
analyzing the whole set of participants to predict its (side) effects [26].

2. Design and implementation. Event-based applications cannot readily
draw on abstractions or tools to hide engineering complexity, limiting
applicability of the event-based style in scenarios beyond simple, uni-
directional dissemination.

3. Management. Management of the system infrastructure is hardly possi-
ble since there is no notion of applications; instead, components interact
solely on the availability of information and their interrelationship is not
apparent. There is no structure to which application-dependent manage-
ment tasks can be bound, i.e., access control and security policies, quality
of service (QoS) customization, incremental and partial updates of code
and configuration, etc.

4. Security. Security is accepted to be an urgent open issue in event-based
systems [32, 300]. Most proven methods do not apply because of the
missing structural knowledge.

These points are neither independent nor complete. Nevertheless, they clearly
show that even if scalability in terms of communication efficiency is achieved,

3A more detailed discussion follows in Section 2.5.

1.3. SCOPING IN EVENT-BASED SYSTEMS 5

the scalability in terms of the complexity to engineer and manage the increasing
number of participants is not. Said problems erode the very benefit of loose
coupling and increases the inherent complexity of designing, understanding, and
administering event-based systems. The broad applicability of the event-based
style is reduced as long as there is no support for these issues.

Some of the above problems are addressed in existing work. For instance,
a number of systems distinguish administrative domains in which specific com-
munication protocols and data formats are used, with bridges governing domain-
crossing traffic, e.g., the READY notification service [146], Corba domains [249],
and even IP Multicast [209]. Unfortunately, these approaches consider only sim-
ple structures in the infrastructure itself, and thus can be seen as extensions of
classic network management. They do not offer explicit support for designing
and implementing event-based applications. Of course, one could always resort
to implementing the necessary support manually or by more generic techniques
(e.g., federations of distribution channels [229] or mediators [276]), but an im-
plementation as part of the infrastructure/middleware is obviously better.

In a more general context, software engineering research early identified in-
formation hiding and abstraction [240] as basic principles that have influenced
the development of structured programming, modules, classes, and components,
all of which provide mechanisms to structure software systems. While being
an integral part of request/reply-based distributed systems, e.g., Corba [224],
comparable hierarchical structuring mechanisms are missing in event-based sys-
tems. Indeed, event-based systems are generally characterized by a ‘flat’ design
space with no apparent structure.

The event-based style removes structural knowledge and control from ap-
plication components without offering an adequate replacement. In traditional
request/reply systems, solutions to all the aforementioned problems are bound
to system and software structure. What is missing in event-based systems is
a way to represent the structure of both the underlying infrastructure and the
applications. Hence, this thesis addresses these issues by creating structural
abstractions that comply with the event-based style.

1.3 Scoping in Event-Based Systems

Structure allows to group components and their interaction, in event-based sys-
tems as well as in other kinds of systems. However, the loose coupling forbids
application components to identify and handle structuring themselves. They
should not need to be aware of any other specific components. It is the notifi-
cation service that plays a mediator’s role and operates on a different level of
implementation. It knows the identities of the participating components and is
therefore in a position to structure them. The service essentially determines to
which components a published notification is delivered. Refining this decision is
the main aspect of structuring and controlling event-based systems, and it is also
the essence of the previously mentioned problems. Consequently, the visibility

6 CHAPTER 1. INTRODUCTION

of notifications is the fundamental issue that any solution must address.

This thesis is about visibility of notifications. The notion of scoping in event-
based systems is introduced to describe visibility constraints. Scopes bundle sets
of producers and consumers and limit the visibility of notifications to the com-
ponents within the original scope. While still using an event-based style within
a scope, the interaction of this group of components with the outside is no longer
implicit. Scopes can be recursively members of higher level scopes and they can
selectively republish internal notifications and forward external notifications to
its members. In this way, scopes act as producers and consumers of notifica-
tions and they are able to explicitly control inter-scope traffic. Transmission
policies can be applied to adapt notification forwarding both within a scope
and between scopes, allowing notification delivery semantics to be tailored to
application needs in restricted parts of the system. Furthermore, notification
mappings at scope boundaries transform between heterogeneous representations
of events.

The concept of scopes serves several purposes. First, it is a design tool
to describe system layout and configuration. Second, if treated as first class
construct in implementation, it is a fundamental approach to control the actual
operation of an event-based system. And finally, scoping provides a basis for the
integration of different implementation techniques.

As a design tool, scopes offer an abstraction of event-based computation
and reify the structure of an event-based system. Without degrading the loose
coupling of individual components they modularize complex systems and facil-
itate the composition of lower level components into more complex ones. The
established structure is orthogonal to subscriptions and filter languages.

From an implementation point of view, scopes make system structure acces-
sible to engineers. They localize the relationships between components so that
interaction control can be implemented at well-defined points, but outside of the
components themselves. Scopes play a mediator role, controlling communication
without reducing loose coupling [276]. As a bundling unit and module, scopes
are the appropriate location to refine and customize notification delivery. In de-
limited parts of an application, syntax of the distributed notifications and even
the semantics of delivery can be varied, while any modifications are encapsulated
and do not interfere with the remaining system. Furthermore, scopes provide
a module construct as an abstraction for handling heterogeneity as well as for
integrating security policies.

Finally, scopes can also serve as an implementation framework for notifi-
cation services. The delimitation of communication opens the implementation
of the service itself and makes it possible to integrate in one system different
techniques of network communication, filtering and routing, data representa-
tion and security. Scope boundaries localize the functionality to connect specific
scopes and their implementations. System engineers do not have to deal with
one-size-fits-all approaches, nor do they have to manually bridge independent
notification service instances. They delimit application functionality and con-
texts, controlling side effects and interaction. And they facilitate customization

1.3. SCOPING IN EVENT-BASED SYSTEMS 7

from application-level APIs to network implementation. This is of particular im-
portance as platforms of the future must be configurable not only at deployment
time but also once an application is in operation.

The different issues addressed by the notion of scoping are neither raised nor
investigated for the first time. Scoping is well-known in programming languages
and software engineering [240], and some aspects of visibility have even been
studied in the context of distributed and event-based systems, e.g., [146, 209,
229]. However, the full implications of treating visibility control as a first-class
concept was not realized before.

In this thesis, the scoping concept is investigated in three ways. A formaliza-
tion of notification services is given and extended to define visibility and scoping.
This specification is complemented with a detailed comparison of different ar-
chitectures of scope implementation. While all adhere to the same visibility
specification, engineers are provided with a wide range of implementation ap-
proaches that fundamentally influence system functionality in terms of efficiency,
extensibility, and achievable quality of service guarantees. And finally, a proto-
type implementation in the context of the Rebeca notification service (Rebeca

Event Based Electronic Commerce Architecture [112]) illustrates the practical
use of scopes.

In terms of the deficiencies discussed in the previous section the scoping
concept offers a solution as follows:

1. First and foremost scopes are designed to limit and control the effects
of publishing a notification. This directly addresses point 1 of Sect. 1.2,
effects and side effects.

2. With respect to designing and implementing event-based applications,
scopes provide engineers with a module construct that facilitates infor-
mation hiding, reuse and integration of existent parts. Scopes are a means
to create new event-based components in the flavor of Szyperski [285], i.e.,
they create bundles of components that can be reused and deployed by
others.

3. With respect to implementing and managing the event-based infrastruc-
ture, scopes structure both infrastructure and applications, and thus en-
able application-aware management. This allows for the provision of dif-
ferentiated and tailored services, for partial system reconfigurations, and
for computational reflection [195]. Scopes also contribute to ‘traditional’
efficiency aspects by explicitly reducing the amount of notifications sent
through the system, making the routing decision simpler.

4. With their ability to delimit groups of components and to detach their in-
ternal communication from the outside, scopes propose a way to approach
the lack of practical security mechanism for event-based systems.

8 CHAPTER 1. INTRODUCTION

1.4 Organization

The structure of the thesis is as follows. Chapter 2 gives a detailed discus-
sion of event-based systems in general, their characteristics, and the essential
differences to other communication schemes. A formalization of event-based
systems is presented that models commonly used approaches, and which is used
to sketch a provably correct implementation. Furthermore, the architecture of
the distributed event notification service Rebeca is described and, based on
this, a number of example applications are analyzed to investigate the problems
of missing visibility control in event-based systems.

Chapter 3 introduces the scope model. It extends the formal framework
specified in Chapter 2 and presents an implementation sketch. The formal scope
model includes scope interfaces, which offer a fine-grained control of notification
distribution, notification mappings, which are introduced as a way to cope with
diverging data and filter models in heterogeneous environments, and transmis-
sion policies, which are used to tailor delivery semantics. The chapter closes
with an outlook on advanced aspects like grouping of notifications instead of
component, sessions, and security issues.

Chapter 4 discusses a variety of different approaches to implement a scoped
event-based system and analyzes a number of them in detail: collapsed filters
suitable for implementation in database systems and on top of existing publish/
subscribe services, scope group addressing that fits well on top of multicast
communication techniques, and an integrated routing approach that combines
advanced content-based routing available in Rebeca with scoping constraints.

The prototypical scope implementation that extends the Rebeca notification
service is described in Chapter 5.

Chapter 6 discusses related work. While only a few papers were published
that directly address the problem of controlling visibility in event-based systems,
a wide range of techniques is available that deal with individual aspects of the
problem domain. Diverse areas of computer science are inspected, including
distributed systems (related notification services), software engineering (software
architecture and implicit invocation), coordination models, and others.

Finally, Chapter 7 summarizes the main results and discusses issues raised
by this thesis and possible next steps of future work.

Chapter 2

Event-Based Systems

Contents

2.1 Constituents of Event-Based Systems 9

2.2 Models of Interaction . 13

2.3 Simple Event-Based Systems 18

2.4 The �✂✁☎✄✆✁☎✝✟✞ Model . 28

2.5 Missing Functionality . 31

2.6 Discussion . 39

The notion of event-based systems is used in many areas of computer sci-
ence. Unfortunately, there are varying, ambiguous definitions of terminology
and characteristics and thus of usage scenarios. To distinguish their character-
istics four basic interaction models are analyzed in Section 2.2: request/reply,
anonymous request/reply, callbacks, and event-based interaction. These mod-
els help clarify the important distinction between event-based communication,
publish/subscribe, and messaging. Furthermore, a formalization of event-based
semantics using linear temporal logic and a correct implementation is presented
in Section 2.3. The formalization serves as a simple tool to reason more pre-
cisely about notification services, which is mostly lacking in literature, and it
is extended later to formally define the visibility of notifications. Section 2.4
describes Rebeca, a distributed notification service that conforms to the previ-
ous specification. Its basic functionality is comparable to other prototypes like
Siena and JEDI. Finally, several example applications are analyzed to inves-
tigate the problem of unlimited visibility of events and the missing support in
existing notification services.

2.1 Constituents of Event-Based Systems

An event-based system consists of the following constituents (see Figure 2.1):
events and notifications as means of communications, producers and consumers

9

10 CHAPTER 2. EVENT-BASED SYSTEMS

as interacting components, subscriptions signifying a consumer’s interest in cer-
tain notifications, and the event notification service responsible for conveying
notifications between producers and consumers.

2.1.1 Events and Notifications

Any happening of interest that can be observed from within a computer is con-
sidered an event. This may be a physical event such as the appearance of a
person detected by sensors, a timer event that indicates progression of real time,
or generally an arbitrary detectable state change in a computer system. Since
event detection is out of the scope of this thesis, the third kind of events is
assumed here.

A notification is a datum that reifies an event, i.e., it contains data describ-
ing the event. A notification is created by the observer of the event and may
just indicate the plain occurrence, but often may carry additional information
describing the circumstances of the event. For instance, in the active badge sys-
tem of Bacon et al. [18] events are raised when persons wearing a badge approach
a sensor, and the published notification carries the detected ID of the badge and
the time of observation. In general, different notifications can be created that
describe the same underlying event, but from multiple viewpoints. This may be
done due to application or security reasons, or simply because notifications are
encoded in different data models. The most common data models are name-
value pairs [62], objects [18, 89, 101], and semi-structured data [14, 214], i.e.,
XML.

On the lowest level considered here, notifications are conveyed via messages,
which are data containers on the network level transmitting data between the
endpoints of the underlying communication mechanism. The distinction between
events, notifications, and messages is used to clearly separate the underlying
communication technique from the mode of interaction, cf. Sect. 2.1.4.

2.1.2 Producers and Consumers

The software components of an event-based system act as producers and/or con-
sumers of notifications. Producers are components that publish notifications. A
producer’s implementation is ‘self-focused’ in the sense that it observes only
its own state. The decision to publish a state change is made by the compo-
nent’s internal computation, and is a core part of its function. What changes
are published, and how this decision is configured/programmed into the pro-
ducer, is an issue of past and ongoing research in areas like debugging [29] and
monitoring [182], reflection [174] and aspect-oriented programming (AOP) [76].
Published notifications are not addressed to any specific (set of) receivers, they
are rather forwarded to the event notification service for further distribution.
Producers are unaware of any other components and they do not anticipate any
reaction on the receiver side; this is detailed in Sect. 2.2.

2.1. CONSTITUENTS OF EVENT-BASED SYSTEMS 11

RPC, Multicast,

Gossip, Pub/Sub
Message

Pub/Sub Interface Notification

Producer

Consumer

Event

ServiceNotification Service Notification

Notification

Event−Based

Interaction

Communication Implementation

Figure 2.1: Event-based system artifacts: interaction versus implementation

Consumers react to notifications delivered to them by the notification service.
They, too, are unaware of their specific communication peers. Not knowing the
actual producers of notifications, consumers issue subscriptions to describe the
kinds of notifications they are interested in; different classes of subscriptions are
depicted in the next subsection. If a component is both consumer and producer,
it reacts to both incoming notifications and observed internal state changes, and
the resulting computation may lead to newly published notifications.

2.1.3 Subscriptions and Filters

A subscription describes a set of notifications a consumer is interested in. Con-
sumers register their interest in receiving certain kinds of notifications by submit-
ting subscriptions to the notification service. The service evaluates the subscrip-
tions on behalf of the consumer and delivers those notifications that match one
of the consumer’s subscriptions. Subscriptions act as filters, which are basically
boolean-valued functions that test a single notification and return either true or
false. Indeed, filters are a common way to implement subscriptions, although, in
general, subscriptions may comprise more than only a filter function. They can
additionally include (meta-)data to govern notification selection beyond a per-
notification level; for example, security credentials for accessing certain classes
of notifications [32] or timing information to get past notifications [75]. Sub-
scriptions can be seen as input interfaces of consumers, describing the data they
are prepared to process.

Advertisements are issued by producers to declare the notifications they are
willing to send. They also describe sets of notifications and may be of the same
form as subscriptions. From a network level point of view, advertisements help
improving routing decisions, because the notification service knows which noti-
fications can be expected from where. From a software engineering viewpoint,
advertisements comprise a component’s output interface.

The expressiveness of subscriptions in terms of filtering capabilities depends

12 CHAPTER 2. EVENT-BASED SYSTEMS

on the filter language employed. In distributed notification services, essentially
four filter models are distinguished: channels, subjects, types, and content-based.
Channels are the simplest form of identifying sets of notifications. In this model,
producers select a named channel into which a notification is published. Con-
sumers, on the other hand, select a channel and they will get all notifications pub-
lished therein. An example of this approach is the Corba Event Service [227];
the Corba Notification Service also relies on channels but additionally offers
filters on notification content.

Subject-based addressing uses string matching for notification selection [233].
Publishers annotate each notification with a subject string that denotes a rooted
path in a tree of subjects. For example, a stock exchange application publishes
new quotations of FooBar Ltd. under the subject /Exchange/Europe/London/
Technology/FooBar, classifying it to be traded in London and to belong to
the technology sector of the stock market. Consumers subscribe for /Exchange/
Europe/London/Technology/∗ to get all technology quotations. It is implemen-
tation dependent whether /Exchange/Europe/London/∗ already includes noti-
fications of sub-subjects or not. In principle, arbitrary pattern matching can be
executed on subjects.

The simplicity of this approach has deficiencies that limits its applicabil-
ity. The requirement to use a single path in a tree to classify a notification
severely constrains the expressiveness of this model. The subject hierarchy is a
tree—multiple super-subjects are not allowed—and it classifies only from a single
point of view. Alternative classifications, e.g., /Exchange/Europe/Technology/
London, are only possible if different subtrees permute the order of subjects. This
leads to repeated publications and an exponential growth of tree size if several
alternative viewpoints shall be reflected.1

Type-based selection uses path expressions and sub-type inclusion tests to
select otherwise opaque notifications [28, 101]. With multiple inheritance, the
subject tree is extended to type lattices that allow for different rooted paths to
the same node. Often, type checking is complemented with content-based filters
to improve selectivity [244].

Content-based filtering is the most general scheme of notification selection [59,
212]. Filters are evaluated on the whole content of notifications, where the data
model of the notifications and the applied predicates determine the expressive-
ness of the filters. Available solutions range from template matching [83], simple
comparisons [62] or extensible filter expressions [214] on name-value pairs, to
XPath expressions on XML [14] and arbitrary programs and mobile code [97].

Concept-based publish/subscribe is orthogonal to the above approaches and
is proposed by Cilia et al. [73]. It employs semantic mappings between data and
filter models to transform subscriptions from one model to another.

1Similarly, from a software engineering point of view such hierarchies have been criticized
as restrictive and impeding integration and evolution [153].

2.2. MODELS OF INTERACTION 13

2.1.4 Event Notification Service

The event notification service, or notification service for short, is the media-
tor in event-based systems that decouples producers from consumers. It alone is
responsible for conveying notifications and it must deliver every published notifi-
cation to all consumers having registered matching subscriptions. It implements
a publish/subscribe interface, providing adv , pub, sub, unsub, and notify calls;
the last being an output function called on a registered consumer to deliver a
notification. The notification service gets notifications from producers via the
pub call, and they must match the advertisements issued with the adv call. The
service tests notifications against subscriptions it got from consumers via the sub
call, and delivers them to those consumers having a matching subscription with
notify . In essence, it separates communication responsibility from components
in the sense that the mediating service is responsible for subscription evalua-
tion on behalf of the consumers and for delivering notifications on behalf of the
producers.

From the perspective of application components, the notification service is a
black box. Its function does not depend on it being distributed. However, its
non-functional attributes, like efficiency and availability, are influenced by the
architecture and the communication techniques used to distribute notifications.

In addition to the notification service, event-based systems often contain fur-
ther event handling capabilities, such as event and notification type repositories,
descriptions of available data and filter models, and other ‘meta data,’ as well
as programming language bindings beyond service invocations. To reflect the
broader functionality the collection of notification service plus any additional
event handling is termed event system.

2.2 Models of Interaction

From a technical point of view, an event notification service just provides pub-
lish/subscribe functionality, which may be used for transporting notifications,
but also for sending requests to groups of servers. The essence of event-based
systems is not found in the API or the techniques used for transmitting notifi-
cations. Event-based interaction is mainly a characteristic of the components,
and not of the underlying communication technique [45, 215].

In order to provide a fundamental and simple characterization, four inter-
action models are distinguished by the way interdependencies between compo-
nents are established. The four models are differentiated by two attributes (see
Fig. 2.2). The first attribute, initiator, describes whether consumer or provider
initiates the interaction, where the former depends on data or functionality pro-
vided by the latter. The second attribute, addressing, distinguishes whether
the addressee of the interaction is known or unknown, i.e., whether the peer
component is directly or indirectly addressed.

The resulting four interaction models are independent of any underlying im-
plementation technique. Any interaction between a set of components can be

14 CHAPTER 2. EVENT-BASED SYSTEMS

Initiator

Consumer Provider

Addressee Direct Request/Reply Pt-to-Pt Messaging

Indirect
Anonymous

Event-Based
Request/Reply

Figure 2.2: Taxonomy of cooperation models

classified according to these models. Even though interaction may show more
nuances in practice, the models are complete in the sense that they essentially
cover all major paradigms.

Furthermore, the interaction models characterize the inner structure of com-
ponents, because the models determine how dependencies between the compo-
nents are established. From an engineering point of view, this helps to identify
constraints and requirements posed by a given component on its usage scenarios
and on the underlying infrastructure. Architectural mismatches are disclosed
early, and would otherwise have to be tackled by an integrating implementation,
which impedes system evolution and scalability sooner or later [130].

2.2.1 Request/Reply

The most widely used interaction model is request/reply. Any kind of remote
procedure call or client/server interaction belongs to this class. The initiator
is the consumer (i.e., client) that requests data and/or functionality from the
provider (i.e., server), and it expects data to be delivered back or relies on
a specific task to be done. The provider is directly addressed, its identity is
known, and the caller is able to incorporate information about the callee into
his own state and processing, resulting in a tight coupling of the cooperating
entities. Replies are mandatory in this model.

2.2.2 Anonymous Request/Reply

The anonymous request/reply model also uses request/reply as basic action,
but without specifying the provider that should process the request. Instead,
requests are delivered to an arbitrary, possibly dynamically determined set of
providers. The consumer does not know the identity of the recipient(s) a priori,
yet it expects at least one reply—one request may result in an unknown number
of replies.

This model is eligible when redundant providers are available or when the
appropriate provider may be different for each request. For instance, load bal-
ancing selects a provider either arbitrarily or based on the content of the request;
cf. the IP Anycast mechanism [241] tries to route a packet to the nearest member

2.2. MODELS OF INTERACTION 15

of a group of destinations without resolving the IP address in advance. Similarly,
component models and containers decouple component instances and allow for
runtime binding of references, cf. JavaBeans [278] and the Dependency Injection

Pattern [121, 200]. However, this often only means providers are resolved just
before the call, making the identity known to the caller and potentially leading
to tight coupling as in classic request/reply.

This cooperation model is besides the event-based model the second model
that is directly implemented by pub/sub services, which often confuses these
two models. Anonymity of providers adds more flexibility to the request/reply
model, but dependencies on externally provided data or functionality persists.

2.2.3 Point-to-Point Messaging

Point-to-point messaging comes in two flavors: solicited and unsolicited mes-
sages. The latter case is like spam, sent directly towards addressees without
requests. Solicited messages in this model correspond to the well-known call-
back mode of interaction.

In the callback model, which is employed in the well-known observer design
pattern [129], consumers register at a specific, known provider their interest to
be notified whenever some condition becomes true. The provider repeatedly
evaluates the condition and if necessary calls the registered component back.
The provider is responsible for administering its callback list of registered con-
sumers. If multiple callback providers are of interest, a consumer must register
separately for all of them. The identity of the components is known and must be
managed on both sides, leading to a tight coupling with no coordination medium
in between.

On the other hand, knowing the identities of consumers, callback process-
ing can be customized so that only subsets of consumers are notified in an
application-dependent way. However, it would be each component’s responsibil-
ity to apply callback handlers that implement current application needs, which
is an issue of integration rather than of component implementation. In any case,
a sophisticated implementation of callback handlers leads to the event-based
approach, described next.

2.2.4 Event-Based

The event-based interaction model has characteristics inverse to the request/
reply model. The initiator of communication is the provider of data, that is, the
producer of notifications. Notifications are not addressed to any specific set of
recipients, as was described earlier. A consumer can receive notifications from
many providers, because subscriptions are in general neither directed nor limited
to a particular producer. If a notification matches a subscription, it is delivered
to the registered consumer. Providers are not aware of the consumers. In con-
trast to the callback model, providers are relieved from the task of interpreting
and administering registrations, i.e., subscriptions.

16 CHAPTER 2. EVENT-BASED SYSTEMS

The essential characteristic of this model is that producers do not know any
consumers. They send information about their own state only, precluding any
assumptions on consumer functionality. A component ‘knows’ how to react to
incoming notifications and it publishes changes to its own state, but it must
not publish a notification with the intention of triggering other activity. A
component’s implementation is ‘self-focused’ in that the knowledge encoded in
the program, and used by the programmer, is limited to the component’s own
task. This approach completely separates the internals of different parts of an
application.

Of course, the overall functionality of the system still depends on the proper
interaction of all the components, but this is no longer a matter of individual
components. It is rather the composition of components and their interaction
that determine the functionality. But event-based interaction withdraws the
control of interaction from the participating components and the necessary co-
ordination has to be handled externally. So, in addition to the role of specifying
and implementing individual components, the orchestration of an event-based
system demands extra support. Currently, no such support is available.

2.2.5 Comparison

The complexity of a decomposed system is characterized by the degree of de-
pendence between its components. Software reliability analysis formally cor-
roborates a result that is informally apparent: If a component relies on other
components to accomplish its own goal, its correctness is degraded by failures of
others [2, 201]. Conversely, the correctness of individual components is not af-
fected if they process available data only, which is exactly the case in event-based
systems. The event-based style clearly separates computation from communi-
cation and offers the potential of easily evolvable systems. On the other hand,
engineering complexity is considerably affected by the quality of the abstractions
and tools available for coordinating the components of a system.

The dichotomy of request/reply and event-based interaction is marked by
the simplicity of the former and the flexibility of the latter. Request/reply is
easy to handle, implement, and understand, and consequently well established.
It corresponds to the imperative nature of common programming languages and
component models. Some of its shortcomings are alleviated by a long list of sup-
plementary techniques such as caching, asynchronous request/reply, container-
controlled operation, dependency injection, etc., that are used to enhance scal-
ability and system evolution.

However, if interaction becomes less coupled, it gets more indirect. And
this raises the question if not the use of events would be a more appropriate
solution. In fact, without being formally corroborated, it appears that request/
reply and event-based interaction form a duality in the sense that for most
problems there exist solutions based on either model. Classic request/reply
examples can be rebuild using events. Event-based interaction typically relies
on a reversed software architecture, reversing activity and data flows, but the

2.2. MODELS OF INTERACTION 17

same function can be implemented in both paradigms. The involved tradeoff is
between scalability and flexibility, on the one hand, and simplicity on the other.
System engineers have to decide whether they opt for a simple implementation
or for an extensible one. And one goal of this thesis is to make choosing the
extensible solution less costly, and thus eligible for more scenarios.

2.2.6 Interaction vs. Implementation

The mode of interaction influences the design of components and is difficult to
change. It is a prerequisite of good design to choose an interaction model that
matches the function a component has to accomplish. Otherwise, architectural
mismatches would inevitably impede system composition and evolution [130].
For this reason, this basic but principal distinction of interaction models helps
system designers to identify the core structure of components, and it avoids
mixing interaction and implementation issues [113].

Unfortunately, the mode of interaction is often confused with the choice of
implementation techniques currently available. In particular, event-based in-
teraction is often equated with using general publish/subscribe services. While
being obvious candidates for implementing notification dissemination, they are
not the only ones; other techniques may as well be employed, like point-to-point
messaging, IP multicast, Linda tuple space engines, or even classical remote pro-
cedure calls. For instance, if a system engineer knows that a set of event-based
components interact only within a small group, nothing speaks against using
RPC. In fact, if the communication happens to be sensitive to eavesdropping,
RPC even becomes the most appropriate choice. Note that producers still pub-
lish notifications as before, only the underlying implementation is considered
here. Conversely, a pub/sub service can also be used to implement anonymous
request/reply interaction.

Generally, there is no best implementation technique for a certain interaction
model. The technique must be chosen in view of the deployment environment,
the demanded quality of service, and the overall need for flexibility and scal-
ability. Event-based interaction facilitates the distinction of interaction and
implementation due to its separation of computation from communication. And
while traditional pub/sub services focus on unidirectional delivery (see Sect. 2.5),
many different techniques can be exploited in building event-based systems.

The preceding description of event-based interaction basically refines the one
given in literature, e.g., [57, 134, 237]. The discussion makes it now possible
to unambiguously define the involved terminology. The system outline given
in Fig. 2.1 on page 11 spans several levels of abstraction. On the lowest level,
messages are sent and received. Arbitrary asynchronous messaging techniques
can be used, be it connectionless point-to-point network protocols, IP multicast
mechanisms, or publish/subscribe implementations.

On the next level, the publish/subscribe interface is implemented. It is used
to publish data that is delivered to subscribers. As part of its implementation,
messages containing the data are sent and received. From a technical point

18 CHAPTER 2. EVENT-BASED SYSTEMS

of view, the pub/sub interface implements both anonymous request/reply and
event-based interaction.2

On the highest level, where event-based interaction finally takes place, pro-
ducers publish notifications that are delivered to consumers. Only this level is
of concern when assessing the characteristics of event-based interaction and its
effect on system engineering.

2.3 Simple Event-Based Systems

A considerable amount of work on event-based systems and notification ser-
vices exists, and many concrete systems have been designed and implemented.
Unfortunately, understanding and comparing these systems is very difficult be-
cause of different and informal semantics. This section contains a formalism
that helps to specify the semantics of an event-based system unambiguously.
In Section 2.3.2 this formalism is used to specify a simple event system which
captures the requirements considered mandatory for the basic level of service.
Section 2.3.3 sketches an implementation of a simple event system and presents
arguments for the correctness according to the specification given. This specifi-
cation is extended in later sections to construct complex scoped event systems
in an incremental fashion.

2.3.1 Formal Background

In the literature on program verification, there exist well-developed foundations
of methods to specify and validate concurrent systems. The aim of the proposed
formalisms is to precisely describe the behavior of a system as a “black box”, i.e.,
without referring to its internal (implementation) issues. Usually, the proposed
formalisms model an interactive system as a state machine which moves from
one state to another by means of an action. Formally this corresponds to the
definition of a labeled transition system. The black box view entails defining
the behavior of such a system in terms of the states and actions it exhibits
at its visible interface. In the literature this is termed observation semantics
and there are many different possibilities of defining observation semantics for
concurrent systems. A simple example is trace semantics, which amounts to
defining an observation simply as a sequence of actions that are visible at the
system interface. Intuitively, system evolution can be written as a sequence of
transitions [44]

s1
a1→ s2

a2→ s3 . . .

which denotes that starting from state s1 the system reaches state s2 by exe-
cuting action a1, etc. Note that trace semantics can also be used to describe
the behavior of concurrent systems. The global state space of a set of concur-
rent processes, for example, is defined by the cross product of the state space of

2Although all arguments made in this thesis explicitly target event-based systems, they are
equally applicable to any general publish/subscribe scenario.

2.3. SIMPLE EVENT-BASED SYSTEMS 19

the individual processes. The evolution of the system can then be viewed as a
sequence of global states that occur by interleaving the individual process traces.

One might argue that defining a trace as a total order is unrealistic in a dis-
tributed system because it is not possible or desirable to enforce total ordering of
operations. Indeed, it is possible to give specifications which are not (efficiently)
implementable because of the lack of a notion of global time in distributed sys-
tems. However, the specification of the following Def. 2.5 is implementable be-
cause it imposes ordering relations only on operations which intentionally should
be causally related in any sensible implementation.

Trace semantics is used to specify the behavior of systems by abstracting
from states and reasoning only about the sequence of operations at the interface
of the system. Given a set A of possible interface actions, a trace σ = a1, a2, . . .
is a sequence of elements of A. A specification then is a set of such traces, namely
all traces which are allowed to be generated by a system. Equivalently, a speci-
fication can be given as a predicate on traces. Temporal logic [248] is utilized to
express such predicates. The formal language is built from simple predicates, the
quantifiers ∀, ∃, the logical operators ∨, ∧, ⇒, ¬, and the “temporal” operators�

(“always”), ✁ (“eventually”), and ✂ (“next”). For a given action a ∈ A, the
formula a is true for every trace which starts with a. The formula ¬a is true for
every trace which does not start with action a. The other logical operators and
quantifiers are defined in the obvious analogous way.

The semantics of the temporal operators are defined as follows: Let Ψ be an
arbitrary formula and σ = a1, a2, . . . be a trace. Then

• ✁ Ψ is true for trace σ iff there exists an i > 0 such that Ψ is true for the
trace ai, ai+1, ai+2, . . .,

•
�

Ψ is true for trace σ iff for all i > 0, Ψ is true for the trace ai, ai+1, ai+2, . . .,
and

• ✂ Ψ is true for trace σ iff Ψ is true for a2, a3, . . .

Note that the temporal operators have higher precedence than the logical oper-
ators.

sub(X, F) Client X subscribes to filter F

unsub(X, F) Client X unsubscribes to filter F

notify(X, n) Client X is notified about n

pub(X, n) Client X publishes n

Figure 2.3: Interface operations of a simple event system

To better understand temporal formulas, a few examples are now given using
the interface operations of a simple event system listed in Table 2.3.1. In order

20 CHAPTER 2. EVENT-BASED SYSTEMS

to capture which client is affected by an operation, the operations include a
reference to the respective client. For example, sub(X, F) means that client X
subscribes to filter F .

Intuitively, ✁ Ψ means that Ψ will hold eventually, i.e., there exists a point
in the trace at which Ψ holds. For example,

✁ notify(X, n)

specifies all traces in which client X eventually is notified about n. On the other
hand,

�
Ψ means that Ψ always holds, i.e., for all “future” points in the trace Ψ

holds. For example, �
¬unsub(X, F)

specifies all traces in which X never unsubscribes to F . Finally, ✂ Ψ means that
Ψ holds in the next step, i.e., for the trace starting with a2. For example,

� [
notify(Y, n) ⇒ ✂ �

¬notify(Y, n)
]

specifies all traces in which, if Y is notified about n, Y is never notified about n
again.

Given an arbitrary labeled transition system with a set of initial states, the
system satisfies a given temporal formula iff every observable behavior of the
system is a trace specified by the temporal formula. This means that the set of
traces generated by the system must be a subset of the set of traces specified by
the formula. This notion of satisfaction means that the system implements the
specification and is sometimes called refinement [1] or process preorder [33]. Of
course, in order to correctly implement a specification, a system usually has to
execute internal (unobservable) actions different from the interface actions. To
model this, some formalisms define an internal action τ and allow for any finite
number of internal actions in between two interface actions. This is sometimes
called weak equivalence [33] or stuttering equivalence [2, 180]. Inference rules
and other proof techniques can then be used to formally derive the satisfaction
relation.

In the following, the thesis will be very precise when defining the specification
of event systems. The proofs that the algorithms implement the specification
will follow the standard mathematical textbook style, avoiding a fully formal
derivation of the correctness of the given algorithms to not obscure the main
contributions, which lie more in the design and specification areas than in veri-
fication.

2.3.2 Specification of a Simple Event System

Basic Definitions

The data model of an event system describes structure and syntax of published
notifications. Every notification must adhere to this model, and it also is the
basis for the filter model described below. A number of different data models

2.3. SIMPLE EVENT-BASED SYSTEMS 21

exist in theory and practice, ranging from unstructured text or bit strings [177],
tuples of strings [83], name-value pairs [62], to hierarchical object models [18,
101, 212] and semi-structured data [14, 21, 214]. A homogeneous system is
assumed at first, where exactly one data model is used.3

Definition 2.1 A data model is a set D of complex data items with select func-
tions σi : D → Di selecting a constituent value. A notification n ∈ N represents
such a data item, signified by σ(n) ∈ D. A name-value pair data model is based
on a set of attributes A = {A1, A2, . . .} with associated value domains DAi

:

D
NV =

{
(ai, vi)i | ai ∈ A and vi ∈ Dai

}

where select functions are defined such that

σ(n) = (ai, vi)i

σA(n) =

{

vi if (A, vi) ∈ σ(n)

ǫ otherwise

where ǫ is a special empty value never used in any notification.4 For short
n.A = vi is written.

A data model D and the corresponding set of notifications N can be used
interchangeably in most cases except for representational differences. The def-
inition of DNV conforms to the widely used name-value pairs model. Notifica-
tions in this data model are described by tuples like (“type”, “NewEmployee”,
“Name”, “Wile E. Coyote”, “Age”, “42”). A data model that contains tu-
ples instead of records uses values without attribute names and is defined by
A = {1, 2, 3, . . .}, some Di, and σi(n) = vi. The Linda [140] coordination sys-
tem uses this model, for instance. A Siena-like model is defined by allowing
strings as attributes and a predefined set of value domains, like string, inte-
gers, floats and time, as they are commonly used in data definition languages
or programming languages. Note that the name-value pair data model is not
limited to a predefined set of value domains. Even hierarchical data can be
modeled if attributes denote access paths in structured data types, e.g., by us-
ing a dotted notation for attributes (n.customer.name) [214]. The step towards
object-oriented data models is then straightforward.

Before defining filters, predicates on notifications are introduced. A predicate
is evaluated on a notification and gives a value from the Boolean domain B =
{true, false}.

Definition 2.2 A predicate P ∈ P is specified by a triple (P σ,Op, o), containing
a select function P σ : D → Di, a predicate operation Op : Di × DP → B =

3Aspects of heterogeneity are investigated later in Section 3.4.
4The symbol ǫ is borrowed from formal languages where it denotes the string with no

symbols.

22 CHAPTER 2. EVENT-BASED SYSTEMS

{true, false}, and operand o of some predicate specific domain DP , such that

P : N → B

P (n) =

{

Op(P σ(n), o) if P σ(n) 6= ǫ

false otherwise

The select function P σ must be defined on the underlying data model and
selects the data on which the predicate is applied. For the actual test operation
Op any boolean-valued function is eligible that is defined on the values selected
by P σ, although in practice the complexity of the applied computation has to
be restricted to keep this operation tractable. The constant predicate-specific
operand o supplied to each evaluation parameterizes the general purpose im-
plementation in Op. In the name-value pair model, P is specified by a triple
(A,Op, o) with a select function σA as defined above. An example predicate is
P = (“type”, string-comparison, “weather”) that tests for weather notifications,
or P = (“location”, within-rectangle, (0,0, 10,10)) to test a location for being
within a rectangle given by the corner points (0, 0) and (10, 10).

Filters are often defined as Boolean-valued functions. In the following, how-
ever, filters are defined to map notifications back onto the set of notifications.
The same expressiveness is achieved if filters result in either the unchanged
notification itself or a designated empty notification ǫ ∈ N, signifying accep-
tance or rejection by the filter, respectively. This facilitates filter composition,
(F1 ◦ F2)(n) = F1(F2(n)) and later extensions of their functionality, cf. Sec-
tion 3.3. The set of all notifications that match a filter F is denoted by N(F).

Definition 2.3 A filter model F is a set of functions defined on a given data
model which maps a notification onto itself or onto the empty notification ǫ.
Every filter F ∈ F is described by a conjunction of predicates F P = {Pi}i:

F = {F | F : N → N}

F (n) =

{

n if ∀Pi ∈ FP : Pi(n) = true

ǫ otherwise

The above predicate example may be extended to filter for hot weather news
from Berlin: F P =

{
(“type”, string-comparison, “weather”), (“city”, string-

comparison, “Berlin”), (“temp”, integer-greater, 30)
}
.

The last definition concerns the software artifacts of which event-based ap-
plications are composed.

Definition 2.4 A component C ∈ C is any software artifact that is part of the
event-based system and capable of publishing or consuming notifications; it acts
as a client of the notification service.

2.3. SIMPLE EVENT-BASED SYSTEMS 23

Interface Operations

Formally, a simple event system is viewed as a black box with an interface (see
Figure 2.4). The possible interface operations are listed in Table 2.3.1. All these
operations are instantaneous and take parameters from different domains: the
set of all clients C, the set of all notifications N, and the set of all filters F. In
addition to the preceding definitions, two further assumptions are made: First,
notifications are unique, i.e., each notification n ∈ N is published at most once.
Second, every filter is associated with a unique identifier in order to enable the
event system to distinguish subscriptions.

. . .

Interaction

Interface

notify(n)

pub(n)
unsub(F)

sub(F)

Components

Event Notification

Service

Figure 2.4: Black box view of an event system

Specification Variables

In the formalization a set of specification variables is assumed to be present.
Specification variables are fictitious devices which keep track of the internal
history of the system within a specification and simplify the temporal formulas;
they are not necessarily part of any implementation. Two sets of specification
variables are assumed at the system interface for every client X ∈ C:

1. a set SX of active subscriptions (i.e., filters which X has subscribed to and
not unsubscribed to yet), and

2. a set PX of published notifications (i.e., the subset of N containing all
notifications X has previously published).

The sets are initially empty and they are updated faithfully (e.g., by an external
observer) according to the operations that occur at the interface of the system.
For example, whenever X subscribes to F , F is added to SX , and whenever X
unsubscribes to F , F is removed from SX . Hence, multiple (un)subscriptions to
the same filter are idempotent. This also implies that if a client X subscribes to
a filter F multiple times and then unsubscribes to this filter once then F is no
longer in SX afterwards.

24 CHAPTER 2. EVENT-BASED SYSTEMS

The behavior of the event system is specified by giving a set of temporal
formulas like the examples introduced in Section 2.3.1. Of course, it is also
possible to refer to the specification variables. For example,

� [
notify(Y, n) ⇒ [∃F ∈ SY . n ∈ N(F)]

]

specifies all traces in which the fact that Y is notified about n implies that at
this point in time there exists a subscription F in SY that matches n. It is
important to keep in mind that the temporal operators determine the place in
the trace to which the imposed conditions are applied. As a last example,

� [
notify(Y, n) ⇒ [∃X. n ∈ PX]

]

requires that the fact that Y is notified about n implies that there is a client X
for that n is in PX at this point in time. This implies that n has been published
by X before.

Simple Event Systems

In the following, a specification of simple event systems is presented that relies on
the trace-based semantics introduced above [114, 115].5 Informally, it conforms
to the following requirements

(a) only notifications that match one of its active subscriptions should be de-
livered to a client,

(b) each notification should be delivered at most once to a client,

(c) all notifications matching one of its active subscriptions should be delivered
to a client.

Definition 2.5 (simple event system) A simple event system ES is a sys-
tem that exhibits only traces satisfying the following requirements:

• (Safety)

� [

notify(Y, n) ⇒
[

✂ �
¬notify(Y, n)

]

∧
[
∃X. n ∈ PX

]

∧
[
∃F. F ∈ SY ∧ n ∈ N(F)

]]

• (Liveness)

� [

sub(Y, F) ⇒
[

✁ � (
pub(X, n) ∧ n ∈ N(F) ⇒ ✁ notify(Y, n)

)]

∨
[

✁ unsub(Y, F)
]]

5The specification is extended in [213] to include advertisements and self-stabilization in
the case of failures.

2.3. SIMPLE EVENT-BASED SYSTEMS 25

The specification consists of a safety and a liveness condition [179]. A safety
condition demands that “something irremediably bad” will never happen, while
a liveness condition requires that “something good” will eventually happen.6 It
has been shown that all properties on traces can be expressed as the intersec-
tion of safety and liveness conditions [12, 135, 136]. Here, the safety condition
states that a notification should never be delivered to a consumer more than
once, that a delivered notification must have been published by a client in the
past, and that a notification should only be delivered to a client if it matches
one of the client’s active subscriptions; entailing requirements (a) and (b) from
the beginning of this section. The liveness condition is probably most difficult to
understand. It describes precisely under which conditions a notification must be
delivered. The condition can be rephrased as follows: if a client Y subscribes to
F , then there exists a future point in time where the publishing of a notification
n matching F will lead to a delivery of n to Y . This can only be circumvented
by Y unsubscribing to F . The liveness condition can be regarded as a precise
formulation of requirement (c). Note that no delivery order is imposed on no-
tifications (like causal order) as it is a highly implementation-dependent and
application-specific issue, and hence is left out of consideration when defining
the semantics of simple event systems.

As examples consider the following traces where F is a filter and ni are
notifications matching F while n′ is a notification not matching F :

σ1 = sub(Y, F), pub(X, n1),notify(Y, n′)

σ2 = pub(X, n1), sub(Y, F), unsub(Y, F),notify(Y, n1)

σ3 = sub(Y, F), pub(X, n1), pub(X, n2), pub(X, n3), . . .

Traces σ1 and σ2 violate the safety requirement because a notification is
delivered to Y that does not match an active subscription. In trace σ3 component
Y subscribes to F and X starts to publish a continuous sequence of notifications
matching F . Since there is no notify in σ3 it perfectly satisfies safety. However,
it violates the liveness requirement (to satisfy liveness, there must be a point in
the trace after the subscription where either Y unsubscribes to F or Y begins
to receive notifications).

Intuitively, the liveness requirement states that any finite processing delay of
a subscription is acceptable. By abstracting away from real time a concise and
unambiguous characterization system behavior is obtained. For example, if a
component has subscribed to a filter F and later unsubscribes to it, the system
does not have to notify the component about any notifications that match F
and are published in the meantime; it may nevertheless do so. Liveness requires
delivery if the component continuously remains subscribed to F . Because the
system cannot tell the future, it must at some point start to deliver notifications
until the component unsubscribes to F .

Furthermore, the definition of liveness does not rely on the initially discussed
global order of states and transitions. It does not relate subscribing and pub-

6For a formal definition of safety and liveness refer to Broy and Olderog [44].

26 CHAPTER 2. EVENT-BASED SYSTEMS

lishing operations to each other, because they are causally independent and
no semantics is implied here. As an advantage future extensions can build on
this definition to introduce real-time requirements that prevent old notifications
from being delivered to new subscriptions, or caching strategies that allow for a
defined history of notifications to be delivered to newly issued subscriptions.

A system that satisfies only the safety condition is trivial to implement. Any
system that never invokes a notify operation satisfies the imposed conditions.
Similarly, it is easy to implement a system which satisfies only the liveness
condition. Any system that delivers every published notification to all clients
fulfills this condition. The challenge is to implement a system that satisfies both
requirements.

2.3.3 Implementation

The following paragraphs show how to implement the specification of a simple
event system. For brevity, only a very simple implementation is shown, which
still demonstrates feasibility while other approaches can be found elsewhere to
improve the scalability of the implementation [62, 104, 244]; in particular com-
panion work on routing in the Rebeca notification service investigates a correct
and efficient implementation of this specification [213, 217]. Since later exten-
sions (scoped event systems) utilize any instance of simple event systems, it is
possible to exchange the implementation with a more efficient one as long as the
interface specification is maintained.

The implementation is based on a system model where a set of asynchronous
processes communicate over point-to-point message passing channels. The chan-
nels are assumed to be reliable, i.e., no messages are lost or altered and no spu-
rious messages are delivered, and incoming data is served in a fair manner. The
communication topology of processes is assumed to be acyclic and connected,
i.e., a spanning tree (Figure 2.5). In practice, acyclic connected topologies can
be established manually or through spanning tree construction algorithms.

Within an event system, processes are event brokers. To invoke the interface
operations of the event system, every client invokes a local library function to
insert a notification into the system. This library is the local event broker of C.

Data Structures

Every local event broker holds two data structures:

1. a table S of active subscriptions, and

2. a table D of previously delivered events.

Both are initially empty, and D can be omitted if the communication graph is
acyclic and reliable.

2.3. SIMPLE EVENT-BASED SYSTEMS 27

Event broker

Local event broker

Client

Figure 2.5: A possible implementation view of a simple event system

Algorithm

If a client X invokes sub(X, F), the local event broker of X adds F to S.
Conversely, if unsub(X, F) is invoked, F is removed from S. Notifications are
processed within the system by a technique called flooding. An invocation of
pub(X, n) causes sending a message containing n to the neighbors of the local
event broker in the network. If any (non-local) event broker receives such a
message, it forwards it to all neighbors except the one the message was received
from. A local event broker (say of client Y) receiving such a message checks if
there exists a filter F in SY such that n matches F . If so, it checks whether n
is already present in DY . If one of these checks fails, it discards n. Otherwise n
is added to DY and delivered to the client via a call to notify(Y, n).

2.3.4 Correctness

It must be shown that the algorithm from the previous section satisfies the
requirements given in Definition 2.5, i.e., the safety and liveness condition. In the
proof, the implementation variable S essentially plays the role of the specification
variable SY .

Proof of Safety

Assuming that the implementation invokes notify(Y, n) at component Y , it must
be shown that this implies that the three conjuncts of the implication in the
safety condition hold.

From the algorithm and the use of D follows that n will not be delivered
again. This proves the first conjunct: ✂ �

¬notify(Y, n).
Also from the algorithm and the use of S, invocation of notify(Y, n) implies

that there exists an F in SY such that n ∈ N(F). This proves the third conjunct:
∃F. F ∈ SY ∧ n ∈ N(F).

It remains to be shown that n was previously published by some component:
∃X. n ∈ PX . Invocation of notify(Y, n) implies the receipt of a message contain-
ing n at the local event broker of Y . Because of the reliable channel assumption,

28 CHAPTER 2. EVENT-BASED SYSTEMS

this message must have been sent by some neighbor. Because of the forwarding
algorithm of the event brokers, the acyclic topology, and the reliable channel as-
sumption there must exist a local event broker of some component X from which
n originated. From the algorithm, this implies that X previously published n.
This proves the second conjunct and concludes the proof.

Proof of Liveness

Assume a component invokes sub(Y, F) and never unsubscribes to F . Liveness
requires that there is a time after which every notification which is published and
matches F is eventually delivered to Y . In this case this is rather easy to show
since subscriptions become active immediately: Let n be a notification matching
F and consider a component X that invokes pub(X, n) immediately after Y
subscribed to F . From the algorithm follows that invocation of pub(X, n) leads
to the sending of a message containing n to all neighbors of the local event broker.
From the forwarding algorithm of the event brokers, the acyclic topology, and
the reliable channel assumption follows that the message is eventually received
at every local event broker, including that of Y . Since Y has not unsubscribed
to F and n matches F , the algorithm invokes notify(Y, n), concluding the proof.

2.4 A Distributed Notification Service—

The
�✂✁☎✄✆✁✞✝✞✟

Model

This section describes the system model and the basic characteristics of the
Rebeca notification service [112]. It implements the publish/subscribe inter-
face described in Sect. 2.1 and conforms to the preceding definition of simple
event systems. Its basic architecture is a representative example of a distributed
notification service, which is comparable to that of other services like Siena,
JEDI, etc. Rebeca is different from other services with regard to its support
for different routing algorithms and data and filter models [213, 217], and the
visibility control extensions presented in this thesis. Rebeca serves two roles
in this thesis: its system model is the basis for investigating visibility issues,
and second, the available implementation acts as testbed to build a prototype
of scoping in distributed event-based systems.

2.4.1 System Model

The model assumed in Rebeca and this thesis is a process model in which
computational activity is represented by the concurrent execution of process-
es [181]. Processes interact by passing messages via links between them. A link
connects a pair of processes and forwards messages asynchronously so that there
is a delay between sending a message and receiving it. Links are assumed to
exhibit no failures and to obey FIFO (first-in-first-out) ordering of messages.
This means that no messages are lost or corrupted due to link failures and

2.4. THE REBECA MODEL 29

that messages are received in the same order they were sent. Although being
impractical in general, it is a reasonable assumption in the present context,
because it simplifies the discussion and helps concentrating on the functional
aspects of visibility in event-based systems. In fact, initial solutions for both
problems exist elsewhere and may be used later to extend the model, e.g., [80,
213].

More concretely, the considered distributed system consists of a set of phys-
ical nodes interconnected by a communication network and each node runs one
or more processes. Communication links are point-to-point connections in this
network, and their failure model is easily matched by TCP/IP connections, for
instance. This is the basic model that is broadly applicable, and which never-
theless is open for implementation-dependent options, like using Multicast, to
improve communication performance (cf. Section 4.5.7).

2.4.2 Architecture

The system constituents are illustrated in Figure 2.6 and both the application
components and the notification service itself are implemented by the aforemen-
tioned processes. Each component is executed by a separate process, which is
linked to a process of the notification service. The service is accessed as a black
box that is conceptually centralized, but distributed across several processes and
nodes to split the load and exploit locality in notification delivery.

Figure 2.6: The router network of Rebeca

The notification service forms an overlay network in the underlying system.
An overlay network is a virtual network of processes that communicate by means
of a second underlying (physical) network, employing routing strategies differ-
ent from the underlying ones. Here, the overlay consists of event brokers that
run as processes on some of the physical nodes. The communication topology
of the overlay is described by an acyclic graph. Edges are process links and as
such mapped to point-to-point connections in the underlying network, namely,

30 CHAPTER 2. EVENT-BASED SYSTEMS

TCP/IP connections. The acyclic graph used is comparable to the single span-
ning tree approach of multicast algorithms [91]. Obviously, the single tree is a
bottleneck of the system, but, again, it is an adequate model in this context, and
extensions exploiting redundancy are available to tackle problems of scalability
and single points of failure [80, 244, 291].

Three types of brokers are distinguished: local, border, and inner brokers.
Local brokers are access points to the middleware. They are typically part of
the communication library loaded into application components; they are not
represented in the graph, but only used for implementation issues. A local
broker is connected to one border broker. Border brokers form the boundary
of the distributed communication middleware and maintain connections to local
brokers, i.e., the clients of the service. Inner brokers are connected to other
inner or border brokers and do not maintain any connections to clients. Local
brokers implement the publish/subscribe interface of the notification service and
initially put the first message containing a newly published notification into the
network. Border and inner brokers forward the messages to neighbor brokers
according to filter-based routing tables and respective routing strategies. At the
end the messages are sent to the local brokers of the consumers and from there
the notifications are delivered to the application components.

2.4.3 Filter-Based Routing

The function of distributed notification routing is rather simple: just match
all notifications with all subscriptions and deliver where appropriate. In a
centralized implementation the problem is reduced to efficient matching algo-
rithms [216, 303]. This approach, however, does not only concentrate all com-
putational efforts but also becomes a bottleneck of communication bandwidth.
Hence, Rebeca distributes matching on multiple brokers.

Filter-based routing depends on routing tables (RT), which are maintained in
the brokers and contain filter-link pairs. Each pair indicates in which direction
matching notifications have to be forwarded. The entries are updated by sending
new or canceled subscriptions through the broker network. New subscriptions
add (F, L) entries with L denoting the link from which they were received,
and unsubscriptions delete the respective entries. Every incoming notification
is tested against the routing table entries to determine the set of links with
matching filters, omitting the originating link to prevent loops. In a second
step the notification is forwarded to the respective neighbor brokers. If the
incoming notifications of each link are routed sequentially, end-to-end sender
FIFO characteristics hold.

Different flavors of filter-based routing exist, which differ in their strategy
to update the routing tables. Simple routing assumes that each broker has
global knowledge about all active subscriptions. It minimizes the amount of
notification traffic, but the routing tables may grow excessively. Moreover, ev-
ery (un)subscription has to be processed by every broker resulting in a high
filter forwarding overhead if subscriptions change frequently. In large-scale sys-

2.5. MISSING FUNCTIONALITY 31

tems more advanced routing algorithms must be applied to exploit commonal-
ities among subscriptions in order to reduce routing table sizes [217]. Rebeca

includes three of them [213]. Identity-based routing avoids forwarding of sub-
scriptions that match identical sets of notifications. Covering-based routing [62]
avoids forwarding of those subscriptions that only accept a subset of notifica-
tions matched by a previously forwarded subscription. Note that this implies
that it might be necessary to forward some of the covered subscriptions along
with an unsubscription if a subscription is canceled. Merging-based routing [216]
can be implemented on top of covering and goes even further. In this case, each
broker can merge existing routing entries into a broader subscription, i.e., the
broker creates a new cover for the merged routing entries that replaces the old
ones. Only the resulting merged filter has to be forwarded to neighbor bro-
kers, where it covers and replaces existent base filters. Merging can be done
either in a perfect or imperfect way. Perfectly merged filters only accept notifi-
cations that are accepted by at least one of its base filters, whereas imperfectly
merged filters accept notifications besides their base filters. Imperfect routing
table entries increase network traffic but allow for lazy updates, hiding frequent
reconfigurations in covered parts of the network.

Advertisements are an additional mechanism to optimize subscription for-
warding. Subscriptions need only be forwarded into those subnets of the overlay
network where a producer has issued an overlapping advertisement, i.e., where
matching notifications can be produced at all. If a new advertisement is issued,
overlapping subscriptions are forwarded appropriately. Similarly, if an adver-
tisement is revoked, it is forwarded, and remote subscriptions that can no longer
be serviced are dropped. Advertisements can be combined with all routing al-
gorithms discussed above.

2.5 Missing Functionality

The previous section illustrated the operation of a distributed notification service
similar to the ones considered in other current research. This subsection points
out shortcomings of these services that make them difficult to maintain, let
alone control, and that impede their use in complex application scenarios. The
deficiencies sketched in the introduction are analyzed with the help of example
scenarios, and a set of engineering requirements are inferred which must be
supported by event systems. Two main problems are identified. The first is that
event-based systems do basically not imply other requirements for designing and
engineering than those already known from engineering request/reply systems.
The second observation is that while supporting abstractions are available for
the latter they are missing for event-based systems.

32 CHAPTER 2. EVENT-BASED SYSTEMS

(a) (c)(b)

Figure 2.7: Call graphs of applications: bipartite single and multi source, and a
general group

2.5.1 Application Scenarios

A taxonomy of application scenarios is created according to the complexity of
interaction between application components, which is described by the call graph
of who is sending notifications to whom: one-to-many, many-to-many, and re-
peated, ‘stateful’ communication.

Information Dissemination

The most simple and obvious application scenario of event-based communication
is information dissemination and push services. It is typically characterized by
a single, well-defined information source publishing notifications towards con-
sumers (one-to-many communication). Applications are oblivious to the actual
set of receivers and typically require high scalability. The call graph is bipar-
tite, cf. Fig. 2.7(a), which means it consists of two distinct sets of components
and communication takes place only between, not within the sets. Example
applications are:

• monitoring of stock prices, sensor data, real-time control systems, process
execution, etc. [143, 175, 203],

• push services in electronic commerce, news feeds like weather forecasts and
sports [66, 93], and

• content delivery networks [9, 261].

This is the classic application domain of event-based systems, and also of net-
work level multicast [253]. However, even in this simple scenario issues arise that
are not covered by typical event services. The weather information may contain
temperatures in Fahrenheit whereas consumers expect degree centigrade. Stock
quotations may be published using an established financial markup language
like FIXML [223] to facilitate interoperability, whereas internal operations of
producers and consumers stick to more efficient binary representations. The
heterogeneity of data models and the limited support thereof often demands
manual adaptations before connecting components to information busses. Fur-
thermore, security in event-based systems is a critical open issue. Who is allowed

2.5. MISSING FUNCTIONALITY 33

to view sensor data that monitors a person’s presence or health? Access to real-
time stock quotations may be restricted requiring subscriptions with additional
fees.

Groups of Producers

In Figure 2.7(b) a slightly more complex scenario is depicted that includes mul-
tiple producers publishing similar notifications. This raises new problems if it is
necessary to distinguish the sources, especially when systems evolve from type
(a) to (b). Consider

• multiple stock markets or auction platforms publishing similar informa-
tion [42, 110],

• multiple application-specific beacons or sensors that are deployed some-
where in the infrastructure [18].

When a system implementing one stock market is connected to another mar-
ket, measures must be taken to prevent unintended effects on existing consumers.
It must be possible to restrict communication to one market so that components
do not react incorrectly to external events. The necessary distinction of markets
is often achieved by simply having producers annotate notifications with a name
or an ID (of the market for example). Here, producers encode in the notification
the context of an event, e.g., the market it originated from. Consumers can be
put into a specific context if they test for this information in their subscriptions.

This is a straightforward approach, of course, but it draws context knowledge
into application components that pertains to the interaction and not to the
component’s implementation. Moreover, this context specification does not only
counteract the characteristics of event-based systems, but it is unnecessary within
the respective context. Consider the second example where presence awareness
sensors inform about people/objects moving within a building. The notifications
include an ID of the object tracked and a room number. If events from multiple
buildings are integrated in a facility management application, an identifier of
the ‘source building’ must be included in the notifications. The integration of
existing applications thus would influence their internal configuration.

Therefore, application components should not be forced to deal with their
execution context. They would have to consider all possible contexts, which
inhibits run-time evolution and is neither desirable nor needed.

Complex Interaction

The third class considered comprises complex applications that have arbitrary
call graphs and include bidirectional communication, see Figure 2.7(c). Exam-
ples are:

• chat groups, multi-player games, or computer supported cooperative work
(CSCW) tend to cluster interacting groups of components [97, 128];

34 CHAPTER 2. EVENT-BASED SYSTEMS

• virtual marketplaces exhibit complex interactions where sequences of pub-
lished notifications are interrelated, e.g., auctions [42, 110];

• wireless sensor networks [10, 161] convey data from sources to sinks and
process and filter data within the network

Apart from the last example, such scenarios are seldom considered in the
context of event-based systems because their requirements exceed pure scalabil-
ity considerations. They point out that the principle of locality is important
in event-based systems, too. Clusters of closely interacting participants can be
identified as part of larger applications; the call graphs are more dense within
these clusters than towards the outside. And within such groups often more
stringent requirements are placed on communication quality. For instance, a
chat application exchanging user input via notifications will certainly gain from
ordering guarantees for notification delivery, e.g., atomic broadcast providing
each participant with the same perceived order of inputs. In general, intra-
cluster communication may require dedicated services whereas interaction with
the remaining system gets by with the basic functionality of notification dissem-
ination.

The virtual marketplaces illustrate the need to group notifications. Producers
and consumers do not know each other but must establish a conversation7 by re-
lating notifications that belong to the same auction. Again, a simple workaround
is directly found by inserting identifiers in notifications, and the same counter-
arguments as above still apply. Identifiers may be viable in this simple case,
but in more general terms the context of notifications must be distinguished to
relate bids to auctions, reactions to actions, and events to transactions.

2.5.2 Engineering Requirements

The above discussion exemplifies the problems already sketched in the introduc-
tion: effects and side effects, design, implementation, and engineering, manage-
ment and security issues. From these problem domains four requirements for
the engineering of event-based systems are inferred: bundling of components,
support for heterogeneity, flexible customization, and support for activities.

Illustrative Example

A stock trading application will be used as an illustrative example. It shall not, of
course, describe a perfect architecture for stock trading. The example illustrates
most of the aforementioned problems and helps underline the requirements of
engineering event-based systems and the features of the scope model presented
in the next chapter.

The following components of a stock market can be identified (see Fig. 2.8):

7repeated, possibly bidirectional communication

2.5. MISSING FUNCTIONALITY 35

Trading
Floor

DB

Matching
C1

C2

C3

Customers Market

Figure 2.8: An example stock trading application

• Customers monitor quotations and issue orders to buy or sell shares.

• A central matching engine implements the matching algorithm and gener-
ates quotations.

• A database logs the generated data to ensure consistency and persistence,
and to audit the operation.

Nearly all parts of a stock trading application are inherently event based.
The dissemination of stock quotations from the central trading floor (or its
computerized equivalent) to the market participants is an accepted and plausible
example of applying event notification services. Database and matching engine
are composed into the virtual trading floor, a component which consumes orders
and publishes notifications carrying share prices of successfully executed trades.

Bundling of Related Components

Locality, encapsulation, and the composition of existing components into higher-
level units are well-known concepts for mastering complexity and for supporting
evolution [240]. These concepts are used in request/reply systems, but they are
equally important here. The grouping of components that share some common-
ality or achieve a common goal is a prerequisite for reasoning about effects and
side effects, and it is the basis for addressing both engineering and management
issues.

Bundling is both a syntactical and a semantical abstraction. From the syn-
tactic point of view such a bundle limits the distribution of notifications pro-
duced within; it identifies notification delivery localities. The bundling mecha-
nism should be orthogonal to any subscription mechanism so that grouping is
independent from component implementation and it should not influence the
subscriptions issued by them. This is important to draw locality not only based
on the described interests of consumers but also on other criteria, such as orga-
nizational and geographical constraints of a company or some other application-
specific semantics.

36 CHAPTER 2. EVENT-BASED SYSTEMS

From the semantical point of view, bundles of components must be com-
ponents themselves with own semantics. The bundles should not only delimit
visibility, but also publish notifications themselves as result of notifications pro-
duced within the bundle, indicating important state changes of the bundle as
a whole. Similarly, they should consume notifications from the outside by fur-
ther propagating them to their internal locality. This opens the possibility to
recursively bundle component compositions into higher-level components and to
hierarchically structure an event-based system.

Consider the running example. The virtual trading floor in the stock trading
application is the first candidate of a component bundle. One can imagine a
‘verbose’ matching engine producing detailed notifications about the progress
of the matching algorithm, of which the majority is only relevant for logging
purposes (e.g., for auditing system operations) and only a few are relevant for
customers. Hence, it makes sense to constrain the visibility of most of the
notifications to the DB component and to allow only a few of them to pass the
boundary of the trading floor bundle.

The next reasonable structuring step would be to bundle the trading floor
and a set of customers (i.e., the participants in the market described in Fig. 2.8)
into a higher-level syntactical and semantical market component. In this way
multiple trading floors could be supported without having customers receive
duplicate and inconsistent notifications. Such duplication cannot be avoided in
a flat design space where all components in the system are visible to each other.
The absence of market bundles would require to encode knowledge about the
market structure into the subscriptions of individual components, which impedes
reuse and system evolution (cf. Section 2.1.3).

Supporting Sessions and Activities

The engineering of complex systems benefits not only from bundling related
components according to application structure but also from grouping notifica-
tions into sessions. Be it because notifications originate from the same source or
because they belong to a set of cooperating components, sometimes it is neces-
sary to distinguish sessions of dependent interactions to identify conversational
state. This is especially important in event-based systems, where the identity
of peers is unknown and communication is a priori stateless. That is, without
any additional information consecutive notifications cannot be related to each
other. The pub/sub paradigm does not offer any intrinsic means to identify
conversational state other than introducing IDs manually.

An example for sessions is a stockbroker who listens to a specific share traded
on two stock markets. Obviously, notifications distributed in one market must,
generally, be invisible in the other. However, the stockbroker should be able to
observe and distinguish both. In abstract terms, individual components should
be able to participate in multiple sessions to delimit them from each other and
to support session state. However, taking up the discussion about IDs in Sec-
tion 2.5.1, it is generally undesired to have components do session handling on

2.5. MISSING FUNCTIONALITY 37

their own. From an engineering point of view, it complicates their implementa-
tion.8 But more importantly, it reduces the loose coupling of publish/subscribe
by explicitly tangling notifications and interaction control. Using IDs is an ad-
hoc approach to distinguish groups of producers, whereas the underlying problem
was not yet analyzed closely.

Furthermore, activities made up of bundles of notifications can be modeled
as well-defined structures as described for bundles of application components
above. Activities structure the interaction in the system and in themselves are
components with well-defined semantics. Drawing on localities of distribution,
they may help determine when ‘internal’ notifications are to be made visible to
the outside. This will help to prevent side-effects, to build structured, hierarchi-
cal sessions, and to customize and orchestrate them. An analogy to the activity
concept in the world of request/reply-based systems would be a simplified version
of the notion of transactions [145].

Mastering Heterogeneity

A single uniform event notification service with uniform syntax and semantics is
hardly able to cope with the diverging requirements of large distributed systems,
which typically operate in heterogenous environments [74]. As pointed out in
the examples of Sect. 2.5.1, an event service that, e.g., relies on a global naming
scheme is not scalable and complicates system integration. Furthermore, syntax
and semantics of notifications are likely to vary and there are inevitably different
data models in use, which can be induced by hardware-dependent issues (like
bounded message size) or by middleware- or application-layer differences. While
heterogeneity is a well known problem in other areas of computer science, it only
recently starts gaining attention in the context of notification services [74, 147].

From the observations above an apparent conclusion is that bundling of re-
lated components should not only encapsulate functionality but also delimit
common syntax and semantics. This requires mechanisms to support adapting
data that cross boundaries of component bundles by mapping content and rep-
resentation. To motivate the requirement consider again the running example.
For efficiency reasons it is reasonable to distinguish between low-volume exter-
nal representations in XML versus more optimized internal representations. The
matching and database components may use a binary representation while stock
quotations are published using an established financial markup language like
FIXML [223] to facilitate interoperability. Hence, transformation between the
external XML representation and the internal binary representation would be
needed for notifications crossing the border of a trading floor composite.

8Enterprise Java Beans introduce session beans as a remedy to this problem in the request/
reply approach.

38 CHAPTER 2. EVENT-BASED SYSTEMS

Flexible Configuration and Customization

Similar to the diverse requirements regarding data representation in heteroge-
neous environments, a static definition of notification transmission semantics is
not adequate either. The service must be adaptable, it must be configured to
meet applications needs. As pointed out in Sect. 2.5.1, subsets of closely interact-
ing participants often rely on communication guarantees different from those of
basic notification dissemination. This includes ordering or real-time guarantees
that refine the specification of simple event-based system given in Section 2.3.
But also application-specific needs may demand to deviate from this basic spec-
ification. For example, instead of the default ‘broadcast’ of notifications to all
eligible consumers with matching subscriptions, only a specific subset of them
may be selected due to an application-specific policy. An 1-of-n policy realizes
load balancing within a bundle of components, and outside of the components
themselves.

In the stock application, the matching engine might be replicated to dis-
tribute processing load over multiple instances using a delivery policy that routes
orders to instances dedicated to the respective share. Furthermore, if the struc-
ture of the bundles is not static, security policies must control who is allowed to
join. The trading floor component could be compromised if everyone is allowed
to join and issue notifications influencing the matching engine. On a lower level
of adaptation the implementation of the trading floor will use broadcast mech-
anisms of a local area network, whereas the dissemination of price information
on the Internet has to use other techniques.

In general, the ability to adapt and program bundles of components tackles
the design, implementation and engineering problems stated above. The whole
event service is subject to customization with respect to these bundles: API,
syntax and semantics of subscriptions and notifications, security policies, and
implementation techniques of notification dissemination must be tailored to fit
the needs of evolving complex systems.

2.5.3 Existing Support

The bundling of components is the basic requirement presented in the previous
paragraphs, and it complies with the fact that information hiding and abstrac-
tion have long been identified as a fundamental principle in software engineer-
ing [240]. In request/reply-based distributed systems, like the Corba plat-
form [224], solutions exists for all of the outlined requirements. Object-oriented
programming and decomposition, heterogeneity by standardized interconnection
protocols (e.g., CORBA-IIOP, SOAP [299] based on XML), bundling of activities
with the help of transactions [35, 228], and security services, e.g., Kerberos [222],
provide the appropriate support.

However, comparable hierarchical structuring mechanisms are missing in
event-based systems. The missing knowledge about communicating peers leads
to the desired separation of communication from computations. But issues of

2.6. DISCUSSION 39

component interaction are thus drawn out of the application components them-
selves, and any adequate support for the mentioned requirements must respect
and facilitate the external control of interaction. Unfortunately, existing services
recognize and address these issues only partially.

A first approach to achieve these goals would be to build on existing features
of notification services. For example, one could make use of content-based fil-
tering mechanisms [62, 212] to decompose and delimit sets of components and
notifications from each other. Subscriptions of individual components have to be
adapted to encode additional constraints on the decomposed structure. This ap-
proach of modifying application components counteracts the stated separation.
Knowledge about the application structure is put into the components, contra-
dicting the idea of components being loosely coupled and self-focused. Further-
more, the structure is not explicitly enforced by the system and all components
are eligible receivers if they have subscribed accordingly: compromised filters
may evade security measures and reflection, i.e., investigation and change [195],
is restricted. Subject-based addressing is too limited to implement any sensible
structuring in addition to existing subscriptions, because different points of view
are not supported. Event channels like in the Corba Notification Service com-
bine structuring and notification selection to some extent. However, individual
components still have to select channels manually.

The next chapter introduces a different approach and introduces a scoping
concept that addresses the underlying problem of controlling notification visibil-
ity and serves as a tool of both application design and event system implemen-
tation.

2.6 Discussion

This chapter has presented a thorough description of event-based systems. First,
an abstract definition of interaction models is presented to clarify the fundamen-
tal differences between request/reply and event-based interaction. Although
event notification is often seen as a communication paradigm, it is shown that
the use of events is mainly a characteristic of the software and its inherent struc-
ture than of the communication techniques applied to transport notifications.
Together with a description of the constituents of event-based systems, several
ambiguously used terms have been clarified to show the differences between
events, notifications, and messages, and between event-based communication,
publish/subscribe, and messaging. This is partly based on work first published
in Mühl et al. [215] and Fiege et al. [114, 115] and has been refined here. It
facilitates the discussion about visibility and its implementation in the next
chapters.

Furthermore, a formal specification of simple event-based systems is given,
using temporal logic to define the semantics of interface operations of a black box
notification service. The specification is complemented with a ‘correct’ if näıve
implementation to illustrate its feasibility. The specification serves as a basis for

40 CHAPTER 2. EVENT-BASED SYSTEMS

reasoning about notification dissemination semantics and it is extended in the
next chapter to formally specify the semantics of scoped event-based systems.
This chapter has also presented an overview of Rebeca [112], a distributed
notification service whose basic architecture and function is comparable to other
services. It provides the system model used and extended in this thesis.

The concluding discussion in the previous section has investigated the defi-
ciencies of event-based communication. Currently, missing control of side effects
as well as the missing support for design, implementation, and management of
event-based systems limits their applicability. A number of engineering require-
ments are postulated, which, when met, considerably extend the applicability of
event-based systems. The analysis suggests that most of the issues are centered
around the visibility of notifications.

Chapter 3

Scopes

Contents

3.1 Visibility . 42

3.2 Event-Based Systems with Scopes 44

3.3 Component Interfaces . 56

3.4 Notification Mappings . 60

3.5 Transmission Policies . 68

3.6 Scoping of Notifications . 73

3.7 Security . 76

3.8 Engineering with Scopes 76

3.9 Discussion . 90

This chapter introduces scopes for event-based systems. The first section
analyzes the notion of visibility in event-based systems and relates it to the
requirements defined in Section 2.5.2. The scoping concept is defined in Sec-
tion 3.2, including a formal specification of scoped event-based systems that
refines the specification of simple systems given in the previous chapter. Scopes
re-introduce control on communication, which was drawn out of the compo-
nents in event-based interaction, without impairing the benefits of loose cou-
pling. The concept is extended in sections 3.3 and 3.4 to include interfaces
and mappings; the former further refines visibility control, the latter generalizes
interfaces to transform notifications at scope boundaries, coping with hetero-
geneous data models. While communication within scopes is by default like in
traditional pub/sub systems, the transmission policies presented in Section 3.5
adapt the semantics of notification dissemination within scopes. Session scopes
(Section 3.6) introduce dynamic scopes. They apply ideas of transaction pro-
cessing to provide for modeling activities in event-based systems. Security and
publish/subscribe was a problem before, because of the anonymity and loose
coupling of interaction. The reified structure of scoped systems now enables the

41

42 CHAPTER 3. SCOPES

integration of security measures without impeding the event-based style (Sec-
tion 3.7). Finally, scopes are a module concept and they promise to open new
ways of engineering event-based systems. A development process and an SQL-
like scope language is presented in Section 3.8. The chapter concludes with a
summary and a discussion of the contributions (Section 3.9).

3.1 Visibility

The visibility of transmitted data is of little concern in request/reply systems
where destinations are explicitly addressed. In event-based systems, however, the
visibility of notifications complements subscription techniques for it determines
which subscriptions have to be evaluated at all. Surprisingly, visibility was rarely
considered so far.

3.1.1 Implicit Coordination and Visibility

The problems of current event-based systems, which are described in the pre-
vious chapter, stem from the loss of control of interaction. This control has
been relinquished deliberately in favor of the loose coupling. It is withdrawn
from the components, replacing explicit addressing with the matching of noti-
fications to subscriptions. The explicit control of interaction given in request/
reply approaches is replaced by the implicit interaction in event-based systems.

The implicit interaction is characterized by an indirection of communication.
Producers make notifications available and consumers select with the help of
subscriptions. This indirection gives room for a concept complementary to the
notification selection done by consumers. The visibility of a notification limits
the set of consumers that may pick this notification. If a notification is not visible
to a consumer, its subscriptions need not to be tested at all. Notifications and
subscriptions are unaltered, and matching takes place as before but under the
constraints of visibility limitations. Clearly, visibility influences the interaction
of components, it can even be seen as a means to govern implicit coordination.

The implicit coordination1 of the components offers the desired loose cou-
pling but makes the overall functionality an implicit result of all the partici-
pating components. However, extracting control from application components
must not necessarily mean to have it nowhere. In fact, the requirements posed
in Section 2.5.2 demand some form of control on event-based communication.
Visibility may offer such a control of notification dissemination.

The implications are twofold. First, visibility is an important factor of im-
plicit coordination, and second, it promises to be an important abstraction in
event-based systems. While subscriptions are related to the function of indi-
vidual consumers, visibility governs the interaction in the system. Hence, the

1Explicit and implicit coordination are also termed objective and subjective coordination
in coordination theory [257].

3.1. VISIBILITY 43

visibility of notifications is essential for the overall function of an event-based
system.

3.1.2 Explicit Control of Visibility

The key to exploiting visibility is to regard it as first class citizen. While existing
work has addressed some facets of visibility, it was never taken as a fundamental
concept in event-based systems. Nevertheless, it will prove to be the basis for
both controlling and extending dissemination functionality.

Explicit visibility control constrains the areas where loose coupling and im-
plicit coordination is applied. It makes bundles of implicitly interacting com-
ponents explicit, and these bundles reify the structure of applications. They
serve as a tool for designing and programming event-based systems, because
once the interaction is localized at well-defined points additional mechanisms
can be applied to control the interaction within and between definite parts of
the system.2

But how is visibility actually represented in an event-based system? Where
is it exposed? Any form of re-integrating control into the components counter-
acts the event-based paradigm. Whenever notifications are annotated to reach
a specific set of consumers, external dependencies are encoded in application
components, which defeats the benefits of the event paradigm. Visibility of
notifications is not a matter of producers for it concerns interaction and commu-
nication, but not the computation within the component. Thus, the necessary
control must be exerted outside of the components themselves.

3.1.3 The Role of Administrators

When designing and engineering event-based systems, only the roles of produc-
ers and of consumers were considered so far. They represent the tasks of de-
signing and programming individual application components. The self-focus of
event-based components is mirrored in these roles. They concentrate on internal
computation alone and disregard interaction. Due to the implicit coordination,
responsibility for the overall functionality is not assigned to any specific role. It
is delegated to producers and consumers, but with no adequate support. The
preceding discussion corroborates that an additional role in the system to handle
visibility is needed.

The obvious implication is to introduce the role of an administrator which is
responsible for orchestrating components in an event-based system. An admin-
istrator may be human, but it can also be comprised of programs and rules that
maintain some system properties (cf. autonomnic computing).

The main objective of this role is to support component assembling and the
management of their interrelationships. This role is employed to associate visi-
bility control with a distinguished role different from producers and consumers.
It is similar to those identified in component-based development or in reference

2Technically, this is the essence of the scope concept presented in the following.

44 CHAPTER 3. SCOPES

architectures of open systems [162]. In terms of coordination theory, adminis-
trators are a means of objective coordination providing an exogenous extension
of event-based interaction [34], which separates the shaping of interaction from,
and generally makes it invisible to, the computation in the base entities.

Effective means to control visibility in event-based systems are necessary to
support the administrator’s role, and with respect to the requirements given
in Section 2.5.2, such a control is a prerequisite to solve the underlying prob-
lems of current event systems. The demanded bundling of related components
is directly addressed by the visibility of notifications. Heterogeneity issues can
only be solved if communication is intercepted and converted, which requires
a limited visibility in the first place. The same holds for the customization
and configuration of the event service itself. With limited visibility the interac-
tion within certain system parts may receive a dedicated service tailored to its
needs, whereas interaction with the outside is handled differently, like the case
of heterogeneous data models. Similar arguments hold for supporting sessions
of interrelated notifications, the details of which are postponed to Section 3.6.

Unfortunately, current work disregards this important role and does not pro-
vide any appropriate support. The scoping concept presented in the next section,
however, describes visibility in event-based systems and offers the explicit control
needed by administrators.

3.2 Event-Based Systems with Scopes

This section formally introduces the notion of scoping in event-based systems.
It extends the specification of the simple event system presented in Section 2.3.2
and is the basis for further extensions and reasoning about scoping functionality.

3.2.1 Visibility and Scopes

The notion of scoping in event-based systems is introduced to realize the visi-
bility of notifications. A scope bundles a set of producers and consumers and
limits the visibility of notifications to the enclosed components. The event-based
style of matching notifications and subscriptions is still used within the scope,
whereas the interaction of this bundle with the outside is no longer implicit, it
is prohibited at first. The notion of scopes serves two purposes. The term is
used to describe the visibility of notifications and to name the entity that defines
visibility.3

Scopes have interfaces to regulate the exchange of notification with the re-
maining system. Scopes forward external notifications to its members and repub-
lish internal ones to the outside if they match the output and input interfaces of
the scope. In addition, scopes can recursively be members of higher level scopes
and in this way offer a powerful structuring mechanism. Scopes thus act as

3In fact, in most cases this thesis refers to the entity, which implies the scope of notifications
in the former meaning.

3.2. EVENT-BASED SYSTEMS WITH SCOPES 45

Policy
Security

*

*

2

SimpleComponent

Mappings

Transmission

SessionScope

Policy

Scope

Component
Interface

Component

Figure 3.1: A meta model of scopes

components in an event-based system. They publish and consume notifications
and can be deemed equivalent to the simple base components considered so far.
So, the system consists of simple components and of complex components that
bundle other simple or complex components.

The concept of scopes as illustrated in Figure 3.1 includes further features
that will be described in the course of this chapter. Transmission policies can
be applied between scopes and within a scope to adapt notification forwarding,
allowing for tailoring notification delivery semantics to application needs in a
restricted part of the system. Furthermore, event mappings at scope boundaries
generalize scope interfaces and are capable of transforming between different data
models of notifications. Security policies are a straightforward way to control
the access to the scoping structure. Session scopes are included in this figure as
example of other, special types of scopes that use specific combinations of the
other scope features; they are described in Section 3.6.

3.2.2 Specification

The notion of components is extended to distinguish simple and complex compo-
nents. The set of all simple components C includes any possible software entity
that accesses the notification service API. The set of all complex components S

describes all possible scopes. The set of all components K is defined to be the
union of the disjoint sets of simple components C and complex components S,
K = C ·∪ S.

A scope bundles a set of components, and a component can be a member of
multiple scopes. To denote the relationship between components and scopes, a
graph of scopes is defined.

Definition 3.1 (scope graph) Let K = C ·∪ S be the set of all simple and com-
plex components. A scope graph is an acyclic directed graph G = (C, E). The
graph consist of a set of components C ⊆ K as nodes and a relation E ⊂ K × K

as edges between the nodes so that (C1, C2) ∈ E ⇒ C2 ∈ S.

46 CHAPTER 3. SCOPES

Scope

Simple component

U

R

Y Z

T

X

S

Figure 3.2: An exemplary scope graph

A scope graph denotes the scope-component relationship. An edge (C, S)
from node C to node S indicates that C is a component of scope S.4 The stated
property (C1, C2) ∈ E ⇒ C2 ∈ S ensures that a simple component cannot be a
superscope of any node in G. C is a subscope if C ∈ S. Conversely, the scope of
a component C is any S such that (C, S) ∈ E. S is also called superscope of C
to emphasize the relationship between S and C, e.g. in cases where C is a scope
itself. In Figure 3.2, X is a component of S, Y is a component of both S and
T , and T is a component/subscope of R and superscope of Y and Z.

The edges of the scope graph describe a partial order ≤ on C, where C1 ≤ C2

iff (C1, C2) ∈ E ∨ C1 = C2. Avoiding the reflexivity of ≤, the scope-compo-
nent relation is described by � , where C1 � C2 ⇔ (C1, C2) ∈ E. The transitive
closure of � is denoted by

⋆

� ; ✁ and
⋆

✁ are defined accordingly. In the example
of Figure 3.2, Y � T and Y

⋆

� R hold. According to the partial order, the simple
components are the minimal elements and those scopes having no superscopes
are the maximal elements of C. Additionally, the following terms are borrowed
from graph theory. T is a parent of Y , and Y is a child of T . Y is a sibling of
Z, and vice versa, i.e., they have the same parent.

Based on these definitions, visibility can be defined formally. In the first
instance, the visibility of components is defined, which implies a visibility of
notifications.5 Informally, component X is visible to Y iff X and Y “share” a
common superscope.

Definition 3.2 (visibility of components) The visibility of components is a
reflexive, symmetric relation v over K, also written as v(X, Y), and is recursively
defined as:

4Edges could have been defined in the inverse direction to emphasize that components do
not need to know their scopes and how they are aggregated. However, the presented notation
follows the one originally published in Fiege et al. [114].

5The more general visibility of individual notifications is discussed in sections 3.3 and 3.6
together with scope interfaces and session scopes.

3.2. EVENT-BASED SYSTEMS WITH SCOPES 47

v(X, Y) ⇔ X = Y

∨ v(Y, X)

∨ v(X ′, Y) with X ′ ✁ X

⇔ ∃Z. X
⋆

� Z ∧ Y
⋆

� Z

In the graph of Figure 3.2, for example, v(X, Y) and v(Y, U) hold, but not
v(X, Z).

Using this visibility, the specification of simple event-based systems given
in Definition 2.5 of Section 2.3 can be refined. For presentation purposes, the
specification is at first restricted to static scopes, i.e., the scope hierarchy and
membership cannot change once the first notification has been published. This
restriction is relaxed later.

Definition 3.3 (scoped event system) A scoped event system ES S is a sys-
tem that exhibits only traces satisfying the following requirements:

• (Safety)

� [

notify(Y, n) ⇒
[

✂ �
¬notify(Y, n)

]

∧
[
∃X. n ∈ PX ∧ v(X, Y)

]

∧
[
∃F ∈ SY . n ∈ N(F)

]]

• (Liveness)

� [

sub(Y, F) ⇒
(

✁
[�

v(X, Y) ⇒
� (

pub(X, n) ∧ n ∈ N(F) ⇒ ✁ notify(Y, n)
)])

∨
(

✁ unsub(Y, F)
)]

Definition 3.3 differs only slightly from Definition 2.5 on page 24. The safety
requirement contains an additional conjunct v(X, Y). This means that in addi-
tion to the previous conditions, the producer and the subscriber must also be
visible to each other when a notification is delivered. The liveness requirement
has an additional precondition

�
v(X, Y) that can be understood in the following

way: If component Y subscribes to F , then there is a future point in the trace
such that if X remains visible to Y every publishing of a matching notification
will lead to its delivery at Y . The always operator requires the scope graph to
be static.

Note that Definition 3.3 is a generalization of Definition 2.5. A simple event
system can be viewed as a system in which all components belong to the same
“global” scope. This implies a “global visibility,” i.e., v(X, Y) holds for all
pairs of components (X, Y) and can be replaced by the logical value true in the
formulas of Definition 3.3, resulting in Definition 2.5.

48 CHAPTER 3. SCOPES

3.2.3 Notification Dissemination

According to the previous definition a published notification is delivered to all
visible consumers that have a matching subscription. In order to clarify the
impact of the scoping structure and the dissemination of notifications through
the scope graph, the visibility of notifications is analyzed in the following.

The visibility of a notification n to a component C determines C’s ability
to deliver this notification at all, and is denoted by

n
� C. Visibility is a test

that precedes any subscription matching. Subscriptions decide in a second step
whether to deliver a visible notification or not. The visibility of notifications in
the scope graph is directly related to the visibility of components, of course. The
visibility of a notification n, which is published by X , to a specific component
Y is denoted by X

n
� Y , where

pub(X, n) ∧ v(X, Y) ⇒ X
n

� Y.

A published notification is made visible in the scopes the producer belongs to.
Y

n1
� S in Figure 3.3(a), or simply

n1
� S to denote the visibility alone if the specific

producer is not important. This rule is applied recursively to make notifications
visible in all further superscopes; Y

n1
� T and Y

n1
� T ′. On the other hand, if

a notification is visible within a scope S,
n

� S, it is visible to all its children.
Recursively applying this rule yields in Figure 3.3(b) X

n
� T ⇒ X

n
� S ⇒ X

n
�

Y . Note that edge direction indicates scope membership but notifications can
travel in both directions. In summary, notification dissemination is governed
by two rules, a publishing policy PP and a delivery policy DP:

PP : X
n

� S ∧ X � S � T ⇒ X
n

� T (3.1)

DP :
n

� T ∧ S � T ⇒
n

� S (3.2)

Consider Figure 3.3. A notification n1 published by Y is forwarded to S and
to all children of S, and from S to T and T ′ and to all of their children, i.e., to
all siblings of S. n1 is an internal notification of S, T, and T ′, which means it is
visible to their children. X

n2
� S is at first an external notification to S and is

made internal by the delivery policy of Eq. 3.2. A notification forwarded in the
direction of an edge, e.g., (S, T) ∈ E, is an outgoing notification with respect
to S; it leaves the scope of S. Conversely, a notification that travels against an
edge is an incoming notification, e.g., from T to X in Fig. 3.3(a) or from T to S
in Fig. 3.3(b); in the latter case n2 is external to S.

The semantics of notification dissemination is that incoming notifications are
forwarded to all children of a scope, and outgoing notifications are forwarded
to superscopes and to all siblings. Note that incoming notifications are not
forwarded to superscopes; n2 is not visible to T ′ in Figure 3.3 as X is not visible
to T ′. This default transmission of notification dissemination is the consistent
extension of the semantics of simple event systems. The intuitive meaning of
scope membership corresponds to this definition. That is, i) siblings are eligible
consumers as they are in the same scope, ii) being a subscope also denotes

3.2. EVENT-BASED SYSTEMS WITH SCOPES 49

(a) outgoing (b) incoming

Figure 3.3: Outgoing and incoming notifications

a part-of relationship, which makes it obvious that internal notifications are
also forwarded to superscopes, and iii) external notifications are made visible to
members of complex components.

Visibility is a set inclusion test so far, which disregards the way a notification
becomes visible. In practice, however, the paths of dissemination in the scope
graph are of great importance for any analysis of system behavior.

Definition 3.4 A delivery path p between two components X and Y is a se-
quence of components p = (Ci) = (X, C2, . . . , Cn−1, Y) for which holds:

1. p is an undirected path in the graph of scopes,

2. p obeys the visibility v in that v(Ci, Cj) holds for all 1 ≤ i < j ≤ n.

Delivery paths are not directed, which means that either (Ci, Ci+1) ∈ E or
(Ci+1, Ci) ∈ E. The dissemination in the scope graph is described by the follow-
ing

Lemma 3.1 Every delivery path p = (C1, . . . , Cn) can be subdivided into two,
possibly empty, parts: an upward path (C1, . . . , Cj) where (Ci, Ci+1)i<j ∈ E,
i.e., Ci � Ci+1, and a downward path (Cj , . . . , Cn) where (Ci+1, Ci)i≥j ∈ E.

Proof: Show that p turns at most once. A delivery path p = (C1, . . . , Cn)
connects two components C1 and Cn that are visible, v(C1, Cn). If C1

⋆

� Cn,
the downward path is empty and Cn is reached by forwarding notifications to
superscopes according to equation 3.1. If C1

⋆

✁ Cn, the upward path is empty
and Cn is reached by propagating visible notifications to children according to
equation 3.2. Otherwise, the path turns at least once and two cases can be
distinguished: p starts with an upward or a downward edge.
Assume p starts with a downward edge, C1 ✁ C2. Select d such that 1 ≤ d ≤ n
and Ci ✁ Ci+1 for all i ≤ d. If d 6= n, the downward path is (C1, . . . , Cd)
and Cd � Cd+1. However, equation 3.1 allows this upward delivery only if the

50 CHAPTER 3. SCOPES

notifications originated in Cd. This is not the case and by contradiction the
downward path ends at Cd = Cn.
Assume p starts with an upward edge, C1 � C2. In the same way p starts with an
upward path of length u ≤ n such that Ci� Ci+1 for all i ≤ u. If u 6= n, Cu ✁ Cu+1.
However, the path p′ = (Cu, . . . , Cn) starts with a downward edge and from the
preceding arguments follow that p′ consists only of downward edges.
If p starts downwards, C1

⋆

✁ Cn. If p starts upwards, either C1
⋆

� Cn or the path
turns once downwards at a Cj , proving the lemma.

�

3.2.4 Duplicate Notifications

Between any two nodes of the directed acyclic scope graph there may exist zero,
one, or more different delivery paths—the scope graph is not a tree (Fig. 3.4).
This may lead to duplicate notifications in certain implementations. The spec-
ification of scoped event systems does not consider delivery paths but demands
notifications to be delivered at most once. So, concrete systems may violate
the specification. However, there are two reasons for not eliminating duplicates
in the scope model itself. First, duplicates generation and handling is highly
implementation dependent. And second, in some applications delivery along
different paths leads to different semantics of notifications so that they are not
really duplicates.

Figure 3.4: Two ways of generating duplicates

The utilized implementation of scoping determines whether the conceptual
replication really results in duplicate deliveries. A broad range of possible im-
plementations of scoping exist6 and in some of them different delivery paths
have no effect. For example, an explicit, externally available scope graph data
structure can be used in a centralized implementation to infer all destinations
before delivery is commenced. Furthermore, available countermeasures for du-
plicate detection are also highly dependent on the underlying implementation
technique.

From an application point of view, there are several reasons for not eliminat-
ing duplicates in the scoped event system itself. First of all, in some applications

6Please refer to Section 4.1 for an overview.

3.2. EVENT-BASED SYSTEMS WITH SCOPES 51

notification processing is idempotent so that duplicate delivery does not influ-
ence the function of an application. On the other hand, if duplicates are not
wanted, it is often easier to handle the elimination in the application layer, or at
least as an additional layer on top of simple notification dissemination. In fact,
the scope boundaries themselves offer a platform to install such logic.

The most interesting point, however, is that on application level different
delivery paths may connote different notification semantics. Consider the left
example of Fig. 3.4 where two different delivery paths connect C1 and C2, and
assume that C1

n
� C2 results in two notifications n′ and n′′ being forwarded

by T and U , respectively. Are the two notifications really equal? Are these
notifications really duplicates if they originate, at least from the consumers point
of view, from different components T and U? Within S, these two notifications
were published from different producers in the first place. The base event notified
with n′ may have a different meaning in the context of T than the event notified
with n′′ in U . Scope interfaces and mappings presented in the next section will
enable administrators to control notification forwarding in a finer way.

In summary, there is no generic solution to handle duplicate notifications in a
scoped event-based system. The many available choices of possible implementa-
tion techniques offers all sorts of corresponding duplicate handling capabilities,
which are too divergent to be included in the general scope model. Note that
duplicate notifications are forbidden in the specification of simple event systems
but are possible in scoped systems. Different delivery paths conceptually deliver
different notifications, even if triggered by the same base event.

3.2.5 Dynamic Scopes

The above definition assumed a static scope hierarchy to provide a basic defi-
nition that can be adapted and refined based on further requirements. In the
case of dynamic scopes, four additional operations have to be offered. cscope(S)
and dscope(S) to create and destroy a scope S, jscope(X, S) and lscope(X, S)
are used to join X to scope S or leave it, respectively. These operations are
typically available to the administrator role only, for individual components do
not necessarily need to know about their scope membership.

A system with static scopes can then be simulated by having the adminis-
trator set up the scope hierarchy with the appropriate operations before clients
start to publish and subscribe. However, dynamic scopes are not directly cov-
ered by the above specification. A changing scope graph may conflict with the
safety condition, which is ambiguous in dynamic asynchronous system models.
A notification n is only allowed to be delivered to Y if the producer X is visible
to Y . But because delivery cannot be instantaneous, X may leave the scope in
which n was published before it is delivered, and so v(X, Y) may hold at time
of publication but not on delivery, rendering the specification ambiguous. The
specification does not cover systems that allow traces of the form

σ4 = pub(X, n), . . . , lscope(X,S), . . . ,notify(Y, n),

52 CHAPTER 3. SCOPES

where scope graph reconfigurations and notification publication and delivery are
mixed.

Several approaches to this problem exist. First of all, the assumed system
model may require delivery to be instantaneous so that notification dissemination
and scope reconfiguration cannot interleave. Any form of centralized implemen-
tation is able to achieve this guarantee. A second approach is to allow producers
to leave a scope only if all their published notifications have been delivered, pre-
venting the interleaving in σ4 so that the resulting traces are equivalent to the
static case with respect to the safety condition. In effect, this results in a type
of synchronization similar to that of a global transaction: scope joins and scope
leaves must be reliably acknowledged by all other brokers before the action is per-
formed. Obviously, this type of dynamic scope semantics is unfavorable since it
incurs a high synchronization overhead. However, scope reconfigurations may be
so infrequent in practice that this is tolerable for medium size systems. At least
these semantics have the advantage that the safety part of Definition 3.3 can be
used in the simple unmodified form. Interestingly, this restriction resembles an
object-oriented programming approach where new subclasses and new methods
are readily added, but modifying the inheritance hierarchy is complicated.

A different approach would be to not hide scope graph changes but to ex-
plicitly consider them in the specification. For the safety condition the visibility
restriction v(X, Y) would have to reflect time delays in notification delivery. On
the other hand, the liveness part of Definition 3.3 does not consider dynamic
scopes at all. By including

�
v(X, Y) in its precondition, only static graphs can

fulfill liveness in the current definition. This specification is intentionally re-
stricted because it is intended to specify only basic functionality. It currently
covers a broad range of system models, and it can be refined (safety) and ex-
tended (liveness) to incorporate dynamic scopes in more specific system models.
So, currently the following trace complies to the specification:

σ5 = sub(Y, F), jscope(X, s), jscope(Y, s), pub(X, n1), lscope(Y, s), . . . ,

jscope(Y, s), pub(X, ni), lscope(Y, s), . . .

In σ5 components X and Y start off in the same scope and X publishes an
“infinite” sequence of notifications ni. However, since Y leaves the scope again
after every publish operation, there is no point in time from which on X and Y
remain in the same scope. Therefore, delivery is not required and σ5 satisfies
the liveness requirement. Of course, without knowing future traces a notification
service has to try to deliver any pending notifications.

So, dynamic changes of a scope graph can be supported if changes and pub-
lications are serialized, or the safety condition has to be relaxed to cover only
durations in which the visibility of producer and consumer remain unchanged.

3.2.6 Attributes and Abstract Scopes

The layout of a scope graph carries information on system structure. Annota-
tions of scopes allow the administrator to associate further information on system

3.2. EVENT-BASED SYSTEMS WITH SCOPES 53

operation, which will be done in the next subsections. Or annotations are simply
used to add application-specific data into the structure. Technically, the notion
of scope attributes is introduced. Attributes associate data to a specific scope
according to a simple name-value pair model.

For example, a scope S is named and stores its time of creation in two
attributes:

S.name = ”ItsMe” S.creation = ”2004-12-20 12:22”

How attributes are set and used is described in Section 3.8.

Attributes may carry information about system configuration and manage-
ment. Chapter 4, for example, introduces alternative implementation approaches,
and attributes can store such annotations that refine the model expressed in the
scope graph. However, these kinds of information are typically valid for more
than one component of the graph. An obvious way to assign this information
to a group of components is to use a scope, which bundles the components in
question, just as a container carrying configuration data. This scope would be
a special type of scope, termed abstract scope.

Abstract scopes group components, but there is no communication within.
They are created for descriptive purposes and not to control communication of
their members. They are used for system management (cf. Section 3.8).

3.2.7 A Correct Implementation

The following presents a possible implementation of Definition 3.3 as a proof
of concept. The implementation uses a simple event system as specified in
Sect. 2.3.2 as basic transport mechanism. This modular approach underlines
the system’s structure and shows the possibility of implementing the specifica-
tion. But as before, it does not concentrate on efficiency issues, and any available
notification service satisfying the simple event system specification can be used
instead.

The architecture of the implementation is sketched in Figure 3.5. The in-
terface operations of the scoped event system are local library calls which are
mapped to appropriate messages of the underlying simple event system. Again,
this part of the client process is the local event broker of the client. Conceptually,
for every client an additional process at the interface of the simple event system
is generated, the client’s proxy. Practically, the proxy will be part of the local
event broker. Note that the clients’ proxies are the only components accessing
the underlying simple service; no complex components are instantiated in this
implementation scenario.

Although dynamic scoping is not considered in the specification, the pre-
sented algorithm includes dynamic scopes in the style of Section 3.2.5. To sim-
plify the implementation, changes to the scope graph G = (C, E) are restricted:
only components with no incoming edges may join or leave scopes. This restric-
tion prevents individual brokers from having to store G completely.

54 CHAPTER 3. SCOPES

Simple Event System

Proxies

Client Local Event Broker

Figure 3.5: A possible implementation of a scoped event system

As noted above the scope graph describes a transitive partial order ≤ on C

with X ≤ X ′ ⇔ (X, X ′) ∈ E. The maximal elements of C have no outgoing
edges, i.e., they have no superscopes. These elements are termed visibility roots,
as the recursive definition of v(X, Y) is terminated by common superscopes.
The maximal elements that are visible from a component are used to determine
visibility of notifications.

Data Structures

For every client X , its proxy ProxX holds a list VX of its visibility roots. In
a system with static scopes, VX is initialized to the set of its visibility roots in
the given scope graph. With dynamic scopes where changes are limited to the
addition of new leaves—nodes with no incoming edges—VX is set at the time of
addition. In both cases, it remains constant and is not changed until the whole
systems stops or X is deleted.

Algorithm

If a client invokes pub(X, n), a message (pub, X, n) is sent to the client’s proxy.
At the interface of the simple event system, the proxy then invokes pub(Prox X ,
(n, R)), where R is set to the constant value VX .

Calls to sub(X, F) and unsub(X, F) are sent in a similar way to Prox X .
Using F , the proxy derives a filter F̃ that matches all notifications ñ = (n, R)
for which n matches F , and subsequently calls sub(ProxX , F̃).

Whenever the simple event system notifies the proxy of Y about a notification
ñ = (n, R), the proxy checks whether VY ∩R 6= ∅. If the test succeeds, a message
is sent to the local broker of Y to invoke notify(Y, n). Otherwise the notification
is discarded.

3.2. EVENT-BASED SYSTEMS WITH SCOPES 55

Correctness

In order to show that Definition 3.3 is satisfied, the presented implementation
must obey the visibility v(X, Y) of the safety condition and the additional pre-
condition

�
v(X, Y) of the liveness condition. The remaining part is satisfied by

using the simple event system which satisfies Definition 2.5.

Lemma 3.2 For every pair of clients X and Y and for the set of visibility roots
VX and VY stored at the proxies, the following holds:

v(X, Y) ⇔ VX ∩ VY 6= ∅

Proof: We need to show two implications. The first implication (⇒) is proved
by induction over the “visibility” path from X to Y . The second implication
(⇐) is shown as follows: If VX ∩VY 6= ∅, there exists a maximal element Z of ≤
such that X ≤ Z and Y ≤ Z. By the definition of ≤ this implies v(X, Y).

�

Now, the correctness of the sketched implementation can be proved in terms
of the safety and liveness conditions of scoped event systems.

Proof of Safety. Assume that notify(Y, n) is invoked at client Y . It must be
shown that this implies validity of the three conjuncts of the implication in the
safety property of Def. 3.3.

The first conjunct follows directly from the safety property of the simple
event system.

To prove the second and the third conjunct, assume that the local broker
issues notify(Y, n) at client Y . This means that (a) the proxy of Y has previously
received a notification ñ = (n, R) and that (b) the test VY ∩ R 6= ∅ succeeded.

From (a) and the safety property of the simple event system follows that
ñ was previously published by some proxy ProxX . From Lemma 3.2 and (b)
follows that v(X, Y) holds. This proves the second conjunct.

From (a) and the safety property of the simple event system follows that ñ
matches some transformed filter F̃ of ProxY . This together with the algorithm
proves the third conjunct. This concludes the proof of the safety property.

Proof of Liveness. Assume a client Y invokes sub(Y, F) and never unsub-
scribes to F . From the algorithm it is implied that an “equivalent” subscription
F̃ is issued into the simple event system. Since scope reconfigurations are re-
stricted to occur at leaves, the values of VX and VY of existent components are
constant. From Lemma 3.2 this implies that v(X, Y) is always true for all clients
X and Y for which VX ∩ VY 6= ∅.

From the liveness property of the simple event system and the algorithm
follows that there is a point in time after which every published notification
ñ = (n, R) that matches F̃ is delivered to every client proxy. So assume that
after this point in time some client X publishes a notification n matching F .
From the algorithm we have that ñ = (n, VX) is published within the simple

56 CHAPTER 3. SCOPES

event system. Its liveness property gives us that ñ is eventually delivered at
the client proxy of Y . From the algorithm and because v(X, Y) holds, the test
VX ∩ VY 6= ∅ will succeed and Y will eventually be notified of n.

3.3 Component Interfaces

So far, visibility is an only two-level hierarchy induced by the top-most super-
scopes, the visibility roots of the graph G. Any two components are either able
to see all of their published notifications or non at all. In order to overcome this
problem and to improve the structuring abilities, visibility is refined by assigning
input and output interfaces to scopes.

Input and output interfaces for simple components are subscriptions and ad-
vertisements, respectively. Both include filters that describe the set of notifica-
tions allowed to cross a component’s boundary. As defined on page 22, a notifi-
cation n is either mapped on itself or to ǫ, indicating that n is either matched or
blocked. In the following, similar filter sets are associated with scopes to make
interfaces a feature of all components.7

3.3.1 Scope Interfaces

Scope input and output interfaces describe the set of notifications that are al-
lowed to cross the scope boundary. Only those notifications that match one
of the scope’s output filters are forwarded up into its superscopes as outgoing
notifications, and only those matching at least one of its input filters are treated
as incoming notifications that are forwarded to scope members. Filters of scope
interfaces are expressed in the same filter model used for subscriptions and ad-
vertisements of simple consumers and producers.

The base interface IC of a component C contains two sets of filters, iFC

and oFC , representing the input and output interfaces of the currently active
subscriptions and advertisements of the component. This base interface is asso-
ciated with every component of the event-based system with the known function
of letting notifications pass if they match one of the filters in iFC for incoming
notifications or oFC for outgoing notifications.

Formally, the interfaces are bound to edges of the scope graph. Depending
on the conceptual placement of filters with respect to the starting or ending node
of an edge, two refinements and the resulting combination of filters are distin-
guished: selective, imposed, and effective interfaces (see Figure 3.6). While the
next paragraphs discusses the different forms of interfaces, the formal definition
of a scoped event system with interfaces is given in subsection 3.4.1.

7The relationship between scopes and simple components is shown in the UML class diagram
in Fig. 3.1 on page 45.

3.3. COMPONENT INTERFACES 57

Figure 3.6: Different scope interfaces

Selective Interfaces

According to the preceding definition a component has an interface independent
of its scopes; it does not distinguish between superscopes. This conforms to the
intended loose coupling of event-based interaction. However, the administra-
tor knows the configuration of scopes and as part of this role it is possible to
distinguish superscopes.

A selective interface IC|T control the communication between a component
C and a specific superscope T . It functions in the same way IC does, but
governs communication only between C and T . It is applied in addition to the
base component interface. In Figure 3.6, for instance, some of the notifications
published by C are forwarded to S but not to T . If, in a type-based scheme,
IC|T contains an output filter that accepts notifications of type A but not B,
and if C happens to publish notifications nA and nB of type A and B, nA would
be visible in T but nB not. Communication with S is not affected by IC|T .

So, notification forwarding depends on the destination scope. A component
may now exhibit different interfaces towards different superscopes. From an en-
gineering point of view, this offers a fine control of interaction, which is especially
important when composing existing subsystems. Furthermore, the functional-
ity of the selective interfaces may be used to mitigate problems of duplicate
notifications by blocking certain delivery paths. On the other hand, the ad-
ministrator must be aware of possible effects of discriminating interfaces. If the
distinguished superscopes share a common visibility root two different delivery
paths may exist that preclude duplicate notifications but break causal order of
messages. Consider S and T in Fig. 3.6 having a common superscope Z, then a
short path exists connecting C and T directly, and a longer one crossing S and
Z to reach T . A first notification n1, which is blocked by IC|T , may reach T
after a second notification n2 that matches IC|T . Although the specification of
simple event systems does not assume a specific ordering, many concrete systems
provide a sender FIFO ordering that would be broken in this way.

58 CHAPTER 3. SCOPES

Imposed Interfaces

A converse refinement of interface definition is to install filters at the “other”
end of the scope graph edge. An imposed interface IS is specified within a
scope and wraps all of its members with an extra interface. It allows only those
notifications that match the imposed interface to be exchanged within this scope,
dedicating the scope to a specific kind of data. This interface does not influence
the communication of the affected component in other scopes. Furthermore,
interfaces can also be imposed on individual components. IS

C in Figure 3.6
restricts the interaction of C with S, without affecting the other children in S.
If IS

C contains an output filter that accepts notifications of type B but rejects A,
the above mentioned notification nB published by C would be forwarded into
S, but nA is rejected by the imposed interface. Note that notifications of type
A may published by other members of S, which are not affected by IS

C .
Imposed interfaces are a means to control communication within a scope.

Especially when an administrator integrates existing preconfigured components,
not all of their provided interfaces are of interest within the new scope, or on the
other hand, not all of the scope’s internal traffic shall be visible to all compo-
nents. As such, imposed interfaces are a security mechanism, too. They enforce
predefined filters on scope members and thus control what is published and con-
sumed within the scope. For instance, depending on security credentials different
interfaces may be imposed on newly connected scope members.

Effective Interfaces

The effective interface of a component concatenates the previously introduced
base interface with the selective and imposed interfaces. It is given with respect
to a specific outgoing edge of the component and describes the set of notifications
that are effectively allowed to cross the respective edge of the scope graph. A
notification matches the effective interface ÎS

C of a component C � S iff it matches
IC and IC|S and IS

C and IS .

3.3.2 Event-Based Components

Scopes are a composition mechanism that facilitates creating new, more complex
event-based components, showing essential characteristics of component frame-
works in the flavor of Szyperski [285]. They encode the interactions between
components and act themselves as components on a higher level of abstraction.
The composed function is provided through a defined interface, thus facilitating
the reuse of the bundle while abstracting from its internal configuration. Scopes
are distributed event-based components (see Section 3.8).

3.3.3 Example

The example stock trading application introduced in Section 2.5.2 is expanded
to illustrate the use of scopes (see Figure 3.7). There are two main scopes, M1

3.3. COMPONENT INTERFACES 59

C2 C3

C1

N
N

C4

SAPSAP

IBM

TF PC
PC PCAgent

DB ME

M2M1

...

...

...

...

Private

Professional

Figure 3.7: The graph of the stock application

and M2, denoting two different stock markets. Within each market customers are
grouped into sub-scopes distinguishing private and professional customers. Each
customer is permanently represented by one of the scopes C1, C2, etc., which
remain connected in the graph of scopes even if customers are not personally
logged in. They group a customer PCs, cellular phones, or agents running on a
remote server. An example ‘agent’ would be a limit watcher which continuously
monitors a share’s price and issues a notification when a specific share deviates
from the overall market performance. Such agents can be installed within a
customer’s scope without changing existing components—one of the obvious
benefits of event-based systems—and without affecting other parts of the system,
which is the prime attribute of scoping.

For the sake of simplicity, interest for at most one share is indicated be-
low the rectangles representing the customers’ PCs. The figure illustrates the
scenario when the trading floor TF participates in the stock market M1 and is-
sues a notification concerning SAP quotes. Although both consumers C3 and
C4 have subscribed for notifications on SAP quotes, this notification will only
reach C3, because C4 is not visible from the trading floor and C1 has subscribed
to a different share. On the other hand, consumer C3 listens to both markets
and may receive ‘duplicate’ SAP quotes (the implied problems are discussed in
sections 3.2.4 and 3.6).

To illustrate how scope interfaces help in structuring event-based applica-
tions, let us consider the interfaces of the components in our running example
as summarized in Fig. 3.8.

Customers send out notifications of type Order which contain a share identifi-
cation, the number to be sold or bought, and potential price limits. The trading
floor TF listens to these orders, issues acceptance notifications, and sends out
Quotes, informing about successfully executed orders. The trading floor itself is

8Delayed forwarding is discussed in Sec. 3.5.

60 CHAPTER 3. SCOPES

Component Description Input Output

M1,M2 The Stock Markets – –

Private scope of all private customers – Trade

Prof. scope of all professionals Order
Accept,
Quote(delayed)8

C1,C2,... Customer representation Accept Order

TF Trading Floor Order Accept, Quote

ME Matching engine Order
Accept, Quote,
OrderBook

DB The logging database Order,
Quote

Figure 3.8: Interfaces of the components in the example application

composed of the matching engine ME and the database DB. While the database
only logs all Orders and Quotes, the matching engine receives orders and issues
Quotes of current prices. It maintains a list of open orders and executes the
matching algorithm that leads to acceptance notifications (Accept) of matched
orders. Additionally, the matching engine publishes an orderbook summary
with prices and volumes of the 10 best bid and ask orders. The summary is only
visible within the trading floor, because the interface of TF prohibits further
distribution. Based on this data, additional services may be integrated into the
trading floor, like market makers ensuring that there is always at least one buy
and one sell order open.

3.4 Notification Mappings

So far, uniform data and filter models were assumed, which prescribe syntax and
semantics of notifications and filters throughout the whole system. In large sys-
tems, however, characteristics and demands of applications are likely to diverge
and homogeneous models will not fit the needs, as pointed out in the discussion
of the engineering requirements in Section 2.5.2. If all components are forced
to agree on the same data and filter model, system integration and efficiency is
impeded drastically.

The diverging requirements will best be met with tailored data and filter
models—an idea which is obvious but hardly considered in the context of event
systems. Different system parts will use different representations and seman-
tics of events. With an appropriate support, one part of an application can
exchange binary encoded notification while still being able to communicate with
other parts of the system via serialized Java objects or XML encoded notifi-
cations. Efficiency considerations result in differentiating low-volume external

3.4. NOTIFICATION MAPPINGS 61

representations in XML from more efficient, optimized internal representations.
An obvious implication of decomposing applications is that bundling of re-

lated components should not only encapsulate functionality but also delimit
common syntax and semantics. Constraining the visibility of notifications is the
basis for dealing with heterogeneity issues. Consequently, notification mappings
are introduced as extensions of scope interfaces. They transform notifications at
scope boundaries to map between internal and external representations, without
interfering with internal notifications.

Scopes are an appropriate place to localize such transformations because
bundled components are likely to agree on a common data and filter model,
whereas the interaction with the remaining system is decoupled by the scope
boundary. Notification mappings clearly address the heterogeneity requirements
stated in Section 2.5.2 and facilitate construction and maintenance of large event-
based systems.

3.4.1 Specification

Notification mappings transform notification from one data model to another.
Mappings, however, do not primarily block notifications but transform them.
Notification mappings are defined as binary, asymmetric relations on the set N of
notifications. They are associated with scope graph edges, like scope interfaces,
and two mappings րe and ցe are attached to every edge e = (C, S) ∈ E. Let
n1 and n2 be two notifications. For any edge e and its associated relation րe,
the mapping n1 րe n2 means that when “traveling” upwards along the edge
(i.e., in direction of the superscope) n1 is transformed into n2. The relation
ցe is defined analogously for the reverse direction. Note, in order to support
heterogeneous data models the relations map between two sets of notifications
used in C and S, respectively, i.e., րe⊂ NC × NS , but it is implicitly assumed
that N contains the different models for simplicity.

Now, the general visibility of notifications can be defined using these rela-
tions.

Definition 3.5 The visibility of notifications in a scope graph G = (C, E) is
defined by the relation � on N × K, where

(n1, X) � (n2, Y) or shorter X
n1

� n2
Y

means that n1 visible to X is also visible to Y :

(n1, X) � (n2, Y) ⇔
(
X = Y ∧ n1 = n2

)

∨
(
∃e = (X, X ′) ∈ E. ∃n′ 6= ǫ. n1 րe n′

∧
[
(n′, X ′) � (n2, Y)

])

∨
(
∃e = (Y, Y ′) ∈ E. ∃n′ 6= ǫ. n′ ցe n2

∧
[
(n1, X) � (n′, Y ′)

])

62 CHAPTER 3. SCOPES

Figure 3.9: Recursive definition of the relation (n1, X) � (n2, Y)

The recursive definition of (n1, X) � (n2, Y) is illustrated by Figure 3.9.
Intuitively, notification n1 “flows” from X to Y and, after potentially being
transformed several times, it is received as notification n2. The path on which
n1 flows to n2 is the same as for the visibility relation defined in Section 3.2, i.e.,
it can be characterized by a path from X up to a common superscope and then
down to Y . But in addition the notification is subject to any mappings assigned
to the relevant edges.

The semantics of scoped event systems with mappings are derived from those
of scoped event systems by the refined visibility definition. With like arguments
the graph of scopes and the relations ր and ց are assumed to be static in the
sense that a component’s mappings are not allowed to change until all of its
published notifications are delivered; otherwise the visibility clause may corrupt
the safety condition in the specification.

Definition 3.6 (scoped event system with mappings) A scoped event sys-
tem with mappings ESM is a system that exhibits only traces satisfying the
following requirements:

• (Safety)

� [

notify(Y, n′) ⇒
[

✂ �
¬notify(Y, n′)

]

∧
[
∃n. ∃X. n ∈ PX ∧

(
(n, X) � (n′, Y)

)]

∧
[
∃F ∈ SY . n′ ∈ N(F)

]]

• (Liveness)

� [

sub(Y, F) ⇒
(

✁
[� (

(n, X) � (n′, Y)
)

⇒

� (
pub(X, n) ∧ n′ ∈ N(F) ⇒ ✁ notify(Y, n′)

)])

∨
(

✁ unsub(Y, F)
)]

3.4. NOTIFICATION MAPPINGS 63

The difference between this definition and that of scoped event systems
(Def. 3.3) is that the term v(X, Y) is replaced by the term (n, X) � (n′, Y)
and that the published notification n is not necessarily equal to the delivered
n′. This formulation extends the system to not only obey the visibility of com-
ponents but the visibility of individual notifications. The delivered notification
n′ is the result of repetitive applications of the mappings ր and ց along the
path implicitly defined by � . The present definition is even a generalization of
the scoped delivery. This is because a scoped event system can be regarded as
one with event mappings where all mappings are the identity relation, i.e., they
do not change anything along the delivery paths. In such a system, v(X, Y) is
implied by the existence of a notification n such that (n, X) � (n, Y).

Interfaces as Mappings

Notification mappings are a generalization of and subsume scope interfaces. The
relation ր might be undefined for an outgoing notification n1 so that there is no
n2 such that n1 ր n2. This blocks the notification just as a non-matching filter
does. In order to seamlessly extend scope interfaces, ր and ց are constrained
to always map to some notification, with the empty notification ǫ as default.

Definition 3.7 (notification mappings) A notification mapping is given by
a function in M = {m | m : N → N}.

n1 ր n2 ⇒ ∃m ∈ M. m(n1) = n2

Whenever a notification is mapped to ǫ it is considered to be blocked so that
filters are but special mappings: F = {f ∈ M | f(n) = n ∨ f(n) = ǫ} ⊂ M.
With this definition, a uniform way of filtering and transforming notifications is
accomplished so that, conceptually, interfaces and mappings can be concatenated
at scope boundaries, e.g., F1 ◦ F2 ◦ M1 ∈ M.

Next, interfaces and their concatenation are defined more formally to define
ր and ց as concatenated interfaces and mappings.

Definition 3.8 (interface) An interface I consist of an input mapping iI and
an output mapping oI: I = (iI, oI) ∈ M × M. The base interface IC of a compo-
nent C represents the sets of open subscriptions and advertisements of C:

IC = (iIC , oIC) ∈ M × M

, (iFC , oFC) =
{
{F1, F2, . . . , Fk}, {F

′
1, F

′
2, . . . , F

′
l }

}
∈ P (F) × P (F)

where iIC and oIC are defined as

iIC(n) =

{

n ∃F ∈ iFC . F (n) = n

ǫ otherwise

oIC(n) =

{

n ∃F ∈ oFC . F (n) = n

ǫ otherwise

Selective interfaces IC|S, and imposed interfaces IS and IS
C are defined likewise.

64 CHAPTER 3. SCOPES

According to this definition an interface can transform notifications for the seam-
less concatenation of filters and mappings.

Definition 3.9 (concatenation of interfaces) Two interfaces I1 and I2 are
concatenated by

I1 ◦ I2 = (iI1 ◦
iI2,

oI2 ◦
oI1).

Note that the resulting interface evaluates the composed input and output
interfaces in inverse order. This is not necessary if only filters are considered,
but by incorporating mappings the sequences are not commutative any longer.
The effective interface between two components C � S describes the notifications
transmitted along this edge in the scope graph and combines the aforementioned
interfaces and notification mappings assigned to this edge, extending the infor-
mal description given in 3.3.1.

Definition 3.10 (effective interface) The effective interface ÎS
C between two

components C � S is given by concatenating base interface, selective interface,
mapping, and imposed interface:

ÎS
C = IC ◦ IC|S ◦ MS

C ◦ IS
C ◦ IS

Finally, the interfaces between two components C � S are correlated to the
mapping relations ր and ց as follows:

n1 ց n2 ⇔ (IC ◦ IC|S ◦ iMS
C ◦ iIS

C ◦ iIS)(n1) = n2

⇔ iÎS
C(n1) = n2

n1 ր n2 ⇔ (oIS ◦ oIS
C ◦ oMS

C ◦ oIC|S ◦ oIC)(n1) = n2

⇔ oÎS
C(n1) = n2

The rules of notification forwarding in the scope graph given by the pub-
lishing and delivery policies in equations 3.1 and 3.2 on page 48 can be refined
corresponding to the above discussion:

PP : X
n1

� S ∧ X � S � T ∧ oÎT
S (n1) = n2 ⇒ X

n1
� n2

T (3.3)

DP :
n1

� T ∧ S � T ∧ iÎT
S (n1) = n2 ⇒

n2
� S (3.4)

Despite the integration of interfaces and mappings, the scope overview in
Figure 3.1 on page 45 still distinguishes interfaces and mappings to underline
their different intentions, and also because their implementations are apt to
diverge.

Some Further Comments

The already mentioned issue of duplicate notifications has to be reconsidered
here. A notification is duplicated if it travels along different paths from producer

3.4. NOTIFICATION MAPPINGS 65

...
X

Y

S

m
2

m
1

S

Y

X

K
n

n’
n’

n

K

KK

Figure 3.10: Transformation of mappings into components

to consumer, but it may now be subjected to different mappings so that different
versions of the same original notification are created. The specification cannot
rule out this case since it is highly application-dependent whether this is an
unwanted situation or not. The mappings may help handling alternative delivery
paths as they can annotate passing notifications, e.g., to include information
about the delivery path in the notification.

Trying to offer a sophisticated concept of heterogeneity support in event-
based systems is beyond the scope of this thesis, and thus notification mappings
are presented as a starting point for including appropriate enhancements. The
mappings underline the extensibility of the scoping concept and open it to in-
tegrate existing works in the area of syntactical and semantical transformations
that are applicable here [41, 71, 183]. Furthermore, the current if implicit as-
sumption that notifications are mapped one-to-one is used for simplicity only.
Scope boundaries may turn out as the appropriate place to implement more
sophisticated event composition [189, 304].

3.4.2 A Correct Implementation

The following presents an implementation sketch of the scoped event system
with mappings. The implementation of a scoped event system with mappings
ESM is based on a scoped system ESS and a transformation of the graph of
scopes G that essentially follows the idea of adding activity to edges. Figure 3.10
sketches the transformation that creates G′ by replacing every edge (K, S) that
does not apply the identity mappings n ր n and n ց n for two extra mapping
components K1

m and K2
m. Two mapping components are taken to constrain the

visibility of the transformed notifications to the appropriate scopes. If only one
Km would be inserted, additional measures had to be taken to distinguish the
superscopes.

Figure 3.11 describes the architecture of the implementation for the example
system in Figure 3.10. A component X connected to ESM is also directly con-
nected to an underlying scoped event system ES S. Calls to pub(X, n) of ESM

are forwarded to ESS without changes, and vice versa, calls to notify(X, n) of
ESS are forwarded to ESM.

66 CHAPTER 3. SCOPES

m
2

m
1

Scoped Event System

X Y

KK

Figure 3.11: Architecture of scoped event system with mappings

In general, if a scope K is to be joined to a superscope S by calling jscope(K, S),
two mapping components K1

m and K2
m are created that communicate directly

via a point-to-point connection. K1
m joins K, subscribes to all notifications

published in K, transforms and forwards them to its peer. Furthermore, sub-
scriptions in K have to be transformed before they are forwarded. The im-
plementation relies on externally supplied functions that map notifications and
filters/subscriptions between the internal and external representations in K and
S, respectively. K2

m joins S and republishes all notifications it gets from its
peer K1

m. It subscribes in S according to the subscriptions forwarded by K1
m,

transforms any notifications received out of S, again with externally supplied
functions, and forwards them to K1

m which republishes them into K.

Correctness

The algorithm from the previous section has to satisfy the requirements given in
Definition 3.6 of ESM, i.e., safety and liveness conditions. The correctness proof
largely depends on the correctness of the underlying scoped event system ES S.
The next lemma relates the graph transformation to the structure of delivery
paths.

Lemma 3.3 If (n, X) � (n′, Y) holds, then in the implementation of ESM

exists a sequence ρ = C1, C2, . . . , Cm of components for which holds:

1. C1 = X and Cm = Y ,

2. for all 1 < i < m holds that Ci is a mapping component, and

3. for all 1 ≤ i ≤ m−1 holds that Ci and Ci+1 either share a communication
link or reside in the same scope of ESS.

Proof: Assume (n, X) � (n′, Y) holds. From the definition of � follows that
there exists a delivery path τ = (X, S1, S2, . . . , Sl, Y) in the scope graph G. Since

3.4. NOTIFICATION MAPPINGS 67

visibility is recursively defined by having common superscopes, all Si must be
scopes.
The construction method of building G′ from G implies that every consecutive
pair of scopes (Si, Si+1) in τ where mappings are applied is enhanced with two
mapping components K1

i and K2
i which are joined by a direct communication

link. The mapping components K2
i and K1

i+1 of neighboring edges reside in the
same scope Si+1 or are visible to each other. The projection of τ to mapping
components (and X and Y) results in a sequence X, K1

1 , K2
1 , K1

2 , K2
2 , K1

3 , . . . , K2
l ,

Y , which is the witness for the sequence ρ of the lemma.
�

Proof of Safety. Assume that Y is a simple component and that notify(Y, n′)
of ESM is called. It must be shown that the three conjuncts of the implication
in the safety property of Def. 3.6 hold.

From the algorithm description follows that notify(Y, n′) of ESS was called
before, implying that n′ is notified at most once and that n′ matches an active
subscription of Y . This proves the first and the third conjunct.

The second conjunct is proved by a backward induction on the path guaran-
teed by Lemma 3.3. The fact that Y is notified about n′ implies that there is a
component Z that has published n′ which resides in the same scope. If this Z
is not a mapping component, Z plays the role of X in the formula, n′ = n, and
the second conjunct follows immediately (this is the base case of the induction).
The step case of the induction is as follows: Assume that a component Z ′′ along
the path has published some notification n′′ which from backward notification
mappings resulted from n′. Then there exists a component Z ′′′ which is either
in the same scope or connected by a communication link to Z ′′. In the first
case, the step follows from the properties of ES S and in the second case from
the algorithm. This implies that n ∈ PX and that

(
(n, X) � (n′, Y)

)
, giving

the second conjunct.

Proof of Liveness. The liveness property is proved by forward induction on
the path guaranteed by Lemma 3.3 in a similar way as in the proof of the
safety property. Assume that Y subscribes to F and never unsubscribes. Then
assume that after subscribing, (n, X) � (n′, Y) begins to hold indefinitely. Then
Lemma 3.3 guarantees a path between any publisher X of a relevant notification
n and Y . A similar way of reasoning as in the safety proof implies that n is
forwarded and transformed along the path resulting in n′ which Y is eventually
notified about.

3.4.3 Example

Returning to the stock exchange example, mappings can be exploited to convert
between different currencies.9 Quotations are typically given in a local currency
which need to be transformed at the boundary of the local scope in order to

9At least from a technical point of view, disregarding varying exchange rates.

68 CHAPTER 3. SCOPES

achieve comparability. As another example for the usefulness of mappings con-
sider XML languages like FIXML [223] that standardize financial data exchange.
These languages are used to connect external partners, but they are typically too
expensive for internal representations due to efficiency reasons. Also, most likely,
different representations of events will be used inside the consumers, within the
market, and within the trading floor, e.g., Java objects, XML financial data,
and EBCDIC mainframe text fields. Notification mappings are installed at the
consumers and at the trading floor to map between serialized Java objects and
their XML representation and between XML and EBCDIC, respectively.

3.5 Transmission Policies

The discussion of engineering requirements in Section 2.5.2 argued not only for
the heterogeneity of data models but also emphasized the necessity to adapt no-
tification delivery semantics. The ability to accommodate diverging application
needs improves the utilizability of the event service. It helps to provide tailored
and efficient implementations, and it avoids a one-size-fits-all approach, which is
not appropriate for a communication substrate targeted at evolving networked
systems.

The next paragraphs distinguish transmission policies to describe how noti-
fications are forwarded in the scope graph. Transmission policies are a way to
influence notification dissemination beyond filtering on notifications. While fil-
ters operate independently on independent notifications, i.e., they are stateless,
transmission policies may have their own state and they exploit additional infor-
mation not available in filters and interfaces. They refine the visibility definition
both within a scope and with respect to its superscopes. Changing it affects
the functionality of the overall system in a fundamental way. However, once
delimited by scope boundaries, such modifications are the means that allow ad-
ministrators to customize the interaction within and the composed functionality
of specific scopes.

Conceptually, notification forwarding at a node in the scope graph first deter-
mines a set of eligible next-hop destinations according to the effective interfaces
and then applies the policies to refine this set before transmission. Default poli-
cies implement the known semantics of notification delivery, and by explicitly
binding them to individual scopes in the specification of event systems, they are
subjected to modification on a per scope basis. This gives the administrator a
tool to not only compose but to program scopes. Three different policies are
involved in notification transmission: publishing, delivery, and traverse policies.

3.5.1 Publishing Policy

A publishing policy is associated with a component and controls into which su-
perscopes an outgoing notification is forwarded. In Figure 3.12, a publishing
policy at S can prevent a notification Y

n1
� S from being forwarded to T , even

3.5. TRANSMISSION POLICIES 69

Figure 3.12: Three important transmission policies in scope graphs

if the notification conforms to the effective output interface oÎT
S . Out of the

set of eligible superscopes the publishing policy selects the subset to which a
notification is actually forwarded. One might reject the idea of manually se-
lecting the scopes into which data is published as contradicting the event-based
paradigm. However, the same arguments as for selective interfaces apply here,
too. The selection is part of the administrator’s role and not interwoven with
application functionality in simple components. It can be seen as an additional
way to control interaction of components outside of the components themselves.

In general, a publishing policy of a component C is a mapping of notifications
to a subset of its scopes:

ppC : N → P (S)

The mapping relation ր, which determines the visibility of notifications, can be
extended to respect publishing policies. For an edge e = (S, T) of G let

n1 րe n2 ⇔ oÎT
S (n1) = n2 ∧ T ∈ ppS(n1)

The general rule of forwarding outgoing notifications in the scope graph is
implied as follows. Assume Y made a notification n1 visible in its scope S,
Y

n1
� S, and S is a subscope of T , S � T , then the notification shall be visible in

T if n1 matches the effective output interface between S and T and the publishing
policy does not object to T . That is,

PP : Y
n1

� S ∧ Y � S � T
︸ ︷︷ ︸

component
visibility

∧ oÎT
S (n1) = n2

︸ ︷︷ ︸
interfaces
mappings

∧T ∈ ppS(n1)
︸ ︷︷ ︸

publishing
policy

⇒ S
n1

� n2
T (3.5)

This definition of PP refines the previous one of scoped delivery with map-
pings given in Equation 3.3. It can be reduced to the former definition by set-
ting ppS(n1) = S, which always validates T ∈ ppS(n1) and makes equations 3.5

and 3.3 equivalent. Note that the equation also implies Y
n1

� n2
T .

A publishing policy might be used to check for attributes not available in
filters and interfaces. Since it is implemented as part of the administrator role it

70 CHAPTER 3. SCOPES

possibly has access to the scope graph layout and associated meta data. If the
availability of security credentials can be checked by the policy, a scope may thus
mandate that its notifications are only delivered if a certain privilege level is held
by the destination scope. But this simple definition leaves room for any form
of implementation. In the stock exchange example a market was divided into a
professional and a private market (see page 58). The former gets undelayed stock
quotations and is modeled as a subscope of the private market. A publishing
policy at the boundary between these two scopes may be used to delay each
notification for a certain amount of time. Such implementation-specific issues
are not excluded by the above definition.

3.5.2 Delivery Policy

A delivery policy is associated with a scope and guides notifications that are to
be delivered to scope members. They may either be published in a superscope or
by some other constituent component. The delivery policy determines to which
members of the scope a notification is forwarded. In Figure 3.12, a delivery
policy at S might direct a notification T

n
� S to X , prohibiting the delivery

to Y even if the notification conforms to the effective input interface iÎS
Y . Out

of the set of eligible children the delivery policy selects a subset to which the
notification is actually forwarded.

Similar to publishing policies, a delivery policy of a scope S is a mapping of
notifications to a subset of components:

dpS : N → P (K)

The mapping relation ց can be refined so that it obeys scope interfaces and
reflects delivery policies on incoming notifications. Consider e = (X, S) as given

in Figure 3.12 and a notification visible to S in T , T
n1

� S. The visibility of the
notification within S is then determined by

n1 ցe n2 ⇔ iÎS
X(n1) = n2 ∧ X ∈ dpS(n1).

Please note that this equivalence does not only guide forwarding of incoming
notifications but also of internal notifications published by scope members; in

the example, T
n1

� S and Y
n′

1
� S would go down the same edge e = (X, S).

However, since internal and external communication is typically treated differ-
ently an additional internal delivery policy idpS is introduced to facilitate this
differentiation. The definition of ցe has to distinguish between applying dpS

and idpS . In the first case, n1 is an incoming10 notification that is made visible
by a superscope T , i.e., X � S � T and T

n1
� S. In the second case n′1 is an

internal notification that is made visible by a member of S, i.e., a sibling of the

10The term “internal” and “incoming” notifications are also discussed on page 49.

3.5. TRANSMISSION POLICIES 71

considered consumer X , X � S ✁ Y and Y
n′

1
� S.

n1 ցe n2 ⇔

iÎS
X(n1) = n2 ∧ X ∈ dpS(n1) if X � S � T ∧ T

n1
� S

iÎS
X(n1) = n2 ∧ X ∈ idpS(n1) if X � S ✁ Y ∧ Y

n1
� S

The rule of downward notification delivery (p. 64) is thus given as follows.

DP : T
n1

� S ∧ X � S � T
︸ ︷︷ ︸

component visibility
incoming notification

∧ iÎS
X(n1) = n2

︸ ︷︷ ︸
interfaces
mappings

∧X ∈ dpS(n1)
︸ ︷︷ ︸

delivery
policy

⇒ S
n1

� n2
X (3.6)

iDP : Y
n1

� S ∧ X � S ✁ Y
︸ ︷︷ ︸

component visibility

internal notification

∧ iÎS
X(n1) = n2

︸ ︷︷ ︸
interfaces

mappings

∧X ∈ idpS(n1)
︸ ︷︷ ︸

internal

delivery policy

⇒ S
n1

� n2
X (3.7)

Again, from the equations and the definition of � also follows that T
n1

� n2
X

and Y
n1

� n2
X .

An example of a delivery policy is an 1-of-n delivery where an incoming
notification is forwarded to only one out of a group of possible receivers. In
this way load balancing characteristics may be implemented in a specific scope.
Internal delivery policies are pertinent whenever the data flow within a scope
shall be controlled in addition to the established filters. An internal delivery
policy is able to arrange multiple consumers into a chain. Consider a sequence
of exception handlers, each subscribed to the same type of failure, which it tries
to solve, and if not possible it republishes the received notification. An internal
delivery policy can forward each published error notification to the next hop in
the preconfigured list of consumers/handlers.

3.5.3 Traverse Policy

The last, only informally presented policy is the traverse policy, which is associ-
ated with a scope S and controls the downward path of incoming notifications in
a scope. In contrast to the preceding policies, the traverse policy does not select
destinations within a certain scope but selects the scope into which to descend
first. It searches at different levels in the scope hierarchy below S for a scope
with eligible consumers, and if one is found it will stop searching and refer the
notification to the respective scope.

Actually, this policy allows a notification to deviate from a default path
through the graph of scopes. In a top-down traverse policy eligible receivers,
i.e., simple components with a matching subscription, are searched in the cur-
rent scope first. If no consumer is found at this stage, the search is continued
in the next lower level of scopes if the policy still applies there (same adminis-
trative domain). The bottom-up traverse policy starts the search in the deepest
subscopes. “Broadcast” is the default policy which does not inhibit descending
the scope graph and delivers to all eligible consumers C

⋆

� S below the current
scope S, subject to interfaces and delivery policies, of course.

72 CHAPTER 3. SCOPES

This kind of dissemination control is apparently inspired by dynamic bind-
ing and method lookup in object-oriented class hierarchies. Multiple consumers
of the same notification, which are located at different levels in the inheri-
tance/scope hierarchy, can be considered to implement some form of generalized
method overriding. While traditional programming languages like C++ and
Java use only one, static policy to resolve calls to overridden methods, traverse
policies draw ideas from meta-object protocols [170] to determine what kind of
method lookup is used. The bottom-up policy resembles a virtual method call in
Java in that the implementation of the most derived class is used. Other policies
are possible that implement other kinds of method lookups.

3.5.4 Influencing Notification Dissemination

Transmission policies are a means to adapt the event-based dissemination within
scopes. They make the interaction in the graph programmable.

To some extent transmission policies bear similarities to meta object proto-
cols (MOP) known in object-oriented programming [170]. Meta object protocols
offer the ability to redirect or transform messages sent as method calls, and this
control allows to influence object interaction outside of the objects’ implemen-
tation. Here, notifications are selected, transformed, ordered, or queued, to
manipulate the default visibility of notifications and to adapt event-based inter-
action within the bounds given by the scoping structure to which the policies
are associated.

As for the expressiveness and possible implementations of transmission poli-
cies note that the above definition is not intended as an algorithmic description.
It integrates with the specification of scoped event systems with mappings given
in Definition 3.6, and since the specification relies on linear temporal logic, it
only describes valid traces of system execution. In particular, any implementa-
tion that exhibits such traces conforms to the specification. So, even if the rules
PP, DP, and iDP might connote an algorithm for notification forwarding, possi-
ble implementations covered by the definition of ppS, dpS , and idpS, and of րe

and ցe, can be Turing-complete. For instance, delaying notification as part of a
transmission policy is sanctioned as long as any later delivered notification still
adheres to the visibility definition and the safety condition of the specification.

The decision made by a transmission policy is based on additional data not
available in filters and interfaces. Various characteristic approaches to decision
making can be distinguished. There are policies that essentially implement fil-
ters on notifications like component interfaces, but which are able to exploit
additional meta data. Notifications carry management information, which is an-
notated by the event system and stripped off before delivery, and as a tool of the
administrator policies might access this data. So, they would be able to differ-
entiate producers, e.g., to check security credentials. Furthermore, transmission
policies probably have (limited) knowledge about the current scope graph lay-
out and of a notification’s (partial) path through the graph. The Session Scopes
presented in the next section utilize this kind of information.

3.6. SCOPING OF NOTIFICATIONS 73

The second, more complex form of transmission policy does not filter any
data contained in notifications, but compares all eligible destinations, ranking
them to do a top-k selection. The ranking may be random, based on lowest
utilization, etc. And finally, when the policy implementation maintains its own
state, it might keep a record of the last sent notifications in order to limit the
maximal bandwidth towards a consumer by rejecting too frequent notifications.
Or it might realize a round robin 1-of-n delivery. With its own state the policy is
capable of delaying notifications for a certain amount of time or until a specific
condition becomes valid, i.e., a “releasing” event occurs. This opens a venue to
bind event composition to scope boundaries, or to implement a form of acknowl-
edged notification forwarding where acknowledgment is given components other
than the original producer.11

3.6 Scoping of Notifications

The discussion in this chapter has concentrated on scoping as a means to struc-
ture applications, implying a scoping of notifications due to component visibility.
This section will take a first look into controlling the visibility of notifications
directly. It will show how the scoping concept can be applied to structure the
dynamic aspects of applications.

It would be illusionary to think that the loose coupling of event-based in-
teraction allows components plugged into a black box system to process any
received notification in a meaningful way. This is because a single notification
is typically not self-contained and is received out of any context. The context of
a notification is the components interacting with the producer and the preced-
ing notifications, which led to its publication—only events of the physical world
occur without apparent history in the computer system. So far, scoping helps
to describe and define the context of notifications in terms of the components
interacting in the system.

3.6.1 Dependent Notifications

In the simple application scenario of uni-directional flows of notifications, state-
less communication prevails, cf. Section 2.5. However, in more complex scenarios
notifications are interrelated, and it gets more important to make the context of
notifications discernible. As pointed out, receiving notifications out of context
impairs functionality, and thus distinguishing the context is not only necessary
to decide which past notifications are related but also to set any reaction into
the “right” context.

Consider three scopes C, S, and T , where scope C participates in both S and
T , C � S and C � T ; for example, C may be a customer of two stock markets.
Notifications published in S are not visible in T , and vice versa. However, C acts
like a bridge and its reactions are visible in both superscopes. While scoping

11Let’s call the releasing notifications commit and abort... Please refer to Section 3.6.

74 CHAPTER 3. SCOPES

provides notification context to some extent, the reactions published by C are
obviously related to the original notifications in S, but possibly out of context in
T . The delimitation imposed by scopes is diluted and implications of invisible
causes are diffused; an effect that is not always desired.

If the above customer C has locally installed rules to automatically buy shares
when prices exceed predefined limits, it would be better to direct orders only to
the market that has offered the triggering prices; or converse if arbitrage oppor-
tunities shall be exploited. For another example assume C is a security service
that consumes, timestamps, signs, and republishes notifications so that applica-
tions S and T are able to publish signed notifications. It would be unacceptable
to publish the signed data into both scopes.

As far as this discussion is concerned, dependent notifications are related to
past notifications and should, usually, only be visible to same components as the
causing notifications. The implied basic requirement is that relationships must
be distinguishable to make the reaction part of the given context.

This problem can be approached in a number of ways. A supposed solution
is to replicate the component C so that each instance no longer belongs to
multiple superscopes. But this is only possible if the instances do not share a
common state. If they do, other forms of communication are necessary between
the instances to ensure their consistency, and thus the event-based model and
the scoped system model would be abandoned. On the other hand, in large
systems the administrators of S and T might be forced to use a component C
that is already deployed in a different administrative domain. Finally, the graph
transformation would result in a tree, which is a very limited means to structure
applications [153].

A different, often used approach to relate notifications is to add identifiers
(IDs) to notifications. Producers annotate notifications to indicate their own
identity or that of the notifications. However, as pointed out in the discussions in
Chapter 1 and Section 2.5, filtering on annotated notification does not solve this
problem adequately. Manually modifying notifications and filters contradicts
the event-based paradigm and provokes a tighter coupling of components by re-
establishing the explicit handling of peers. This virtually negates the benefits of
using events and should be avoided if other, more appropriate solutions can be
found, like the session scopes presented next.

3.6.2 Session Scopes

There is a clear connection between scopes and dependent notifications. The
dependency implies a grouping of notifications and represents their context. For
an initial support of dependent notifications session scopes are introduced, which
utilize and extend the previous notion of scoping. They reify this grouping
of notifications and make it possible to delimit the interactions belonging to
different contexts, even if they involve the same components.

Session scopes also have to employ identifiers to mark notifications as being
part of the respective scope, but the management of these identifiers is transpar-

3.6. SCOPING OF NOTIFICATIONS 75

ent to the participating components. The basic idea is as follows. A session scope
has an associated session ID, which is annotated on every notification published
in the scope. On consumer side, no filters are changed and the processing of
delivered notifications takes place as before; however, the processing is wrapped
by the event system, which applies session-specific publishing policies to direct
triggered notifications back into the originating session scope.

A scope becomes a session scope by assigning a session ID to it. A session
scope installs a mapping on each child that tags every published notification
with this ID.12 The semantics of notification forwarding within session scopes
is not altered and remains the same as in ‘normal’ scopes. To discuss delivery
and processing of notifications recall the conceptual system model presented in
Section 2.4. In each component the local event broker connects the application
component to the event system, and it is this local broker that wraps the compo-
nents’ notification processing and handles session ID tags. It maintains a hidden
processing context containing the ID, which remains valid during the processing
of the tagged notification, that is, during the wrapped notifiy(X, n) call. All
notifications published while a valid context is available are again tagged with
the ID. Tagged notifications are not delivered into any other session superscopes
but the originating one. Non-session superscopes are not affected by this dif-
ferentiation so that newly created session scopes do not influence the existing
scope configurations. Of course, this behavior can only be considered as a rea-
sonable default; it must be possible to adapt the function of session scopes, e.g.,
to restrict reactions to the originating session scope irrespective of any other
superscope.

Applied in the above scenario of a security service C, the two application
superscopes S and T would be declared as session scopes. On delivery of a no-
tification the previously registered processing function is invoked that computes
the signature and republishes the signed result. The tag carried by the notifi-
cation is maintained as hidden context during the execution and the result is
transparently directed to the originating superscope. Note that the API of the
event service and the application component are not changed.

To illustrate session scopes in the stock application, the interaction of a
customer with two markets can be modeled in the same way as the security
service.

Session scopes are a contribution to model interactions in event-based sys-
tems. They leverage the presented visibility model and help to separate simul-
taneous interactions acting on the same components, controlling the diffusion of
implications of otherwise invisible events. Technically, they can be generalized
to context-dependent scopes, whose interfaces depend on the context of a noti-
fication. Currently, different interfaces are assigned with each incident edge of a
component in the scope graph, but every notification is checked against the same
set of interfaces. With context-dependent interfaces each context would have its
own set of interfaces on all edges. Different notifications are then tested against

12For simplicity assume a content-based data model where such modifications are feasible,
though other non-opaque data models might work, too.

76 CHAPTER 3. SCOPES

different interfaces, and different sessions could have different cross-session for-
warding semantics, etc. This would make the influence and semantics of sessions
totally customizable, and might offer a way to deal with event-based interactions
that goes beyond existing approaches [190, 286].

Furthermore, an apparent enhancement is to make the context stored in
the local event broker accessible to the components. This does not seriously
impair loose coupling because the resulting stateful component functionality
would be still part of a self-focused, event-based processing—stateful interactions
just group several small state changes into a bigger one. Having a context-
dependent storage, which may carry additional application data, is comparable
to thread-local storage used in multi-threaded applications where the address
space is shared but each thread has still a private memory of local state.

To conclude, session scopes are an initial proposal of activities in structured
event-based systems. These scopes can be instantiated as first-class representa-
tives of activities, allowing all the investigated features of scoping to be applied,
not only to structure the application but also to structure the interaction itself.
Once these session scope have output interfaces of their own, once they have the
ability to delay notifications until certain conditions are met, they resemble the
classical notion of transactions, but mapped to the ideosyncrasies of event-based
systems.

3.7 Security

Scopes can be used to localize security policies in event-based systems. Associ-
ated with a specific scope, they control which components are allowed to join,
which interfaces are imposed on them, and which selective interfaces are applied
to outgoing traffic. The decision depends on credentials presented when an edge
is established or modified. Furthermore, security requirements may govern the
choice of the specific form of scope implementation (regarding its architecture
and communication technique, cf. Section 4.1). A more detailed discussion is
out of the scope of this thesis, but is given in Fiege et al. [117].

3.8 Engineering with Scopes

Scopes are an engineering abstraction for event-based systems. And to some
extent they are comparable to classes and objects in object-oriented design and
programming. They can be used to model system entities and their relationship
and, on the other hand, they provide the basis for system implementation in
form of a specific object/component model.

So far, there was no clear distinction made between using the scope graph
as a modeling tool or as means of implementing system structure. In order
to reflect the different objectives two types of scope graphs are distinguished.
Descriptive scope graphs describe a set of components, their relationships and
visibility constraints as expressed by the scope features annotated in the graph.

3.8. ENGINEERING WITH SCOPES 77

An instantiated scope graph describes a running scoped event system, which con-
tains instances of various descriptive scope graphs. The former can be seen as a
collection of scope types and classes, while the latter constitutes the runtime en-
vironment. Interestingly, both can be combined in one graph. If the descriptive
graph is treated as abstract scopes (cf. Section 3.2.6) in a combined graph, in-
stantiated components are members of their respective descriptive scopes. This
combination does not affect communication within the instantiated scope graph,
but allows for instance grouping and runtime reflection.

In the remaining subsections a development process is described that shows
how descriptive scope graphs are created and how they are deployed, i.e., trans-
formed into instantiated scope graphs. A language for specifying and program-
ming scopes and scope graphs is introduced afterwards.

3.8.1 Development Process

The development process for scoped event systems consists of four stages:

1. Component design
Individual simple components and preconfigured scopes are created and
put into repositories for later use. The design at this stage specifies re-
quired and provided interfaces and employed scope features. Larger de-
scriptive scope graphs can be built up from these preconfigured compo-
nents.

2. Scope graph design
From a selection of existing and newly created components a descriptive
scope graph is created. This step concentrates on orchestrating preconfig-
ured components, resolving open interface constraints. No implementation
issues are handled.

3. Scope graph deployment
An existing descriptive scope graph is translated into a running system.
Implementation techniques are choosen, integration code to bridge with
existing systems is generated, infrastructure code is deployed to selected
nodes of the network, etc.

4. System management
A running system is monitored and adapted at runtime. This is necessary
to react to failures, to install new components and to evolve the system
where necessary.

3.8.2 Component Definition

From the engineering point of view, a scope can be considered as a module con-
struct for event-based systems, being an abstraction and encapsulation unit at
the same time. As an abstraction unit, a scope provides the rest of the world

78 CHAPTER 3. SCOPES

with common higher-level input and output interfaces to the bundled subcom-
ponents, eventually mapping these interfaces to the interfaces of the individual
constituents. As an encapsulation unit, a scope constrains the visibility of the
notifications produced by the included components. It hides the details of the
composition implementation. The engineering of single scopes is about building
new event-based components.

Generally, programming of scopes has two sides. First, it is about arranging
and orchestrating a set of components; this is the structure of the scope. Second,
programming is about specifying the dependencies on other components that are
not part of the predefined scope. At runtime a certain environment of available
producers and consumers might be required, which are essential for the operation
of this scope, but not part of its definition; this is the context of the scope.

How are these two tasks accomplished? Three ways for specifying and pro-
gramming scopes are considered in this thesis: Java API, XSchema, SQL-like
language. A Java API is described in Section 5. Obviously, simple components
are implemented using this API to the publish/subscribe service. It also sup-
ports the definition of scopes in the sense that scope objects with a specific
set of features can be created for later deployment. However, the context of a
scope is a list of requirements that can only be encoded in the XML or SQL-like
language.

In [219] an XSchema is defined that covers descriptions of network layout,
broker networks, scope graphs, single scopes, and their dependencies, called cou-
pling points. A coupling point is a description of what other components are
needed at deployment. It contains an expression on scope attributes, required in-
terfaces, and the roles eligible components must play. Roles are introduced here
as a suggestion to describe functionality on a level more abstract than inter-
faces. Technically, roles involve only string matching on a well-defined attribute.
However, they enable system engineers to distinguish components even if they
have identical interfaces. As an example consider two components subscribing
for temperature events. One component calculates the average, the other one
logs all published temperatures. Both would use the same interface and a role
annotation could help distinguish them. Roles are used to name sets of interfaces
and/or semantics of interfaces. A meaningful interpretation of the names relies
on agreements made outside of the notification service.13

The SQL-like language presented in Section 3.8.6 facilitates the definition of
scopes and their features, includes coupling points to express dependencies and
rules for modifying scopes and their position in the scope graph.

Who is responsible for setting up and maintaining the scope graph? In order
to not impair their loose coupling, application components should not be forced
to interact with the scope graph. For this reason, they may access the graph
structure through the Java API, but typically programming and configuration is
done by the administrator, who knows the included components and is able to
govern their interaction. Of course, different administrators may be responsible

13The use of ontologies like in concept-based pub/sub [71] is an example of such externally
provided agreements.

3.8. ENGINEERING WITH SCOPES 79

for different scopes. Different administrative domains that build on abstract
scopes are separated in [219].

As a result of component design a repository of components, i.e., a descriptive
scope graph, is created for later composition in bigger scope graphs and for later
deployment.

3.8.3 Scope Graph Composition

This second stage of the development process creates the descriptive scope graph.
From a selection of existing and newly created components a graph is designed,
typically for a specific application. This task includes the resolution of depen-
dencies on interfaces, attributes, and roles, and the specification of application-
specific implementation requirements.

The graph describes the relationship between components and stores prede-
fined configurations on a larger scale than single components. Similar to class
hierarchies, the scope graph offers a way to statically describe system structure.
The graph is created for a specific application, and so the question is raised,
what can be modeled with a scope graph? Since scopes are a generic concept
to partition applications and control their interaction, this question asks for a
methodology and design guidelines, which is out of the scope of this thesis.

The question by what means an administrator creates this graph is answered,
though. Scope graph design must comprise tools and primitives to compose
scope graphs from given specifications, to create and configure connections in
the graph, and to resolve open dependencies. The Java API can be used to
wire specific components or to resolve dependencies by application-specific rules.
Existing scope specifications based on the XSchema grammar can be joined,
whereby unambiguous dependencies can be resolved with a simple search on the
available component definitions. The SQL-like scope language also facilitates
this step by altering existing definitions, substituting descriptions of coupling
points with lists of concrete components. A graphical tool for creating scope
graphs was created that stores definitions as XML [219] and allows for manual
composition of the scope graph.

However, it may happen that not all dependencies can be resolved before
deployment, especially if the runtime environment consists of instances of dif-
ferent descriptive scope graphs. They must be resolved at deployment time or
even at runtime. The scope language offers event-condition-action rules for this
purpose.

Finally, the descriptive scope graph can carry annotations that have no imme-
diate meaning in this step, but are interpreted in later on, similar to stereotypes
in the Unified Modeling Language (UML, [122]). For example, annotations of
required quality of service attributes may govern the following deployment step,
hinting at appropriate implementation techniques.14

14Obviously, the stepwise transformation and deployment of the scope graph resembles the
ideas of model-driven development [123].

80 CHAPTER 3. SCOPES

3.8.4 Scope Graph Deployment

Scope deployment creates or extends an instantiated scope graph, which contains
all scopes currently running in the system. This step deploys preconfigured
scopes of one or more descriptive scope graphs, it resolves open dependencies,
and chooses and parameterizes the implementation techniques for the deployed
scopes.

The remaining context dependencies of the descriptive scope graph are re-
solved at deployment time. Often multiple descriptive graphs are used to de-
scribe different applications and subsystems. Their models evolve independently
and they only rely on some of the services provided by others. So the deploy-
ment step is also an integration step that combines (independently administered)
systems at a high level of abstraction.

Some dependencies are not resolved once and for all at deployment. They
do not pertain to the static structural layout of the system, but rather depend
on the execution of the event-based system. This is described as part of the
management paragraph below.

An important point, not only in this step but for the scope concept in general,
is the fact that the choice of a concrete implementation technique is postponed
until now. The implementation of a scope and its communication facilities is
determined here based on annotations made in the descriptive scope graph and/
or based on decisions made by the administrator. This approach allows for a
model driven implementation, which fits the needs of the application to the
services available in the system. Requirements on causal ordering or security
considerations can be part of the application model, and the administrator de-
cides how these things are implemented using available group communication
protocols and encryption and key management schemes. Consequently, scopes
are the appropriate place to customize specific parts of a system, as demanded
in Sect. 3.1.2.

3.8.5 Management

Scope graph management comprises tools and primitives to maintain and update
the instantiated scope graph. All features of scopes are subject to updates and
even the layout of the scope graph can be changed, establishing and destroying
edges by joining and leaving scopes. It also convers the manual creation of new
scopes, and thus deployment is part of scope graph management. These tasks
must be available in the API of the publish/subscribe service.

It gets interesting when considering automatic updates. As mentioned above,
scope graph layout can be dynamic depending on the execution of the system.
Automatic updates of the graph use the management functions to react to events
and conditions observed in the system. The scope language presented below al-
lows ECA rules to be associated with scopes. Each rule react to arbitrary noti-
fications visible to the respective scope and if an optional conditional expression
is fulfilled arbitrary management commands are executed. Binding these rules

3.8. ENGINEERING WITH SCOPES 81

to scopes uses the visibility constraints of the scope graph to apply them only in
limited areas of the graph. As for the scoped communication, this controls the
execution of rules and reduces the complexity of rule analysis [26].

Such rules can be used to define scopes that automatically include all com-
ponents conforming to a certain condition. One example are mobile systems,
which are an apparant application domain of scoped notification delivery. The
geographic vicinity to a reference location groups all components within this
area.15 In fact, whenever location models do not strictly correlate to the topol-
ogy of the network infrastructure, some form of application-specific scoping is
necessary [107]. Another example are the session scopes describe in Section 3.6.2.
One way to populate a session scope is to join all consumers of a specific base no-
tification. Using notifications to trigger scope joins follows the idea of extending
transactional spheres of control by propagating transactional contexts [145].

3.8.6 Scope Graph Language

In order to support the development process a specification language for scope
graphs is defined next. Corresponding to the abstract nature of the scope con-
cept, the language definition is intended to be open for further refinements, which
are probably domain dependent.16 A Backus-Naur form is used to specify the
syntax in form of production rules like

rule1 ::= ("A" | rule2) [rule3] rule4-commalist

Here, rule rule1 is expanded to either the literal ‘A’ or the result of rule2,
followed by zero or one expansion of rule3, followed by one or more comma
separated expansions of rule4.

The next paragraphs introduce a grammar for defining scopes, their features
and dependencies. It includes the rule ‘...’ at places of possible future extensions.

Component References

In order to identify any specific component, a reference scheme for components
must be defined. For the sake of simplicity only symbolic names are considered
here.

simple-component-name ::= symbolic-name

simple-component-ref ::= simple-component-name

scope-ref ::= symbolic-name | ("MEMBERS(" scope-ref ")")

component-ref ::= simple-component-ref | scope-ref

15Grouping always implies a common context, and scoping thus may contribute to the
discussion about context in mobile systems [262].

16A more thorough investigation can be found in Mühleisen [219], a refinement for wireless
sensor networks is in [271], and a related work on views in peer-to-peer system is [31].

82 CHAPTER 3. SCOPES

Wherever a scope is referenced by its name, e.g., scope1, the scope itself is
meant, that is, the node in the scope graph. The MEMBERS(scope1) expression
is used to refer to the members of the scope, that is, the set of nodes Ci� scope1
of the scope graph.

Names are not globally unique, they are scoped. A component is part of
some scope and its name is, at first, only valid within its scope. A reference to
a scope is always resolved from a specific node in the scope graph. If for a given
name no component exists in the current scope, all super scopes are considered
recursively. This approach is similar to references to overloaded methods in
object-oriented programming languages, where the ‘nearest’ definition is used
up the inheritance hierarchy. Of course, it may happen that a name cannot be
resolved or a name is ambiguous. For a concrete system, rules may be established
to devise globally unique names.

Scope Definition

The definition of a scope consists of several parts: component selection, interface
and attribute definitions, actions, and update rules. Implementation issues are
not specified here. Defining a scope makes it part of the descriptive scope graph,
deployment is a second step described on page 89.

scope-definition ::=

"DEFINE SCOPE" component-name "AS"

component-selection-clauses

scope-feature-clauses

component-selection-clauses ::=

component-selection-clause [component-selection-clause]

component-selection-clause ::=

[component-identifier ":"]

(super-selection | member-selection)

["WHERE" boolean-expression]

[":" selection-property-clause]

super-selection ::= "SUPERSCOPE"

selection-qualifier

"FROM" (scope-ref-commalist | "*")

member-selection ::= ["MEMBER"]

selection-qualifier

"FROM" (component-ref-commalist | "*")

scope-feature-clauses ::=

scope-feature-clause [scope-feature-clause]

3.8. ENGINEERING WITH SCOPES 83

scope-feature-clause ::= (

(component-identifier ":" selection-property-clause) |

interface-clause |

role-clause |

set-clause |

action-clause |

update-clause)

selection-property-clause ::= "{"

[interface-clause]

[action-clause]

"}"

boolean-expression ::=

(attribute-test | interface-test | role-test | ...)

[("OR" | "AND") boolean-expression]

attribute-test ::=

attribute-name

(numerical-comparison | string-comparison | ...)

numerical-comparison ::= numerical-operator number

string-comparison ::=

(string-comparison-op | string-matching-op) string

Component selection determines superscopes and members of the defined
scope if it starts with SUPERSCOPE or MEMBER, respectively. Any selection
consists of two steps. First, a base set of components is given after the FROM
keyword, and the where clause selects in a second step those satisfying a boolean
expression.

The base set can be given as an enumeration of specific components like in

DEFINE SCOPE example AS ALL FROM prod1, prod2, scope1

which defines a scope example that contains exactly the components prod1,
prod2, and scope1. Or specific components and members of other scopes can
be mixed.

DEFINE SCOPE temp AS

ALL FROM MEMBERS(world), A, B

WHERE has-temp-sensor = 1

defines a scope temp containing those components of the predefined scope world
plus A and B which have an attribute has-temp-sensor set to one. The star ∗ is
a special scope name available for template definitions. It is later replaced with

84 CHAPTER 3. SCOPES

the superscopes and siblings of the current scope when it is deployed. It denotes
all components visible at deployment time.

The where clause is a boolean expression on component attributes and acts
as filter. The expression tests individually each of the components given in
the from clause, no pairwise comparisons of components are done here. If the
where clause is omitted, a scope is defined containing exactly the specified list
of components.

The same syntax is used for selecting superscopes. The following definition
additionally specifies the superscopes S1, S2 of temp.

DEFINE SCOPE temp AS

m: ALL FROM MEMBERS(world), A, B

WHERE has-temp-sensor = 1

s: SUPERSCOPES ALL FROM S1, S2

A component identifier is a name that is valid only within the scope defini-
tion. It denotes each component included by the selection it is prepended to.
The names do not correspond to nodes in the scope graph, they rather identify
selections for later references, for example, when updating or refining a scope
definition. In the above example, s refers to S1 and S2 and m refers components
selected by the first selection clause.

Selection Qualifier

So far, all components matching the where clause are selected for the new scope.
However, sometimes a comparison and ranking of eligible components is neces-
sary. For example, the administrator may want to select those that are nearest
to a specific location or have the most free computing resources. A selection
qualifier is part of the selection:

selection-qualifier ::=

(ALL |

(TOP "(" attribute-name "," number ")") |

("[" [number] ".." [number] "]"))

The default qualifier is ALL (as in the previous examples). TOP performs a
top-k selection of all components satisfying the where clause. It sorts components
by the given attribute and chooses the first k of them. A qualifier of the form
[n..m] specifies the size of the respective selection. A minimum of n matching
components up to a maximum of m are choosen here. Either boundary can be
omitted, denoting a cardinality of zero and as many as possible, respectively.
Omitting both is like choosing ALL.

Many extensions are conceivable at this point. The top selector may take
a predicate as argument to evaluate expressions like ‘fixed-location - location-
attribute’ which sorts according to a distance metric. Other domain-dependent
functions may be added in specific implementations.

3.8. ENGINEERING WITH SCOPES 85

Interfaces

Component interfaces are defined as part of the scope feature clauses after all
selections. Selective and imposed interfaces are specified in selection property
clauses, which are either appended to the respective selection clauses or are
also given after all selections (see below). The interface clause begins with the
keyword ‘INTERFACES’ and then includes a comma separated list of interface
specifications. There is no specific filter model preset in the language (cf. Sec-
tion 3.3) and so a syntax corresponding to the available filter model must be
choosen.

interface-clause ::= ["INTERFACES" interface-commalist]

interface ::= ("INPUT(" | "OUTPUT(")

["0" | "1" | channel-interface | topic-interface |

typebased-interface | content-interface | ...]

")"

channel-interface ::= channel-name-commalist

topic-interface ::= topic-commalist

topic ::= "/" topic-name [topic]

typebased-interface ::= notification-type-name-commalist

content-interface ::= boolean-attribute-expression-commalist

The two special interfaces ‘0’ and ‘1’ denote filters rejecting and accepting all
notifications. The following snippet defines a scope that outputs temperature
alarm notifications, but it does not receive any input from its superscopes S1 or
S2.

DEFINE SCOPE temp AS

ALL FROM MEMBERS(world)

WHERE has-temp-sensor = 1

SUPERSCOPE ALL FROM S1, S2

INTERFACES OUTPUT(AlarmNotification)

The next example is an extension that also includes imposed interfaces on the
components of temp that allow them only to send temperature notifications. All
other kinds of input or output traffic of members is prohibited.

DEFINE SCOPE temp AS

m: ALL FROM MEMBERS(world)

WHERE has-temp-sensor = 1

SUPERSCOPE ALL FROM S1, S2

m:{

INTERFACES OUTPUT(TempNotification), INPUT(0)

}

INTERFACES OUTPUT(AlarmNotification)

or alternatively

86 CHAPTER 3. SCOPES

DEFINE SCOPE temp AS

ALL FROM MEMBERS(world)

WHERE has-temp-sensor = 1 : {

INTERFACES OUTPUT(TempNotification), INPUT(0)

}

SUPERSCOPE ALL FROM S1, S2

INTERFACES OUTPUT(AlarmNotification)

Note that omitting a component interface is like setting it to ‘0’, whereas omit-
ting a selective or imposed interface is like setting it to ‘1’ (cf. Section 3.3.1).

Coupling Points

Coupling points generalize component selection. Coupling points are queries on
available components and their properties. They are half edges in the scope
graph that describe dependencies on other components based on properties like
component interfaces, roles, or attributes.17 The dependencies must be resolved
at deployment by creating the necessary edges in the scope graph.

A coupling point either provides or demands a specific property. If it de-
mands, the coupling point of matching components must provide the required
properties, and vice versa. So far, where clauses request for attributes and inter-
face clauses provide interfaces. What is still needed are means to set attributes,
to require interfaces, and to set and require roles. References to the following
grammar rules are already part of where clause and scope feature clause.

interface-test ::= ["HAS"] interface

role-test ::= "IS ROLE(" role-name ")"

role-clause ::= "ROLES" role-name-commalist

role-name ::= symbolic-name

set-clause ::= "SET" set-attribute-commalist

set-attribute ::= attribute-name "="

(value | notification-attribute | component-attribute)

The set clause supports setting scope attributes to constant values as well
as to values of notification or components declared in the update clause of the
scope (see below).

The next statements defines two scopes admin and company. The latter
includes one instance of the former due to its role definition. It imposes an output
interface so that only notifications conforming to the holidayAnnouncement type
can be passed into company. The latter also includes the top ten components,
termed worker, that either produce or consume other important notifications.18

17Dependencies on attributes can subsume the other two if a sufficiently rich data model is
available.

18Actually, two distinct clauses should select producers and consumers to avoid getting only
one kind of components.

3.8. ENGINEERING WITH SCOPES 87

DEFINE SCOPE admin AS

ALL FROM c1, c2, c3

INTERFACES INPUT(something), OUTPUT(else)

ROLES boss

DEFINE SCOPE company AS

b:[1..1] FROM world

WHERE IS ROLE(boss) INTERFACES OUTPUT(holidayAnnouncement)

worker:TOP(experience,10) FROM world

WHERE OUTPUT(necessaryInformation) OR INPUT(furtherProcessing)

SET name = "Acme, Inc."

Actions

Scopes put components into groups for visibility purposes, but they can also
perform actions on notifications and components. Scope features like mappings
and transmission policies are functions executed on notifications.

action-clauses ::=

(map-clause | policy-clause | do-clause)

[action-clauses]

map-clause ::= "MAP" ("INWARD" | "OUTWARD")

("{" set-attribute-commalist "}" |

external-code-ref)

policy-clause ::=

(delivery-policy | publication-policy | ...)

[policy-clause]

The map clause defines a mapping which is either inward or outward, trans-
forming incoming or outgoing notifications, respectively. If only one direction is
specified, the other one must be derivable or prohibited by interface. Mappings
may be defined within the specification language, but most likely externally pro-
vided functionality will be used as implementation. So, the map clause includes
a reference to external code, which could be a symbolic name that refers to a
repository of the notification service or a URL to an external code repository.
For the same reason there is no syntax for defining transmission policies, they
are supposed to be externally provided, too.

do-clause ::= "DO" command

The do clause is included as hint for future extensions, which is not used
so far. It may provide a way to customize scope functionality or even to apply
code to all members of the scope. The latter is sketched in [272] for a scenario
of wireless sensor networks: application code is assigned to network nodes based
on scoped definitions.

88 CHAPTER 3. SCOPES

Updates

The update clause defines event-condition-action (ECA) rules to adapt instan-
tiated scopes. Any kind of (application-specific) event visible to the scope can
be used in these rules. There are special event types like pub(F(n)), which is
the publication of a notification n conforming to filter F , sub(F), which is the
event of some component subscribing to the filter F , etc.

update-clause ::= "UPDATE ON" event

[condition]

DO action-commalist

event ::=

(("pub(" |

"con(") notification-identifier ":" interface ")") |

("sub(" | "unsub(" | "adv(" | "unadv(") interface ")") |

join(C,S) | leave(C,S) | ...)

condition ::= "IF" boolean-attribute-expression

action ::= scope-change | create-clause

create-clause ::=

"CREATE NOW"

[INCLUDE COMPONENT [component-identifier]]

The notification identifier is a symbolic name valid within the scope defini-
tion. It is bound to the actual notification triggering the action and can be used
in other parts, e.g., in the set clause to update scope attributes.

Actions comprise the alter scope statement explained below and creation
rules. The create clause is a powerful tool to control the dynamics of scope
graphs. It defines rules to automatically create predefined scopes when specific
events occur. Because this automatic creation can be combined with join actions,
new scopes can be created with the publisher of the triggering notification as
first member of the scope. INCLUDE COMPONENT joins the component that
triggered the action. This is the producers or the consumer of a notification
(consuming a notifiation is considered as an event here), the component changing
its interface, etc.

In this way session scopes can be defined. They include the initial publisher,
all consumers, and consumers of subsequently produced notifications. The con-
dition of the ECA rule controls the extension of such a dynamic scope—a pre-
condition to implement spheres of control or transaction contexts in event-based
systems.

3.8. ENGINEERING WITH SCOPES 89

Deploying Scopes

Scope definitions extend the descriptive scope graph of the system. It is like
defining a class or type in a programming language, it does not create an instance
of the subject. An instance of a scope is created and deployed with the following
statement.

scope-deployment ::= "DEPLOY SCOPE" scope-ref

[component-selection-clauses]

[scope-feature-clauses]

architecture-clause

architecture-clause ::=

(brokerscope-clause | intergrated-routing-clause | ...)

brokerscope-clause ::= "BROKERSCOPE(" host ")"

To deploy a scope, an existing definition and an implementation is necessary.
The architecture clause lists scope architectures, which are introduced in Chap-
ter 4. Essentially, it refers to a scope implementation available in the system. It
carries implementation-specific parameters, like a host name for a brokerscope
implementation.

DEFINE SCOPE temp AS

a: ALL FROM *

WHERE has-temp-sensor = 1

DEPLOY temp

SUPERSCOPE ALL FROM S

a:{ INTERFACES OUTPUT(TempNotification) }

BROKERSCOPE(localhost)

This example defines a scope containing all members of S that have temper-
ature sensors. The scope is deployed in an existing scope S using a brokerscope
implementation on host localhost. It also adds imposed interfaces on selection a
permitting only temperature notifications.

Changing Scopes

An ALTER SCOPE statement is introduced to change any part of a scope. It
may refer to a definition as well as to an instantiated scope.

scope-change ::= "ALTER SCOPE" scope-ref

["ADD" | "DEL"]

[component-selection-clause]

[scope-definition-clauses]

90 CHAPTER 3. SCOPES

attribute

variability
static

update

frequency

real−time

never

attributes

highly dynamic

attributes

Figure 3.13: Scope definition accuracy

The statement adds new selections or features to an existing scope, or deletes
or replaces existing parts of it.

ALTER SCOPE temp ADD

ALL FROM c

SUPERSCOPES ALL FROM S

The above statement adds a component c to the scope temp and joins it to
S, i.e., temp � S.

Maintenance and Definition Accuracy

The where clauses of component selections are rules that determine to which of
the available components edges are established in the scope graph. But when
are these rules evaluated? Once at deployment? Every t seconds? Or if at-
tributes deviate by more than 20%? Figure 3.13 sketches alternative views on
the accuracy of scope definitions.

The degree of correlation between the rules expressed in the where clauses
and the currently established connections in the scope graph is called scope
definition accuracy. It depends on the variability of attributes and the frequency
with which rules are reevaluated.

In this thesis, queries are assumed to be evaluated at deployment time only
and that their result is not automatically updated afterwards. This corresponds
to the lower left point in Figure 3.13. However, the update clauses in scope defi-
nitions allow system engineers to install custom ECA rules to maintain accuracy.

3.9 Discussion

This chapter has presented the scoping concept for event-based systems. Based
on an analysis of the deficiencies pointed out in the previous chapter, visibility is

3.9. DISCUSSION 91

introduced as first-class concept. Visibility is the key aspect underlying all the
open issues described in Section 2.5. Scoping is an effective means of controlling
visibility and makes the interaction between groups of components explicit and
manageable. A scope delimits a group’s internal from outside traffic, and scope
interfaces control any crossing traffic. This delimitation follows the basic engi-
neering principles of information hiding and encapsulation. Scoping is invisible
to the composed constituents and it facilitates design and implementation of
reusable event-based components.

The graph of scopes reifies application structure, and besides being a design
tool, it offers the ability to tailor the actual operation of a system. Notification
mappings transform notifications between different representations when they
pass scope boundaries, which facilitates system integration in heterogeneous en-
vironments. Transmission policies refine semantics of notification dissemination,
both within a scope and with respect to the outside. The flexibility and exten-
sibility of the scoping concept is shown with session scopes. They use scopes
to group notifications into sessions, identifying the relationship between con-
secutive, dependent notification. Transmission policies and interfaces are used
to distinguish sessions and to make notification processing session-local with-
out modifying the participating components. Scopes offer a components model
for event-based systems, and together with the proposed development process
and the SQL-like scope language they open new ways of building event-based
systems.

The scoping concept is defined in a formal specification. It extends the spec-
ification of simple event systems given in the previous chapter. Furthermore, a
correct implementation is sketched, which illustrates the feasibility of the con-
cept.

The contributions made in this chapter are the following. For the first time,
visibility in event-based systems is investigated as a central concept. Control-
ling the visibility is made possible with scopes and this chapter has shown that
a wide range of functions can be assigned to scopes. System engineers are pro-
vided with a tool to design and implement event-based systems. Scopes foster
system design by reducing the inherent complexity, and they exert fine-grained
control on event-based communication without degrading the loose coupling of
components. Futhermore, scopes can be tailored to refine notification delivery
semantics and to evolve system functionality within well-defined boundaries. In
fact, scopes address each of the initially stated deficiencies. Side effects are
obviously controlled by scope interfaces; they are a tool for both design and
implementation; the management of event-based systems is made easier because
scopes offer a place to localize management tasks; and security issues can be
tackled by scope admission tests for new members and by mandating special
quality of service requirements for any implementation.

92 CHAPTER 3. SCOPES

Chapter 4

Scope Architectures

Contents

4.1 Architectural Choices . 94

4.2 Collapsing Scope Graphs 106

4.3 Scope Address . 116

4.4 Scopes as Event Brokers 119

4.5 Integrate Scoping and Routing 122

4.6 Combining Different Architectures 134

4.7 Discussion . 137

The concept of scopes so far defines visibility constraints, but is indepen-
dent from any specific implementation. This chapter investigates and classifies
principal approaches to implement scopes. They are distinguished by the char-
acteristics of underlying communication media and by the strategies for scope
graph distribution. The respective combinations are called scope architectures
as they determine the layout of the implementation. All these architectures
implement the visibility constraints defined by the scope graph, but diverge in
their extensibility and their support for other quality of service parameters, like
communication reliability and performance.

The first section introduces the architectural dimensions and analyzes their
basic implications on scope graph implementation. This characterization is used
to compare the detailed descriptions in subsequent sections. Sections 4.2 to 4.4
present a number of different architectures: i) collapse a scope graph and map
it to filter mechanisms of the underlying communication medium; ii) instantiate
scopes as administrative components and implement graph edges with the un-
derlying filter mechanisms; iii) instantiate scopes as brokers; iv) distribute the
aforementioned scope brokers. Section 4.5 integrates the scoping concept with
a content-based routing framework as given in Rebeca. While the presenta-
tion looks at the respective architectures separately till then, Section 4.6 finally

93

94 CHAPTER 4. SCOPE ARCHITECTURES

�
��
��
�

��	

�
��
��

�
��
	�

���
	�
���
��
�

�

��
��
��

���
�

��

�
���
���
�

���
��
��
�

��������

�
���
������

�������	���

����	
������

��
����

�	��

�
���������

�	��������

�����
�������	���

����	
������

����	�

Figure 4.1: Design dimensions of scope architectures

elaborates on combining different scope architectures, before 4.7 concludes the
chapter.

4.1 Architectural Choices

The concept of scopes can be implemented to target any of a wide range of diverse
requirements. The implementation influences the functionality and quality of
service an application can count on. The architectures presented in this chapter
cannot be ranked in general; they may fit the needs of an application or not.
There is no best architecture.

Two architectural dimensions are distinguished (Figure 4.1): communication
medium and scope implementation. The combination of these dimensions give
rise to a number of scope architectures that determine the principal layout of the
scoped event service (cf. Fig. 4.3 on page 100 and Section 4.1.4). The third di-
mension turns out to classify the architecures’ ability to control communication.
This section details the architectural choices and defines a metric for comparing
the architectures presented in this chapter.

4.1.1 Communication Medium

The notion of a communication medium denotes any technology that is used
to convey notifications between nodes of the scope graph. The communication
medium is the basic building block of scope implementation and determines
which scope features are supported directly, which features can be implemented
efficiently on top, and which features are hardly achievable at all. Any means
of data sharing and transport can act as communication medium, ranging from
shared memory and TCP [287] connections to IP-multicast [91] and Peer-to-Peer
networks [245, 291]. Moreover, existing publish/subscribe services, database
management systems [138], and tuple spaces [140] are also eligible candidates for
implementing scope graphs. They offer different quality of service and determine

4.1. ARCHITECTURAL CHOICES 95

the flexibility and functionality of a scoped event system beyond visibility rules.

Although within a single scope different kinds of traffic might be conveyed on
top of different communication media, a single medium per scope is assumed for
simplicity here; please refer to Section 4.6 for a general discussion on combining
media and scopes.

In the following, communication media are differentiated according to their
support for unicast/multicast delivery and their addressing capabilities. These
are not orthogonal dimensions, they highlight different technical aspects that
affect scope implementation.

Unicast vs. Multicast

The basic distinguishing feature of communication media is whether they forward
data point-to-point or point-to-multipoint, i.e., unicast versus multicast. Uni-
cast media send data directly to a specific, identified receiver. In order to reach
a number of recipients the send operation must be repeated. Examples include
TCP, RPC, and messaging systems. Perhaps surprisingly, unicast media are vi-
able implementation techniques for certain classes of event-based systems; they
are considered as a medium to implement scopes, the producer’s and consumer’s
view (API) on the notification service remains unchanged. Multicast media send
data to groups of receivers. Multicast media like shared memory, IP-multicast,
existing notification services, and database tables are common implementation
techniques that intuitively correspond to the characteristics of notification dis-
tribution.

Obviously, multicast media distribute notifications more efficiently than uni-
cast media. On the other hand, multicast limits the ability to distinguish re-
cipients and control the actual set of receivers. Scope features like delivery
and security policies, which are meant to re-introduce control, cannot be im-
plemented directly on top of multicast media without additional filtering (cf.
client-side filtering in Section 4.1.3). Exploiting the knowledge about scope
members enables system engineers to shape traffic, implement advanced trans-
mission policies, encrypt data, etc. At the cost of multiple send operations and
the need to maintain the current set of scope members, unicast media are more
flexible than multicast media. In practice there are applications for both unicast
and multicast media and the main issue is a tradeoff between efficiency of data
distribution and addressing granularity.

Direct, Group, and Indirect Addressing

Communication media can be further distinguished according to their addressing
schemes. While unicast media use direct addressing, which identifies an individ-
ual receiver uniquely in the network, multicast media can be subdivided into
group addressing and indirect addressing. In group addressing data is sent to
a named group of recipients. The name of the group is specified by the sender
and all members of the group get messages sent within. Group membership is

96 CHAPTER 4. SCOPE ARCHITECTURES

handled separately via membership protocols. IP Multicast and group commu-
nication protocols [250] are examples of this form of communication.

In indirect addressing, the second form of multicasting to a set of receivers,
no destinations are specified. Instead of naming groups of receivers, the set of
receivers is determined indirectly with the help of information given in messages
and by potential receivers. For instance, content-based routing delivers noti-
fications according to consumer-provided filters that test notification content.
Another example is proximity group communication [206, 251], where messages
are sent only to receivers that are physically close by, i.e., addressees are implic-
itly determined by location meta data.

Communication Media, Pub/Sub, and Visibility

The choice between unicast and multicast media is mainly a tradeoff between
efficiency and control, as described above. But what media are good candidates
to implement a publish/subscribe service and do some of them even offer a
visibility mechanism comparable to scopes? What are the characteristics of
group and indirect addressing that influence the implementation of scopes?

As for the general applicability to implement a pub/sub API, group and in-
direct addressing is related to the discussion on filter models (channel-, subject-,
and content-based filtering) given in Section 2.1.3. Group addressing is like
channels in that a name representing a set of receivers is used by the sender to
disseminate data. Subject-based addressing is an extension that allows for sub-
groups [233, 292], which is, to some extent, also supported by IP-Multicast [209].

Group-based multicast media establish visibility constraints in that they en-
capsulate intra-group traffic. Notifications published within a multicast group,
or under a specific subject, are a priori not visible to outside consumers. How-
ever, groups classify messages either based on content (all notifications of type
A) or based on application structure (all database servers in a company’s back-
end infrastructure). Furthermore, groups are often not able to reflect the acyclic
scope digraph, because they are mostly arranged in trees, as in IP-Multicast and
subject-based addressing. Even if one tries to model different viewpoint with
the help of subgroups, the exponentially growing number of necessary groups
limits practical applicability (see Section 2.1.3).

Scopes, on the other hand, are orthogonal to consumer subscriptions, they
handle interfaces (i.e., subscriptions, group names, etc.) and system structure
(the organization of scopes in the scope graph) independently. Thus, groups do
not directly implement scopes.

Indirect addressing media can avoid many of the problems of group address-
ing. They are typically more flexible, but less efficient as they do not easily
map to hardware supported multicast mechanisms. In the generic form, like in
content-based pub/sub, DBMS-based implementations, and tuplespaces, they
are able to carry different viewpoints (content vs. structure) simultaneously.
Available products/prototypes are able to offer only a few1 of the features of

1For an in-depth discussion on related work see Section 6.

4.1. ARCHITECTURAL CHOICES 97

scopes, but they are an ideal basis for their implementation.

4.1.2 Scope Distribution

Considering individual scopes, there are three basic choices of how a scope can
be realized: implicit with all the control in the local event brokers of members;
instantiated with an explicit administrative component that represents the scope
and is responsible for membership control, transmission policies, and mappings;
and finally, the implementation of a single scope can be distributed on multiple
administrative components residing in different nodes of the network.

Note that similar alternatives exist for the scope graph. Implicit scopes imply
an implicit scope graph, administrative components can either be centralized in
a single node or run on different nodes of the network (centralized or distributed
scope graph), and distributed scopes imply a distributed scope graph.

Implicit Scope Implementation

The first approach is to collocate scoping with application components. The
implementation is shifted into the communication library used to connect ap-
plication components to the notification service, i.e., into the local event bro-
kers in Rebeca terminology (cf. Sect. 2.4). The local event brokers use the
addressing and filtering capabilities of the underlying communication medium
to implement scope boundaries. The main idea is to annotate notifications to
carry scope graph data. Extended subscriptions then exploit these annotations
to filter not only on the original consumer’s interest, but also on visibility con-
straints imposed by the scope graph. Consider, for instance, a scope graph with
unique scope names, local event brokers that annotate notifications with scope
names (n.scope = ‘MY-SCOPE’) and modify each original subscription F to
F ′ = F ∧ n.scope = ‘MY-SCOPE’ + interfaces.

The extended subscriptions F ′ must be mapped to the medium’s filter capa-
bilites, which is possible if expressive filter models are available like in the Java
Message Service or in Rebeca. If this mapping is not possible, client-side fil-
tering must enforce the visibility constraints to guarantee that all requirements
of the safety condition of scoped event systems are met, cf. Def. 3.3 on page 47
and see Section 4.2 for details.

For example, consider the members of a scope forming a group that commu-
nicates notifications via a group-addressing medium like subject-based publish/
subscribe to all scope members. This floods all notifications to all members
of this scope, postponing original subscription processing to the client side. If
content-based filters are available, processing of both client subscriptions and
scope interfaces can be shifted into the medium; the former F ′ could be sup-
plied to JMS or Rebeca.

In an implicit scope implementation the structure modeled by the scope
graph is transformed into a flat implementation, as illustrated in Figure 4.2.
Every component is connected to the same medium and conventions must de-

98 CHAPTER 4. SCOPE ARCHITECTURES

Figure 4.2: An implicit implementation shifts visibility control into application
components.

termine how visibility constraints are implemented on top of the addressing
mechanisms offered by the medium. In order to meet the safety and liveness
conditions, each component must maintain the necessary management informa-
tion about the layout of the scope graph and the current scope interfaces. So,
scoping structure can be transparently implemented in the local event brokers
without modifying application code, but scope graph changes require update
processing in potentially many of the components.

The problem of shifting scope control into local event brokers is that compo-
nents not adhering to these conventions may bypass visibility constraints, both
as consumer and as producer. Since the scope structure exists only implicitly
in the components of the system, no external entity controls and enforces scope
boundaries, giving rise to both reliability and security concerns. Consumers
might arrange to listen to notifications they are not intended to receive, and
even worse, they may send notifications to any component, disrupting correct-
ness in other parts of the system as well. Moreover, more advanced features of
scopes, namely transmission policies and mappings, are even harder to imple-
ment using an implicit implementation.

Instantiated Scope Implementation

To exert more control on notification dissemination the scope graph must be
managed within the notification service infrastructure. A basic approach is to
explicitly instantiate administrative components to represent scopes. They are
generated and controlled by the notification service itself and contain an imple-
mentation of scopes outside of application components.

This scenario is further subdivided into a centralized graph and a centralized
scope form. The former implements the whole scope graph in a single node of the
distributed system and amounts to a central information hub. This is a widely
used approach for implementing unscoped event system, because it simplifies
notification routing and access control, but comes at the expense of scalability
and diversity support. Examples range from centralized databases [138, 236] (see
Section 4.2.4) to content delivery networks [261], which can be seen as logically
centralized nodes optimized for one-way delivery efficiency. In the centralized
scope form, each scope is represented by one administrative component, but each
such component may run on a different node in the network.

4.1. ARCHITECTURAL CHOICES 99

Administrative components make the scope structure explicit and accessible
to the system engineer, who is now able to customize (parts of) it to the local
needs of an application. This approach facilitates configuration and integration
of heterogeneous components on a per scope basis as each administrative compo-
nent may act as bridge between different implementations (different data/filter
models, communication medium, etc., see Section 4.6).

In contrast to an implicit solution, instantiated scopes make it easier to con-
trol adherence to a specific scope graph and it relieves clients from management
tasks.

Distributed Scope Implementation

A single, distributed scope consists of multiple administrative components that
together constitute this scope. Each scope member is assigned to one adminis-
trative component. The same type of communication medium is still assumed
for delivery to scope members, but communication between the administrative
components may be based on a different technique. Scalability is obviously im-
proved since multiple administrative components share and subdivide the load
to distribute intra-scope notifications; they may even exploit effects of locality
when notifications are only forwarded within one administrative component.

For example, consider two groups of application components belonging to
the same scope, but located at two different border brokers of the underlying
network, e.g., an internet of two LANs connected by a WAN. Instantiating a
scope implementation solely in one LAN would diminish the benefits of locality
for the other side. But if administrative components are available on both sides,
they may draw on a local broadcast medium and connect each other using a
point-to-point link.

4.1.3 Example Architectures

Figure 4.3 shows possible architectures that are defined as specific combinations
of scope distribution and communication medium. They are sketched in the
following and the major approaches are described in sections 4.2 to 4.5.

Static Deployment. The combination of implicit scope implementation and
point-to-point communication leads to a Static Deployment where every scope
member knows its siblings and communicates directly with them. When sub-
scriptions are known to all members, notifications are sent to subscribed con-
sumers only. Otherwise, notifications are sent to all scope members, which evalu-
ate their own filters on any notification published in the scope. Output interfaces
towards superscopes and input interfaces of sibling subscopes must be known as
well so that cross-scope notifications can be sent to a consumer in the destination
scope that in turn relays them within. This scenario is called static deployment
since it is an eligible architecture option if the scope graph is static, rather small,
and does not change at runtime. System configuration can then be compiled into

100 CHAPTER 4. SCOPE ARCHITECTURES

communication
medium

scope
implementation distributed

S
ta

ti
c

D
ep

lo
y

m
en

t

Addressing Scopes

instantiated

Pub/SubMulticast

implicit

Pt−to−Pt

Broker S
copes

Integrated Routing

Collapsed Filters

Client−Side
Filtering

indirect

DB

Hub

direct group

Figure 4.3: Scope architectures combine scope graph implementation and com-
munication media.

the local event brokers without affecting the pub/sub API, as it is for any of the
presented architectures. In such a situation even remote procedure calls are a
suitable implementation technique to convey notifications. If the system is not
static the necessary configuration data in the components must be kept up to
date. Examples of this approach are data-driven coordination languages (e.g.
Manifold [238, 239]), which connects input/output ports of coordinated entities,
and even an implementation using TCP/IP to connect the participants is eli-
gible, particularly if system footprint has to be kept small. Interestingly, the
JavaBeans programming model [77, 278] and component-oriented programming
in general [186, 285] are related to this approach in that they facilitate the wiring
of interfaces and ports.

Another application of static deployment is to wrap a callback-based system
with a pub/sub API. That is, undirected subscriptions are resolved and directly
registered at corresponding callback handlers that are visible according to the lo-
cally stored scope graph. Although somewhat unusual, this might offer a way to
draw from existing request/reply or directed messaging systems, when possible,
and from their established benefits, for instance, in security and transactional
data management.

Client-Side Filtering. The Client-Side Filtering architecture also utilizes an
implicit scope implementation but is built on a multicast medium that provides
group-based addressing, like IP-Multicast. Each scope is assigned a multicast
group address and all members of a scope are reached with only one call to
the medium. Compared to Static Deployment the required network bandwidth
is considerably reduced. However, since there are still no administrative com-
ponents the visibility constraints defined by the current scope graph must be
enforced on producer and/or consumer side. As described in Section 4.1.2, the
local event brokers may annotate notifications and must select appropriate des-
tination group addresses on producer side. And on consumer side incoming
notifications must be filtered out so that in combination only matching notifi-

4.1. ARCHITECTURAL CHOICES 101

cations are delivered that comply with the scope graph and satisfy the safety
condition of the scoped event systems definition.

A different way of using group-based multicast here is to group according
to content instead of structure. In such a scenario multicast groups might be
used to group subscriptions, which is the common use of multicast in publish/
subscribe systems [81, 235]. Consumers would have to determine the visibility
of incoming notifications by evaluating the interfaces of the scope graph as part
of their client-side filtering. Thus, in the first approach producers have to know
the current scope graph layout to select the correct destination scopes, while in
the second approach consumers are in charge of this. The two approaches differ
mainly in the selectivity of the grouping and the implied costs of keeping the
graph information up-to-date.

Another extension is to instantiate administrative components within scopes
that are responsible for relaying incoming and outgoing notifications. In this
way the need to store the full scope graph in local event brokers is removed,
since these relaying components have to know their adjacent nodes only.

Client-Side Filtering is obviously applicable when scope graphs are rather
static and of limited size. For instance, if scope graph changes are just induced
by moving simple components the assignment of group addresses to scopes re-
main unchanged. The moving components have to join the respective groups
but the scope graph information need not be updated elsewhere. Scope graph
management is thus reduced to group membership management, which is pro-
vided by the communication medium. Nevertheless, this architecture is left out
of consideration in favor of more flexible solutions.

Collapsed Filters. In the Collapsed Filters architecture visibility constraints
of the scope graph are merged into subscriptions issued by consumers. This
leads to a flat notification service where enhanced subscriptions implement the
scope graph implicitly, requiring an expressive subscription like in content-based
pub/sub. This architecture is described in Section 4.2.

Central Hub. The ‘classic’ data management approach of using a central
database may also be beneficial in an event scenario. It is an alternative imple-
mentation of collapsed filters and is able to offer sophisticated quality of service
guarantees in addition to the basic safety and liveness requirements of scoped
event systems (cf. Section 4.2.4).

Addressing Scopes. Addressing Scopes is an extension of the client-side fil-
tering approach that no longer relies on multicast but on content-based pub-
lish/subscribe. Announced subscriptions are prepended with an additional term
that filters on the (necessarily) unique names of the scopes the subscriber has
currently joined; refer to Section 4.3.

102 CHAPTER 4. SCOPE ARCHITECTURES

Figure 4.4: Steps of scoped notification delivery

Broker Scopes. Broker Scopes are a one-to-one implementation of the scope
graph in that each scope is explicitly represented by an event broker of the broker
network (cf. Section 2.4). This approach is detailed in Section 4.4.

Integrated Routing. Integrated Routing fully integrates scoped notification
delivery into the routing infrastructure. The routing tables themselves are ex-
tended to reflect visibility constraints of the scope graph. This architecture is
described in Section 4.5.

4.1.4 Scope Graph Distribution—Types of Architectures

While the choices described above consider individual scopes only, the following
looks at scope graph implementation as a whole. The general processing steps
of scoped notification delivery are described, which identify potential places to
implement scoping functionality in the system. These steps serve as a basis
to compare the preceding example architectures and to classify them in three
types of architectures. These types differ in the degree they support scope graph
reconfigurations, transmission policies, and, in general, any distribution control
beyond scope interfaces.

Figure 4.4 sketches the delivery in a scoped event system. The numbered
course shows the forwarding of a notification that moves along an exemplary
delivery path (p, S2, . . . , Sn−1, c) between producer p and consumer c in an ar-
bitrary scope graph.

1. In the first step a notification is published by producer p.

2. The access to the event notification service is provided by the local event
broker, which is conceptually part of the application component. The
broker may process the notification as part of an implicit scope imple-
mentation (cf. static deployment) before it is forwarded by accessing the
communication medium.

4.1. ARCHITECTURAL CHOICES 103

3a. If scopes are instantiated in administrative components, the notification is
delivered to an instance of S2 of the example delivery path.

3b. If scopes are distributed, the notification is also sent to other instances of
this scope if needed.

3c. Delivery in S2 is completed when the notification is forwarded towards its
members and superscopes, accessing the underlying medium for the second
time.

4. The previous three steps are repeated for all other scopes.

5. The notification is received by the local event broker of the potential con-
sumer, which may again process and filter the notification before it is
delivered to the consumer.

6. Finally, the notification is delivered to the consumer c.

An implementation of scope graphs may stretch across up to three layers:
On the lowest layer, the communication medium is parameterized to distinguish
scopes or at least administrative components representing scopes. On the mid-
dle layer explicit administrative components implement scope features within
the notification service. At the highest layer, code is collocated to application
components in local event brokers to modify notifications and subscriptions.

The figure illustrates all possible steps although only a subset is relevant for a
specific architecture. In an implicit scope implementation no scopes are instan-
tiated within the event service and steps 3 and 4 are omitted. With a centralized
scope implementation step 3b is not needed. Whether any processing is done in
the local event brokers (steps 2 and 5) depends on the concrete implementation,
but it is definitely required in implicit approaches. When group-based multicast
is used to address all members of a scope additional client-side filtering is also
needed in step 5.

The different choices to partition scope implementation among these steps
turn out to be a fundamental characteristic of scope architectures. It determines
their ability to adopt scope graph changes and to implement any sophisticated
control of communication beyond interfaces. For an assessment it is crucial
to compare the amount of control residing within the notification service with
the amount shifted into the communication medium and the application com-
ponents, respectively. For this purpose the number of accesses to the commu-
nication medium that are necessary to forward a notification along a delivery
path is taken as a measure to distinguish architecture types. These accesses are
labeled as communication hops in Figure 4.4, whereas communication between
instances of the same distributed scope (step 3b) is not counted as it does not
leave the scope’s sphere of control. Based on this consideration, three modes of
notification forwarding are identified and depicted in Fig. 4.5.

104 CHAPTER 4. SCOPE ARCHITECTURES

Publication
Control

Inter-Scope
Control

Full Control

Accesses 1 n − 2 n − 1

Possible
Medium

any
group or
indirect

direct

Scope
Distribution

implicit
central./

distributed
central./

distributed

Data Flow
Control

no explicit
control

control
inter-scope

traffic

control every
edge

Examples

Static
Deployment,
Client-Side
Filtering,
Collapsed

Filters

Addressing
Scopes

Broker Scopes,
Integrated
Routing

Figure 4.5: Types of architectures, their characteristics, and examples

1. Publication control
All consumers are reached with only one access to the medium. All in-
terfaces and delivery policies bound to the scope graph must therefore
be evaluated within the communication medium or as part of the local
event brokers of producers and consumers. There is no control within the
medium or the publish/subscribe service infrastructure once the message
is sent.

Accessing the communication medium means here that all eligible con-
sumers in the whole system get the notification.

2. Inter-scope control
In this approach, scopes are represented by administrative components
that govern the interfaces towards superscopes and relay incoming and
outgoing notifications if they match the respective input and output inter-
faces. Within scopes, however, lists of members are not maintained and
notifications are not directed to specific addressees. A multicast medium
is used that may reach all scope members in one step. Since producers do
not distinguish any siblings, the consumers’ subscriptions must either be
completely handled by the communication medium or, if all scope mem-
bers are indistinctively addressed as a group, consumer-side filtering must
be applied.

Accessing the communication medium means here that a scope and all
of its members get the notification. For an arbitrary delivery path, one

4.1. ARCHITECTURAL CHOICES 105

access to the communication medium is needed for every edge, except for
the root scope of the path where sending and receiving components are
siblings. This leads to n−2 calls to the communication medium for a path
of length n.

3. Full control
Each scope is represented by an administrative component and notifica-
tions are forwarded strictly along the edges in the scope graph, resulting
in n−1 accesses to the medium for a delivery path of length n. Each scope
is implemented in one or more brokers in the routing network. Delivery is
controlled even within a scope.

This is an one-to-one implementation of the scope graph and accessing the
communication medium means here that notifications are sent to the next
hop node in the scope graph or only within one scope graph node that
resides on multiple network nodes (e.g. integrated routing).

This classification describes what part of the scope graph is offered through
the communication medium and the implicit implementation in application com-
ponents, on the one hand, and what part is implemented in administrative com-
ponents instantiated in the infrastructure, on the other hand. This distinction
determines how the different number of accesses to the communication medium
determines the ability of a scope architecture to adapt the current configuration
of the system. While explicit administrative components are readily adaptable,
it is far more difficult to update infrastructure code in a consistent and trans-
parent way when it resides in local event brokers.

An even more important fact is that the granularity of the control exerted
on notification distribution gets inevitably more coarse if fewer accesses to the
medium are needed. With fewer accesses more consumers are reached in one
step, which implies uniform delivery to larger sets of non-discriminated compo-
nents. However, any form of refining and controlling dissemination will have to
differentiate subsets of these components. And the number of accesses to the
medium characterize how much of the structure identified in the scope graph is
reflected in the implementation.

4.1.5 Comparing Architectures

Scope architectures can be classified in the architectural dimensions given above.
However, further criteria are necessary for comparing and assessing their func-
tionality from an application point of view. The architectures presented in the
next sections are compared according to the following criteria:

• Impact on infrastructure and components
What must be changed to implement scoping?

• Implementation overhead
What is the overhead implied by a given scope architecture? What are

106 CHAPTER 4. SCOPE ARCHITECTURES

the communication costs compared to unscoped pub/sub and compared to
other scope architectures?

• Reliability
How do failures of components affect single scopes or overall system cor-
rectness?

• Reconfiguration
What kinds of changes of the scope graph are possible in the running
system? What are the costs of scope graph updates? Adaptability and
flexibility to change system structure are the main issues here.

• Customization
While all scope architectures obey the visibility constraints expressed in a
scope graph, which of the other features of scopes are supported? What
kinds of mappings, transmission policies, security policies, etc. can be es-
tablished?

The comparison of the scope architectures is summarized in Figure 4.6.

4.2 Collapsing Scope Graphs

This section details the collapsed scope graph type of architecture, which ex-
tends a previously unscoped infrastructure to obey visibility constraints without
introducing administrative components. A layered approach is taken which im-
plements scopes on top of arbitrary existing communication media. The follow-
ing concentrates on utilizing a content-based pub/sub service, however, database
management systems (DBMS) or broadcast media plus consumer-side filtering
are also eligible, as sketched at the end of the section.

Scopes are not treated as first-class objects in this type of architecture. In
terms of Figure 4.4 on page 102, steps 3 and 4 are not present; there is no ex-
plicit forwarding in scope components. Producers and consumers are linked to
the event system via local event brokers and in principle any consumer is reach-
able with only one access to the underlying medium. Since no administrative
components are assumed in the infrastructure the implementation of the scope
graph has to be collocated with local event brokers, i.e., as a layer on top of
the existing system. These brokers are provided with additional processing and
filtering capabilities to enforce visibility constraints. In this sense, the layout of
the scope graph is collapsed in these places.

4.2.1 Collapsing Filters

The layered scoping implementation has to ensure that received notifications
are only delivered to consumers if the notifications are visible and conform to
a delivery path defined in the scope graph. The extra filtering necessary to

4
.2

.
C

O
L
L
A

P
S
IN

G
S
C

O
P

E
G

R
A

P
H

S
1
0
7

impact on ability to

infrastr. components overhead reliability reconfigure customize

Collapsed filters + –
�

– – –

DB +
� �

+
�

+

Static deploy. + – +
�

–
�

Addressing Scopes +
� � �

+
�

Broker Scopes
�

+
�

+ + +

Integrated Routing – + + + + +

Figure 4.6: Comparison of scope architectures

108 CHAPTER 4. SCOPE ARCHITECTURES

(a) Example Graph

c1 : n.scopes = {T, S, U, V }
c2 : F ′2 := F2 ∧ S ∈ n.scopes
c3 : F ′3 := F3 ∧ V ∈ n.scopes
c4 : F ′4 := F4 ∧ U ∈ n.scopes

(b) Scope Destinations

Figure 4.7: A collapsed sample graph and explicit destinations

implement the visibility constraints of a scope graph is subdivided into two
parts:

• Producers, i.e., their local event brokers, may preprocess notifications, add
data necessary for scoping/filtering purposes, and in case of direct or group
addressing they also have to select the appropriate destination address
before publishing the notification.

• Consumers have to subscribe/register for the appropriate destination ad-
dress they want to listen to and must locally evaluate remaining filters on
content and management data that is not encoded in the subscription or
the destination address.

The basic question is how the responsibility of selecting valid delivery paths
is split between producers and consumers. In general four approaches are con-
ceivable, which are differentiated with the help of the exemplary delivery path
(c1, T, S, U, V, c3) of Figure 4.7(a).

1. The producer selects all consumers, that is, all complete paths. This is
the approach taken by the Static Deployment architecture and amounts
to a point-to-point communication between producers and consumers (see
p. 99).

2. The producer determines all destination scopes in which a notification is
visible. It analyzes all delivery paths except for the last hop to simple
components.

3. The producer finds the topmost scopes of all delivery paths. It has to
analyze the upward parts of delivery paths while consumers are responsi-
ble for testing downward parts. This refines the notion of visibility roots
introduced in Section 3.2.7.

4.2. COLLAPSING SCOPE GRAPHS 109

4. The producer just marks the origin of the notification and leaves testing
of valid paths to consumers.

The above distinction is applicable to many different communication me-
dia. For instance, addressing destination scopes is obviously an example of
group communication and both classic group communication systems as well
as subject-based publish/subscribe may be used for implementation. However,
the discussion of points 2 and 3 below is restricted to content-based publish/
subscribe for it illustrates the solution in the context of this thesis best. For
simplicity, all components are assumed to have a local copy of the whole current
scope graph for the time being; a detailed analysis is given below.

Scope Destinations

This option requires producers to analyze the scope graph to determine all desti-
nation scopes. The routing decision is thus completely drawn into the producers.
Figure 4.7(b) illustrates the necessary annotations made in producers and con-
sumers. Every notification takes a scope attribute (n.scopes) that carries the list
of scope names that are crossed by valid delivery paths. These names must be
unique in the set of scopes implemented on the same ‘shared’ communication
medium. Conversely, subscriptions have to be adapted before they are issued
into the underlying pub/sub service. They test for the presence of the names of
the consumer’s scopes.

An algorithm to search for destination scopes is given in Figure 4.8. It
follows all potential delivery paths as long as the output and input interfaces
on upward and downward paths match the specified notification, respectively.
While consumers just have to add a new predicate to all their subscriptions to
test whether a notification is supposed to be visible in their scope, computation
in producers is expensive.

Handling of transmission policies is included in the algorithm, partially. The
publishing policy ppC is correctly applied in the first part, whereas the delivery
policy dpT in the second part does not distinguish between internal delivery and
incoming notifications. idpT would have to be applied in the first run of the
second group of foreach loops, where the upward paths stored in list start to go
downward with an internal delivery in the considered scope T .

Visibility Roots

In the third of the above alternatives producers only check for the upward part of
eligible delivery paths and annotate notifications with all reachable superscopes.
To accomplish this they have to recursively analyze the output interfaces of all
superscopes, which is the first half of the aforementioned algorithm. On the other
hand, consumers have to test the interfaces of the downward part of potential
delivery paths by extending their subscriptions or by applying filters locally (see
Figure 4.9). In combination, the responsibility for filtering is more evenly split:
producers specify the upward part of eligible delivery paths in notifications and

110 CHAPTER 4. SCOPE ARCHITECTURES

program DetermineScopeDestinations
input: scope graph G = (C, E), publisher node p, notification n

begin

list ← {(p, n)}
5 foreach (C, n) ∈ list do

foreach (C, S) ∈ E do

if oÎS

C
(n) = n′ 6= ǫ and S ∈ ppC then

list ← list ∪ {(S, n′)}
endif

10 endfor

endfor

list ← list \ {(p, n)}
foreach (T, n) ∈ list do

foreach (S, T) ∈ E do

15 if iÎT

S
(n) = n 6= ǫ and S ∈ dpT then

list ← list ∪ {(S, n′)}
endif

endfor

endfor

20 end

Figure 4.8: Compute list of scopes in which a notification is visible

c1 : n.scopes = {T, S}

c2 : F ′2 :=

{

F if S ∈ n.scopes

ǫ otherwise

c3 : F ′3 :=

F if V ∈ n.scopes

F ◦ iÎU
V if U ∈ n.scopes

F ◦ iÎU
V ◦ iÎS

U if S ∈ n.scopes

ǫ otherwise

c4 : F ′4 :=

F if U ∈ n.scopes

F ◦ iÎS
U if S ∈ n.scopes

ǫ otherwise

Figure 4.9: Collapsing with visibility roots

consumers test whether there is a valid downward path from one of the specified
superscopes.

Producers do not even have to specify all of its reachable superscopes ex-
plicitly. Only those are needed that characterize the eligible delivery paths and
facilitate correct filtering of the downward parts. A scope can be omitted if the
notification is visible in its superscope and the effective input interface permits
a downward forwarding. Note the difference between routing in a graph and the
visibility decision made here. In the former notifications never travel back on
an originating link, while in the latter case visibility in a superscope implies vis-
ibility in a subscope if the interfaces match. These arguments refine the notion
of visibility roots introduced in Section 3.2.7. They were defined to be the top-

4.2. COLLAPSING SCOPE GRAPHS 111

most scopes visible from a certain node, but so far used without scope interfaces.
Generally, a notification has to be delivered if producer and consumer share a
common visibility root and if the notification is not blocked by interfaces.

When considering a notification published at a specific node, the topmost
scopes this notification can reach are visibility roots. The set of all reachable
superscopes of a component p publishing n is

σp(n) = {S ∈ S | p
⋆

� S ∧ p
n

� S}

and the set of visibility roots Vp(n) include

Vp(n) ⊇ {S ∈ S | ∄T ∈ σp(n). S � T ∧ oÎT
S (n) 6= ǫ}

Additionally, if a scope S publishes n upward, but prevents its downward for-
warding, the respective superscopes are not visibility roots of any delivery path
below S. Therefore,

Vp(n) = {S ∈ σp(n) | ∄T. S � T ∧ iÎT
S (oÎT

S (n)) = n} (4.1)

A scope S is a visibility root of component p with respect to a notification n if
there is no superscope of S, if there is no superscope into which n is forwarding,
or if n is forwarded the input interface would prevent downward delivery, in
which case testing for downward delivery paths in the consumers would acciden-
tally reject n. Consider the above example graph in Figure 4.7(a). A delivery
path (c3, V, U, c4) between c3 and c4 is described by the root U of the path. If
the interface oÎS

U between U and S matches a published notification n in both
directions, S would be the visibility root Vc3

(n), which means the filtering of the
path (S, U, c4) is no different from only (U, c4).

The adaptation of subscriptions is as follows. Every simple component
x has to extend its subscriptions to include a filter sequence for every path
(S1, . . . , Sm, c) from a visibility root S1 to consumer c. For any such path the
necessary filter extension is

Fp :=

F if Sm ∈ n.scopes

F ◦ iÎ
Sm−1

Sm
if Sm−1 ∈ n.scopes

· · ·

F ◦ iÎ
Sm−1

Sm
◦ . . . ◦ iÎS1

S2
if S1 ∈ n.scopes

(4.2)

The extended subscription must take into account all possible downward
paths, there may be even multiple different paths from the same visibility root.
The new collapsed filter F ′ that is effectively applied is built as follows:

F ′ =
∨

p

Fp (4.3)

Note that the above expression is still subject to considerable simplification as
different paths most likely share common subsequences.

112 CHAPTER 4. SCOPE ARCHITECTURES

Client-Side Filtering

The last of the above options to collapse filtering of delivery paths is to leave all
the filtering to the clients. This is the client-side filtering approach mentioned
at the beginning of this chapter. Producers tag notification with their own ID/
name and consumer subscriptions have to be extended to filter both the upward
and the downward part of delivery paths. Obviously, this approach has only a
limited applicability.

4.2.2 Filtering Costs in a Pub/Sub Implementation

The preceding discussion assumed the availability of a content-based notification
service like Rebeca so that extended filters can operate on annotated notifica-
tions. Especially in the visibility root approach most filter processing is shifted
into the middleware. The visibility defined in the scope graph is mapped to the
routing and filtering capabilities of the underlying pub/sub service, which has
to evaluate interfaces, but may also draw from optimizations like covering and
merging.

The subscriptions resulting from the presented algorithms seem to be rather
complex and costly to evaluate, but there exist a number of proposals for filter
optimization that are applicable here. For instance, Handurukande et al. make
filters broader to cover more base filters by omitting single predicates from the
boolean filter expression [150]. This could be utilized within the Rebeca rout-
ing framework to govern and detect mergers of filters. In this way, filters of
adjacent scope members are easily abstracted and a set of hierarchical filters
are created, which first test visibility according to scope interfaces and later in-
clude tests of individual component subscriptions. Another option is to consider
adapting the matching algorithm itself to better accommodate to the prevalent
combinations of visibility predicates and application subscriptions. Variations
of the well-known counting algorithm [104, 303] would diminish the problem of
multiple testing of stacked input filters. The algorithm does not iterate through
a list of (complex) filters, it rather determines which atomic predicates match
to finally compare the number of matched with the total number of predicates
in each filter. Since each different predicate is evaluated only once, the costs of
testing input interfaces is drastically reduced in contrast to the näıve approach
of iterating through the list of filters.

Another possibility to reduce filter complexity is to mandate certain restric-
tions that ease filter evaluation and composition: restrict the expressiveness
used in scope interface filters (forcing the consumers to do a client-side filtering
with the ‘remaining’ expressiveness); restrict the data model, and thus the filter
model to allow for more efficient covering tests and merging, cf. typing and type
inclusion tests [298].

Filtering of incoming notifications in consumers is only necessary if the un-
derlying communication medium is not able to implement the above filter ex-
pressions. Note that the effective interfaces used in the algorithm of Figure 4.8

4.2. COLLAPSING SCOPE GRAPHS 113

simplify the presentation and may even include notification mappings. An im-
plementation on top of an existing pub/sub service likely requires to separate
filtering and mapping. While easily possible with destination scopes, visibil-
ity roots require the filtering of the downward path to be combined with any
mappings on the path, or the consumer-side filtering has to be applied.

The processing of filters in consumers need not be done within the applica-
tion components itself. Filter processing may as well be moved from the local
event brokers to the border brokers of the routing network; at least if the im-
plementation of the pub/sub service is accessible, this is an application- and
deployment-specific optimization conceivable for embedded systems and small
devices. To reduce the costs of the client-side filtering itself the set of eligi-
ble delivery paths can be narrowed by precomputation based on static cover
and overlap tests of advertisements, subscriptions, and interfaces. Consider Fig-
ure 4.7(a) and c1 annotating notifications with visibility roots. If the input
interface iIU of U prevents any notification published by c1 and c2 from passing
down into U , the enhanced subscriptions Fp of c3 and c4 do not need to take iÎS

U

or any notifications visible in S into account, which may reduce filtering load
considerably. Conversely, if an output interface is known to block all notifica-
tions of a certain producer, its search for reachable superscopes can be statically
confined to a smaller subgraph.

4.2.3 Coping with Graph Updates

The aforementioned analysis of active advertisements and interfaces as well as
the creation of collapsed filters itself rely on up-to-date information about the
current configuration of the scope graph. Furthermore, for reasons of simplicity
components were so far supposed to store the complete current scope graph,
which is, of course, not always necessary. The issue of handling updates of
the scope graph is closely related to the question: what parts of the graph do
simple components have to know at all. In principle, components need to store
and observe scope graph updates only along their possible delivery paths. The
following updates must be handled.

1. Addition and removal of leaves
Newly added components join existing scopes and do not influence existing
components.

2. Addition and removal of filters of existing edges
The scope graph structure is not changed, only the effective interfaces
assigned to the edges change.

3. Addition and removal of edges
The actual layout of the scope graph changes arbitrarily.

The amount of information that must be distributed upon graph changes
increases with each of the three steps, and it is different in the scope destinations

114 CHAPTER 4. SCOPE ARCHITECTURES

(SD) and the visibility roots (VR) approaches. The first point, when only the
leaves of the scope graph are allowed to change, is the simplest one. In the
visibility roots approach existing components are not influenced by these changes
at all. And in the scope destinations approach, the input interfaces of newly
added scopes must be propagated along all delivery paths from which matching
notifications may be received. In this way, the producers in the affected scopes
can update their local copy of the scope graph. To find the affected scopes the
new input interface is recursively tested against input interfaces of superscopes
and thence to output interfaces of the respective subscopes. This is similar to the
algorithm of Figure 4.8 that finds the destinations in all delivery paths except
that now two interfaces are compared. If they overlap testing continues, but
if they accept disjoint sets of notifications the search for affected scopes need
not follow the considered edge because notifications are blocked at this point
anyway.

The administrator, who creates new scopes must know the complete graph
and publishes the new interface with the scope destination n.scopes set to the list
of affected scopes. The local event brokers of each producer, on the other hand,
subscribe to and transparently process these interface announcements to update
their copy of the scope graph. The administrator also has to initialize newly
added simple components with that part of the current scope graph configuration
that contains the possible delivery paths originating at the new component.

The second kind of graph updates, namely the change of existing scope in-
terfaces, also do not necessarily require components to store the complete scope
graph. In contrast to the first point, the distribution of graph changes is not lim-
ited by the currently existing interfaces but by the original visibility definition
v(X, Y), cf. Section 3.2.2. Updates are confined by the visibility of components
and not by the visibility of notifications, which may change when interfaces are
adapted. When using visibility roots, producers need to know the output inter-
faces of superscopes and consumers about input interfaces of superscopes. So,
producers and consumers subscribe to the respective change announcements,
which need only be distributed downward in the graph. When using destination
scopes, producers need to know the output interfaces on upward parts of deliv-
ery paths and the input interfaces on downward parts. This can be exploited to
approximately halve the number of affected components.

Furthermore, producers may decide to store two copies of the scope graph.
One that is currently active and used to determine the destinations of published
notifications, and one backup that holds the layout of the visible graph according
to the definition of v, which may become relevant when changed interfaces open
up new delivery paths that will then be included in the first, active copy of the
graph. Of course, it is not imperative to store the backup copy of the visible
(sub)graph in every producer. Even if the collapsed scope graph architecture
does not instantiate explicit administrative components, an external repository
of the current scope graph is conceivable that will serve the local event brokers
with the required information.

4.2. COLLAPSING SCOPE GRAPHS 115

The third point allows arbitrary changes of the scope graph. However, new
edges may ‘open up’ new subgraphs, which alters the visible portion of the scope
graph. Consequently, the scope graph cannot be pruned and the components
must have access to the whole graph, in principle, but maintaining two different
copies of the graph is still applicable, too.

4.2.4 Filter Aggregation in Databases

Database management systems are an alternative communication medium for
storing and distributing notifications among a set of consumers. Database ta-
bles can be seen as a kind of multicast medium which carries notifications to
consumers that query the table, that is, subscribe to notifications sent in the
medium. In fact, database technology provides a wide spectrum of function-
ality [138] that may be exploited to extend the quality of service offered by
the event system beyond the definitions given in chapters 2 and 3. On the other
hand, there are drawbacks like their maintenance complexity, resource consump-
tion, and acquisition and operation costs.

Collapsing the scope graph by extending subscription filters might well be
implemented on top of database tables, blurring the distinction between the
collapsed filter and the central hub scope architectures. Similar to the content
based pub/sub medium assumed above, a database table can hold all published
notifications and subscriptions are merely queries to this table. Moreover, the
sequences of input and output interfaces evaluated to determine notification
visibility resembles queries on views [148]. Scope S and all of the notifications
visible inside can be considered to be collected in a database table of same name.
The input interface of scope T and U is the equivalent to a view definition on
table S in that it selects a subset of the data available in S; the same holds
for V with respect to U . The other way round, a superscope can be thought of
defining a view on the base data provided by its members. In this way, producers
would publish in the scopes they have joined, which means they write into the
respective database tables. Consumers query the tables of their scopes and the
views that map notifications from super- and subscopes, respectively.

Database management systems seem to be a promising implementation tech-
nique for implementing collapsed scope hierarchies. Especially in environments
of static, not necessarily small graphs and where advanced features like transac-
tional processing and auditability are needed a centralizing database approach
may be beneficial.

4.2.5 Evaluation

In collapsed scope graphs producers and consumers have to parameterize the un-
derlying communication medium to establish visibility constraints. While being
a simple implementation of scopes as a layer on top of an existing infrastructure,
it does not provide the full control of visibility at runtime. Notification mappings
and delivery polices are not always implementable. Furthermore, graph changes

116 CHAPTER 4. SCOPE ARCHITECTURES

are difficult and costly to deploy, for application components are not easily re-
configurable and changes to the graph have to be consistently distributed to
affected components. Collapsing the scope graph leads to a parameterization
of simple components and of the communication medium, e.g., by annotating
notifications with scope names, which have to be unique, and extending subscrip-
tions of its members to filter on these names. This spreads control of the scope
graph configuration, and in the end, visibility constraints are ‘only’ accomplished
cooperatively, if both producers and consumers operate correctly.

The system’s functionality in a collapsed graph depends on the correct func-
tion of all participating components. It renders control of the visibility to the
components—library-based implementation in local event brokers or not, it’s
part of the client-executed code. A corrupted or malevolent component may
publish or eavesdrop in any scope, eroding visibility constraints and eluding any
security measures. The discussion on combining different scope architectures in
Sect. 4.6 leads to a possible solution when gateway components bridge two sep-
arated subgraphs and provide a physical encapsulation of visibility constraints.

Comparing the presented scope destination and visibility root approaches,
the former requires more processing in the producers, which are exposed to
more graph changes, but it keeps the filter extensions necessary in the consumers
simple. In the latter case both producers and consumers are expected to know
and evaluate paths to visibility roots, which leads to more complex filters that,
however, may delegate (parts of) the prerequisite filtering to the underlying
medium.

4.3 Scope Address

This section describes the scope address type of architecture, which is still a
layered approach on top of an existing publish/subscribe medium. In fact, scopes
and all members of scopes are addressed as a group and so any communication
medium offering a group-based multicast is eligible.

4.3.1 Addressing Scheme

Within a specific scope, notifications are sent without discriminating scope
members—the scope is addressed. However, in contrast to collapsed scope
graphs, administrative components are instantiated to handle inter-scope com-
munication. They represent scopes and control the transition of notifications
between scopes. In terms of Figure 4.4 on page 102, steps 3 and 4 are only
used for inter-scope traffic while components that reside in the same scope will
exchange data with only one access to the underlying medium, omitting steps 3
and 4. Furthermore, the reception of the data in steps 5 and 5a is not distin-
guished, i.e., senders do not control delivery.

Consumers, that is, their local event brokers, have to accomplish two tasks
to implement visibility constraints. When joining a certain scope, they need to

4.3. SCOPE ADDRESS 117

Figure 4.10: Notifications are tagged with the ID of their scope.

use the addressing capabilities of the medium to select the traffic visible in the
scope. And additionally they are responsible for filtering received notifications
so that only those matching the original subscriptions are actually delivered.
Just as in the collapsed scope graph with scope destinations, consumers are
coerced to filter all visible notifications locally if the medium supports only group
addressing. If the medium is capable of indirect addressing, consumers may
enhance subscriptions and move filter processing into the medium. For instance,
using a content-based publish/subscribe service, the principal idea is to annotate
notifications with the ID of the scope into which they are published.2 Of course,
these IDs have to uniquely identify the scope in this medium. In Figure 4.10
component x publishes a notification n by sending it with an additional attribute
n.scopes = T , and it should be visible in its scope S. This attribute is utilized
by consumers to select notifications of their respective scopes in the first place.
If component y is about to subscribe to F , this filter is extended to F ′ = F ∧
n.scope = T , which is issued in the underlying pub/sub service.

The administrative component of T implements the scope’s interfaces and
relays incoming and outgoing notifications if they match the input and output
interfaces, respectively. It acts as consumer in S and T . It extends the input
and output filters of the interfaces and issues iF ′T = iFT ∧ n.scopes = S and
oF ′T = oFT ∧ n.scopes = T . In this way, the admin components get external
notifications matching the input interfaces and internal notifications matching
the output interface. In the example, the admin component of T relays n by
publishing a modified n′ with n′.scopes = S, acting as a regular producer in S
and as a bridge between the internal and external distribution ‘domains.’

4.3.2 The Resulting Overlay Network

Communication in the scope graph is realized as an overlay network here. It
relies on the underlying communication medium, which does not heed any vis-
ibility constraints but the addressing/filter specifications given by simple and
administrative components. The application level routing of notifications by

2Note that this annotation is transparently done in the local event brokers and neither
controlled nor seen by producers or consumers.

118 CHAPTER 4. SCOPE ARCHITECTURES

the administrative components governs the distribution with the abstract scope
graph and is unaware of the physical layout of the underlying communication
network. The admin components may be instantiated at arbitrary access points
to the medium and they thus implement the scope graph as overlay network on
the medium.

On the other hand, scope-internal traffic is not explicitly controlled and the
scope implementation does not influence routing. It relies on a location trans-
parent addressing scheme offered by the filter model of the underlying dissem-
ination infrastructure. This offers the advantage of easier reconfiguration, but
it also makes controlling QoS parameters harder due to the lack of knowledge
about the physical structure. Performance and reliability issues may be raised
by effects of distribution.

Moreover, the layout of the scope graph is not (necessarily) stored in the
admin components. Since all components, simple and administrative, access the
same communication medium, no admission to join a scope is necessary; the
administrator can just instruct a specific local event broker to join a scope so
that it adapts publications, subscriptions, and local filtering respectively. In this
case, the ability to implement delivery policies in a certain scope is limited to
cooperative filtering done in all scope members, as in collapsed scopes. Even
without knowing the children, an explicit scope structure offers a number of
advantages. Reconfigurations of the scope graph need not be propagated through
the whole graph, because they affect only the admin components of the modified
edge or node. Also, any notification mappings can be applied and they are easier
to handle in the admin components than in any simple components.

Of course, an implementation could also mandate that components make
themselves known to their scopes when joining. This would extend the amount
of control that admin components exert on communication, moving towards the
scope brokers presented in the next section. The implementation of arbitrary
delivery policies would be simplified since notifications, in principle, could be
directed to individual consumers, if they create additional filters on their own
name. Interestingly, the admission could be used to enforce access control, that
is, security policies. Even encrypted intra-scope communication is possible if all
internal communication is encrypted with a temporary session key. This key is
installed anew at authorized components whenever scope members join or leave.
For the distribution of the key a public key infrastructure must be available.

4.3.3 Evaluation

The scope address type of architecture introduces administrative components
that localize the implementation of interfaces, publishing policies, and mappings.
They offer a finer control of inter-scope communication than the collapsed scopes
approach and also avoid most of the complexity and inflexibility inherent to
collapsing filters in simple components.

However, scoping is still implemented on a shared multicast medium and
the implementation is not aware of the underlying network layout. In fact,

4.4. SCOPES AS EVENT BROKERS 119

intra-scope communication is not directly governed by the admin components
and relies on the filtering capabilities of the communication medium. The local
event brokers of producers and consumers modify notifications and subscriptions
before sending them out. With respect to intra-scope communication scope
addressing is similar to collapsed scopes. Internal delivery policies, admission to
scopes, and, in general, conformance to the visibility defined in the scope graph
is achieved only if producers and consumers operate cooperatively and correct.

Compared to the collapsed scopes, which need only one access to the medium
to reach every consumer, the administrative components repetitively access the
medium to forward a notification along a delivery path in the scope graph. In
situations where some consumers are connected via long delivery paths, this
approach apparently induced a considerable communication overhead. But the
indirection introduced by the administrative components relieves simple compo-
nents from maintaining the current graph structure. Especially the last point
touches a well-known tradeoff between scalability and expressiveness [59]. In
the collapsed scope graph approach lots of extended filters are issued, whereas
with scope addresses the filter complexity is limited at the expense of increasing
communication bandwidth.

4.4 Scopes as Event Brokers

The broker scope approach is the most general implementation of scopes. It
uses administrative components representing scopes, as before, but relies on
their forwarding even for intra-scope communication. It directly implements the
structure of the scope graph in the sense that publishing within a scope first
requires to access the communication medium to send the notification to the
representing scope instance, which, in the second step, sends the notification to
all its children and, after applying the output filters, to the eligible superscopes.
In terms of Figure 4.4 on page 102, all the steps are explicitly implemented.
With brokering each notification individually, even the delivery of notifications
to separate consumers could be distinguished in steps 5 and 5a. The existence
of step 3b depends on the internal implementation of each scope representative,
of course.

The characteristics of this approach are the independently operating admin-
istrative components that represent each scope and have full knowledge about
adjacent subcomponents and superscopes. And, in principle, a point-to-point
communication between the nodes is assumed so that arbitrary delivery can be
implemented in scopes. In practice, a number of different communication me-
dia and schemes for implementing and locating administrative components are
possible.

120 CHAPTER 4. SCOPE ARCHITECTURES

4.4.1 One Scope, One Broker

The simplest form is a one-to-one implementation of the scope graph, which
instantiates exactly one administrative component per scope and uses point-to-
point media to convey data as defined by the edges of the graph. The point-to-
point communication to all children offers the full control of intra-scope traffic.
Any constraint bound to the scope graph is easily implemented at this explicit
point in the infrastructure: no restrictions of applicable transmission policies,
mappings, and security measures are imposed.

From a technical point of view, an implementation with scopes as brokers is
similar to the architecture described in Section 2.4, only that a strict tree-like
network is no longer mandated. Instead, the undirected form of the directed
acyclic scope graph constitutes the overlay network used to convey the data.
The original restriction to trees was made to simplify analysis and implemen-
tation of general routing protocols, which is a reasonable initial assumption for
a research prototype. Here, this restriction is removed. However, the problems
inherent to arbitrary graphs are not solved in general, rather scoping and the
definition of visibility constrains the possible routing configurations in the graph.
The network layout is no longer an infrastructure independent of the application
components, the administrator of the system is provided with means to shape
its layout and control the distribution of notifications. Routing is the imple-
mentation of visibility, and the responsibility of ensuring sensible routing is now
partially transfered to the administrator.

A possible drawback of this approach might be its degrading of communica-
tion efficiency. To convey data along a given delivery path of length n, n − 1
accesses to the underlying medium are necessary, which is only one more than
in the scope address approach. But if only intra-scope traffic is considered,
which may dominate in many systems anyway, the necessary accesses are dou-
bled. However, even if other implementation approaches may be more efficient
for certain system configurations, broker scopes provide the most general imple-
mentation of scope graphs, and the ones most adaptable to any kind of recon-
figurations. So, the alleged inefficiency has to be compared with the indirection
of the scope brokers and the enhanced control they introduce thereby.

4.4.2 Distributed Scopes

The above discussion assumed a single administrative component per scope,
which is responsible for filtering incoming and outgoing traffic and internal for-
warding. With distributed scopes, this task is performed by multiple instances,
that is, by distributed administrative components of one scope. Whenever the
instances are not independent, they have to communicate with each other and
thus implement step 3b of Figure 4.4 on page 102. For the communication be-
tween these instances a communication medium can be used that is different
from the one conveying data between the scope graph nodes. However, the same
arguments regarding addressing capabilities, scalability, and flexibility hold as

4.4. SCOPES AS EVENT BROKERS 121

before.
A number of objectives are achievable with distributed scopes. An obvious

improvement is to instantiate multiple administrative components for each scope
to prevent single points of failure. The instances may be identical replicas using
a primary/backup approach [13] or operating in parallel independent of each
other. Alternatively, each of the instances may be responsible for a different
subset of the scope’s components so that in case of failure only one subset is
affected, but not all components of the scope. In these cases, a point-to-point
communication within a known set of scope representatives is indicated.

Furthermore, scope distribution facilitates adaptation. For example, if one
administrative component is instantiated per superscope, each instance handles
the interfaces, mappings, and transmission policies with respect to one super-
scope. The addition of edges simply requires adding the respective adminis-
trative components. And if a multicast medium is used to forward notifications
from scope members to all the admin instances, edge configuration does not even
influence any other parties in the scope. Another option is to provide special-
ized services by different scope representatives for certain types of notifications,
such as internal delivery policies or encryption for specific notifications. This
implementation partially backs off the initially stated assumption that only one
communication medium is used per scope. The same result could be achieved if
each of the specialized admin components is created as a full scope in the scope
graph.

The above examples employ separate administrative components to facilitate
the implementation and reconfiguration of a scope graph, but they do not con-
sider distribution with respect to the actual layout of the physical network. A
very important aspect of distributed scopes is their ability to bridge between the
structure of the application given in the scope graph and the structure of the
underlying network. Consider a scope that groups physically dispersed members
located in two different subnetworks. With a single administrative component
all traffic would be centralized, whereas distribution helps exploiting locality.
If an instance of the scope is present in each of the subnetworks, notification
forwarding is decoupled and done locally in each network. And the bandwidth
necessary between the networks can be reduced once the connected admin com-
ponents remember the remotely published subscriptions, i.e., they maintain a
routing table.

The previous description shows clearly that multiple explicit scope instances
constitute a distribution network by itself. When several scopes are distributed,
several of these overlay networks coexist. In this situation scoping and routing
is mixed, which is investigated in Section 4.5.

4.4.3 Collocating Broker Scopes

A special solution is to collocate all administrative components at one node in
the network. Scope-internal traffic still needs two accesses to the underlying
medium, but all inter-scope communication is done locally. Although closely

122 CHAPTER 4. SCOPE ARCHITECTURES

related to the central hub approach, cf. Section 4.2.4, the scope graph is explic-
itly instantiated here, only that inter-scope communication is implemented by
interprocess communication (IPC). Separate admin components can still evolve
independently, they just happen to be collocated, so to speak, to improve effi-
ciency, auditability, or other global constraints.

4.4.4 Evaluation

Scopes as brokers are the most flexible implementation of the scope graph. They
offer all features of the scoping concept and the flexibility to adapt all aspects of
the one-to-one realization of the scope graph. Every feature is localized in the
infrastructure. Apart from this configuration viewpoint, broker scopes make the
infrastructure itself visible and adaptable, for it provides administrators with
means to map application structure to infrastructure components, that is, to
event brokers.

This scope architecture is possibly not the most efficient implementation of
a certain scope graph, but the most generic one. It is not a service of the pub/
sub infrastructure, but a way to define and adapt the infrastructure itself, and it
will serve as a basis for refining the implementation of subgraphs, as discussed in
Section 4.6. However, it is not always acceptable to have such a close correlation
between the application structure supposedly encoded in the scope graph and
the implied, dependent layout of the network infrastructure.

4.5 Integrate Scoping and Routing

The explicit instantiation of administrative components described in the previous
section makes the full range of scope features available to system engineers, i.e.,
administrators. However, it also determines the layout of the underlying network
infrastructure, which is no longer independent of the applications. In contrast,
the following integrates scoping into the routing infrastructure. Visibility control
becomes an inherent service of the event notification service and is no longer
implemented as a layer above the underlying broker network.

4.5.1 Scopes as Overlays

Given a network of brokers and a scope graph, the simple components of a spe-
cific scope are in general connected to arbitrary border brokers, irrespective of
their scope membership. They are reachable via a subset of the border brokers,
and the notification service must ensure that notifications are forwarded to these
brokers if they match one of the subscriptions of the respective simple compo-
nents. Consider the exemplary scope graph and the broker network depicted
in figures 4.11 and 4.12. Brokers B1, B2, and B4 are part of scope T , they are
scope brokers3 of T . Together with B3, they are also scope brokers of S. B2 is

3Mind the difference between scope brokers and broker scopes. The former are part of
an independent broker network and sustain a specific scope, whereas the latter is a scope

4.5. INTEGRATE SCOPING AND ROUTING 123

Figure 4.11: An exemplary scope graph

in both cases an intermediate broker that does, currently, not have any directly
connected scope members. B1 and B5 are scope brokers of U .

The main idea is to rely on any of the existing routing schemes, e.g., those
offered by Rebeca (see Section 2.4), as before, but to use it for intra-scope
traffic only and for each scope separately. Still, the same broker network is used
to route all notifications and a connected subset of brokers routes the traffic
internal to a given scope without heeding other scopes. The separate routing
for each scope effectively establishes scope overlays in the broker network, which
are sketched in Figure 4.12. On the other hand, the separation of scope-internal
routing necessitates a special handling of inter-scope transitions. In Figure 4.12,
B1 is scope broker of both S and U to bridge between the overlays of the two
scopes.

Consequently, two kinds of routing are utilized to integrate scoping into the
broker network: intra-scope within a specific scope and inter-scope routing be-
tween scopes adjacent in the scope graph. In intra-scope routing each scope

architecture and a different way to implement the scope graph (see Section 4.4).

Figure 4.12: Scopes as overlays within the broker topology

124 CHAPTER 4. SCOPE ARCHITECTURES

Filter Destination

iIc1
c1

iIc2
c2

iIc3
B2

iIc4
B2

iIc6
B2

iIc5
B5

Figure 4.13: A flat routing table for broker B1

overlay maintains its own routing tables so that each broker has a routing table
per scope it supports. The employed routing scheme maintains the independent
routing tables and handles advertisements and notifications as before. Hence,
brokers constituting a scope overlay behave like a traditional flat pub/sub ser-
vice in which no visibility constraints exist. In inter-scope routing brokers must
arrange for the transition of notifications between scope overlays according to
the scope graph and the assigned interfaces and mappings. The current assump-
tion is that two scopes S � T have to share at least one common scope broker
to implement the scope graph edge at this point. In the previous example both
B4 and B5 support scopes S and T , and both are able to let notifications cross
the respective boundaries; the same holds for B1 and S and U .

4.5.2 Enhancing Routing Tables

The original flat routing tables maintained in each broker contain filter-desti-
nation pairs that list issued subscriptions and the next-hop nodes from which
they were received, describing the paths to consumers. Figure 4.13 shows the
flat routing table RTB1

of broker B1 of the previous example. The enhanced
routing tables subdivide these entries and group them in separate scope-specific
tables RT

S
B1

, RT
T
B1

, and RT
U
B1

sketched in Figure 4.14. From the point of view
of a specific scope S, both simple and complex components are entries in a
scoped routing table RT

S
B1

. Although technically equal, entries of subscopes
are distinguished from entries of superscopes, which is necessary to correctly
implement the visibility of components as described in the next subsection.

The ‘Filter’ and ‘Destination’ columns have still the same semantics as before:
an entry indicates that notifications are to be forwarded to the given destina-
tion if they match the respective filter. In distinction to the original flat table,
however, the new tables store arbitrary mappings instead of just filters. In this
way the effective interfaces between components can be tested, including any
mappings assigned in the scope graph. Of course, any implementation is free
to still store simple filters separate from more complex notification processing
functions. For instance, the filter-link pairs of the original routing tables may
be transformed into triples of filter sequences and links plus mapping sequences.

4.5. INTEGRATE SCOPING AND ROUTING 125

The destinations stored in the enhanced tables are either network links or
locally stored data structures. The former represents an implementation to
communicate with next hop brokers and clients, the latter are the routing tables
of next hop nodes in the scope graph. They mix and integrate the two levels of
routing between physical brokers, on the one hand, and between scope overlays,
on the other hand.

The scoped routing tables RT
Si

Bi
govern notification forwarding both within

and between scopes, once set up properly. But in order to establish new edges in
the scope graph and to create and link the respective routing tables, additional
information must be maintained in the broker network. Each broker keeps a
scope lookup table STBi

that contains pairs of scope identifiers and network
links, indicating in which direction scope brokers of the specified scope can be
found. These tables are updated upon scope creation and deletion, as discussed
below. For the previous example they look like in Figure 4.15.

4.5.3 Setting Up Routing Tables

Once created, the routing tables are filled when consumers subscribe, and the
underlying routing algorithm must forward and register these subscriptions.
Chapter 2 described simple routing and covering and merging, which may be
applied to accomplish this task. The scoped routing tables themselves and the
references between them are set up as reactions to scope graph reconfigura-
tions. In addition to the plain publish/subscribe primitives pub, sub, and notify ,
Section 3.2.5 on dynamic scopes introduced four new operations: cscope(S),
dscope(S), jscope(X, S) and lscope(X, S), which create and destroy a scope S,
and join X to scope S and remove it, respectively. While the network of brokers
is still assumed fixed, the following describes how routing tables are adjusted
to reflect these operations. Section 3.8 has suggested tools that support system
engineers in this task.

Figure 4.14: Enhanced routing tables of B1 incorporating scopes

126 CHAPTER 4. SCOPE ARCHITECTURES

STB1
STB2

STB3

· · ·
S B1 S B2 S B2

T B1 T B2 T B3

U B1 U B1 U B2

Figure 4.15: Scope lookup tables

Adding and Removing Scopes

The primitive cscope(S) creates a new scope S if invoked by the system engineer
at a specific broker B. If no scope of this name is known before, a new routing
table RT

S
B is created and the scope lookup table STB is updated. By default

the creation is announced as unscoped notification and every broker listening
to these kinds of notifications updates its scope lookup table accordingly. If
a new scope shall not be made publicly available but only as a member of a
specific superscope T , the initial announcement can be postponed until it has
joined T . The announcement is then sent within T and its visibility is governed
by the installed interfaces. Without such restrictions the full list of all scopes
instantiated in the system would be listed in all lookup tables, as it is the case
for advertisements or subscriptions in flat pub/sub systems. Applying scope
interfaces to restrict the distribution of scope announcements helps limiting the
amount of management information kept in the system.

To complete the scope configuration, additional data about its interfaces,
transmission policies, or security policies is necessary. This information is also
provided by the system engineer and is stored as extension of its routing tables
RT

S
Bi

in all scope brokers.

A scope is removed from the system by calling dscope(S) at one of its scope
brokers. Following the entries in its routing table a message is sent to all of its
scope brokers to remove its routing tables and any references from routing tables
of adjacent scopes. Its members are notified with a corresponding notification.

Joining a Scope

An arbitrary component C is joined to a scope S by calling jscope(C, S) at the
local or border broker of C. The scope lookup table is used to route a ScopeJoin
message to the first scope broker of S. These special messages leave a trail of
temporarily stored source-pointers in the visited brokers that allows a response
to be routed backwards to C. A scope broker of S that receives a ScopeJoin
message takes two steps. It includes the border broker of C as scope broker of
S and forwards the interface of the new component to existing scope brokers to
get the routing tables updated. The first step requires that the current routing
tables is forwarded along the stored trail towards C so that each visited broker
creates an initialized routing table for scope S. If security policies are installed
in the scope brokers, a join request may be denied, which results in a rejection

4.5. INTEGRATE SCOPING AND ROUTING 127

sent towards C.

A simple component leaving a scope is similar to just unsubscribing to all
issued subscriptions. Scope brokers may regularly test if any members are locally
connected, and if other scope brokers are reachable via only one link, this scope
broker is an unused border broker of the scope overlay and may be shut down. If
a scope leaves one of its superscopes, i.e., lscope(S, T), an appropriate message
is distributed to the scope brokers of both scopes and the references to the
respective other scope are removed from all involved RT

S
Bi

and RT
T
Bi

routing
tables.

4.5.4 Scoped Routing

Scoped routing uses the enhanced routing tables to forward notification in ac-
cordance with the current scope graph. The algorithm basically extends the
plain Rebeca algorithm of flat publish/subscribe routing. It is executed in each
broker B and operates on a set of enhanced routing tables RT

Si

B of scopes Si, of
which B is currently a scope broker.

Notification Layout

The algorithm needs some additional management information to operate prop-
erly. This information is annotated to notifications by the routing implementa-
tion and is not accessible to applications.

To prevent loops and infinite forwarding, notifications must not be sent back
on links they were received from, both network links and scope graph edges. As
in the original Rebeca routing, notifications are annotated in each broker with
an identifier of the source network link to prevent it from being sent back in the
direction from where it was received. Additionally, each notification carries an
identifier of the current scope and of the source component, which are accessed
by get scope(n) and get source(n). These identifiers signify the scope in which
the notification is currently visible and the (last) component from where it was
forwarded into this scope. Note that the latter does not name the original
publisher but the last node in the scope graph visited before the current one.
The local event broker of the original producer is responsible for setting the
identifiers initially.

These component identifiers must be unique with respect to the current scope
and its adjacent nodes in the scope graph so that they identify its components
or superscopes unambiguously. However, such edge-wise distinct names may not
suffice, because many scopes may be hosted in one broker and naming must be
unambiguous within a broker. So, besides the simple but restrictive assump-
tion of globally unique identifiers, a scheme similar to the mappings of virtual
channel identifiers in Asynchronous Transfer Mode (ATM) networks [185] might
be devised that maps identifiers on both sides of a network link to guarantee
uniqueness.

128 CHAPTER 4. SCOPE ARCHITECTURES

The next paragraphs introduces different states of routing that are accessed
by get state(n). Of course, all get-functions are accompanied by the respective
set methods.

Routing States

Following the discussion about delivery paths in scope graphs and transmission
policies, three states of routing are distinguished:

• scope internal routing
A notification is forwarded to siblings in the same scope.

• downward routing
An incoming notification is forwarded to scope members.

• upward routing
An outgoing notification is forwarded to superscopes.

A notification published by a simple component is initially handled in the in-
ternal routing state. It may alternate between internal and upward state, but
once in downward routing it may not switch back. Adherence to this sequence
is mandatory to not break the bipartite nature of delivery paths, that is, no-
tifications are always first sent up in the scope graph before they solely travel
down against the edges of the graph. Internal routing is expressly distinguished
to facilitate the respective transmission policy, cf. Section 4.5.6.

The Algorithm

Figures 4.16 and 4.17 illustrate the algorithm, which basically extends the plain
Rebeca algorithm of flat publish/subscribe routing and is executed in each
broker B. The main control loop main loop is triggered whenever new data is
appended to the receiving queue, which may either be due to incoming network
traffic or via cross scope traffic. The expected pair (n, l) contains the notification
to be forwarded and a link from which it was received. The latter may be either
a network link or a local routing table, i.e., a routing destination in the enhanced
routing tables.

The procedure scoped routing determines the next destinations of a noti-
fication currently visible in a scope S. It interprets the current routing state
and accordingly queries different parts of the routing table RT

S
B . The function

subscopes(RT
S
B) returns a routing table that contains all entries that point to

a locally stored routing table of a subscope of S. Similarly, superscopes(RT
S
B)

contains entries of local superscope routing tables. Conversely, remote com-

ponents(RT
S
B) returns the remaining entries, which are reachable via network

connections. In case of RT
S
B1

of Figure 4.14, the three functions return entries of

{}, {RT
T
B1

, RT
U
B1

}, and {c1, B2}, respectively. First, eligible destinations within
the considered scope and then the locally available routing tables of subscopes
are determined, both must be done for all routing states. A distinction of states

4.5. INTEGRATE SCOPING AND ROUTING 129

procedure main loop
loop

// the queue is fed from network links
(n, l) = get next (recvQ)

5 scoped routing(n, l)
end

end

procedure scoped routing (n, l)
10 Input n: notification

l: source link

s := get state(n)
S := scope(n)

15 — internal routing

D := destinations(n, remote components(RT
S

B
))

foreach (n′, l′) ∈ D

if l 6= l′ then send (n′, l′)
end

20

— downward routing

D := destinations(n, subscopes(RT
S

B
))

cross scope(S, D, ”downward”)

25 — upward routing
if not s = ”downward” then

D := destinations(n, superscopes(RT
S

B
))

cross scope(S, D, ”upward”)
fi

30 end

Figure 4.16: overall routing algorithm

function destinations (n, T)
Input n: notification

T : routing table

Output D: list of notification-destination pairs

5 foreach (I, d) ∈ T

n′ := I(n)

if n′ 6= ǫ then

D := D ∪ (n′, d)
fi

10 end

end

Figure 4.17: The näıve matching algorithm with mappings

is at this point only necessary when transmission policies are applied, cf. Sec-
tion 4.5.6. Last, the upward direction is examined to find all locally available
routing tables of eligible superscopes, which is only done if routing is not in
downward state. Taken together, these steps follow the default delivery and
publishing policies of Section 3.4.1 that describe visibility in the scope graph.

The above procedures rely on the function destinations to determine all el-
igible destination in the specified routing table. The näıve matching algorithm,

130 CHAPTER 4. SCOPE ARCHITECTURES

procedure cross scope (S, D, s)
— forward all notifications to next routing tables
Input S: current scope

D: list of notification-routing table pairs
s: routing state

5 foreach (n, RT
S
′

B
) ∈ D

if get source(n) 6= S′ then

set source (n, S)

set scope(n, S′)
set state (n, s)

10 put in front (recvQ, (n, RT
S

B
))

fi

end

end

Figure 4.18: Inter-scope forwarding

extended with mappings, is given in Figure 4.17 for illustrative purposes. It
returns pairs of destinations and notifications to send there, allowing for a seam-
less integration of mappings in the routing decision. Of course, in practice more
efficient matching algorithms, e.g. [104, 303], and a more sophisticated handling
of notification copies may be applied.

4.5.5 Crossing Scopes

The scoped routing algorithm relies on cross scope to forward a notification
between scopes (Figure 4.18). It is responsible for relaying the current notifica-
tion to other routing tables stored in the same broker. In fact, an underlying
assumption is that scope transitions take place only within a broker. Routing
tables of a super- and subscope pair S � T must be collocated at the same broker
to enable inter-scope routing. In the above example B1 is a scope broker of
all scopes and may route between S, T , and U , whereas B2 and B4 can route
between S and T only.

cross scope takes a list D of pairs of eligible destination scopes, whose
interfaces match, and notifications that shall be sent there. In this way, the
current notification may be forwarded in different representations. With the
help of the reference to the source component (get source(n)) the algorithm
prevents notifications from being sent back along the scope graph edge they were
received from. This does not preclude duplicates because of alternative paths
in the scope graph, but it rules out erroneous duplication because of repeated
processing, at least in one broker. How to prevent this repetition in different
brokers is detailed below.

The procedure sets the source component to the current scope and the in-
tended destination as new current scope and then puts the relayed notification
into the incoming queue recvQ. This eventually triggers the main loop and starts
routing of n in the destination scope. The routing state recorded in each no-
tification is updated according to the specified parameter s that is supplied by

4.5. INTEGRATE SCOPING AND ROUTING 131

the main scoped routing algorithm.

Crossing at Different Locations

Although inter-scope routing is not possible at arbitrary brokers, there still may
be multiple brokers where two scopes S � T coincide. And thus a notification
might cross a scope boundary repetitively at different brokers, duplicating no-
tifications even along a single edge of the scope graph. Furthermore, security
considerations or the implementation of advanced ordering schemes might neces-
sitate a designated broker that bridges all traffic between the respective scopes.In
the previous example, a notification published by c1 is distributed in its scope
S, and may enter superscope T at B1, B2, or B4.

Three choices for placing inter-scope routing are distinguished according to
the following criteria. First, are the scope-crossing functions applied at only
one broker or at several different brokers? Second, if only at one, is it a des-
ignated gateway broker or an arbitrary broker that conveys the traffic between
the respective two scopes? The following alternatives are available:

1. Transition at designated central gateway
All inter-scope traffic of a scope S is handled by a single gateway broker
Bi of that scope. Only at this gateway the routing table RT

S
Bi

contains an
entry pointing to sub- and superscopes.

2. Transition anywhere, but only once
Inter-scope traffic is transfered into its destination scope at the first pos-
sible broker, and nowhere else.

The first approach of having a designated gateway is the simplest solution. It
instantiates the respective scope graph edge at a single point in the broker net-
work. Only at this gateway broker a routing entry for the specific superscope is
stored, say (oÎT

S , RT
T
B1

) as part of RT
S
B1

if B1 is the gateway broker of S � T . All

other scope brokers of S register an entry oÎT
S that points towards this gateway

broker, e.g., (oÎT
S , B2) is stored in B4. This is necessary to get published notifi-

cations matching the output interface forwarded to the gateway broker. Within
T all routing table entries pointing to the subscope S are similarly adapted to
direct downward traffic to B1 as well. Each gateway broker links a specific pair
of scopes, but generally system engineers may decide to group all gateway bro-
kers at one network node, to group them for each scope, or to place all gateways
independently.

A drawback of this strict separation of inter- and intra-scope routing is wasted
network bandwidth. Consider c4 and c6 connected to broker B4 in the previous
example. Notifications from c4 to c6 are routed through broker B1 to enter T
there and go back to B4 again. The adequate placement of gateway functionality
has a major influence on network utilization. On the other hand, the centralized
gateway offers full control of the incoming and outgoing traffic at a designated
broker. This allows trusted software modules to be employed for cross-scope

132 CHAPTER 4. SCOPE ARCHITECTURES

communication at a single trusted broker, for example, to authenticate all out-
going notifications or to link separate security domains without disclosing other
scope brokers. The implementation of transmission policies is simplified, too, as
pointed out in the next subsection. In general, if the placement of scope brokers
correspond to the physical layout of the underlying network, gateway brokers
may also represent the physical gateway between different networks hosting the
adjacent scopes.

The second approach allows notifications to cross scope boundaries between
two two scopes S � T at the first possible broker that sustains both scopes. When
c1 publishes n, it is forwarded into S, T , and U at B1, assuming matching inter-
faces, of course. An appropriate countermeasure must be provided to prohibit
repeated scope transitions in B2 and B4. This is achieved by testing whether
the destination scope T was already seen in the last broker from which n is re-
ceived, in which case the transition has already happened in a previous broker.
Notification forwarding in cross scope is denied if an entry in RT

T
B exists that

points towards link(n). In the example, B2 has stored an entry (iIT
c2

, B1) in

RT
T
B2

and does not forward n into T again.
Unfortunately, so far each scope transition generates a new notification and

the transition at the earliest encountered broker leads to messages being sent on
the network that differ only in the annotated current scope they are visible in.
In the example, two messages are sent to B2 and B4, one visible in S and one
in T . A possible improvement is a combined delivery to all eligible superscopes,
which are identified by a list of scopes annotated on the notification instead of
just one identifier. The multiplicity of messages is replaced by a list of scopes,
at least as long as no mappings transform the notification. The routing decision
is evaluated as before, only that scoped routing is called multiple times to fill
the list of next hop destination. At each broker, the available routing tables
are checked and whenever additional scopes are detected and entered the list of
visible scopes is updated. In the example, a notification forwarded from S to T
is annotated with both scopes and is transmitted only once between B1, B2 and
B4.

4.5.6 Transmission Policies

The distinguished routing states directly correspond to the delivery, internal
delivery, and publishing policy. The policies are encoded as part of the enhanced
routing tables, even if they include general mappings in the routing decision.
As discussed in Section 3.5, the policies operate on sets of notifications and
must be evaluated after the eligible destinations are determined by the matching
algorithm in destinations.

The three policies can be inserted into the three parts of the sketched scoped

routing algorithm. Internal routing is refined by evaluating

D := idpS(D)

on the set of eligible consumers before it is processed in the ‘foreach’ loop.

4.5. INTEGRATE SCOPING AND ROUTING 133

Delivery and publishing policy are intended to be applied at scope boundaries,
and so they are evaluated in cross scope,

D := ppS(D)

for upward routing and

D := dpS(D)

for downward routing, again just before sending the notifications in the ‘foreach’
loop.

4.5.7 Scope Multicast

So far, intra-scope routing has stuck to strict routing where notifications are
forwarded only if a matching subscription is available. This prevents notifica-
tions from being always sent to all scope brokers of a scope, but induces multiple
point-to-point messages and repeated routing decisions. An alternative strategy
for routing in a scope S is to send all notifications to all of its scope brokers
irrespective of any subscriptions. In a second step the so-called fan-out of the
broker network to the consumers is implemented via point-to-point communica-
tion. The routing tables of S are evaluated in every scope broker of S and each
matching and locally connected consumer is notified separately.

If implemented as part of the broker implementation, an application layer
multicast scheme is established within the broker network. This approach does
not avoid multiple point-to-point messages between the scope brokers, but is
readily applicable in most networks. On the other hand, IP multicast offers an
established, well-known facility to speed up communication to a group of re-
ceivers. The original decision of using point-to-point communication in the bro-
ker topology is partially inspired by the assumption that the sets of consumers
are rather volatile and vary frequently. A multicast solution that directly com-
municates to consumers requires frequent group changes and the explicit control
of individual delivery is lost. However, IP multicast is a convenient technique
to connect scope brokers. The broker topology can be supposed to change less
frequently than the consumers and thus does not overwhelm multicast group
management. So, intra-scope routing is reduced to a notification being conveyed
to all scope brokers with one multicast datagram before it is explicitly directed
to any matching consumers. This approach combines multicast efficiency with
the full control of notification delivery.

4.5.8 Evaluation

The integrated routing architecture is possibly the most generic scope architec-
ture. It combines the efficiency of a distributed solution, incorporates multicast
delivery, and still offers the flexibility to control the hop of notification delivery
to consumers. It extends the known routing tables and can built on various
existing routing protocols, such as covering- or merging-based routing provided

134 CHAPTER 4. SCOPE ARCHITECTURES

by Rebeca and other notification services. Scoping is here offered as a ser-
vice of the event infrastructure. The layout of the publish/subscribe network is
independent from the actual application structure given by the scope graph.

On the other hand, the option to connect scope members to arbitrary brokers
may increase network utilization, and the dispersion of components and traffic
may increase the complexity of the system. But this is essentially always the
case for distributed solutions.

4.6 Combining Different Architectures

The preceding discussion assumed the same type of architecture for all scopes
in the system, which is, obviously, a severe limitation of potential application
domains. In fact, one of the primary benefits of the scoping concept is its ability
to facilitate the customization of the infrastructure. Once groups of components
are identified, their scopes can be based on those architectures that fit their
respective needs best. The special requirements of their interaction are addressed
by employing appropriate implementations of scoped notification dissemination.
But yet, the different implementations must be seamlessly integrated.

4.6.1 Architectures and Scope Graphs

In the first place, scopes model application structure. But they are also a tool for
determining notification semantics within the application structure. Different
types of notifications may demand different quality of service even within a
specific scope. For example, consider non-critical timer information sent in bulk
(type A in Figure 4.19) and personnel record updates (type B) that are supposed
to be encrypted and delivered to authenticated consumers only. While both are
consumed in the same part of the application, i.e., in the same scope, these two
data types obviously ask for different architectures and communication media
that facilitate scalable delivery of the former and secured delivery of the latter.

In principle, several different communication media might be used in one
scope to facilitate different QoS. Alternatively, a scope with complex semantics
is duplicated in Figure 4.19 and each instance is tailored for a different kind of
QoS supported. The interfaces are splitted so that the same notifications are
forwarded into T as before. Publishing policies and imposed interfaces assigned
to c1 and c2 ensure that the traffic within S1 and S2 is separated and directed
to the scopes that offer the necessary quality of service. In the above example,
the timer notifications would be distributed via scope S1 operating on top of
a scalable messaging system, and S2 would employ encrypted point-to-point
connections to meet the security requirements of type B. The edges (c1, S2)
and/or (c2, S1) are necessary if the c1 and c2 shall get the same notifications as
before, but additional interfaces are necessary to prevent messages from leaking
with wrong QoS.

4.6. COMBINING DIFFERENT ARCHITECTURES 135

Figure 4.19: Duplicate scopes to separate QoS requirements

Instead of dealing with arbitrary combinations of communication media, dis-
semination semantics, and scopes, the following assumes a specific scope archi-
tecture per scope. For implementation purposes, bridging takes place between
connected subgraphs of the graph of scopes that share a common architecture.
However, to simplify the discussion only pairs of scopes and the bridging in
between are investigated next.

4.6.2 Bridging Architectures

Combining different scope architectures requires a gateway between the different
implementations of two scopes S � T . The simple components of a scope have
as part of their local event brokers an architecture-specific implementation for
accessing the underlying communication medium (cf. Figure 4.4). The gateway
relies on two local event brokers to bridge the respective implementations of the
architectures. Gateway functions are assigned to the considered subscope, S,
and enforce the input and output interfaces of S, its publishing and delivery
policies, and any mapping applied on the edge (S, T).

Collapsed Filters. The collapsed filters architecture does not instantiate ad-
ministrative components and so gateway functions must reside in all members
of the scope. Due to the required duplication of code in simple components an
extra gateway component is preferable. Such a component would not interfere
with the internal delivery of notifications. It is similar to the mapping compo-
nents used in Section 3.4.2 to sketch the feasibility of scoped systems. It acts as
an additional producer/consumer in scope S and manually implements the edge
to superscope T , being a regular member there as well.

The distinguished scope destination and visibility roots approaches to an-
notate notifications and extend subscriptions are hardly different regarding the
implementation of the gateway. In both cases a gateway component is instanti-
ated for each bridged scope-superscope pair or for all bridged superscopes col-
lectively. Only their subscriptions must reflect the differences in the lists of
annotated scope identifiers: the former lists all reachable scopes while the lat-
ter lists only visibility roots on upward paths. Upon receiving a notification,
the gateway component tests which of the edges it controls is eligible, applies

136 CHAPTER 4. SCOPE ARCHITECTURES

the assigned output interfaces and publishing policies, and forwards the data, if
appropriate.

In the same way, the gateway registers in the superscope(s) and upon receiv-
ing a notification from there evaluates the assigned input interfaces and delivery
policies. Since delivery policies need cooperative filtering in all consumers, the
gateway’s functionality depends on the filtering supported in present implemen-
tation of the collapsed scope graph.

Scope Address. In the scope address architecture there are administrative
components available to execute gateway functions. Cross-scope traffic is matched
against the interfaces, publishing and delivery policies are applied as before. The
same implementation can be used, only a second local event broker to bridge
the different architecture’s implementations must be present.

Broker Scopes. Broker scopes are administrative components that represent
a specific scope and explicitly controls all internal and external traffic. Thus,
they may directly implement any gateway to other architectures.

Integrated Routing. Although no individual representatives of scopes exist,
scopes and transitions between scopes are explicitly recorded as routing tables
with entries referencing other routing tables. Instead of pointing to other tables,
the entries may refer to a second local event broker to access an other’s scope
architecture. Interface and transmission policies are handled as before—they
always explicitly applied. The discussion about locating cross-scope transitions
(cf. Section 4.5.5) holds for gateways as well. They can be placed either at a
designated broker or at several brokers of the scope, where the first encountered
when forwarded a notification is used for the transition.

4.6.3 Integration with other Notification Services

The gateway of a scope may not only bridge different scope architectures within
the Rebeca system, but also facilitate coupling of a scoped system with other
notification services. The gateway functions simply have to implement another
service’s API to act as a regular producer/consumer within that service. The
traffic flowing between the scoped and the external system is controlled by the
gateway functions, i.e., interfaces, mappings, and transmission policies. By cre-
ating an ‘outside’ scope and a gateway that connects other communication ser-
vices, external data is incorporated into the scoped system without impairing
visibility control. On the other hand, this gateway retains the component char-
acteristic of scopes with respect to the outside system. The flow of notifications
leaving the scope follows the definition of the scope graph.

Of similar importance is the coupling of scoped and unscoped applications,
which are likely to coexist. Consider the integrated routing approach, for in-
stance, and two applications, one scoped and one unscoped. The scoped routing

4.7. DISCUSSION 137

tables are used in addition to a traditional implementation, which is nothing
more than a further routing table not connected to the scope routing tables. All
scoped clients are assigned to some RT

Si

Bi
and the non-scoped (‘legacy’) clients

are still maintained in separate old-style Rebeca routing tables RTBi
. In fact,

the overlay of all RTBi
constitute a default scope to which every newly created

simple component may be assigned. In this way, scoped and non-scoped can
interact in a controlled way.

4.7 Discussion

This chapter has presented a range of approaches for implementing scopes. A
scope’s architecture is distinguished by the communication medium used for
transmitting notifications and by the way scopes are distributed. The different
architectures all adhere to the visibility constraints defined in the scope graph,
but they differ in the amount of control exerted on communication beyond inter-
faces and filtering. The options covered here range from static deployment and
collapsed filters to broker scopes and the integration of content-based routing
and scoping. They make the abstract notion of scopes concrete.

The central point made in this chapter is that scoping does not imply a spe-
cific implementation per se. Depending on the intended semantics, adaptability,
communication efficiency, etc., alternative implementations are applicable. This
chapter has shown how a scope graph as a model of an application is trans-
formed into a running system. Scopes thus became a means of implementing and
customizing notification dissemination. They allow system engineers to choose
those techniques of network communication, data representation, filtering, rout-
ing, and data communication security that are appropriate for the considered
scopes and conform to their required QoS characteristics. Scopes make applica-
tions and the publish/subscribe system itself customizable and they facilitate a
model driven and open implementation of middleware.

138 CHAPTER 4. SCOPE ARCHITECTURES

Chapter 5

� ✁✄✂☎✁✝✆☎✞
—An

Implementation of Scopes

Contents

5.1 Software Building Blocks 140

5.2 Scopes . 148

This chapter describes the implementation of scopes as part of the Rebeca

notification service. Rebeca is a recursive acronym that stands for Rebeca
Event-Based E lectronic Commerce Architecture. The system is created as
a testbed of notification service implementation and extensions are developed
with diverse objectives in mind. The initial approach focused on routing al-
gorithms [213], performance measurements [217], and flexible data and filter
models [212] that were not limited to a predefined set of allowed data types and
filter expressions. The initial acyclic broker graph was extended to operate on a
peer-to-peer (P2P) network that guarantees maximal network depths and self-
organizing and fault-tolerant network topologies [291]. Mobility scenarios were
addressed in [106, 107, 218, 305]. The initial support of handling notification
lifetime was extended in [75, 218], and recently, security issues were addressed
based on scopes in Rebeca [117].

The initial implementation of Rebeca [112, 213] has been realized in the
Java programming language [17] (J2SE 1.4), and the development currently
continues on Java and .Net. Partial implementations were also done in Smalltalk
and Python, and a serialization mechanism that allows for the transmission of
XML-encoded notifications opens the system for further extensions.

The implementation described in this chapter redesigns core parts of the
infrastructure and adds scoping into the more modular software architecture.
Section 5.1 presents the core parts of Rebeca and the next sections detail the
implementation of scopes.

139

140 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Figure 5.1: Events, notifications, and messages

5.1 Software Building Blocks

The basic infrastructure building blocks are event and subscriptions, the basic
API, the broker network, and the individual broker implementation.

5.1.1 Events, Notifications, Messages:
Data Models

Important features of notification services are the data and filter models available
for notifications and subscriptions, respectively. They determine the expressive-
ness of the notification service as a coordinating intermediary in the first place.
Although this obviously interrelates with application functionality, the data and
filter models are often laid down by the service provider. For instance, the Java
Message Service acts as a black box using such predefined models.

In Rebeca, events and notifications are distinguished in the implementation
(see Figure 5.1). The interface Event provides access to information unique to
an abstract event. id and origin are null or carry a unique numerical identi-
fier and a string representation, respectively. Essentially the subclasses contain
information visible in the infrastructure but not in the application. The appli-
cation/event data is stored in a Notification, which provides an interface to
a specific representation of an event. One event can refer to multiple notifica-
tions. Initially, when an application publishes a notification, an event instance is
created that refers to this first notification. During event processing several noti-
fication instances may be created that all stem from the same original event. For
instance, if routing is parallelized or if an event is forwarded into several scopes,
different notifications are processed that belong to the same event. Events refer
only to notifications on the same node, not to remote ones.

Subclasses of Notification are provided for different data models, which are
independent of any specific events, and for certain types of events in a predefined

5.1. SOFTWARE BUILDING BLOCKS 141

data model. A name-value pair notification may carry arbitrary data, whereas
a Quote subclass directly provides a Java implementation of the quote events of
the stock market example. In this way, general data models as well as objects
as events are supported by Rebeca.

In addition to the application data, each notification contains a header that
carries management data specific to this notification (cf. Fig. 5.2). The applica-
tion data contained in the body is used by subscriptions and filters (see below) to
select the notifications of interest; the body is not modified by the notification
service. The header, on the other hand, is not accessible to applications and
contains management information only used in the broker network of Rebeca.
The header consists of a volatile part, which is not transmitted between brokers,
and a non-volatile part, which is maintained until the notification is delivered
to the application. Volatile data are broker-local information such as source
links, local receive time, etc. The non-volatile part carries data relevant to the
routing and delivery of the notification through the whole broker network, e.g.,
publishing time, scope IDs, sequence numbers, and so forth.

N
o

n
−

V
o

la
ti

le

scope

rcv−id

sourcelink

H
ea

d
erV
o

la
ti

le

publisher

B
o

d
y(name, value)

(name, value)
...

Figure 5.2: Message structure

The flexibility of Rebeca is that the provider of the infrastructure or the
application programmer is able to implement and use any form of notification
as long as it inherits from Notification.

On the lowest level messages are used to send notifications between Rebeca

processes. The messages are exchanged as part of the link protocol between
the processes. This protocol is currently confined to a minimum functionality,
including link setup, protocol version tests, and the initialization of the serial-
izer [258]. The latter transforms notifications to the byte stream transmitted on
the network, and vice versa. The subclasses of Message are specific to the pro-
tocol used. Currently, only one implementation is provided, NVMessage, which
consists of name-value pairs, one of which is named “body” and contains the seri-
alized notification, whereas the others may be used for link sequence numbers or
sliding window protocols [243]. Message, too, contain management information,
which is specific to the data communication on the respective link.

In summary, three different interfaces exist to describe events:

142 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Figure 5.3: Subscriptions and filters

1. Event contains global attributes intended mainly1 for internal use.

2. Notification carries the application data in a specific data model and
additional internal routing information.

3. Message contains a serialized notification (or other Rebeca administra-
tive messages) and link-specific data concerning, e.g., quality-of-service,
serialization, etc.

These interfaces correspond to different layers in the implementation, which are,
however, not strictly separated. The serialized data sent in messages is de-
serialized on the receiver side, but it is also cached (Notification.serialized
Form) to facilitate resending unchanged notifications without repeating the seri-
alization step.

5.1.2 Subscriptions and Filters: Filter Models

The filter model corresponds to a data model and determines the expressiveness
of subscriptions (see Figure 5.3 and [212, 213]). The Filter interface contains a
method match() that tests a notification. Currently, the implementation returns
a boolean value so that filter concatenation as defined for simple event systems
in Section 2.3 must be emulated by looping over a list of filters. The interface
also contains three methods covers(), overlaps(),and merge(), which must

1Information such as publishing time might be of interest to the application as well.

5.1. SOFTWARE BUILDING BLOCKS 143

be implemented if advanced routing algorithms shall be used; the name-value
pair filters contain this implementation [213].

In Rebeca, clients may issue any filter that inherits from the interface
Filter; no specific filter model is required. As with the data models above,
the provider of the infrastructure or the application programmer is able to im-
plement any kind of filter as long as it inherits from Filter.

Filters are not issued directly. Instead, the system expects subscriptions,
which are of type Subscription. As stated in Section 2.1.3, subscriptions are
filters, but additionally may include other information than only the filter ex-
pression selecting passing notifications. The simplest form, of course, is the
FilterSubscription, which simply takes a filter that implements the subscrip-
tion’s match() method. Another example is ReplaySubscription, which holds
a filter and an additional query which is used to retrieve past notifications that
shall be delivered in advance of any new ones [75].

5.1.3 Pub/Sub API

Clients access the Rebeca notification service via local event brokers, which
offers the plain pub/sub API as a library collocated to the client code. Local
brokers maintain connections to the event broker network as described in Sec-
tion 2.3. They also maintain a routing table to store the callbacks for each
locally issued subscription. The subscribe() method takes a subscription and
a callback, which is invoked if a notification arriving at the local event bro-
ker matches the specified subscription. These callbacks as well as many other
event processing components inherit from EventProcessor, which only contains
a single method, process(). In this way, the routing table can store both local
callbacks and connections to remote brokers (see below).

The publish() method of the local event broker inserts a new notification
into the system; a corresponding event object is created by the broker. Unsub-
scribe and (un)advertise methods are also available at the local event broker.

In addition to the offered API, which is basically the same as in the original
Rebeca [213], event-based components are introduced here that hide the explicit
handling with the local event broker. A component is implemented through the
Interface Component (see Figure 5.4). It offers similar functions as the local
broker: it can publish, advertise, and subscribe. This type corresponds to the
components defined in the scope model in Section 3.2 and it is implemented
in SimpleComponent. It can be instantiated in any application program and
searches for the next event broker at a number of default places (localhost with
default port, property file driven JNDI lookup, multicast lookup). Example
code for using SimpleComponent is given in Figure 5.5. Lists of Subscriptions
and advertisement constitute the input and output interface of a component,
respectively.

A component may join and leave scopes by calling the respective meth-
ods joinScope() and leaveScope(), cf. Section 5.2.2. Scope inherits from
Component since it acts as component in its superscopes. Additional methods

144 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Figure 5.4: Components and scopes

public class DemoPublisher extends SimpleComponent {
void main (String[] argv) {

Component c = new SimpleComponent() {
public void run() {

publish(new TestNotification(argv[0]));
}

};
}
}

Figure 5.5: A demo publisher

enable the configuration of scope features (interfaces, mappings, transmission
policies).

5.1.4 Broker Network

The broker network consists of implementations of EventBroker. The interface
is implemented in the LocalEventBroker class (Figure 5.6), which is typically
colocated to the clients of the notification service and serves as access point
to the infrastructure. The core network consists of EventRouter implementa-
tions, which inherits from EventBroker the methods to access the routing table/
engine and the current list of links to other brokers. The router adds listener
management to allow other brokers to connect to the EventRouter instance.
Current listeners are, e.g., ServerSocketListener and PipeListener, which
enable TCP and node-local connections to be established. These routers are

5.1. SOFTWARE BUILDING BLOCKS 145

Figure 5.6: Rebeca brokers

instantiated as separate processes on arbitrary machines in the network.
Currently, brokers are connected using point-to-point TCP connections. Al-

though multicast support would improve communication efficiency, the TCP so-
lutions is the most general, and optimizations are left for future work. New bro-
kers are connected to existing brokers by specifying an address with the help of a
Uniform Resource Locator (URL). Helper functions, as in SimpleEventRouter,
can exploit the Java Naming and Directory Interface (JNDI) or multicast to look
up running brokers.

The currently available routing algorithms require the network to be acyclic.

5.1.5 Broker Implementation

The basic functionality of a broker is rather simple. Each incoming notification
is tested against the filters stored in the routing table and it is forwarded along
all links having matching filters. In Rebeca, the RoutingEngine encodes the
routing algorithm used to maintain the routing tables (Figure 5.7 and [213]).
So far, it also includes the filter tests, although routing and matching are inde-
pendent in principle; a more elaborate implementation is left for future work.

A routing table contains pairs of filters and event processors. It can be
used to store local callbacks as well as network links, because both inherit from

146 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Figure 5.7: Rebeca routing classes

EventProcessor. Network links are encapsulated in EventTransport, an inter-
face for bidirectional transmission of notifications. Such a transport implements
the Rebeca protocol for link setup, it accesses a serialization mechanism to
stream notifications, and it transmits messages containing serialized data and
other control information. In local event brokers an EventProcessor instance
may be a callback of a registered consumer. In any case this abstraction can
be exploited to build arbitrary sequences of event processing modules that com-
prise the broker functionality, which is used in a re-design of the original broker
implementation.

Rebeca messages transmitted between brokers may contain (a) control mes-
sages, like subscriptions or other administrative messages, or (b) notifications,
which consist of a management header and the notification data. Messages of
type (b) are handled by the routing table. A number of subtypes of admin
messages are differentiated and specialized message handlers can be registered
for their processing. Thus, new message formats with the respective processing
functionality can be easily added.

The original broker implementation relied on a number of subcomponents
that were hard-wired. Now, the re-implemented brokers are instantiated and
configured within a software container that supports the dependency injection
pattern [121, 149]. Brokers become customizable software containers and the
implementation of the routing engine, transmission protocols, connection pool-
ing, and message handlers is specified at deployment time of the broker. The
container starts the components specified in an configuration file (Figure 5.8)
and starts those having implemented the Startable interface.

Each broker of the network can be instantiated with a JMX (Java Man-
agement Extension) agent assigned to it. This opens the instance for online
monitoring and reconfiguration of the current state at runtime. Currently, the
JMX implementation and the HTTP connectors of JBoss are used [159]. A
JMX-enhanced broker accepts requests to instantiate local simple components,
or scopes as detailed below.

5.1. SOFTWARE BUILDING BLOCKS 147

<?xml version=”1.0”?>
<components>

<component type=”rebeca.container.configuration.ConfigurationBuilder”
class =”rebeca.container.configuration.XMLConfigurationBuilder”/>

<component type=”org.apache.commons.logging.LogFactory”
class =”org.apache.commons.logging.impl.LogFactoryImpl”/>

<component class=”rebeca.network.transport.EventSocketTransportManager”>
<local−port>8020</local−port>

</component>
<component type=”rebeca.routing.RoutingEngine”

class =”rebeca.routing.Flooding”>

</component>
<component type=”rebeca.security.SecurityManager”

class =”rebeca.security.PKSecurityManager”>
<key>

<path=”to/file”/>
</key>

</component>
<component type=”rebeca.network.EventRouter”

class =”rebeca.network.SimpleEventRouterImpl”>

</component>
</components>

Figure 5.8: An event broker configuration file

5.1.6 Channels

For a number of application scenarios and internal management tasks it would
be benefical to identify a specific route between sender and receiver of a mes-
sage. The JMS standard includes a mechanism to send reply messages on the
application level. The processing of scope join ‘requests’ presented in the next
section relies on this ability. And the implementation of histories replaying past
notifications uses direct connections within the broker network, but would profit
from such a mechanism as well. However, the use of directed communication
is generally questionable in event-based systems. The solution implemented in
Rebeca does not disclose sender IDs, it rather identifies the route a notifica-
tion took in the network, and makes that accessible for later routing in either
direction.

A prelimary implementation of channels works as follows. A channel is a
specific path in the broker network, which may split and join at any broker.
Each involved broker stores a the next hop brokers of the channel. A notification
can be tagged with a channel ID and if the corresponding channel is known,
the notification is forwarded to the stored next hops. If the ID is not known,
routing is carried out according to the normal routing tables, but additionally
a new channel with this ID is registered that points to the originating and all
destination directions.

The configured channels are stored in the ChannelTable in each EventRouter,
i.e., broker of the network. Currently, a Channel instance is stored for every next
hop of a channel, so that multiple instances are created referencing the same
ChannelID object. Since channels are added via calls to the channel table, alter-

148 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

native implementations may use only one channel object that holds all next hops.
The channel IDs can be be universally unique identifiers2 or can be generated
unique to a specific broker. In the latter case the tag assigned to a notification
must be transformed when forwarding it to the next hop (Channel.nextID().
Similar to ATM (Asynchronous Transfer Mode) virtual paths [185], IDs a used
to distinguish channels within one broker.

Obviously, after creating the channels, they must be taken down after some
time to keep the size of the channel tables small. Depending on the application
scenario, a different rules can be applied to determine outdated channels. The
channels have a field Channel.relevance that is an integer counted down to
zero, which indicates that the channel is not used anymore. The simple ap-
proach to implement a back-channel for notifications is to count down whenever
a notification passes along the channel; which is used for scope administration
detailed below. If the relevance is initially set to one, exactly one notification
can be sent in the channel. Alternatively, a timer associated with the channel
table could be used to count down the relevance.

5.2 Scopes

The scope implementation in Rebeca consists of: the generic scope interfaces,
two imlementations (broker scopes and integrated routing), and the management
interfaces of running instances.

5.2.1 Scope Interface

As depicted in Figure 5.4 on page 144, the Scope interface is derived from
the general Component interface. Being a component, scopes have methods
joinScope and leaveScope to ask for joining or leaving an other existing scope.
Actually, the presentation is simplified in the figure, because these methods
are overloaded and can take different parameters such as filters and credentials
to enable admission control [117]. The ScopeRef interface taken as parameter
for joining and leaving encapsulates a reference to a running scope instance.
Subclasses are defined specific to the scope architectures. In the broker scope
implementation, it contains IP address and port of the running scope instance.
In integrated routing, it contains a reference to the scope lookup table STBi

which
gives the next hop towards the scope instance. Scope references can be retrieved
from a lookup service or directory—but remind that components are generally
not intended do join scopes manually.

Additionally, the scope interface provides the minimal methods needed in
a scope. imposeFilter() enforces a filter on one of the scope’s components,
shaping all traffic to and from the specified component to conform with the
specified filter. addComponent() and removeComponent() process join and leave
requests from components.

2J2SE 1.5 will contain helper classes for UUIDs.

5.2. SCOPES 149

Transmission policies can be incorporated following the strategy pattern [129].
A Policy interface should comprise init and shutdown methods to manage its
own resources, and a test method that takes a notification and indicates to
which components it should be forwarded. Instances of a policy are called after
interface filters have been applied and before the message is actually forwarded.

5.2.2 Implementation: Broker Scope

The following section describes an exemplary scope implementation and its scope
lifecycle, i.e., details on how scopes and scope graphs are created, how compo-
nents join and leave scopes, and how scopes are deleted.

The BrokerScope class implements the Scope interface and follows the broker
scope architecture of Section 4.4. One instance of this class represents a specific
scope of the scope graph, and it acts as broker in the broker network. Technically,
the broker network is instantiated first and then a BrokerScope instance is
collocated to an existing broker. The scope functionality is linked into this
broker: the routing table is wrapped to intercept calls to distinguish scoped
traffic from unscoped traffic. The entries of the routing table are now separated
in three parts, the list of links to superscopes, links to sub-components, and
entries of unscoped destinations. In the first two cases, the network links of the
broker correspond to the edges of the scope graph.

With respect to a broker the scope instance is a singleton, governed by a static
hash that governs the one-to-one relationship within a Java virtual machine.

Creating a new scope

A BrokerScope object can be instantiated in any VM where an event broker is
already running. It is constructed as singleton with a static member referencing
the broker instance, thus guarding against multiple instantiations. In fact, the
member holds a list of brokers so that multiple brokers can be instantiated
in one VM and the BrokerScope is a singleton with respect to one broker.
A BrokerScope object is instantiated by calling an event broker via the JMX
management API, using either the HTTP adaptor or RMI calls to the respective
methods.

Joining an existing scope

A running scope instance S has no connections to other components at first; the
links to neighbor brokers are not part of the scope graph. Two cases must be
distingsuished: i) a component asks for joining this scope instance, and ii) this
instance wants to join an other scope.

In the first case, a simple component can join a BrokerScope instance if it is
directly connected to this instance. A call to Component.joinScope() is imple-
mented by having the local event broker send an admin message (ScopeJoin-
Message) into the broker network towards the border broker to which it is con-
nected. If the border broker hosts the requested scope the join request is pro-

150 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

cessed by the scope instance. If the scope admits the join, it updates its list of
sub-components and acknowledges the request; otherwise the request is rejected
by sending a negative ScopeJoinMessage back to the client.3 Scope join requests
of other scopes are handled in the same way.

The second case considered is how to the broker scope instance S asks for
joining an other existing scope. The administrative interface of S gives ac-
cess to the Component.joinScope() method implemented by BrokerScope.
Similar to the implementation in simple components, this method prepares a
ScopeJoinMessage and sends it to neighbor brokers. It is send to all next hop
brokers if no specific destination is given. Or it is send to only one specific bro-
ker, e.g., if the administrator initiating this request knows of the scope running
there. On a positive acknowledgement the list of links pointing to superscopes
is updated to reflect the locally known scope graph.

So, the scope graph implemented in the system is build up by connecting
broker scope instances to each other and simple components to border brokers.
The subgraph known to the broker scope instance, i.e., itself plus egdes to adja-
cent nodes, is stored in the lists of links to superscopes and to sub-components.
The mapping of the scope graph to the broker network is done manually by the
administrator, which is infeasible for large graphs. But it is advantageous if full
control of communication is required, e.g., at gateways between organizational
boundaries.

Scope Join Notification

The process of joining a scope can be seen as a sequence of events, describing
the initial interest to join and the reaction of the scope instance. In the broker
scope approach they are send as administrative messages. In the scope address
architecture, which less strictly correlates scope graph and broker network lay-
out, these notifications are actually published in the network. In any case they
carry the data necessary to identify scope and component, the status of the
join process, and additional information about the component (see Figure 5.9).
The notifications are not only used to inform about the progress, they drive it.
The Scope and Component fields carry names that uniquely identify joined and

Scope Name (or ID) of the destination scope
MandatoryComponent Name (or ID) of the joining component

Status Request, Approval, or Rejection

Interface with which admission is applied
Optional

Credentials List of certificates for the interface

Figure 5.9: Structure of a ScopeJoin notification

3In other scope architectures, e.g., scope address (Sect. 4.3), the join messages may be
published as notifications themselves to leverage space decoupling.

5.2. SCOPES 151

joining components. Uniqueness is only required in terms of the reach of the
notification. If it is potentially distributed in the complete system, it must be
universally unique. In the broker scope approach, the messages are sent only
to the next hop brokers anyway. Generally, applications are able to control the
distribution of ScopeJoin notifications with their scope interfaces. Hence, the
administrator must ensure that these names are unique within intended area of
distribution.

The Status field communicates the process status, which is one of three
stages: Request, Approval, or Rejection. In Request state, the join has been ini-
tiated but no decision is made yet. The joining component requests participation
with the interface specified in the respective field and the provided credentials
may be used to determine admittance by the scope membership control (see
below). The Approval state confirms successful join with the interface given in
the respective field of the approval notification. Note that the given interface
may deviate from the originally requested one. If the interface is not specified
in the approval, the originally requested one is allowed. Otherwise, the imposed
interface is given in the approval (cf. Section 3.3). A Rejection state finally dis-
approves the request, indicating that this component is not allowed to join with
the given credentials currently. Interface and Credentials fields may be emtpy
or contain the specific entries that led to the refusal.

Membership Control

Who is going to decide on the join request? As mentioned before, scopes lend
themselves to implement access control mechanisms in event-based systems. A
broker scope instance can accept or reject a join request based on the infor-
mation provided in the request. A security manager is configured and started
at deployment time. The interface SecurityManager has methods to test join
requests, subscriptions, and advertisement for compliance with scope-specific
security policies. These methods are invoked from the respective message han-
dlers. The example implementation (cf. [117]) utilizes signed filters, which are
issued and signed offline with a scope-specific key so that they can be checked
online by the scope instance. In addition to link setup at the broker network
level, additional application-specific security measures are thus implemented at
the scope level.

Leaving a Scope

A leave request is issued as notification in the scope to be left. Any management
information about the leaving member stored in the scope instance is deleted.

Destroying a Scope

The management interface of a broker scope instance can be used to request a
shutdown of the instance.

152 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

5.2.3 Management Interfaces

Management interfaces are provided to allow system administrators to monitor,
configure, and deploy infrastructure and application components at runtime. For
this reason, event brokers, routers, scope instances, and simple components can
be decorated with management interfaces. These interfaces rely on the Java
Management Extensions (JMX) [283], which are part of the JAVA SDK as of
J2SE 1.5 [160]. A JMX agent runs in a virtual machine registers local MBeans,
offers protocol adaptors to access their interface with HTTP, and uses connectors
to transparently forward calls from remote proxies to the local MBean instances.

Standard MBeans are the simplest way to export fields and methods of man-
aged classes. The class must implement an interface ClassnameMBean and ev-
ery (getter/setter) method of the class that is also defined in this interface is
accessible through the JMX agent. In order to make the existing classes man-
ageable either the inheritance hierarchy has to be modified or new classes has to
delegate calls to the existing ones. Another elegant solution, which does not re-
quire to always instrument all classes with management code, is aspect-oriented
programming (AOP) [99, 172]. A management aspect of the form given in Fig-
ure 5.10 adds these features without having to change existing code. After a
first evaluation of the delegate approach, AspectJ [171] was used to implement
the management extensions.

public EventBrokerMBean extends EventBroker {...}
...
public aspect JMX {

declare parents:
(! EventBroker && EventBroker+) implements EventBrokerMBean;

pointcut mbeanCreate (Object o) :
execution(∗MBean.new(...) && this(o);

after (Object o): mbeanCreate (o) {
// register to agent

}

public JMX() {
// get reference to agent, start adaptors

}
}

Figure 5.10: Adding a management aspect

Scope management deals with monitoring and controlling the state of the
scope graph. It covers scope creation and deletion, and the lifecycle man-
agement of simple components, their connecting to and disconnecting from
scopes. Scopes are created by accessing the event broker that shall host their
instance (cf. Figure 5.11. The MBean interface of an event broker provides a call
EventBrokerMBean.createComponent() that takes a class name and additional
constructor parameters and utilizes Java class loading to load and instantiate
a class of the given name. The configuration parameters can either be directly
supplied to the constructor or a Config instance is given that carries all the

5.2. SCOPES 153

configuration parameters as a key-value map. Config is inspired by the software
container approach to configuration as it is used in the Apache Avalon project.

public interface EventBrokerMBean {

Collection getLinks();
Collection getClients();

void createSimpleComponent(String className);
void createSimpleComponent(Config config);

void createScope (String className);
void createScope (Config config);

void destroyComponent (String ref);
...
}

Figure 5.11: EventBroker management interface

The management interface of individual scope instances, Figure 5.12, pro-
vides the current list of connected components and superscopes, and generally
informs about the current configuration of scope features, even if they are not
adaptable at runtime. A likely future extension is to capitalize on the software
container approach to make the constituents of the scope instance more adapt-
able. The functions to join scopes is inherited from the Component interface.

public interface ComponentMBean extends Component {
// makes all methods of Component manageable
}

public interface ScopeMBean extends ComponentMBean, Scope {
// makes all methods of Component and Scope manageable, plus

Collection getComponents();
Collection getSuperScopes();
...
}

Figure 5.12: Scope management interface

5.2.4 Implementation: Integrated Routing

Integrated routing reconciles distributed notification routing with the visibility
constrains defined by the scope graph (cf. Sect. 4.5). The original routing table
is broken into multiple tables, one for each locally available scope. Thus, for
each scope a connected subset of event brokers constitute an overlay within the
broker network that conveys scope-internal traffic. In order to simplify scope
joins, another routing table is stored in each broker. The scope routing table
scopeRT records scope-link pairs in each broker to signify in which directions
brokers of the respective scope can be found.

154 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Figure 5.13: Integrated routing scope classes

This kind of scope architecture is implemented by the IntegratedScope

class (Fig. 5.13). The overlay routing table (IntegratedScope.overlayRT)
holds the routing information of scope members and superscopes. The static
field IntegratedScope.scopesRT stores the direction towards other scopes in a
routing table that is shared by all instances of this scope architecture.4

To create a scope of the integrated routing architecture, an instance is cre-
ated via the EventBrokerMBean.createComponent() call at an arbitrary broker.
Each scope is represented by one instance, which has a routing table of its own
in addition to the one maintained by the event broker for the unscoped traffic.
The static constructor of IntegratedScope registers new message handlers with
the event broker to process administrative messages such as join requests. The
creation of the scope is announced with a notification, which is distributed in the
network to update the scope routing tables. This announcement can be deferred
until the newly created scope has joined other scopes. In this way, the distribu-
tion of the scope creation events is limited by the overlay of the superscopes and
their output interfaces. And so the scope routing tables do not have to store
references to any socpe in the system.

The scope overlay can either be extended manually via the management in-
terface to preset a certain extent of the overlay, or it is extended dynamically
when other components are to join the scope. In the second case, a scope join
request is issued at a broker currently not part of the overlay. A request is trav-
eling in the direction stored in the scope routing table, leaving a temporary trail
of references to the requesting source (using channels described in Sect. 5.1.6).
The first broker encountered that is part of the requested scope, processes the
join request and sends a reply back along the channel. If affirmative, instances
of IntegratedScope are created along the way; they become part of the scope
overlay. Alternatively, the join request or the replying scope may opt to use the
channel just created to tunnel all scope internal traffic towards the requesting
source. This mechanism is used in Fiege et al. [117] to tunnel encrypted message

4Although valid for any scope architecture, this table is currently implemented in this class
as it is not used elsewhere.

5.2. SCOPES 155

payload through untrusted brokers.
The transition of notifications between two scopes requires the two scope

overlays to share at least one broker. The edge between two adjacent nodes
in the scope graph is implemented as references between two IntegratedScope

instances. The input interface (subscriptions) of the subscope is stored in the
superscope’s routing table with a message handler of the subscope as destination.
Conversely, the output interface (advertisements) of the subscope is stored in
its own routing table. The associated handler of the superscope may add any
imposed filters on the traffic.

156 CHAPTER 5. REBECA—AN IMPLEMENTATION OF SCOPES

Chapter 6

Related Work

Contents

6.1 Distributed Systems . 159

6.2 Notification Services . 164

6.3 Rule-Based Systems . 171

6.4 Data Management . 171

6.5 Coordination Models . 173

6.6 Software Engineering . 175

6.7 GUI Design . 179

The paradigm of event-based computing is used in nearly all areas of com-
puter science. And although terminology and focus may vary, there is often a
common ground. In this chapter, existing results and solutions, which originate
not only from the obvious areas of notifications services and distributed systems,
are related to the key characteristics of the scoping approach. However, there
is hardly any work that focuses on event visibility in general and addresses the
different aspects involved:

Message Visibility: The basic goal is to control the visibility of notifications,
limiting their distribution. Any communication substrate that supports
one-to-many communication faces the need to determine the receivers of
sent data. The approaches taken can be related to scopes and their ability
to group eligible receivers along multiple dimensions.

Engineering: In order to cope with the complexity of large applications, ab-
stractions and modules exist in all areas of computer science that hide
details of implementation and internal structure. Building up structures
and the coordination of composed members has turned out to be the ma-
jor engineering issue. It consists of an application and an infrastructure
related part.

157

158 CHAPTER 6. RELATED WORK

Application: Decomposing an application and identifying its structure
enables engineers to modularize and reuse functionality. The inherent
problem is to first delimit modules and then organize their interaction.
A module construct for event-based systems might draw from existing
work on component engineering in these points.

Infrastructure: The delimitation of application modules becomes an in-
frastructure issue when regarding effectiveness, scalability, and ad-
ministration. In view of heterogeneous applications it is clear that no
one-size-fits-all approach of event notification will fit the needs. In-
stead of manually bridging different domains one may want to struc-
ture the service implementation itself, without giving up the single
model of the system. Existing work can be compared with respect to
its ability to identify system structure (in event-based systems), inte-
grate varying implementations, and be adapted to application needs.

Management: Management support is more difficult and more important to
achieve in event-based systems as it is in other kinds of systems, because of
the implicit interaction between components. Structuring both application
and infrastructure can help to locate management functionality. In this
way, issues of administrative domains, low-level implementation details,
runtime control, etc., can be bound to this structure. Existing work can
be compared with respect to its ability to support such management tasks.

Security: Still an open problem is how to control/enforce security policies, since
interaction is only implicit here and cannot be bound to pairs of interact-
ing entities as it is typically done in request/reply systems. Although this
thesis does not investigate security in detail, the scoping approach obvi-
ously bears the potential to integrate security measures into event-based
systems, and it is mentioned here to stress that further work is missing in
this important area of event-based systems.

The related work presented in this thesis is compared to the above objectives
and is drawn from the following areas:

• Distributed systems
Related communication paradigms: multicast networking [91], group com-
munication [250].

• Notification services
The primary source of work directly related to this thesis [57]. Since de-
tails of the relevant work are referenced throughout the thesis, this section
merely summarizes the characteristics of the main contributions.

• Rule-based systems
A more abstract, often centralized, viewpoint with focus on specification
of and programming with events and triggered actions [154].

6.1. DISTRIBUTED SYSTEMS 159

• Active database systems
An application of rule processing within database systems [242], integrated
with transaction processing and database languages.

• Coordination models
This field addresses the general problem of orchestrating autonomous com-
ponents [197, 237].

• Software engineering
A wealth of different topics is related to event-based systems: implicit in-
vocation [132], software architecture [134, 192], distributed debugging [29],
component models [27], etc.

• GUI design
An early source of event usage [178, 267], at least as far as the term ‘event’
is concerned, although primarily callbacks are used.

6.1 Distributed Systems

The basic point of view taken in this thesis is mainly that of distributed sys-
tems. This field is obviously a major source of related work which addresses the
objectives of managing application and system structure and controlling the dis-
tribution of messages. The following topics are considered: managing structure
in middleware, related communication mechanisms (multicast, group communi-
cation, peer-to-peer, direction diffusion, etc.), and the use of events in specific
distributed application scenarios.

6.1.1 Middleware

The two most important standardized middleware platforms are Corba and
Java 2 Enterprise Edition. The issues related to notification services and com-
ponent models are discussed in 6.2 and 6.6, respectively.

Corba

Besides the Corba event and notification services, which are described in 6.2.1,
the Common Object Request Broker Architecture [224] provides a number of
mechanisms to organize and structure distributed systems. Corba domains [249]
bundle sets of objects, which may be grouped by some common characteristic
of administrative or technical nature. These domains are used, for example, to
install security policies in a specific set of brokers, and to delimit implementation
details like inter-ORB protocols and implementation repositories. A domain is
represented by an object and can be stacked recursively to include subdomains.
Bridges handle the traffic crossing domains. They control and restrict inter-
domain communication and transform object references necessary to access an
object, and hence control any call on these references. Corba domains pursue

160 CHAPTER 6. RELATED WORK

objectives comparable to the scoping approach presented in this thesis. However,
Corba domains are mainly a means to cope with infrastructure differences, such
as protocols, representation, and security domains, and they are constrained to
handling object calls. They are not targeted at engineering issues of application
design, and more importantly, they do not integrate notification service bridging.

Corba’s management service facilities comprise the managed set service, the
instance management service, and the policy management service. The first is
used to manage groups of objects, which have to implement the service’ Member
interface, the instance management service offers lifecycle management of these
objects, and more related to the ideas in this thesis, the policy management
service binds policies to object domains. The latter is used to set initial values
in managed objects and to control their evolution at runtime. All of these are
related to the idea of configuring distributed application components in general,
but they do not address the problem of composing new, event-based components
out of existing ones.

J2EE

The enterprise edition of Java (J2EE, [282]) specifies an execution environment
that contains a component model and a number of standardized services, includ-
ing a notification service (JMS), which are detailed in sections 6.6.3 and 6.2.2,
respectively. In terms of managing application components, the Java Manage-
ment Extensions (JMX) defines APIs for a (partially) standardized way to ap-
plication and network management and monitoring [283]. The managed entities
are called Managed Beans (MBeans), which are either Java objects or external
resources controlled by a JMX agent. JMX also defines publisher and subscriber
interfaces that allow MBeans to notify other entities in the management frame-
work. Unfortunately, the necessary interface to event services is not part of the
specification. But similar to the Corba services presented above, this function-
ality may be used to implement some of the ideas presented in this thesis, but
they do not address the problems themselves.

6.1.2 Communication Paradigms

Communication paradigms other than the plain publish/subscribe approach [233]
are also relevant when considering the implementation of event-based systems.
Once deployment environment and structure of an application is known, one
might reasons whether a plain pub/sub service (Section 6.2) fits the needs best
or whether multicast, group communication or even some peer-to-peer substrate
offers the appropriate combination of quality of service and performance. But
can those paradigms be used to implement features of scopes? What kinds of
structuring mechanisms are available?

6.1. DISTRIBUTED SYSTEMS 161

Multicast

When considering the implementation of event-based systems and application
structures exposed in scope graphs, multicast communication techniques are
an apparent candidate. Multicast techniques were originally explored on bus
networks, like Ethernet [86, 208], they were incorporated in the Internet Pro-
tocol [90], and are recently also considered on the application layer to improve
configurability, and because of the limited availability of the Internet Multicast
backbone MBONE [25, 157, 255].

Multicast primitives offer one-to-many communication, transmitting a single
message to (potentially) multiple receivers. The original network level multicast
exploits broadcast abilities and tree-based routing to ensure that a message is
sent at most once over any physical link, which cannot be guaranteed by applica-
tion layer schemes. Deering and Cheriton [91] presented a good introduction to
using multicast in wide area networks (WAN) and to the early routing protocols.
Even more than in group communication (see below), multicast concentrates on
the efficient dissemination towards sets of receivers, so called multicast groups.
In IP Multicast, like in many other schemes, these groups are independent, with-
out any relation between the sets. They are, therefore, per se not able to model
application structure. Another problem arises due to the fact that routing is
based on group identifiers alone, prohibiting a combination of consumer inter-
ests and application structure. Multicast groups are arranged according to either
content or structure; similar problems exist with the subject trees of subject-
based publish/subscribe [212]. However, as was shown in Sect. 4.5.7, multicast is
an appropriate communication technique to deliver notifications to edge routers
of a specific scope, which implement the so-called fan-out of the routing network
and deliver notifications via point-to-point communication to consumer nodes.

There are a number of extensions to this simple model providing more control
of the distribution of messages. Multicast scope control, as Deering and Cheri-
ton [91] call it, can be accomplished by using the time-to-live fields (TTL) of IP
packets. Routers reduce the TTL on each hop and discard packets if their TTL
is zero, but TTL scoping is orthogonal to application needs and has proven to be
difficult to understand and use reliably. To define multicast scoping explicitly,
administratively scoped IP Multicast was proposed [209], defining a range of IP
addresses (239.0.0.0/8) that can be subdivided to represent hierarchical admin-
istrative boundaries. Each (sub)range of addresses constitutes a multicast scope
and covers a set of interconnected adjacent routers and network nodes, and thus
has a topological meaning. Boundary routers discard all packets of this range
that are about to enter or leave the set. They limit the distribution of packets,
while address allocation [151] according to application needs within these ranges
is only affected by the now reduced number of available addresses. Multicast
scopes bundles network nodes, but does not support communication between
scopes and require static configuration within the IP network routers. Never-
theless, they may well be used to implement those scopes in event-based systems
that are rather static and correspond to network layout. Interestingly, mapping

162 CHAPTER 6. RELATED WORK

a subset of the scope graph on administratively scoped IP Multicast allows to
transparently integrate existing work on implementing publish/subscribe on top
of multicast [22, 235, 277].

Group Communication

Multicast and group communication [250] constitute two ends of a spectrum
of communication systems, which are most notably demarcated by the works
of Deering [90] and Birman and Joseph [39]. Group communication is based
on the notion of groups of processes, and deals with their management and the
communication within groups. It provides a generic abstraction to reduce the
complexity of handling multiple recipients. The actual set of receivers within
an addressed group is determined by group membership and the protocol used
to deliver the message.

Groups are mainly understood as a means to delimit sets of receivers. One
of the first works on process groups is the V Kernel [69], which allows processes
to be in one or more flat groups, but no nested groups are supported. In the
renowned ISIS system [38] nested groups are available, but only to provide a
multi-level set inclusion. A message sent to a specific group is always delivered
in all subgroups and not into any parent groups at all. In the terminology of
this thesis, hierarchical process groups predefine static interfaces that accept all
incoming and block all outgoing traffic, and thus are more restricted than scopes.

An interesting, different notion of subgroups is presented by Jenkins et al.
[164]. A gossip protocol considers probabilities of infectivity and susceptibility
between any two pairs of communicating nodes to determine in which directions
a message is forwarded. Groups emerge as clusters of members whose probability
is high for internal and low for external communication.

A major contribution of group communication are protocols that guarantee
reliable delivery in case of failures, atomic delivery, and the consistent handling
of group membership [39]. Other issues of implementation are closely related to
multicast—the notion of host groups [68] has identified commonalities between
the two.

To summarize, part of the work on group communication nicely complements
the presented scoping model. While scopes provide means of engineering superior
to groups, the work on reliable delivery within specific groups can be used, for
example, to implement advanced delivery policies.

Peer-to-peer systems

In order to facilitate self-managed networks the idea of combining publish/
subscribe architectures with peer-to-peer systems (P2P) has recently attracted
considerable attention [65, 244, 291, 295]. The efficiency of publish/subscribe is
closely tied to the topology of the underlying network, the design and manage-
ment of which, however, has been neglected so far. P2P systems are designed to
resiliently cope with frequent node failures and changing participation, offering

6.1. DISTRIBUTED SYSTEMS 163

inherently bounded delivery depths, load sharing, and self-organization. These
features may be exploited for intra-scope communication, but the efforts to intro-
duce structure in peer-to-peer systems, which improve routing and management,
are not yet applied on any combination of pub/sub and P2P.

6.1.3 Other Notions of Communication

The principal ideas of event-based computing and publish/subscribe are known
and used under various terms. Directed diffusion[161] is a term used in sensor
networks [10] to denote publish/subscribe communication. It relies on a model
of routers, subscriptions, and routing protocols very similar to those used in the
Rebeca notification service presented in Section 2.4, but with more emphasis on
energy efficiency. The dissemination of subscriptions can be limited according
to a topological scope.

Other approaches to communication resembling pub/sub exist, but they
mostly resort to some static configuration of multiple instances for delimit-
ing traffic; take, for example, push services such as broadcast disks [4], web
caching [210] and content delivery networks (CDN), both in industry [9, 261]
and academia [254].

6.1.4 Application Scenarios

Various scenarios of event-based communication usage exist that demand certain
system structures for consistent operation. As examples, network management
and workflow systems are sketched.

Network Management

Network management has a strong need for sophisticated monitoring capabili-
ties of runtime statistics, alerts, and configuration changes [166]. All of these
are subject to filtering and independent processing in different management ap-
plications. Obviously, event-based communication of the necessary data is indi-
cated. The OSF Distributed Management Environment (DME, cf. [120]) defined
a set management service and the International Standards Organization (ISO)
standardized with Open System Interconnection (OSI) a whole suit of network
communication and management protocols—both include event management.
Both approaches failed to have major practical impact [259], whereas the Sim-
ple Network Management Protocol (SNMP, [260]) is prevalent today. It uses
communities to delimit management topologies and tasks [64], which are but
strings in the management data that are filtered as needed. Although similar
to the collapsed scope architecture presented in Chapter 4.2, there is no explicit
delimitation of traffic as it is possible with scopes. The resulting side effects
were considered one of the major architectural drawbacks, which are addressed
in the recently passed SNMPv3 [152]. A number of SNMP Entities can now be

164 CHAPTER 6. RELATED WORK

federated in a network and applications register at one of the entities [63]. Man-
aged objects can be grouped in ‘scopes’, which are, however, separated from each
other and have no equivalent in the underlying point-to-point communication.

Workflow Systems

Until recently, workflow systems [142] were typically built around centralized
data stores, incapable of supporting inter-organizational processes that typically
evolve separately and are based on different workflow engines [11]. In order to
distribute workflow control and execution the individual tasks must be decou-
pled. This is accomplished by taking event condition action (ECA) rules as
basic execution model. ECA rules were developed for active database manage-
ment systems (cf. Sect 6.4, [5, 88, 242]) and trigger an assigned action only if the
specified event occurred and the condition is valid. Event notification services
are a building block of such distributed activity services, which are investigated
in themselves [74] and as part of distributed workflow systems [51, 82, 167, 184].
They facilitate the decoupled operation necessary in these scenarios. However,
typically only simple event mechanisms are applied, raising the problems out-
lined in the introduction of this thesis.

For example, Geppert and Tombros [143] introduce EVE, an event-based
infrastructure to build distributed workflows. The distributed set of EVE-servers
relay notifications according to announced interest, that is, similar to the simple
event-based system model with no explicit structure in the system. Only in
event composition the set of base events can be limited to events of the same
workflow, which resorts to filters on workflow IDs. The problems arising from
missing structures in workflow systems are pointed out by Eder and Panagos
[98], and their arguments are covered by the discussion given in Sect. 3.1.2.
Their system connects engines from multiple sites with the READY notification
service [147]. It supports administrative domains on a topological basis (see
below).

6.2 Notification Services

The work presented in this thesis originated from the area of event notification
systems in which a considerable amount of work exists and many concrete sys-
tems have been designed and implemented, both in industry and academia. A
comparison of the wide variety of existing notification services would require
a formalization of the provided function. In most systems, both commercial
and academic ones, practitioner’s approaches dominate. A precise definition of
semantics is at most given for subscription languages, e.g., [7], neglecting the
semantics of the event service itself.

A thorough comparison would require a formal specification of the function-
ality of these systems, which is beyond the ‘scope’ of this thesis and for which
adequate tools in form of a sound theoretical abstraction of event-based systems
are still to be developed. The formalization presented in Section 2.3, and in

6.2. NOTIFICATION SERVICES 165

[114, 213, 297], facilitates reasoning about event-based semantics and correct-
ness of implementation, but a detailed comparison based on this or a similar
formalism is an open issue of future work. The following discussion continues to
favor the practical aspects and points out the most characteristic differences.

The following paragraphs consider the widely used API specifications of the
Corba Notification Service and Java Messaging Service, some commercial sys-
tems, and research prototypes.

6.2.1 Corba Notification Service

The Corba Notification Service is an API specification as part the Common Ob-
ject Services of the Corba platform [231].1 It relies on channel-based addressing,
i.e., publishers have to get a reference to a specific channel, which is a regular
Corba object, and send their notification data into this channel. Conversely,
consumers choose a channel and may additionally specify a content-based filter
to select a subset of notifications sent through this channel. The channels offer a
structuring mechanism in that notifications are originally visible only within the
channel they were published in, while any content-based subscriptions are sub-
sequently applied to those notifications visible to the consumer. Channels thus
partition the visible notifications, and if they do not just classify notifications
according to their content or type, they may, to some extent, model structure
in the same way as scopes do.

Still, there are a number of problems inherent to a channel-based solution.
Producer and consumers, that is, the application components, have to deal with
channels explicitly. They have to select the right ones moving information about
application structure into the components—there is no support for the role of an
administrator to arrange channels, producers, and consumers from a system’s
point of view. And this also limits system evolution, since the set of channels
referenced by applications is static, a problem which is only recently addressed
by reflective middleware [85]. Regarding the structure of a system, Corba chan-
nels cannot reflect any hierarchy because their traffic is completely separated.
Although event management domains [229] support the federation of multiple
channels in arbitrary topologies, they do not offer any filtering of notifications
between coupled channels.

As mentioned in 6.1.1, Notification Service instances may be federated with
the help of ORB domains. However, the necessary bridging between these do-
mains has to be set up manually. The domains are mostly seen as means to
model the network and broker infrastructure [249], they are not targeted at en-
gineering issues of application design. So, in the end one can only assess that the
standardized API does not support visibility control and system management
sufficiently well, but the Corba Notification Service may serve as a communi-
cation technique to realize a subset of a scope graph.

1It subsumes and obsoletes the Corba Event Service [227].

166 CHAPTER 6. RELATED WORK

6.2.2 Java Message Service

The Java Message Service (JMS) is an API specification as part of the Java 2
Enterprise Edition (J2EE) [282, 284]. Different to the Corba solution, it can be
used without the enterprise object platform it is part of. JMS coined the term
topic-based subscription, which stands for message grouping according to ab-
stract topics plus content-based filtering on a set of header fields and properties,
similar to Corba’s channels. And this is the main design objective, namely, to
provide an API layer that can be put on top of many industry messaging and
pub/sub products, including the Corba Notification Service. So, the specifi-
cation leaves open how to define topics or how they are interrelated. An API
implementation, called JMS provider, is responsible for determining the exact
semantics of topics, their syntax and management; JMS relies on an abstract
Destination object only. If topics are grouped in hierarchies, e.g., with a dotted
notation in subject trees like stocks.technology.europe, JMS providers can
opt for topics to represent only leaves or whole subtrees of a subject tree.

The Java Message Service is perhaps becoming the dominating messaging
API, and lots of commercial, academic, and open source notification services
are implementing this API. It supersedes the Corba Notification Service. But
as a very generic interface, JMS does not provide any structuring mechanism
or means for managing event-based systems as part of the specification. An
implementation of the publish/subscribe part of the API is also available on
top of Rebeca, offering engineering and management capabilities in a standard
JMS environement [95].

6.2.3 Commercial Systems

Event-based systems are in use in industry for a long time, sometimes with
an infrastructure that is not specially optimized for event-based operation. On
the other hand, message-oriented middleware (MOM) and publish/subscribe ser-
vices are often deployed to alleviate some shortcomings of request/reply, but not
to deliberately realize event-based communication. Major areas include finan-
cial industry [23, 306], control systems [188], enterprise application integration
(EAI) [165], and more generally news and content distribution [9, 261]. Lots of
products exist that implement (and extend) the Java Message Service, Corba

Notification Service, or some proprietary interface. Interestingly, the need to
structure systems was early recognized in commercial systems, mainly due to
the more relevant demand for controlling data dissemination and security. Avail-
able products consequently concentrate on setting up management domains for
these objectives, often manually and more or less statically. The typical main
omission is any support for engineering event-based systems and adapting their
semantics.

TIBCO’s Information Bus (TIB, later renamed to TIBCO Rendezvous) is one
of major pub/sub products [292, 293], which is based on the ideas of Oki et al.
[233]. TIBCO uses, and has patented [269], subject-based addressing. Subscrip-

6.2. NOTIFICATION SERVICES 167

tions select from a hierarchy of subjects single nodes or entire subtrees with sim-
ple pattern matching on a dotted notation of subjects, e.g., stocks.technology.*.
The mapping from subjects to underlying transport protocols, in particular to
specific IP Multicast addresses, has to be done manually, and it is statically
encoded in every producer and consumer.

Although the inherent communication efficiency of multicast is appealing, it
comes at the cost of a rather static configuration, which not only complicates
maintenance, but also restricts configurability and integration, and thus the
range of possible application domains [294].

In order to prevent interference between several applications running in the
same network, a service parameter configures every data transport to belong to
a distinct, completely independent application. This is obviously only a very
weak mechanism to control dissemination, which is equivalent to a mandatory
additional filter or channel-based publish/subscribe. Additionally, independent
networks of Rendezvous instances can be connected with routing daemons. They
forward messages between networks so that subscribers can transparently listen
for subject names and receive messages from other networks. Administrators
managing the daemons have control over the subject names (and associated
messages) that are relayed and flow in or out of a network. These daemons offer
a basic means of structuring, even though mainly for administrative purposes
like Corba domains.

Oracle Advanced Queuing (AQ) is a queuing and notification service on top of
the Oracle database management system [236]. It offers a JMS implementation
and proprietary point-to-point and point-to-multipoint queues, the equivalent
of topics in AQ. Queues are implemented on top of database tables, i.e., data
sent to a queue is appended to the corresponding DB table. AQ uses content-
based routing in that a subscription to a queue is mapped to a query on the
queue’s table. Newly appended data that matches this query is delivered to
the subscribers. Since subscribers can itself be queues these filters can be used
to connect queues with a specified interface between them. This is similar to
the presented notion of scoping with interfaces between them. However, queues
are typed and therefore are mainly a means to classify notification content, not
application structure. The offered control focuses on data dissemination and
access control, but not from a system engineering point of view.

Furthermore, Oracle AQ exploits all the functionality offered by the database,
like transactions, triggers, consistency constraints, logging, replication, authen-
tication, access control, etc., and applies it to the publish/subscribe commu-
nication as well. To summarize, Oracle Advanced Queuing is a feature-rich
notification service that has many interesting characteristics, but because of its
concentration on centralizing databases and relational queries, its focus is more
on advanced QoS features than on a lean implementation. If these constraints
match the requirements in a specific applications, or probably in only a subset
of a scope graph, Advanced Queuing is a proper candidate for implementing
scoped communication.

Other commercially available pub/sub implementations include IBM’s Web-

168 CHAPTER 6. RELATED WORK

Sphere MQ [78], previously known as MQseries, BEA’s WebLogic [30], which
also contains a JMS implementation, and Vitria’s BusinessWare and other pro-
cess support systems that often include a messaging component. Typically, these
systems recognize the need to administer entities of messaging functionality like
channels and server instances, but they do not support hierarchical engineer-
ing of applications nor the adaptation of delivery semantics as is available with
transmission policies in scopes. As pointed out at the beginning of the chap-
ter, a number of issues of controlling visibility are identified and addressed, but
an approach for designing and engineering event-based systems is not available,
mainly because visibility is not taken as basic principle for the design of these
systems.

6.2.4 Research Prototypes
�✂✁ ✁☎✄ ✞

The Siena notification system [62] is probably the most widely known research
prototype. Based on the thesis of Carzaniga [56] a number of publications detail
the concept of content-based routing in networks of event brokers. Siena has
formally defined the semantics of its subscription mechanisms. However, the
semantics of notification distribution is not clearly specified and has several
flaws. For example, according to the specification a notification is only delivered
to a client if the client had a matching subscription at the time the notification
was published; clearly an imprecise formulation. Moreover, clients are required
to accommodate to race conditions. For example, notifications may be delivered
after cancellation of the respective subscriptions. Finally, in Siena, a client that
unsubscribes to a filter implicitly unsubscribes to all filters that are covered by
the former filter, too. This approach burdens the client with keeping track of
relations among the issued subscriptions. In contrast to that, the basic formalism
presented in Chapter 2 serves as a basis for modeling visibility, and also for a
sophisticated model of content-based routing in Mühl’s thesis on Rebeca [213].

Siena concentrates on filter semantics and design choices of the distributed
architecture [60, 61], focusing on network bandwidth efficiency but neglecting
any support of engineering or structuring event-based systems. As with all
other content-based filtering approaches, filters can be used to realize visibility
constraints, as described in 4.1, but these issues are not explicitly addressed in
Siena, even though the assumed global, flat namespace of notification attributes
calls for visibility structures to not impede scalability.

Gryphon

The Gryphon notification system [158] is being developed at IBM Research. It
was originally centered on the abstraction of information flow graphs [24, 274],
which are used to model event-based systems. Nodes in these graphs are infor-
mation spaces containing events of a specific type and edges select or transform
events. In the Gryphon system, the information flow graph is implemented by

6.2. NOTIFICATION SERVICES 169

distributing the spaces on a network of brokers.2 Content-based routing, partly
on top of IP Multicast [235], can be used for communication. But since the flow
of information is specified in the graph, every edge may either be implemented
using a (bundle of) point-to-point or a content-based routing communication. To
facilitate this decision, a newer paper [37] introduced the knowledge graph struc-
ture that abstracts the information flow graph. It bundles information spaces
into virtual brokers and interconnects them with virtual links. The authors then
use an implementation strategy to map each of the virtual brokers to the phys-
ical network. So, the bundling in the knowledge structure gives hints for the
actual mapping of virtual to physical brokers and the communication technique
used to connect them.

Gryphon’s knowledge structure incorporates some of the ideas that underlie
scoping. Yet Gryphon does not focus on engineering issues. The structuring
mechanisms are applied to govern the physical deployment of systems and facil-
itate quality of service handling and controlled utilization of network resources,
similar to Corba domains. Whereas scopes serve as a more general module
construct that may similarly govern the mapping of structures to a specific de-
ployment environment, as pointed out in 4.1, but which also offers an abstraction
for reuse and adaptation. Furthermore, the available information on Gryphon
addresses only static configurations, does not allow for hierarchical structures,
and does not investigate the general problem of implementing these structures.

READY

The READY event notification service [146] introduced event zones to partition
components based on (either) logical, administrative, or geographical bound-
aries and to delimit the visibility of events. Boundary brokers connect zones
and control the communication between them, and may enforce security poli-
cies on connected clients. Although similar to scoping, zones resemble more the
domain idea of Corba as it mainly addresses control on the physical routing
network, the engineering aspect is lacking. For instance, in READY a com-
ponent belongs to exactly one zone so that there is only a two-level hierarchy.
The system is structured only based on one specific point of view, prohibiting
composition and mixing of aspects [153]. Heterogeneity issues are only men-
tioned in READY: boundary brokers could apply transformations on crossing
notifications. Following the idea of Corba domains, brokers operate here on a
rather coarse and static granularity, whereas event mappings (Sect. 3.4) allows
for syntactic and semantic mappings in the formal model and at every layer of
abstraction in a scoped system, outlining a development path to integrate exist-
ing work on data integration, cf. Sect. 6.4.3. READY is a prime example of an
initial study of visibility issues that identifies the problem but fails to combine
the different aspects of visibility.

2Although it is unclear whether the mapping is done automatically or manually.

170 CHAPTER 6. RELATED WORK

6.2.5 Other Related Work

A number of other event notification services exist that do not address visibility
directly, yet offer some functions with which visibility constraints may be imple-
mented. The JEDI notification service [83] uses content-based filters on tuples
of data and operates in networks of event routers. It may adhere to visibility
constraints expressed in its filter language, but similar to Siena it assumes a
global naming scheme for notification representation. All clients of such a ser-
vice are forced to agree on the same data model used for all notifications. This
impedes system integration and limits scalability.

The JECho pub/sub service [307] introduces eager handlers that divide traf-
fic shaping and filtering into two parts, one resides at consumer nodes and one is
moved to producer(s). This technique is similar to the more general interceptor
concept [118, 265], but has in this context two major flaws. Regarding the man-
agement of propagated handlers, this approach is equal to direct registration of
each subscriber at every eligible producer, accumulating lots of handlers at pro-
ducers and inevitably leading to scalability problems. On the other hand, event
handlers are defined by consumers and they are not externally administrable.
So, even though interceptors are a way to implement visibility constraints on
producers and consumers, there is no support for the role of the administrator—
aspect-oriented programming and reflective middleware seem more appropriate
for this purpose (see below).

DEEDS [96] is a channel-based pub/sub service that concentrates on an ex-
tensible software architecture for propagating events. It employs system routing
assistants as plug-ins in channel implementations, which were intended as wrap-
pers of the underlying communication infrastructure but may as well be used to
implement visibility constraints within a channel. They adapt the interceptors
concept and make it accessible to administrators.

An event-service for virtual reality applications is proposed by O’Connell
et al. [232]. The authors define a hierarchy of zones to limit the distribution of
events for efficiency reasons. Events can only cross the boundary in downward
direction and no other features of scopes are mentioned. COBEA [194] runs a
publish/subscribe service in a Corba environment, and may exploit available
if limited structuring mechanisms provided by Corba domains. Hermes [245]
does not only investigate peer-to-peer topologies, but also introduce a role-based
security model for event services. Elvin [266] is another renowned notification
service which has structuring capabilities only in form of manually established
links between routing domains.

Mansouri-Samani and Sloman [199] present an event service that concen-
trates on event composition and they do not explicitly consider distributed event
services or visibility. There is an ‘event disseminator’ component responsible for
sending events. However, their system is based on Regis/Darwin [196], a dis-
tributed object management tool, and it facilitates runtime deployment and
configuration of components. Such an integration of scopes into system man-
agement platforms is an important direction of possible future work.

6.3. RULE-BASED SYSTEMS 171

6.3 Rule-Based Systems

A rule-based system (RBS) consists of a set of if-then rules, a set of facts, and
an interpreter controlling the application of the rules [154]. The evaluation
and matching of conditions (‘antecedents’) and execution of an assigned action
(‘consequents’) is similar to the event-based approach of publishing notifications,
matching subscriptions and delivering notification data to the application pro-
gram.

Lots of work exist on RBS, but they typically concentrate on condition de-
tection [119] and rule languages [211], whereas event services look at the flow
of notifications in distributed systems. On the other hand, these areas seem
to complement each other with respect to rule or subscription construction and
management, i.e., visibility control. Rule groups and modularity are, for exam-
ple, investigated by Browne et al. [43] and are used in a number of systems.
However, rule groups are connected by explicit procedural invocation and the
modularity cannot be used to create new event-based components.

Based on a formal description of rule systems, Wu et al. [302] offer a thorough
formal presentation of a declarative rule decomposition mechanism that enables
parallel rule processing.

6.4 Data Management

Database research is related to event-based systems and scoping in that it pro-
vides an event-based programming model: (active) database management has
generalized the aforementioned rule concept (Sect. 6.4.1), which is lately be-
ing considered separate from the database system (6.4.2). Based on schema
descriptions, techniques for data integration are exploited to map different rep-
resentations (6.4.3).

6.4.1 Active Database Management Systems

Active database management systems (ADBMS) extend classical databases with
a reactive functionality [242]. Event condition action (ECA) rules are used to
encode reactive behavior [88, 89]: If the specified event occurs and the condition
holds, the associated action is executed. For instance, fund withdrawal in bank-
ing applications result in change events once the amount is subtracted from the
account. A rule on such events may prevent withdrawals above a certain amount
or may control loan limits, and if the limit is reached, the action of the ECA rule
aborts the transaction, revoking the transfer. Rule processing is controlled by an
execution model that determines execution dependencies between the triggering
and the triggered (trans-)actions, i.e., transactional contexts, coupling modes,
and consumption modes [47].

ECA rules control and react to data changes and they decouple applica-
tion computation from the control over shared data, called ‘knowledge indepen-
dence’ [126] in this context. They make it possible to bind reactions to data

172 CHAPTER 6. RELATED WORK

changes without affecting application code. This obviously relates ECA rules
to publish/subscribe, but also to the more general coordination paradigm [237]
considered in Section 6.5, and, interestingly, to the notion of aspect-oriented
programming [76], cf. Sect. 6.6.5.

Research on rule management concentrated on termination and confluence
properties of rules [8]. Only little work is published that addresses the engi-
neering complexity of ECA rule creation and management, although it is known
that rule analysis and control of side effects is hard [20, 26]. Baralis et al. [26]
propose stratification of rules as a modularization technique in order to simplify
termination testing. Each rule is assigned to one stratum according to a given
metric and the strata are ordered by priority so that rules with lower priority will
not influence those of higher priority; termination testing can now be done for
each isolated stratum in turn. The presented metrics are behavioral, assertional,
and event-based stratification. The first subsumes the other two, and it groups
rules based on functionality, separating levels of abstraction in a way. Asser-
tional stratification tries to ensure a predefined postcondition with the rules of
the stratum. Finally, event-based stratification orders rules so that lower strata
do not produce events consumed by the upper ones. This approach can be seen
as a simple design methodology, which also lends itself to the design in arbitrary
event-based systems.

Kappel et al. [168] propose rule patterns, which offer a mechanism to bundle
a parameterized set of rules. They facilitate constructing complex reactive be-
havior out of simpler rules and in that offer a modularization technique, although
recursive bundling of rules and the creation of new, first class components is not
directly supported.

6.4.2 Reactive Functionality

Reactive functionality available from ADBMS is coupled with the database man-
agement system itself. As consequence of the increasing demand for reactive
behavior, research efforts started to draw event handling out of the databases.
The complex DBMS was unbundled to ease reconfiguration and reuse individ-
ual services [127, 137]. Motivated by this development, independent reactive
functionality services were developed [71, 176]. Both this approach and the
proliferation of event notification services stem from the same idea: separate
reaction management from application code for increased flexibility.

These services provide means to detect and compose events, to specify re-
actions, and to control their execution. However, in search of an infrastructure
service that is independent of specific applications, engineering issues were ne-
glected and the services miss to identify and sustain application structures di-
rectly. They rely on underlying notification mechanisms and concentrate more
on reaction handling than notification visibility issues.

6.5. COORDINATION MODELS 173

6.4.3 Heterogeneity and Data Integration

As event services are the basis for application integration and evolution, they
cannot be expected to run in homogeneous environments. System parts evolve
independently and have different objectives so that their demands on the quality
of service and the content of data is varying. Unfortunately, while known and
understood in traditional request/reply systems, heterogeneity issues are seldom
considered in event systems. Database research can contribute to the necessary
syntactic and semantic data mappings (federated databases [268], event compo-
sition in ADBMS [67, 139, 304], ontology-based transformations [41]), as well as
existing approaches in notification services [189, 246]. The event mappings of
scopes are a means to integrate these results into a scoped event-based system.

Renowned notification services like Siena, JEDI, and Elvin do not address
heterogeneity, whereas Corba domains and similar concepts in notification ser-
vices, like READY zones and TIBCO routing bridges, allow for some support
along their rather coarse structures. Practical solution are given by Bates et al.
[28] and Cilia et al. [74], for example. The latter is based on a model de-
scribing semantic mappings, the MIX model [41], and introduces the notion of
concept-based publish/subscribe. It allows clients using divergent data formats
to be seamlessly integrated by applying externally provided interpretations and
transformations to the exchanged notifications. Since their proposal is lacking
an abstraction of application structure, a promising combination of scopes and
concept-based pub/sub could identify homogeneous groups that agreed on a
common data format (scopes) and transform crossing notifications between the
applied concepts [72].

Besides the heterogeneity of data representations, differences in the required
and the provided quality of service are the second major source of incompat-
ibilities. Note that this problem is only partially addressed by parameterized
APIs, for the API itself and its implementation is subject to change and evolu-
tion. Multiple channels might be used to wrap different implementations [96],
but with the need to deliberately access the right channel the decoupling of pro-
ducers, consumers, and their interaction is diluted. For the first time, scopes
provide the engineer with a tool to tailor the implementation of a specific part
of a system, with well-defined interfaces and without need to affect client com-
ponents. They open the implementation of notification services in the vein of
Kiczales [169] to facilitate adaptation of event-based systems.

6.5 Coordination Models

The field of coordination theory investigates scenarios and techniques for manag-
ing the dependencies between a set of active components [197]. The coordination
paradigm differentiates computation from coordination [237] and it makes the
interaction between components explicit in coordination media [70], which offer
means to control and adapt a system’s configuration. Event-based communi-
cation directly corresponds to this viewpoint, and events are only one form of

174 CHAPTER 6. RELATED WORK

coordination out of the wealth of models proposed in literature [15, 50]. But
not all of them reduce component interdependencies, let alone offer scalability.
For example, it was criticized that race conditions are possible in Linda [54, 140]
and its variants, resulting from the inherent concurrency of the model [6].

From a coordination point of view, scopes reify the structure of event-based
applications, and as a coordination medium each scope functions both as a com-
munication medium transferring data as well as a coordination space control-
ling the interaction of the grouped components (e.g., via transmission policies).
Scopes introduce an external control of event-based systems, termed objective
coordination3 [257] as opposed to the subjective coordination of the plain event
model, where delivery of notifications is determined by the issued subscriptions
only. In fact, scopes combine the two modes of coordination, because within a
scope the plain, subjective model applies, while the interaction between scopes
is controlled by an outside entity, i.e., the administrator.

Research on Linda-like systems investigated structures of components. How-
ever, the need to specify names or identities of tuple spaces is a major character-
istic/drawback of many works on hierarchical tuple spaces [55, 141]. In this way,
the same negative arguments hold as for the manual selection of event channels
and subjects, both draw coordination control into the application components.
Lime [221] realizes a transparent access to multiple tuple spaces, although the
approach is limited to a three-level hierarchy bound to the physical layout of the
system. It is focused on the intended application domain of mobile agents and
does not offer a general solution.

Agha and Callsen [6] propose ActorSpaces to limit the distribution of mes-
sages. The basic drawback of their approach is that even though previously
unknown objects are intended to cooperate, senders have to specify destination
addresses. The sketched implementation is rather limited. Merrick and Wood
introduce scopes to limit the visibility of tuples in Linda, but again, senders have
to specify destination scopes [207]. Furthermore, scope nesting is restricted to
two levels. Tuple Centres [234] enable customization and adaptation of the se-
mantics of tuple space operations, following an idea similar to the transmission
policies of scopes. Their general programmability and the automatic triggering
of reactive behavior might position tuple centres as an appropriate technique
to implement scopes, at least if the event-based behavior is not only used in-
ternally but also extended into the application components. With their general
approach to implement tuple spaces they resemble the connectors idea of Sulli-
van and Notkin [276], whereas scopes can (partially) be seen as a more concrete
instance of such models (see Sect. 6.6).

Different from Linda, event-based coordination media directly support the
event-based style [49, 50, 297]. Moreover, control-driven models such as Manifold
more strictly separate the coordination from communication [237, 238], although
the event-based style is not directly supported, and in the case of Manifold,
events are only used for configuration control not for application communication.

3or endogenous vs. exogenous coordination [34]

6.6. SOFTWARE ENGINEERING 175

Commercially available are JavaSpaces [281], which also implement notification
mechanisms to notify about newly inserted tuples matching a previously defined
pattern, but they, too, fail to support structure apart from manually federated
spaces.

6.6 Software Engineering

Both events and structuring of software systems are long known in software
engineering. Events are the basis of flexible and evolvable architectures, and the
need to structure complex system is a basic engineering principle that is reflected
in concepts like information hiding and modularization [240].

6.6.1 Software Architecture

The field of software architecture is concerned with the overall organization of
a software systems [134]. It corresponds to the coordination paradigm, since
both deal with the high-level interaction of system components. The archi-
tectural point of view focuses more on the static, immutable characteristics of
these constellations. Architecture definition languages (ADLs)4 are employed to
describe the high-level conceptual architecture consisting of components, con-
nectors, and specific configurations [205] of these. Typical, well understood
arrangements of connectors and configurations are identified as architectural
styles [3], the patterns of software architecture, and events and implicit invo-
cation is one of them. The event-based architectural style comprises exactly the
concepts given in Sect. 2.1, featuring the independence of producer and consumer
components [57, 134]. In fact, Garlan et al. [131] identified early the prominent
importance of using events for the construction of flexible software architectures.

Rapide [192, 193] is an event-based architecture definition language, which
defines the system’s overall behavior by means of the events that components
publish and consume. An architecture surrounds its constituent components
with in- and out-events5 and can therefore serve as a component itself, similar
to the notion of scope interfaces. Connectors convey the events, and the set of re-
ceivers is determined with rules, which coincide with ECA rules of ADBMS. The
rules explicitly interconnect the internal communication ports and also internal
to external ports of the enclosing architecture. With their general capability
to connect communication ports Rapide does not address event-based systems
specifically. A particular architectural style, such as event-based communica-
tion not only between component and connector but within sets of components,
is a function that must itself be represented by an extra component. Interest-
ingly, these kinds of specification are directly implemented by the control-driven
coordination approach taken by Manifold [238] and the more general Tuples
Centres [234]. So, the semantics of scope interfaces and transmission policies

4also: Architecture Description Language
5In- and out-functions are available in addition to events.

176 CHAPTER 6. RELATED WORK

can be described with ADLs like Rapide, which, however, do not attend to any
form of implementation in distributed event-based systems.

A less abstract form of architecture are execution architectures [296], which
describe the organization of the actually instantiated set of components in a
running system. Architectural events describe the evolution in terms of newly
created or destroyed components and connectors, and thus monitors system
execution. This recapitulates the early application of event-based style in dis-
tributed debugging [29, 191], and might be used to visualize scoping.

6.6.2 Software Integration

As mentioned above, Garlan et al. [131] emphasize the importance of events for
flexible software systems, which is corroborated by [275] and others. One of the
first contributions is the Field environment [256], an early work on tool integra-
tion that is built around a centralized server that distributes messages. Messages
sent to the server are selectively re-broadcast to receivers that have registered
patterns matching the message. The original approach realizes content-based
filtering in a flat space of notifications. With the Field Policy Tool added later
it is possible to adapt delivery semantics with manually provided mappings of
messages to sets of receivers. But since these mappings are not associated with
the application structure and operate in the flat system, they are very hard to
control, cf. ECA rules.

The InfoBus [77] is a small Java API that facilitates communication between
several JavaBeans or cooperating applets on a Web page. Multiple instances of
InfoBus might be manually connected with bridges, providing a limited means of
structuring, but without any inherent interfaces or composition support. Match-
ing of messages is done by names, i.e., string matching. Besides being limited to
one virtual machine, it is a tool for connecting components not for composing
new ones.

Ported objects in CodA [204] are objects which communicate by processing
messages arriving at ports. A port is connected to data streams by an external
binding that is not controlled by the object itself, similar to control-driven coor-
dination. A compound ported object encapsulates a number of ported objects
and hides the data flow inside, the basic mechanism of modularization that is also
applied in grouping producers and consumers in scopes. The presented meta-
level configuration enables the adaption of compound behavior, drawing from
the more general meta object protocol [170] that reifies interaction in object-
oriented programming. These ideas influenced the notion of transmission poli-
cies and event mappings in scopes to facilitate handling of notifications in a
similar manner.

Sullivan and Notkin introduce mediators [276] as a design approach that ex-
plicitly instantiates and expresses integration relationships and separates them
from component function. An implicit invocation (i.e., event-based, see below)
abstraction is used to bundle components and mediators, and, with its own in-
terface, to compose new components. A similar approach regarding visibility

6.6. SOFTWARE ENGINEERING 177

is used as in the scoping model, but no default semantics is outlined so that
they ‘only’ suggest a framework that facilitates design without identifying fea-
tures that are attached to visibility: transmission policies, security, let alone
implementation in distributed systems. In a less general approach, Evans and
Dickman defined zones to support partial system evolution [103].

Barrett et al. [27] present the event-based integration (EBI) framework as a
common ground for comparing event-based integration approaches. The frame-
work consists of an abstract class hierarchy to compare different implementations
thereof in existing systems. Unfortunately, the classes are defined only informally
and often in an inaccurate way. The framework includes: participants (inform-
ers and listeners), brokers forwarding messages, and message transforming func-
tions that map and filter notifications. The framework does not differentiate
centralized and distributed broker implementations. From a functional, black
box point of view, this may make no fundamental difference in ‘classic’ noti-
fication services where brokers are distributed only for efficiency reasons. But
completely disregarding distribution aspects also excludes many other related
features of implementation (like reliability, communication efficiency, etc.). This
is the main difference to the scoping model presented here, which makes the sys-
tem aware of its structure and may comprise various implementation approaches.
Delivery constraints are sketched and are meant to shape message streams and
modify delivery semantics on per-consumer basis only, e.g., ordering and priority
issues, while their role within the routers is not specified. In order to support
hierarchical integration, a limited form of grouping of participants is identified,
where each group is centered around a single common broker. Concluding, the
EBI framework fails to identify visibility and application structure as a funda-
mental concept for both design and implementations. Brokers offer some of the
functionality inherent to scopes, and constrain the physical layout of the imple-
mentation while scopes are also a design tool that can be mapped on multiple,
different implementations. In the end, the framework falls short of coping with
issues specific to distributed systems.

6.6.3 Component Models

The discussion of Corba and J2EE in Sect. 6.1.1 covered the management
capabilities of these component models. Here, the programming support for
event-based applications and components is investigated. J2EE defines three
relevant interfaces: Java Management Extensions (JMX), Java Message Service
(JMS), and the Message Driven Beans (MDB) in the Enterprise Java Beans
(EJB) component model. JMX provides for an external (management) access
to components and JMS offers communication facilities. Both are described
above and are the basis of message driven beans. MDBs are asynchronous mes-
sage consumers6 that are instantiated and managed by EJB containers; the EJB
specification deprecates using entity or session beans as JMS consumers to not

6As of EJB 2.1 messaging is not restricted to JMS alone and MDBs can be built on top of
other services as well.

178 CHAPTER 6. RELATED WORK

undermine container-managed access to these beans. An EJB container pools
multiple instances of a deployed MDB and subscribes itself to the JMS topic
given in the MDB deployment descriptor. For each incoming message the con-
tainer selects arbitrarily one of the pooled instances and forwards the message
to it. Hence, MDBs are stateless for other clients in the sense that instances
are interchangeable and any two messages are not guaranteed to be processed
by the same MDB instance. MDBs enable system engineers to exploit EJB con-
tainer facilities like replication and management for message consumers. On the
other hand, they are the only way to put message consumption, and only the
consumption, under the control of the application server. Message distribution,
and thus visibility aspects, are not considered.

Corba also contains a component model [230], which was inspired and is
closely related to J2EE Enterprise JavaBeans.

6.6.4 Programming Loosely Coupled Systems

The event-based architectural style is also known as implicit invocation mech-
anism [94, 132]. This term describes loose coupling in the context of classic
procedure calls. The invocation of a procedure is divided into three parts: (i) a
call on the caller’s side is bound at runtime to a set of procedures, introducing
a one-to-many indirection, (ii) the bound procedures are invoked concurrently,
and (iii) the (possibly) multiple replies are handled. Implicit invocation is a
mere implementation mechanism that may be used to realize either anonymous
request/reply or event-based communication. Garlan and Scott presented de-
livery policies for implicit invocation systems [133]. Four different policies are
distinguished: full (broadcast) and single delivery (1-of-n), parameter-based se-
lection (filter), and a state-based policy. These policies are a subset of the
transmission policies described in Sect. 3.5.

In [28] domains of common event semantics and transformation functions are
mentioned. As with most other event systems one has to identify the boundaries
and define the mappings manually, they are no first-class citizens. All event
services can be used in this way: they serve as internal scope implementation
and the scope structure can be implemented on top of the provided functionality.

Cardelli and Gordon propose a process calculus for mobile ambients [53].
It facilitates the management of a tree of ambients whose intended purpose of
grouping computation resembles our graph of scopes. The calculus might be
used to model scope graph dynamics, but communication across ambients is
only indirectly supported and destination identities must be known, similar to
the approach of Bauhaus Linda [55].

In terms of programming abstractions and languages for event-based com-
puting a number of proposals exist that support or make use of event-based
communication, for example, [87, 101, 102, 155]. Furthermore, design patterns
have been used to encode loose coupling [129]. The Mediator pattern simply
reifies bidirectional decoupling of interactions. In contrast to that, the Facade
pattern offers an abstraction of a set of entities, delegating calls to the proper

6.7. GUI DESIGN 179

destination, which is partially the intent of scopes, too. The observer pattern is
considered to describe a publish/subscribe interaction, in which a subject man-
ages a set of observers that are called whenever the subject changes. In contrast
to a ‘real’ event-based architectural style, it requires consumers to be registered
directly with each producer. Though applying an event-based style, none of the
approaches considers visibility explicitly, let alone support it.

6.6.5 Aspects and Reflection

The above mentioned interceptor approach to adapt a component’s function is
generalized in the emerging field of aspect-oriented programming (AOP, [173,
308]). AOP provides programmers with tools to separate code that deals with
different aspects of a program, classic examples are application functionality
versus logging or persistence. At compile- or runtime, the separated code is
woven together to accomplish the combined functionality. Interestingly, AOP
share a common problem understanding with other techniques supporting cross-
cutting functionality, like ECA rules of databases [76]. Similar ideas are inves-
tigated in reflective middleware [79], but from a distributed systems’ point of
view. Based on the idea of computational reflection [195], reflective middleware
makes system features and functions tangible and adaptable. Obviously, the
programming language focus of (classic) AOP can be exploited to implement
such middleware [92, 252]7. Likewise, these techniques are candidates for im-
plementing scopes, as well. On the other hand, transmission policies, mappings,
and tailored implementation techniques shape event-based communication and
separate communication control from component code. They may thus serve as
a tool to deal with aspects of event-based communication, pointing out an open
issue of future research.

6.7 GUI Design

The design and implementation of graphical user interfaces (GUIs) was one of
the first areas applying event-based interaction schemata. The model view con-
troller [144] and observer patterns [129] are examples for that. However, mostly
a callback mode of interaction is used, in which an observer directly connects
itself to a previously known source of events. Furthermore, these systems are
typically not distributed. An exception is Taylor et al. [289] who decouple appli-
cations from GUI toolkits using an event-based style and make even distributed
deployment possible.

7Future versions of JBoss, a popular Java application server, will incorporate a runtime
aspect weaving tool to adapt container functionality [48].

180 CHAPTER 6. RELATED WORK

Chapter 7

Conclusions and

Future Work

Events are of increasing importance in modern distributed systems. Growing
interconnectivity and continuous evolution demand a loose coupling of commu-
nicating parties that traditional paradigms like request/reply can hardly provide.
The event-based computing paradigm offers the required flexibility, but existing
work has focused so far on scalability issues in terms of communication efficiency
and size. Problems of system engineering and management, however, were often
neglected and the targeted application scenarios are of rather simple structure,
e.g., one-way information dissemination like stock monitoring.

This gives rise to two major problems. First, today’s event-based systems
mostly rely on flat design spaces and they are unstructured. Notification services
convey data by matching it with issued subscriptions, not distinguishing subsets
within the complete set of consumers. Any consumer may, in principle, receive
any notification, and even without considering security concerns, the complex-
ity to build, understand, and manage such systems easily becomes intractable.
There are no means to predict the effects of creating or removing producers of
notifications but to analyze all participating components. This approach is to
some extent comparable to having programming languages with global variables
only, where no inherent structure prevent (un)wanted access and effect.

Consequently, unclear side effects prevent complex applications beyond sim-
ple, uni-directional dissemination. This leads to the second problem, the cur-
rently limited applicability of the event-based paradigm. Without any effective
control of notification distribution or any means of decomposition, the whole
system acts as black box, which is configured by subscriptions only. The in-
ability to tailor the service and adapt its semantics makes the integration of
heterogeneous systems an error-prone and complicated task. And so, in many
application scenarios the benefits of event-based interaction could not be fully
exploited in the past.

181

182 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Contribution of the Thesis

This thesis presents a scoping concept for event-based systems. Scopes reify
system structure and hierarchically arrange groups of producers, consumers, and
other scopes in directed acyclic graphs. They limit the visibility of notifications
and govern their distribution within this structure. Scopes provide both a design-
time tool and an implementation framework that addresses the aforementioned
problems; they control side effects, decompose the system, and allow for adaption
and management of its parts.

The approach taken in this thesis is to first investigate the abstract notion
of notification visibility. All mentioned problems can be broken down to visi-
bility issues, and while existing work addressed individual aspects thereof, the
full implications have not been realized before. A thorough analysis of event-
based interaction and its characteristics infers the need to support the role of
an administrator, which is responsible for system engineering beyond individual
producers and consumers (chapters 2 and 3). The control of interaction, which
is extracted out of the components by the event-based style, is re-introduced as
part of the administrator’s role without destroying the loose coupling of produc-
ers and consumers.

Scope Model

Scopes are a tool that specifically support the administrator role. They make
it possible to intercept notifications at scope boundaries and guide their further
forwarding. Individual components are not affected by this scope control and
the loose coupling is not impaired, avoiding the disadvantages of other structur-
ing mechanisms in event-based systems. A formal specification of event-based
systems is introduced, which covers the basic function of (existing) notification
services, and it is extended to define visibility and scopes (Chapter 3). This
definition includes scope interfaces that filter notifiations and determine those
allowed to cross scope boundaries. Interfaces are composed of subscriptions
and advertisements and make scopes behave like other producers and consumers
in the system. Thus, scoping offers a component model for event-based sys-
tems [285].

The structure of a system reified with scopes is the ideal place to localize
engineering and management tasks, which otherwise would be mixed into appli-
cation components. Notification mappings are applied at scope boundaries to
transform the representation of notifications. The need to agree on a common
data model is avoided and each group of components may use its own appro-
priate model. A mapping is assigned to a scope and translates between the
internal representation used within the scope and the external used outside in
superscopes.

Furthermore, transmission policies customize notification forwarding at scope
level, and thus facilitate scope programming. One form, delivery policies, direct
notification delivery to only a subset of eligible consumers within a scope. They

183

offer system engineers the ability to refine the default “broadcast” semantics of
sending notifications to all consumers with a matching subscription. Publishing
policies apply to notifications leaving a scope and they can delay or prevent for-
warding to certain superscopes. They refine the interface and advertisements of
a scope so that the filtering decision is not only based on individual notifications,
but on other additional data sources such as current time or other notifications.
This can be used to implement conditional events that are forwarded only within
a specific time window, after a certain delay, or if another notification acknowl-
edges the publication. This flexibility and extensibility is utilized by session
scopes, which apply scoping to sets of notifications. Sessions identify the re-
lationship between consecutive, dependent notifications. Transmission policies
and interfaces are used to distinguish groups of related notifications, structuring
the dynamic behavior of a system in addition to the architectural layout reified
in the scope graph.

All these scope features are made available through a specification language
that supports the definition of scope types as well as their instantiation and
runtime modification.

Scope Implementation

Scopes are also a framework for the implementation of notification services.
Their primary benefit, the delimitation of components, makes it possible to
draw from a broad range of techniques to implement individual scopes. As long
as the different scope instances are bridged and the visibility specification is
met, techniques from network communication, data representation, filtering and
routing, and data communication security can be employed to tailor the service
implementation towards the needs of a specific (part) application. The thesis
presents a number of different architectures for the implementation of scopes
in distributed systems. Four architectures are investigated in detail. While all
adhere to the visibility specification, they differ in their support for the men-
tioned implementation techniques, and thus in their quality of service parameters
beyond visibility constraints.

Two architectures, collapsing scope graphs and scope address, can be built on
top of existing communication techniques, e.g., content-based publish/subscribe
services. The former collapses the graph and does not instantiate any scope rep-
resentatives, using the underlying infrastructure as a black box. Eligible delivery
paths in the scope graph are condensed into complex filter expressions. The ex-
pressions are partially evaluated in producers and consumers if content-based
filtering is not available. This approach is applicable especially when existing
systems are stepwise extended with scoping. The scope address approach builds
on any multicast facility and addresses a scope and all of its members with
one call to the communication substrate. An extra administrative component
represents each scope and forwards outgoing and incoming notifications to/from
superscopes. The explicit scope instance allows for physical delimitation of com-
munication and admission control. Interestingly, both architectures can be built

184 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

on database management systems as communication substrates. Despite its
heavy footprint this approach has a number of advantages, because the func-
tionality of DBMSs regarding reliability and access control can be exploited for
the delivery of notifications.

The two other presented architectures, broker scope and integrated routing,
influence and extend the notification service infrastructure itself. The former es-
tablishes a broker for each scope, transforming the scope graph into the broker
graph that comprise the notification service. This approach combines system
modeling and implementation, and it is suited for network centric designs. Fi-
nally, the integrated routing architecture extends traditional content-based rout-
ing. It provides scoping as an inherent service of a distributed infrastructure.
Separate routing tables for each scope delimit notification visibility without af-
fecting their basic routing capabilities. Integrated routing is the most general
realization of scoping. The system structure reified in scopes is instantiated
and accessible to system engineers, all features of scopes are available, and the
scalability of notification routing is not impaired.

The feasibility of the scoping concept is demonstrated with a prototype im-
plementation extending the Rebeca notification service.

Influence on Event-Based System Design and Implementation

The contribution of the presented scoping concept for event-based systems is
twofold. It provides a design tool to model and specify event-based systems,
and it is an implementation framework for the construction of customizable
notification services. Taken together, the engineering of event-based systems is
made possible where formerly only the plain pub/sub API was available.

As a design tool, scopes facilitate describing, specifying, and understand-
ing event-based systems and their functionality. They introduce a structuring
mechanism that delimits and controls interdependencies of application compo-
nents. They allow system engineers to compose new functions and abstract from
implementation details. And this is achieved without abandoning the inherent
loose coupling of events. This is clearly a substantial advancement to existing
systems, which are flat and unstructured and require manual visibility control.

As an implementation tool, scopes open the black box of notification ser-
vices [169]. Scopes provide the means to seamlessly integrate various imple-
mentation techniques in one system and to tailor the semantics of notification
dissemination in well-defined parts. On the level of scope implementation, the
presented scope architectures offer a variety of quality of service options. The ar-
chitectures differ in what parts of a scope graph are explicitly instantiated and
in the amount of control they exert on communication. From an application
point of view, the system structure identified with scopes is the obvious place to
localize system programming and management tasks. At the level of scopes, no-
tification mappings, transmission policies, and application-dependent admission
control and security policies can be installed to program scope components.

185

Future Work

The scoping concept is a starting point for future work. Visibility in event-based
systems, from which scoping is derived, is at the heart of many problems, and
scoping provides a way to address these problems. This thesis has shown that
scopes have the ability to integrate existing results from data integration, rout-
ing, and communication protocols. They separate coordination from computa-
tion and allow for model-driven development of distributed event-based systems.

Theory. The presented specification of event-based system can be extended,
e.g., to include aspects like ordering, timing, etc. Furthermore, the theoretical
tools should be refined to better address distribution aspects and to express
conditions with respect to the visibility of notifications. Of course, it would
be beneficial to map other existing systems to this specification to make their
characteristics comparable.

Component programming. Future work should investigate applicable poli-
cies, their specification, and implementation with respect to the various scope ar-
chitectures. Delivery policies govern the internal delivery of notifications and are
a means of component programming. They enable engineers to tailor intra-scope
distribution: group communication protocols could enforce ordering guarantees,
consumers might be selected to implement load balancing, each notification may
be delivered to a list of consumers in a predefined order (cf. workflows, escala-
tion strategies). It would be rewarding to draw from other relevant areas such as
composition and coordination languages, communication protocols, and others.
Altogether, scopes coordinate groups of components and determine aspects of
event-based interaction that are not encoded in simple application components.

Quality of Service. This term covers a broad range of issues from bandwidth
and real-time constraints to reliability and transactional processing. The ability
to utilize different communication techniques and architectures makes it possi-
ble to address QoS beyond visibility within individual scopes. For instance, the
use of network level multicast or database systems as communication medium
exhibit totally different QoS charactistics. Furthermore, the discussion about
session scopes and activities has demonstrated the flexibility of scopes and trans-
mission policies. Future extensions should develop the notion of activities and
transactions in event-based systems.

Heterogeneity. Practical, large systems must cope with heterogeneity. Syn-
tax and semantics of notifications are likley to vary in different parts of the
system. Scoping and notification mappings provide the technical basis to ad-
dress these issues, but so far require manual configuration. Future work should
exploit this technical basis and apply existing approaches of data integration
and mapping [71].

186 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Event composition and lifecycle. Transmission policies were introduced
to constrain the set of eligible consumers of a notification. More generally,
they might be considered as notification processors that may correlate and even
produce new notifications. They would thus enable event composition at scope
boundaries.

A related issue is the notification lifecycle. When does published data dis-
appear from the system? Are producers and consumers required to be active at
the same time or are they decoupled in time? Caches [75] and histories [213] can
be installed to make old notifications accessible to consumers.

Security. Security was mentioned several times to be a prominent open issue
in event-based systems. Since any form of trust corresponds to some correlation
of the participants, scoping suggests itself as a mechanism to incorporate security
policies and implementation [117]. Scopes can perform admission control, pro-
tect intra-scope traffic from eavesdropping with encryption in the appropriate
communication medium (preferably point-to-point communication). The bro-
ker scope architecture directly instantiates scopes and thus security domains,
whereas integrated routing must also decide what part of the broker network is
trustworthy.

Tools. A companion master thesis [219] successfully used Eclipse as an integra-
tion platform for design and management plugins. This is a promising starting
point for more sophisticated tools for the design, programming, deployment, and
management of scoped event-based systems.

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Transactions
on Programming Languages and Systems, 15(1):73–132, Jan. 1993. URL .

[3] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand
descriptions of software architectures. ACM Software Engineering Notes,
18(5):9–20, 1993. URL .

[4] S. Acharya, R. Alonso, M. J. Franklin, and S. B. Zdonik. Broadcast
disks: Data management for asymmetric communications environments.
In M. J. Carey and D. A. Schneider, editors, Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, pages
199–210, San Jose, California, 22–25 May 1995.

[5] ACT-NET Consortium. The Active Database Management System
Manifesto: A Rulebase of ADBMS Features. SIGMOD Record, 25(3):
40–49, Sept. 1996.

[6] G. Agha and C. J. Callsen. ActorSpace: an open distributed
programming paradigm. ACM SIGPLAN Notices, 28(7):23–32, July
1993. URL .

[7] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra.
Matching events in a content-based subscription system. In Proceedings
of the 18th ACM Symposium on Principles of Distributed Computing
(PODC 1999), pages 53–61, Atlanta, GA, USA, 1999. URL .

[8] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database
production rules: termination, confluence, and observable determinism.
In M. Stonebraker, editor, Proceedings of the ACM International
Conference on Management of Data (SIGMOD 1992), pages 59–68, San
Diego, CA, USA, 1992. ACM Press. URL .

[9] Akamai Technologies, Inc. Content and application delivery. Online
information: http://www.akamai.com/en/html/services/content/
application/delivery.html, 2003. URL .

187

188 BIBLIOGRAPHY

[10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.
URL .

[11] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionality and
limitations of current workflow management systems. IEEE Expert, 1997.
URL . Special Issue on Cooperative Information Systems.

[12] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

[13] P. A. Alsberg and J. D. Day. A principle for resilient sharing of
distributed resources. In International Conference on Software
Engineering (ICSE’76), pages 562–570, Long Beach, CA, USA, Oct.
1976. IEEE Computer Society Press. URL .

[14] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In The VLDB Journal, pages
53–64, 2000. URL .

[15] L. Andrade and J. L. Fiadeiro. Coordination primitives for event-based
systems. In Bacon et al. [19]. URL . Published as part of the ICDCS ’02
Workshop Proceedings.

[16] F. Arbab and C. Talcott, editors. 5th International Conference on
Coordination Models and Languages (COORDINATION 2002), volume
2315 of LNCS, York, UK, 2002. Springer. URL .

[17] K. Arnold, J. Gosling, and D. Holmes. The Java(TM) Programming
Language. Addison-Wesley, 3rd edition, 2000. URL .

[18] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build
distributed applications. In IEEE SDNE Services in Distributed and
Networked Environments, pages 148–155, Whistler, British Columbia,
June 1995.

[19] J. Bacon, L. Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl, editors.
1st Intl. Workshop on Distributed Event-Based Systems (DEBS’02),
Vienna, Austria, 2002. IEEE Press. URL . Published as part of the
ICDCS ’02 Workshop Proceedings.

[20] J. Bailey, G. Dong, and K. Ramamohanarao. Decidability and
undecidability results for the termination problem of active database
rules. In A. Mendelson and J. Paredaens, editors, Proceedings of the 7th
ACM Symposium on Principles of Database Systems, pages 264–273,
Seattle, WA, USA, 1998. ACM Press. URL .

BIBLIOGRAPHY 189

[21] J. Bailey, A. Poulovassilis, and P. T. Wood. An event-condition-action
language for xml. In D. Lassner, D. De Roure, and A. Iyengar, editors,
Proceedings of the Eleventh International Conference on World Wide
Web, pages 486–495, Honolulu, HI, USA, 2002. ACM Press. URL .

[22] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,
and D. C. Sturman. An efficient multicast protocol for content-based
publish-subscribe systems. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, pages 262–272, 1999.
URL .

[23] G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A case for
message oriented middleware. In P. Jayanti, editor, 13th International
Symposium on Distributed Computing (DISC’99), volume 1693 of LNCS,
pages 1–17. Springer-Verlag, 1999. URL .

[24] G. Banavar, M. Kaplan, K. Shaw, R. Strom, D. Sturman, and W. Tao.
Information flow based event distribution middleware. In W. Sun,
S. Chanson, D. Tygar, and P. Dasgupta, editors, ICDCS Workshop on
Electronic Commerce and Web-based Applications/Middleware, pages
114–121, Austin, TX, USA, 1999. URL .

[25] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In M. Mathis, P. Steenkiste, H. Balakrishnan, and
V. Paxson, editors, Proceedings of the 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 205–217, Pittsburgh, PA, USA, 2002. ACM, ACM
Press. URL .

[26] E. Baralis, S. Ceri, and S. Paraboschi. Modularization techniques for
active rules design. ACM Transactions on Database Systems (TODS), 21
(1):1–29, 1996. URL .

[27] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework for
event-based software integration. ACM Transactions on Software
Engineering and Methodology, 5(4):378–421, Oct. 1996. URL .

[28] J. Bates, J. Bacon, K. Moody, and M. Spiteri. Using events for the
scalable federation of heterogeneous components. In P. Guedes and
J. Bacon, editors, Proceedings of the 8th ACM SIGOPS European
Workshop: Support for Composing Distributed Applications, pages 58–65,
Sintra, Portugal, Sept. 1998. URL .

[29] P. C. Bates. Debugging heterogeneous distributed systems using
event-based models of behavior. ACM Transactions on Computer
Systems, 13(1):1–31, Feb. 1995. URL .

[30] I. Bea. Weblogic, 2005. http://www.bea-sys.com.

190 BIBLIOGRAPHY

[31] S. Behnel. Abstractions for overlay software design. submitted, 2005.

[32] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and
K. Moody. Role-based access control for publish/subscribe middleware
architectures. In Jacobsen [163]. URL .

[33] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process
Algebra. North-Holland, 2001.

[34] M. Bernardo and F. Franzè. Exogenous and endogenous extensions of
architectural types. In Arbab and Talcott [16], pages 40–55. URL .

[35] P. A. Bernstein. Transaction processing monitors. Communications of
the ACM, 33(11):75–86, Nov. 1990. URL .

[36] B. Betts and C. Heinrich. Adapt or Die: Transforming Your Supply
Chain into an Adaptive Business Network. John Wiley, 2003.

[37] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. Exactly-once
delivery in a content-based publish-subscribe system. In J. Fabre and
F. Jahanian, editors, The International Conference on Dependable
Systems and Networks (DSN’02), Washington, D.C., USA, jun 2002.
IEEE Press. URL .

[38] K. P. Birman. The process group approach to reliable distributed
computing. Communications of the ACM, 36(12):37–53, December 1993.
URL .

[39] K. P. Birman and T. A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems (TOCS), 5(1):
47–76, 1987. URL .

[40] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM
Trans. on Computer Systems, 2(1):39–59, Feb. 1984. URL .

[41] C. Bornhövd and A. P. Buchmann. A prototype for metadata-based
integration of internet sources. In M. Jarke and A. Oberweis, editors,
11th International Conference on Advanced Information Systems
Engineering (CAiSE’99), volume 1626 of LNCS, pages 439–445,
Heidelberg, Germany, 1999. Springer-Verlag. URL .

[42] C. Bornhövd, M. Cilia, C. Liebig, and A. P. Buchmann. An
infrastructure for meta-auctions. In Second International Workshop on
Advance Issues of E-Commerce and Web-based Information Systems
(WECWIS’00), San Jose, California, June 2000. URL .

[43] J. C. Browne et al. Modularity and rule-based programming. Intl.
Journal on Artificial Intelligence Tools, 4(1):201–218, 1995.

BIBLIOGRAPHY 191

[44] M. Broy and E.-R. Olderog. Trace-oriented models of concurrency. In
Bergstra et al. [33], chapter 2.

[45] A. Buchmann, C. Bornhövd, M. Cilia, L. Fiege, F. Gärtner, C. Liebig,
M. Meixner, and G. Mühl. Dream: Distributed reliable event-based
application management. In M. Levene and A. Poulovassilis, editors,
Web Dynamics—Adapting to Change in Content, Size, Topology and
Use, pages 319–349. Springer-Verlag, 2004. ISBN 3-540-40676-X. URL .

[46] A. Buchmann, F. Casati, L. Fiege, M.-C. Hsu, and M.-C. Shan, editors.
Third International Workshop on Technologies for E-Services (TES ’02),
volume 2444 of LNCS, Hong Kong, China, 2002. Springer-Verlag. URL .

[47] A. P. Buchmann. Architecture of active database systems. In N. W.
Paton, editor, Active Rules in Database Systems, chapter 2, pages 29–48.
Springer-Verlag, 1999. URL .

[48] B. Burke and A. Brock. Aspect-oriented programming and jboss.
OnJava.com, May 2003. URL .

[49] N. Busi, A. Rowstron, and G. Zavattaro. State- and event-based reactive
programming in shared dataspaces. In Arbab and Talcott [16], pages
111–124. URL .

[50] N. Busi and G. Zavattaro. On the expressiveness of event notification in
data-driven coordination languages. In G. Smolka, editor, Proceedings of
9th European Symposium on Programming Languages and Systems
(ESOP 2000), volume 1782 of LNCS, pages 41–55, Berlin, Germany,
2000. URL .

[51] C. Bussler and S. Jablonski. Implementing agent coordination for
workflow management systems using active database systems. In
J. Widom and S. Chakravarthy, editors, Proceedings of the Fourth
International Workshop on Research Issues in Data Engineering: Acticve
Database Systems (RIDE-ADS 1994), pages 53–59, 1994. URL .

[52] L. Capra, W. Emmerich, and C. Mascolo. Middleware for mobile
computing (a survey). Research Note RN/30/01, University College
London, July 2001.

[53] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation
Structures (FoSSaCS), volume 1378 of LNCS, pages 140–155, Lisbon,
Portugal, 1998. Springer-Verlag. URL .

[54] N. Carriero and D. Gelernter. Linda in context. Communication of the
ACM, 32(4):444–458, Apr. 1989. URL .

192 BIBLIOGRAPHY

[55] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. In P. Ciancarini,
O. Nierstrasz, and A. Yonezawa, editors, Object-Based Models and
Languages for Concurrent Systems, ECOOP’94 Workshop, volume 924 of
LNCS, pages 66–76, Bologna, Italy, 1995. Springer-Verlag.

[56] A. Carzaniga. Architectures for an Event Notification Service Scalable to
Wide-area Networks. PhD thesis, Politecnico di Milano, Milano, Italy,
Dec. 1998. URL .

[57] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in
supporting event-based architectural styles. In Proceedings of the Third
International Workshop on Software Architecture (ISAW ’98), pages
17–20, Orlando, FL, USA, 1998. URL .

[58] A. Carzaniga and P. Fenkam, editors. 3rd Intl. Workshop on Distributed
Event-Based Systems (DEBS’04), Edinburgh, Scotland, UK, May 2004.
IEE. URL .

[59] A. Carzaniga, D. R. Rosenblum, and A. L. Wolf. Challenges for
distributed event services: Scalability vs. expressiveness. In
W. Emmerich and V. Gruhn, editors, ICSE ’99 Workshop on
Engineering Distributed Objects (EDO ’99), May 1999. URL .

[60] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of a scalable
event notification service: Interface and architecture. Technical Report
CU-CS-863-98, Department of Computer Science, Univ. of Colorado at
Boulder, USA, 1998. URL .

[61] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification service. In
Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing (PODC-00), pages 219–228, NY, July 16–19
2000. ACM Press. URL .

[62] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3):332–383, 2001. URL .

[63] J. Case, D. Harrington, R. Presuhn, and B. Wijnen. RFC 3412: message
processing and dispatching for the simple network management protocol
(snmp), Dec. 2002. URL . Status: Standard.

[64] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1901:
introduction to community-based snmpv2, Jan. 1996. URL . Status:
Historic.

[65] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A
large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications, 20(8), 2002. URL .

BIBLIOGRAPHY 193

[66] A. Celik, A. Datta, and S. Narasimhan. Supporting subscription oriented
information commerce in a push-based environment. IEEE Transactions
on Systems, Man and Cybernetics, 30(4):433–445, July 2000.

[67] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.
Composite events for active databases: Semantics, contexts and
detection. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings
of the Twentieth International Conference on Very Large Databases,
pages 606–617, Santiago, Chile, July 1994. Morgan Kaufmann. URL .

[68] D. R. Cheriton and S. E. Deering. Host groups: a multicast extension for
datagram internetworks. In W. P. Lidinsky and B. W. Stuck, editors,
Proceedings of the Ninth Symposium on Data Communications, pages
172–179, Whistler Moutain, British Columbia, Canada, 1985. ACM
Press. URL .

[69] D. R. Cheriton and W. Zwaenepoel. Distributed process groups in the v
kernel. ACM Transactions on Computer Systems (TOCS), 3(2):77–107,
1985. URL .

[70] P. Ciancarini. Coordination models and languages as software
integrators. ACM Computing Surveys (CSUR), 28(2):300–302, 1996.
URL .

[71] M. Cilia. An Active Functionality Service for Open Distributed
Heterogeneous Environments. PhD thesis, TU Darmstadt, 2002. URL .

[72] M. Cilia. Personal communication, 2003.

[73] M. Cilia, M. Antollini, C. Bornhoevd, and A. Buchmann. Dealing with
heterogeneous data in pub/sub systems: The concept-based approach. In
Carzaniga and Fenkam [58]. URL .

[74] M. Cilia, C. Bornhövd, and A. P. Buchmann. Moving active functionality
from centralized to open distributed heterogeneous environments. In
C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors,
Proceedings of the 6th International Conference on Cooperative
Information Systems (CoopIS ’01), volume 2172 of LNCS, pages
195–210, Trento, Italy, 2001. Springer-Verlag. URL .

[75] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. Buchmann. Looking into
the past: Enhancing mobile publish/subscribe middleware. In Jacobsen
[163]. URL .

[76] M. Cilia, M. Haupt, M. Mezini, and A. P. Buchmann. The convergence
of aop and active databases: Towards reactive middleware. In
F. Pfenning and Y. Smaragdakis, editors, Proceedings of the
International Conference on Generative Programming and Component

194 BIBLIOGRAPHY

Engineering (GPEC’03), volume 2830 of LNCS, pages 169–188, Erfurt,
Germany, 2003. Springer-Verlag. URL .

[77] M. Colan. InfoBus 1.2 Specification. Lotus, 1999. URL .

[78] I. Corp. Websphere mq (mqseries), 2003.
http://www.software.ibm.com/mqseries.

[79] F. M. Costa, H. A. Duran, N. Parlavantzas, K. B. Saikoski, G. Blair, and
G. Coulson. The role of reflective middleware in supporting the
engineering of dynamic applications. In W. Cazzola, R. J. Stroud, and
F. Tisato, editors, Reflection and Software Engineering, volume 1826 of
LNCS, Denver, CO, USA, Nov. 2001. Springer-Verlag. URL .

[80] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Introducing
reliability in content-based publish-subscribe through epidemic
algorithms. In Jacobsen [163]. URL .

[81] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Efficient query
subscription processing in a multicast environment. In Proceedings of the
16th International Conference on Data Engineering (ICDE), page 83,
2000. URL .

[82] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings of
the 1998 International Conference on Software Engineering, pages
261–270. IEEE Computer Society Press / ACM Press, 1998. URL .

[83] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS. IEEE Transactions on Software Engineering, 27(9):827–850,
2001. URL .

[84] G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware for
mobile systems. ACM SIGMOBILE Mobile Computing and
Communications Review, 6(4):25–33, 2002. URL .

[85] E. Curry, D. Chambers, and G. Lyons. Reflective channel hierarchies. In
The 2nd Workshop on Reflective and Adaptive Middleware, Middleware
2003, Rio de Janeiro, Brazil, 2003. URL .

[86] Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 21(12):1040–1048, 1978. URL .

[87] J. Dávila. Reactive pascal and the event calculus: A platform to program
reactive, rational agents. In U. C. Sigmund and M. Thielscher, editors,
Proceedings of the Workshop at FAPR’95: Reasoning about Actions and
Planning in Complex Environments, 1996. URL .

BIBLIOGRAPHY 195

[88] U. Dayal, B. T. Blaustein, A. P. Buchmann, U. S. Chakravarthy, M. Hsu,
R. Ledin, D. R. McCarthy, A. Rosenthal, S. K. Sarin, M. J. Carey, and
R. J. Miron Livny. The HiPAC project: Combining active databases and
timing constraints. SIGMOD Record, 17(1):51–70, 1988. URL .

[89] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: a
knowledge model for an active, object-oriented database system. In
Proceedings of the 2nd International Workshop on Object-Oriented
Database Systems, volume 334 of LNCS, pages 129–143. Springer, 1988.
URL .

[90] S. Deering. Host Extensions for IP Multicasting. Request for Comments
(RFC) 1112, Aug. 1989. URL .

[91] S. E. Deering and D. R. Cheriton. Multicast routing in datagram
internetworks and extended LANs. ACM Transactions on Computer
Systems, 8(2):85–110, May 1990. URL .

[92] J. Dempsey and V. Cahill. Aspects of system support for distributed
computing. In ECOOP ’97 Workshop on Aspect-oriented Programming,
1997. URL .

[93] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and
P. Shenoy. Adaptive push-pull: Dissemination of dynamic web data. In
10th International World Wide Web Conference, Hong Kong, May 2001.
URL .

[94] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Reasoning about implicit
invocation. In Proceedings of of the 6th International Symposium on the
Foundations of Software Engineering (FSE-6), pages 209–221, Lake
Buena Vista, FL, USA, Nov. 1998. ACM Press. URL .

[95] D. Dobre. A framework for engineering j2ee-based publish/subscribe
applications with scopes. Master’s thesis, TU Darmstadt, 2004.

[96] S. Duarte, J. L. Martins, H. J. Domingos, and N. Preguia. Deeds - a
distributed and extensible event dissemination service. In Proceedings of
the 4rd European Research Seminar on Advances in Distributed Systems
(ERSADS), Forli, Italy, 2001. URL .

[97] S. Duarte, J. L. Martins, H. J. Domingos, and N. Preguiça. A case study
on event dissemination in an active overlay network environment. In
Jacobsen [163]. URL .

[98] J. Eder and E. Panagos. Towards distributed workflow process
management. In C. Bussler, P. Grefen, H. Ludwig, and M.-C. Shan,
editors, Proceedings of the Workshop on Cross-Organisational Workflow
Management and Coordination, San Francisco, CA, USA, 1999. URL .

196 BIBLIOGRAPHY

[99] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29–32, 2001. URL .
Special Issue on Aspect-Oriented Programming.

[100] M. Endler and D. C. Schmidt, editors. ACM/IFIP/USENIX
International Middleware Conference (Middleware 2003), volume 2672 of
LNCS, Rio de Janeiro, Brazil, 2003. Springer-Verlag. URL .

[101] P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects and events.
In L. Northrop and J. Vlissides, editors, Proceedings of the OOPSLA ’01
Conference on Object Oriented Programming Systems Languages and
Applications, pages 254–269, Tampa Bay, FL, USA, 2001. ACM Press.
URL .

[102] P. T. Eugster, R. Guerraoui, and J. Sventek. Distributed asynchronous
collections: Abstractions for publish/subscribe interaction. In E. Bertino,
editor, European Conference on Object-Oriented Programming (ECOOP
2000), volume 1850 of LNCS, pages 252–276, 2000. URL .

[103] H. Evans and P. Dickman. DRASTIC: A run-time architecture for
evolving, distributed, persistent systems. In M. Akşit and S. Matsuoka,
editors, European Conference for Object-Oriented Programming
(ECOOP ’97), volume 1241 of LNCS, pages 243–275, Jyväskylä,
Finnland, 1997. Springer-Verlag. URL .

[104] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe.
In T. Sellis and S. Mehrotra, editors, Proceedings of the 20th Intl.
Conference on Management of Data (SIGMOD 2001), pages 115–126,
Santa Barbara, CA, USA, 2001. URL .

[105] L. Fiege. Architekturelle Unterstützung von Electronic Commerce
Anwendungen. In Informatiktage 2000. Konradin Verlag, 2000. in
German.

[106] L. Fiege, F. C. Gärtner, S. B. Handurukande, and A. Zeidler. Dealing
with uncertainty in mobile publish/subscribe middleware. In 1st
International Workshop on Middleware for Pervasive and Ad-Hoc
Computing (MPAC 03), Rio de Janeiro, Brazil, 2003. URL .

[107] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobility
in content-based publish/subscribe middleware. In Endler and Schmidt
[100], pages 103–122. URL .

[108] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobility
in content-based publish/subscribe middleware. Technical Report
IC/2003/11, Swiss Federal Institute of Technology (EPFL), School of
Computer and Communication Sciences, Lausanne, Switzerland, Mar.
2003.

BIBLIOGRAPHY 197

[109] L. Fiege, M. Mezini, G. Mühl, and A. Buchmann. Komponenten in
ereignisbasierten systemen. Thema Forschung, 1:108–114, 2003. ISSN
1434-7768. URL .

[110] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. Engineering
event-based systems with scopes. In B. Magnusson, editor, Proceedings of
the European Conference on Object-Oriented Programming (ECOOP),
volume 2374 of LNCS, pages 309–333, Malaga, Spain, June 2002.
Springer-Verlag. URL .

[111] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. Visibility as central
abstraction in event-based systems. In A. Beugnard, S. Sadou,
L. Duchien, and E. Jul, editors, Concrete Communication Abstractions of
the Next 701 Distributed Object Systems (ECOOP 2002 Workshop),
volume 2548 of LNCS, Málaga, Spain, 2002. Springer-Verlag. URL .

[112] L. Fiege and G. Mühl. Rebeca Event-Based Electronic Commerce
Architecture, 2000. URL .
http://www.gkec.informatik.tu-darmstadt.de/rebeca.

[113] L. Fiege, G. Mühl, and A. Buchmann. An architectural framework for
electronic commerce applications. In Informatik 2001: Annual
Conference of the German Computer Society, 2001.

[114] L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to build
structured event-based systems. In Proceedings of the 2002 ACM
Symposium on Applied Computing (SAC’02), pages 385–392, Madrid,
Spain, 2002. ACM Press. URL .

[115] L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems.
The Knowledge Engineering Review, 17(4):359–388, 2003. URL .

[116] L. Fiege, G. Mühl, and U. Wilhelm, editors. Second International
Workshop on Electronic Commerce (WELCOM 2001), volume 2232 of
LNCS, Heidelberg, Germany, 2001. Springer-Verlag, Berlin. URL .

[117] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Mühl.
Security aspects in publish/subscribe systems. In Carzaniga and Fenkam
[58]. URL .

[118] R. E. Filman, S. Barrett, D. D. Lee, and T. Linden. Inserting ilities by
controlling communications. Communications of the ACM, 45(1):
116–122, 2002. URL .

[119] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, 1982.

[120] O. S. Foundation. OSF Distributed Management Environment (DME)
Rationale, Oct. 1991. URL . O-DME-RD-1.

198 BIBLIOGRAPHY

[121] M. Fowler. Inversion of control containers and the dependency injection
pattern.
http://martinfowler.com/articles/injection.html#InversionOfControl,
Jan. 2004. URL .

[122] M. Fowler. UML Distilled. Addison-Wesley, 2004.

[123] D. S. Frankel. Model Driven Architecture. John Wiley & Sons, 2003.

[124] M. J. Franklin and S. B. Zdonik. A framework for scalable
dissemination-based systems. In A. M. Berman, M. Loomis, and
T. Bloom, editors, Proceedings of the 12th ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’97), pages 94–105, Atlanta, GA, USA, Oct. 5–9, 1997. URL .

[125] M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology
in Perspective. In L. M. Haas and A. Tiwary, editors, Proceedings ACM
SIGMOD International Conference on Management of Data
(SIGMOD’98), pages 516–519, Seattle, USA, 1998. ACM Press. URL .

[126] O. Friesen, G. Gauthier-Villars, A. Lefebvre, and L. Vieille. Applications
of deductive object-oriented databases using del. In R. Ramakrishnan,
editor, Applications of Logic Databases, pages 1–22. Kluwer Academics,
1994.

[127] H. Fritschi, S. Gatziu, and K. R. Dittrich. FRAMBOISE: an approach to
framework-based active database management system construction. In
G. Gardarin, J. French, N. Pissinou, K. Makki, and L. Bouganim,
editors, Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM-98), pages 364–370,
New York, Nov. 3–7 1998. ACM Press.

[128] L. Fuchs. Area: A cross-application notification service for groupware. In
S. Bødker, M. Kyng, and K. Schmidt, editors, The 6th European
Conference on Computer Supported Cooperative Work (ECSCW 1999),
pages 61–80, Copenhagen, Denmark, 1999. Kluwer Academic Publishers.
URL .

[129] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison Wesley, Reading, MA, USA, 1995.

[130] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Software, 12(6):17–26, Nov. 1995.

[131] D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction to
compose systems. IEEE Computer, 25(6):30–38, June 1992.

BIBLIOGRAPHY 199

[132] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In S. Prehn and W. J. H. Toetenel, editors, VDM ’91:
Formal Software Development Methods, volume 551 of LNCS, pages
31–44, Noordwijkerhout, The Netherlands, 1991. Springer-Verlag.

[133] D. Garlan and C. Scott. Adding implicit invocation to traditional
programming languages. In V. R. Basili, R. A. DeMillo, and
T. Katayama, editors, Proceedings of the 15th Intl. Conference on
Software Engineering (ICSE ’93), pages 447–455, Baltimore, MD, USA,
1993. IEEE Computer Society Press / ACM Press. URL .

[134] D. Garlan and M. Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering
and Knowledge Engineering, volume 1, pages 1–40. World Scientific
Publishing Company, 1993. URL .

[135] F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Computing Surveys, 31(1):1–26, Mar.
1999. URL .

[136] F. C. Gärtner. Formale Grundlagen der Fehlertoleranz in verteilten
Systemen. PhD thesis, TU Darmstadt, 2001.

[137] S. Gatziu, A. Koschel, G. von Bültzingsloewen, and H. Fritschi.
Unbundling active functionality. SIGMOD Record, 27(1), Mar. 1998.

[138] D. Gawlick and S. Mishra. Information sharing with the oracle database.
In Jacobsen [163]. URL .

[139] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event
specification in active databases: Model & implementation. In L.-Y.
Yuan, editor, Proceedings of the 18th International Conference on Very
Large Data Bases VLDB’92), pages 327–338. Morgan Kaufmann
Publishers, 1992. URL .

[140] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, Jan. 1985. URL .

[141] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and
J.-C. Syre, editors, Parallel Architectures and Languages Europe
(PARLE ’89), volume 366 of LNCS, pages 20–27, Eindhoven, The
Netherlands, 1989. Springer-Verlag. URL .

[142] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of
workflow management: From process modeling to workflow automation
infrastructure. Distributed and Parallel Databases, 3(2):119–153, Apr.
1995. URL .

200 BIBLIOGRAPHY

[143] A. Geppert and D. Tombros. Event-based distributed workflow execution
with EVE. In N. Davies, K. Raymond, and J. Seitz, editors, Middleware
´98. Springer-Verlag, 1998. URL .

[144] A. Goldberg and D. Robson. Smalltalk 80: The Language and its
Implementation. Addison-Wesley, 1983.

[145] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[146] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the
READY event notification service. In P. Dasgupta, editor, Proceedings of
the 19th IEEE International Conference on Distributed Computing
Systems, Middleware Workshop, Austin, TX, USA, May 1999. URL .

[147] R. Gruber, B. Krishnamurthy, and E. Panagos. READY: A high
performance event notification service. In Proceedings of the 16th
International Conference on Data Engineering, 2000. URL .

[148] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001. URL .

[149] P. Hammant, A. Hellesoy, and J. Tirsen. Picocontainer—a lightweight
embeddable container for dependency-injector components, 2004. URL .
http://www.picocontainer.org/.

[150] S. Handurukande, P. T. Eugster, P. Felber, and R. Guerraoui. Event
systems: How to have ones cake and eat it too. In Bacon et al. [19]. URL
. Published as part of the ICDCS ’02 Workshop Proceedings.

[151] S. Hanna, B. Patel, and M. Shah. RFC 2730: multicast address dynamic
client allocation protocol (madcap), Dec. 1999. URL . Status: Proposed
Standard.

[152] D. Harrington. The evolution of architectural concepts in the snmpv3
working group. The Simple Times, 5(1), 1997. URL .

[153] W. Harrison and H. Ossher. Subject-oriented programming (A critique of
pure objects). In A. Paepcke, editor, Proceedings of the 8th ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’93), pages 411–428, Washington, WA, USA,
1993. URL .

[154] F. Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):
921–932, Sept. 1985. URL .

[155] R. Hayton, J. Bacon, J. Bates, and K. Moody. Using events to build
large scale distributed applications. In Herbert and Tanenbaum [156],
pages 9–16. URL .

BIBLIOGRAPHY 201

[156] A. Herbert and A. S. Tanenbaum, editors. Proc. of the 7th ACM
SIGOPS European Workshop, Connemara, Ireland, 1996. URL .

[157] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. IEEE Selected Areas in Communications, 20(8), 2002. URL .

[158] IBM. Gryphon: Publish/subscribe over public networks. Technical
report, IBM T.J. Watson Research Center, 2001. URL .

[159] J. Inc. http://www.jboss.org, 2004. URL .

[160] S. M. Inc. Java 2 platform, standard edition, v 1.5.0, 2004. URL .
http://java.sun.com/j2se/1.5.0/.

[161] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM
Transactions on Networking (TON), 11(1):2–16, 2003. URL .

[162] ISO/IEC. Open distributed processing–reference model. International
Standard ISO/IEC IS 10746, May 1995.

[163] H.-A. Jacobsen, editor. 2nd Intl. Workshop on Distributed Event-Based
Systems (DEBS’03), San Diego, CA, USA, June 2003. ACM Press. URL .

[164] K. Jenkins, K. Hopkins, and K. Birman. A gossip protocol for subgroup
multicast. In M. Raynal and L. Rodrigues, editors, International
Workshop on Applied Reliable Group Communication (WARGC 2001),
Phoenix, AZ, USA, 2001. IEEE Press. URL .

[165] T. Joseph. A messaging-based architecture for enterprise application
integration. In Proceedings of the 15th International Conference on Data
Engineering (ICDE’99), pages 62–63, Sydney, Australia, 1999. URL .

[166] M. Kahani and H. W. P. Beadle. Decentralised approaches for network
management. ACM SIGCOMM Computer Communication Review, 27
(3):36–47, 1997. URL .

[167] G. Kappel, S. Rausch-Schott, and W. Retschitzegger. Coordination in
workflow management systems—a rule-based approach. In W. Conen
and G. Neumann, editors, Coordination Technology for Collaborative
Applications (ASIAN 1996 Workshop), volume 1364 of LNCS, pages
99–120. Springer, 1998. URL .

[168] G. Kappel, S. Rausch-Schott, W. Retschitzegger, and M. Sakkinen. From
rules to rule patterns. In P. Constantopoulos, J. Mylopolous, and
Y. Vassiliou, editors, Proc. of the 8th Intl. Conference on Advanced
Information Systems Engineering (CAiSe’96), volume 1080 of LNCS,
pages 99–115, Heraklion, Crete, Greece, 1996. Springer-Verlag. URL .

202 BIBLIOGRAPHY

[169] G. Kiczales. Beyond the black box: Open implementation. IEEE
Software, 13(1):8–11, Jan. 1996. URL .

[170] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the
Meta-Object Protocol. MIT Press, Cambridge, MA, USA, 1991.

[171] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. CACM, 44(10):59–65, Oct.
2001. URL . Special Issue on aspect-oriented programming.

[172] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V. Lopes,
C. Maeda, and A. Mendhekar. Aspect-oriented programming. ACM
Computing Surveys, 28(4es):154, 1996. URL .

[173] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, ECOOP’97—Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer-Verlag, 1997.

[174] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for reflective
middleware. Communications of the ACM, 45(6):33–38, 2002. URL .

[175] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
Proceedings of the International Workshop on Operating Systems of the
90s and Beyond, volume 563 of LNCS, pages 87–101. Springer-Verlag,
1991. URL .

[176] A. Koschel, R. Kramer, G. von Bültzingsloewen, T. Bleibel,
P. Krumlinde, S. Schmuck, and C. Weinand. Configurable Active
Functionality for CORBA. In ECOOP’97 Workshop on CORBA:
Implementation, Use and Evaluation, 1997.

[177] M. Koubarakis. Textual information dissemination in distributed
event-based systems. In Bacon et al. [19]. URL . Published as part of the
ICDCS ’02 Workshop Proceedings.

[178] G. E. Krasner and S. T. Pope. A description of the model-view-controller
user interface paradigm in the smalltalk-80 system. Journal of Object
Oriented Programming, 1(3):26–49, 1988. URL .

[179] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, Mar. 1977.

[180] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Proceedings of the IFIP Congress on Information Processing, pages
657–667, Amsterdam, 1983. North-Holland.

BIBLIOGRAPHY 203

[181] L. Lamport and N. Lynch. Distributed computing: Models and methods.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, pages 1157–1199. Elsevier,
1990. URL .

[182] F. Lange, R. Kröger, and M. Gergeleit. JEWEL: Design and
implementation of a distributed measurement system. IEEE
Transactions on Parallel and Distributed Systems, 3(6), 1992. URL .

[183] O. Lassila and R. R. Swick. Resource description framework (RDF)
model and syntax specification. W3C Recommendation, Feb. 1999.
http://www.w3.org/TR/REC-rdf-syntax.

[184] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler. The wise approach to
electronic commerce. International Journal of Computer Systems Science
& Engineering, 15(5), Sept. 2000. URL .

[185] J. Le Boudec. The Asynchronous Transfer Mode: a tutorial. Computer
Networks and ISDN Systems, 24:279–309, 1992.

[186] G. T. Leavens and M. Sitaraman, editors. Foundations of
Component-Based Systems. Cambridge University Press, 2000.

[187] J. Liberty. Programming C#. O’Reilly, 3rd edition edition, 2003. URL .

[188] C. Liebig, B. Boesling, and A. Buchmann. A notification service for
next-generation it systems in air traffic control. In GI-Workshop:
Multicast-Protokolle und Anwendungen, Braunschweig, Germany, May
1999. URL .

[189] C. Liebig, M. Cilia, and A. Buchmann. Event composition in
time-dependent distributed systems. In Proceedings of the 4th Intl.
Conference on Cooperative Information Systems (CoopIS ’99), Sept.
1999. URL .

[190] C. Liebig, M. Malva, and A. Buchmann. Integrating notifications and
transactions: Concepts and X2TS prototype. In W. Emmerich and
S. Tai, editors, Proceedings of Second International Workshop on
Engineering Distributed Objects (EDO 2000), volume 1999 of LNCS,
Davis, CA, USA, Nov. 2000. Springer-Verlag. URL .

[191] C.-C. Lin and R. J. LeBlanc. Event-based debugging of object/action
programs. In R. L. Wexelbalt, editor, Proceedings of the ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debugging, volume
24(1) of SIGPLAN Notices, pages 23–34, Madison, WI, USA, 1988. ACM
Press. URL .

[192] D. Luckham. The Power of Events. Addison-Wesley, 2002.

204 BIBLIOGRAPHY

[193] D. C. Luckham and J. Vera. An event-based architecture definition
language. IEEE Transactions on Software Engineering, 21(9):717–734,
Sept. 1995. URL .

[194] C. Ma and J. Bacon. COBEA: A CORBA-based event architecture. In
J. Sventek, editor, Proceedings of the 4th Conference on Object-Oriented
Technologies and Systems (COOTS-98), pages 117–132, Santa Fe, NM,
USA, 1998. USENIX Association. URL .

[195] P. Maes. Concepts and experiments in computational reflection. In
N. Meyrowitz, editor, Proceedings of the 2nd ACM Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’87), pages 147–155, Orlando, FL, USA, Oct. 1987. ACM
Press. ISBN 0-89791-247-0. URL .

[196] J. Magee, N. Dulay, and J. Kramer. Regis: A constructive development
environment for distributed programs. Distributed Systems Engineering,
1(5):304–312, 1994. URL .

[197] T. W. Malone and K. Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87–119, 1994. URL .

[198] T. W. Malone and R. J. Laubacher. The dawn of the e-lance economy.
Harvard Business Review, pages 145–152, Sept. 1998.

[199] M. Mansouri-Samani and M. Sloman. A configurable event service for
distributed systems. In Third International Conference on Configurable
Distributed Systems, pages 210–217, 1996. URL .

[200] R. C. Martin. The Dependency Inversion Principle. C++ Report, 8(6):
61–66, June 1996. URL .

[201] D. Mason and D. Woit. Problems with software reliability composition.
In Proceedings of 1998 International Symposium on Software Reliability
Engineering (ISSRE’98 Fast Abstracts), 1998. URL .

[202] F. Mattern. The vision and technical foundations of ubiquitous
computing. Upgrade, II(5), 2001. URL . Special issue on Ubiquitous
Computing.

[203] N. Maxemchuk and D. Shur. An internet multicast system for the stock
market. ACM Transactions on Computer Systems, 19(3):384–412, 2001.
URL .

[204] J. McAffer. Meta-level programming with CodA. In W. Olthoff, editor,
Proceedings of the European Conference for Object-Oriented
Programming (ECOOP ’95), volume 952 of LNCS, pages 190–214,
Aarhus, Denmark, 1995. Springer-Verlag. URL .

BIBLIOGRAPHY 205

[205] N. Medvidovic and R. N. Taylor. A framework for classifying and
comparing architecture description languages. In M. Jazayeri and
H. Schauer, editors, ESEC/FSE ’97, volume 1301 of Lecture Notes in
Computer Science, pages 60–76. Springer / ACM Press, 1997. URL .

[206] R. Meier, M.-O. Killijian, R. Cunningham, and V. Cahill. Towards
proximity group communication. In Banavar:2001:MobileMiddleware,
editor, Advanced Topic Workshop Middleware for Mobile Computing
(Middleware 2001), 2001. URL .

[207] I. Merrick and A. Wood. Coordination with scopes. In Proceedings of the
ACM Symposium on Applied Computing (SAC 2000), pages 210–217,
Como, Italy, Mar. 2000. URL .

[208] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed packet switching
for local computer networks. Communications of the ACM, 19(7):
395–403, July 1976. URL .

[209] D. Meyer. RFC 2365: Administratively scoped IP multicast, July 1998.
URL . Status: Best Current Practice.

[210] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and
V. Jacobson. Adaptive Web caching: Towards a new global caching
architecture. Computer Networks and ISDN Systems, 30:2169–2177, Nov.
1998. URL .

[211] D. P. Miranker, L. Obermeyer, L. Warshaw, and J. C. Browne. Venus:
An object-oriented extension of rule-based programming. Technical
report, University of Texas at Austin, 1998. URL .

[212] G. Mühl. Generic constraints for content-based publish/subscribe
systems. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella,
editors, Proceedings of the 6th International Conference on Cooperative
Information Systems (CoopIS ’01), volume 2172 of LNCS, pages
211–225, Trento, Italy, 2001. Springer-Verlag. URL .

[213] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Darmstadt University of Technology, 2002. URL .
http://elib.tu-darmstadt.de/diss/000274/.

[214] G. Mühl and L. Fiege. Supporting covering and merging in content-based
publish/subscribe systems: Beyond name/value pairs. IEEE Distributed
Systems Online (DSOnline), 2(7), 2001. URL .

[215] G. Mühl, L. Fiege, and A. P. Buchmann. Evaluation of cooperation
models for electronic business. In Information Systems for E-Commerce,
Conference of German Society for Computer Science / EMISA, pages
81–94, Nov. 2000. ISBN 3-85487-194-5.

206 BIBLIOGRAPHY

[216] G. Mühl, L. Fiege, and A. P. Buchmann. Filter similarities in
content-based publish/subscribe systems. In H. Schmeck, T. Ungerer,
and L. Wolf, editors, International Conference on Architecture of
Computing Systems (ARCS), volume 2299 of Lecture Notes in Computer
Science, pages 224–238, Karlsruhe, Germany, 2002. Springer-Verlag.
URL .

[217] G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann. Evaluating
advanced routing algorithms for content-based publish/subscribe
systems. In A. Boukerche, S. K. Das, and S. Majumdar, editors, The
Tenth IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS
2002), pages 167–176, Fort Worth, TX, USA, October 2002. IEEE Press.
URL .

[218] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. Disseminating
information to mobile clients using publish/subscribe. IEEE Internet
Computing, 8(3), May 2004. URL .

[219] M. Mühleisen. Programming and administration of publish-subscribe
systems (in german). Master’s thesis, Technische Universität Darmstadt,
2005.

[220] S. Mullender, editor. Distributed Systems. Addison-Wesley, 2nd edition,
1993.

[221] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A Middleware for
Physical and Logical Mobility. In F. Golshani, P. Dasgupta, and
W. Zhao, editors, Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), pages 524–533, Phoenix,
AZ, USA, May 2001. URL .

[222] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for
computer networks. IEEE Communications Magazine, 32(9):33–38, Sept.
1994.

[223] FIXML - A Markup Language for the Financial Information eXchange
(FIX) protocol. Oasis, July 2001.
http://www.oasis-open.org/cover/fixml.html.

[224] Object Management Group. The Common Object Request Broker:
Architecture and Specification. Version 2.3. Object Management Group,
Framingham, MA, USA, 1998.

[225] Object Management Group. CORBA Components. OMG, Framingham,
MA, USA, 1999. orbos/99-07-01.

[226] Object Management Group. Corba notification service. OMG Document
telecom/99-07-01, 1999. URL .

BIBLIOGRAPHY 207

[227] Object Management Group. CORBA event service specification, version
1.0. OMG Document formal/2000-06-15, 2000. URL .

[228] Object Management Group. Corba transaction service v1.1. OMG
Document formal/00-06-28, 2000. URL .

[229] Object Management Group. Management of event domains. Version 1.0,
Formal Specification, 2001. URL . formal/01-06-03.

[230] Object Management Group. Corba components, v3.0 full specification.
formal/02-06-65, June 2002. URL .

[231] Object Management Group. CORBA notification service, version 1.0.1.
OMG Document formal/2002-08-04, 2002. URL .

[232] K. O’Connell, T. Dinneen, S. Collins, B. Tangney, N. Harris, and
V. Cahill. Techniques for handling scale and distribution in virtual
worlds. In Herbert and Tanenbaum [156], pages 17–24. URL .

[233] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an
architecture for extensible distributed systems. In B. Liskov, editor,
Proceedings of the 14th Symposium on Operating Systems Principles,
pages 58–68, Asheville, NC, USA, Dec. 1993. ACM Press. URL .

[234] A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of
Computer Programming, 41(3):277–294, Nov. 2001. URL .

[235] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and
D. Sturman. Exploiting IP multicast in content-based publish-subscribe
systems. In J. Sventek and G. Coulson, editors, IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2000), volume
1795 of LNCS, pages 185–207. Springer-Verlag, 2000. URL .

[236] I. Oracle. Introduction to oracle advanced queuing (aq). Application
Developer’s Guide, July 2001. URL .

[237] G. A. Papadopoulos and F. Arbab. Coordination models and languages.
In M. Zelkowitz, editor, The Engineering of Large Systems, volume 46 of
Advances in Computers. Academic Press, Aug. 1998. URL .

[238] G. A. Papadopoulos and F. Arbab. Modelling Activities in Information
Systems using the coordination language Manifold. In K. M. George and
G. B. Lamong, editors, Proceedings of the ACM Symposium on Applied
Computing (SAC ’98), pages 185–193, Atlanta, GA, USA, 1998. ACM
Press. URL .

[239] G. A. Papadopoulos and F. Arbab. Configuration and dynamic
reconfiguration of components using the coordination paradigm. Future
Generation Computer Systems, 17(8):1023–1038, June 2001. URL .

208 BIBLIOGRAPHY

[240] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, Dec. 1972.

[241] C. Partridge, T. Mendez, and W. Milliken. RFC 1546: host anycasting
service, nov 1993. URL . Status: Informational.

[242] N. W. Paton and O. Diaz. Active Database Systems. ACM Computing
Surveys, 31(1):63–103, 1999. URL .

[243] M. Pauly. Event-based meta-auctions on mobile devices. Master’s thesis,
Departement of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany, Apr. 2004. (in German).

[244] P. Pietzuch and J. Bacon. Hermes: A distributed event-based
middleware architecture. In Bacon et al. [19]. URL . Published as part of
the ICDCS ’02 Workshop Proceedings.

[245] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD
thesis, University of Cambridge, February 2004. URL .

[246] P. R. Pietzuch, B. Shand, and J. Bacon. A framework for event
composition in distributed systems. In Endler and Schmidt [100], pages
62–82. URL .

[247] D. Platt. The COM+ event service eases the pain of publishing and
subscribing to data. Microsofts Systems Journal, September 1999.

[248] A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981.

[249] A. Pope. The CORBA Reference Guide. Addison-Wesley, Reading, MA,
USA, 1997.

[250] D. Powell. Group communication. Communications of the ACM, 39(4):
50–53, Apr. 1996. URL .

[251] R. Prakash and R. Baldon. Architecture for group communication in
mobile systems. In The 17th IEEE Symposium on Reliable Distributed
Systems (SRDS ’98, pages 235–242, Oct. 1998. URL .

[252] E. Pulvermüller, H. Klaeren, and A. Speck. Aspects in distributed
environments. In K. Czarnecki and U. Eisenecker, editors, Generative
and Component-Based Software Engineering, GCSE’99, volume 1799 of
LNCS, Erfurt, Germany, Sept. 1999. Springer-Verlag. URL .

[253] B. Quinn and K. Almeroth. RFC 3170: ip multicast applications:
Challenges and solutions, Sept. 2001. URL . Status: Informational.

BIBLIOGRAPHY 209

[254] K. Ramamritham, P. Deolasee, A. Katkar, A. Panchbudhe, and
P. Shenoy. Dissemination of dynamic data on the internet. In S. Bhalla,
editor, Databases in Networked Information Systems (DNIS 2000),
volume 1966 of LNCS, pages 173–187, Aizu, Japan, 2000.
Springer-Verlag. URL .

[255] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level
multicast using content-addressable networks. In J. Crowcroft and
M. Hofmann, editors, Proceedings of the Third International COST264
Workshop (NGC 2001), volume 2233 of LNCS, pages 14–29.
Springer-Verlag, Nov. 2001. URL .

[256] S. P. Reiss. Connecting tools using message passing in the Field
environment. IEEE Software, 7(4):57–66, July 1990.

[257] A. Ricci, A. Omicini, and E. Denti. Objective vs. subjective coordination
in agent-based systems: A case study. In Arbab and Talcott [16], pages
291–299. URL .

[258] D. Riehle, W. Siberski, D. Bäumer, D. Megert, and H. Züllighoven.
Serializer. In R. Martin, D. Riehle, , and F. Buschmann, editors, Pattern
Languages of Program Design 3, chapter 17, pages 293–312.
Addison-Wesley, 1998. URL .

[259] M. T. Rose. Network management: Status and challenges. Keynote
Presentation at the Third International Symposium on Integrated
Network Management (ISINM’93), Apr. 1993. URL .

[260] M. T. Rose. The Simple Book: An Introduction to Internet Management.
P T R Prentice-Hall, second edition, 1994.

[261] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy.
An analysis of internet content delivery systems. ACM Operating
Systems Review, 36(SI):315–327, 2002. URL .

[262] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In IEEE Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, US, 1994. URL .

[263] D. Schmidt and S. Vinoski. Time-Independent Invocation and
Interoperable Routing. C++ Report, 11(4), Apr. 1999.

[264] D. C. Schmidt and S. Vinoski. Programming Asynchronous Method
Invocations with CORBA Messaging. C++ Report, 11(2), Feb. 1999.

[265] D. C. Schmidt and S. Vinoski. Portable interceptors concepts and
components. C++ Experts Forum, Mar. 2003. URL . Object
Interconnections: CORBA Metaprogramming Mechanisms, Part 1.

210 BIBLIOGRAPHY

[266] W. Segall and D. Arnold. Elvin has left the building: A publish/subscribe
notification service with quenching. In Proceedings of the 1997 Australian
UNIX Users Group, Brisbane, Australia, September 1997., 1997. URL .
http://elvin.dstc.edu.au/doc/papers/auug97/AUUG97.html.

[267] Y.-P. Shan. An event-driven model-view-controller framework for
Smalltalk. In N. Meyrowitz, editor, OOPSLA’89 Conference Proceedings:
Object-Oriented Programming: Systems, Languages, and Applications,
pages 347–352. ACM Press, 1989. URL .

[268] A. P. Sheth and J. A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing
Surveys, 22(3):183–236, Sept. 1990.

[269] M. D. Skeen and M. Bowles. Apparatus and method for providing
decoupling of data exchange details for providing high performance
communication between software processes. United States Patent No.
5,557,798, Sept. 1996. URL .

[270] M. Stal. Web services: Beyond component-based computing.
Communications of the ACM, 45(10):71–76, 2002. URL .

[271] J. Steffan and L. Fiege. Scoping as a general node selection concept for
wireless sensor networks. submitted, 2005.

[272] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Scoping in wireless
sensor networks. In 2nd International Workshop on Middleware for
Pervasive and Ad-Hoc Computing, Toronto, Canada, 2004. ACM.

[273] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee,
D. Sturman, and M. Ward. Gryphon: An information flow based
approach to message brokering. In Int’l Symposium on Software
Reliability Engineering, 1998. URL .

[274] D. Sturman, G. Banavar, and R. Strom. Reflection in the gryphon
message brokering system. In In Reflection Workshop of the 13th ACM
Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’98), 1998. URL .

[275] K. J. Sullivan and D. Notkin. Reconciling environment integration and
component independence. In R. N. Taylor, editor, Proceedings of the 4th
ACM SIGSOFT Symposium on Software Development Environments,
pages 22–33, Irvine, CA, USA, 1990. ACM Press. URL .

[276] K. J. Sullivan and D. Notkin. Reconciling environment integration and
software evolution. ACM Transactions of Software Engineering and
Methodology, 1(3):229–269, July 1992.

BIBLIOGRAPHY 211

[277] Q. Sun. Reliable multicast for publish/subscribe systems. Master’s
thesis, Massachusetts Institute of Technology, 2000. URL .

[278] Sun Microsystems, Inc. Javabeans version 1.01. Proposed Final Draft,
1997. http://java.sun.com/products/javabeans.

[279] Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.0.2,
1999. URL .

[280] Sun Microsystems, Inc. Enterprise javabeans specification, version 2.0.
Proposed Final Draft, 2000.
http://java.sun.com/products/ejb/index.html.

[281] Sun Microsystems, Inc. JavaSpaces Service Specification version 1.1,
2000. URL .

[282] Sun Microsystems, Inc. Java 2 Platform Enterprise Edition Specification,
v. 1.3, July 2001.

[283] Sun Microsystems, Inc. Java management extensions. Instrumentation
and Agent Specification, v1.2, Oct. 2002. URL .

[284] Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.1,
2002. URL .

[285] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1997.

[286] S. Tai, T. A. Mikalsen, I. Rouvellou, and S. M. Sutton Jr.
Dependency-spheres: A global transaction context for distributed objects
and messages. In Proceedings of the 5th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2001), Seattle,
Washington, USA, Sept. 2001. URL .

[287] A. S. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

[288] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2002. ISBN 0-13-066102-3.

[289] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E.
Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow. A component- and
message-based architectural style for GUI software. IEEE Transactions
on Software Engineering, 22(6):390–406, June 1996. URL .

[290] W. W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju, and A. Buchmann.
Bit Zipper Rendezvous—Optimal data placement for general P2P
queries. In C. Meghini, N. Spyratos, and Y. Tzitzikas, editors, EDBT 04
Workshop on Peer-to-Peer Computing & DataBases, volume ? of LNCS,
Heraklion, Crete, Greece, 2004. Springer-Verlag. URL .

212 BIBLIOGRAPHY

[291] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A
peer-to-peer approach to content-based publish/subscribe. In Jacobsen
[163]. URL .

[292] TIBCO, Inc. TIB/Rendezvous. White Paper, 1996.
http://www.rv.tibco.com/.

[293] TIBCO, Inc. TIBCO Rendezvous: Concepts, 2002.

[294] P. Timberlake. The pitfalls of using multicast publish/subscribe for EAI.
IBM MQseries Whitepaper, 2002. URL . also published on
messageQ.com.

[295] R. van Renesse, K. Birman, A. Bozdog, D. Dumitriu, M. Singh, and
W. Vogels. Heterogeneity-aware peer-to-peer multicast. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley,
CA, USA, 2003. URL . Submitted.

[296] J. Vera, L. Perrochon, and D. C. Luckham. Event-based execution
architectures for dynamic software systems. In Proceedings of the First
Working IFIP Conf. on Software Architecture, San Antonio, TX, USA,
Feb. 1999. IEEE. URL .

[297] M. Viroli and A. Ricci. Tuple-based coordination models in event-based
scenarios. In Bacon et al. [19]. Published as part of the ICDCS ’02
Workshop Proceedings.

[298] J. Vitek, N. Horspool, and A. Krall. Efficient type inclusion tests. ACM
SIGPLAN Notices, 32(10):142–157, Oct. 1997. ISSN 0362-1340. URL .

[299] W3C. Simple object access protocol (SOAP) 1.2. Recommendation, June
2003. URL . http://www.w3.org/TR/SOAP/.

[300] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and
requirements for Internet-scale publish-subscribe systems. In Proceedings
of the Thirtyfifth Hawaii International Conference on System Sciences
(HICSS-35), Big Island, Hawaii, Jan. 2002. URL .

[301] M. Weiser. The computer for the 21st century. Scientific American, 265
(3):94–104, 1991. URL .

[302] S.-Y. Wu, D. P. Miranker, and J. C. Browne. Decomposition abstraction
in parallel rule languages. Transactions on Parallel and Distributed
Systems, 7(11):1164–1184, 1996. URL .

[303] T. W. Yan and H. Garcia-Molina. Index structures for selective
dissemination of information under the Boolean model. ACM
Transactions on Database Systems, 19(2):332–364, 1994. URL .

BIBLIOGRAPHY 213

[304] S. Yang and S. Chakravarthy. Formal semantics of composite events for
distributed environments. In Proceedings of the 15th International
Conference on Data Engineering (ICDE ’99), pages 400–407. IEEE
Computer Society Press, 1999. URL .

[305] A. Zeidler and L. Fiege. Mobility support with rebeca. In J. Wu,
editor, Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS) Workshop on Mobile Computing
Middleware (MCM 03), pages 354–361, Providence, RI, USA, 2003. IEEE
Press. URL .

[306] H. Zeller. Nonstop sql/mx publish/subscribe: Continuous data streams in
transaction processing. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors,
Proceedings of SIGMOD’03, page 633, San Diego, CA, USA, 2003. URL .

[307] D. Zhou, K. Schwan, G. Eisenhauer, and Y. Chen. Jecho–interactive high
performance computing with java event channels. In Intl. Parallel and
Distributed Processing Symposium (IPDPS), San Francisco, CA, USA,
2001. URL .

[308] J. Zinky and R. Shapiro. The aspect-oriented interceptors’ pattern for
crosscutting and separation of concerns using conventional object
oriented programming languages. In The Second AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), 2003. URL .

214 BIBLIOGRAPHY

Erklärung

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen
Grades

”
Dr.-Ing.“ mit dem Titel

”
Visibility in Event-Based Systems“

selbstständig und ausschließlich unter Verwendung der angegebenen Hilfsmittel
erstellt zu haben. Ich habe bisher noch keinen Promotionsversuch
unternommen.

Darmstadt, den 04. April 2005 Ludger Fiege

	Title Page
	Abstract
	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Event-Based Systems
	1.2 Shortcomings of Event-Based Communication
	1.3 Scoping in Event-Based Systems
	1.4 Organization

	2 Event-Based Systems
	2.1 Constituents of Event-Based Systems
	2.1.1 Events and Notifications
	2.1.2 Producers and Consumers
	2.1.3 Subscriptions and Filters
	2.1.4 Event Notification Service

	2.2 Models of Interaction
	2.2.1 Request/Reply
	2.2.2 Anonymous Request/Reply
	2.2.3 Point-to-Point Messaging
	2.2.4 Event-Based
	2.2.5 Comparison
	2.2.6 Interaction vs. Implementation

	2.3 Simple Event-Based Systems
	2.3.1 Formal Background
	2.3.2 Specification of a Simple Event System
	2.3.3 Implementation
	2.3.4 Correctness

	2.4 The Rebeca Model
	2.4.1 System Model
	2.4.2 Architecture
	2.4.3 Filter-Based Routing

	2.5 Missing Functionality
	2.5.1 Application Scenarios
	2.5.2 Engineering Requirements
	2.5.3 Existing Support

	2.6 Discussion

	3 Scopes
	3.1 Visibility
	3.1.1 Implicit Coordination and Visibility
	3.1.2 Explicit Control of Visibility
	3.1.3 The Role of Administrators

	3.2 Event-Based Systems with Scopes
	3.2.1 Visibility and Scopes
	3.2.2 Specification
	3.2.3 Notification Dissemination
	3.2.4 Duplicate Notifications
	3.2.5 Dynamic Scopes
	3.2.6 Attributes and Abstract Scopes
	3.2.7 A Correct Implementation

	3.3 Component Interfaces
	3.3.1 Scope Interfaces
	3.3.2 Event-Based Components
	3.3.3 Example

	3.4 Notification Mappings
	3.4.1 Specification
	3.4.2 A Correct Implementation
	3.4.3 Example

	3.5 Transmission Policies
	3.5.1 Publishing Policy
	3.5.2 Delivery Policy
	3.5.3 Traverse Policy
	3.5.4 Influencing Notification Dissemination

	3.6 Scoping of Notifications
	3.6.1 Dependent Notifications
	3.6.2 Session Scopes

	3.7 Security
	3.8 Engineering with Scopes
	3.8.1 Development Process
	3.8.2 Component Definition
	3.8.3 Scope Graph Composition
	3.8.4 Scope Graph Deployment
	3.8.5 Management
	3.8.6 Scope Graph Language

	3.9 Discussion

	4 Scope Architectures
	4.1 Architectural Choices
	4.1.1 Communication Medium
	4.1.2 Scope Distribution
	4.1.3 Example Architectures
	4.1.4 Scope Graph Distribution---Types of Architectures
	4.1.5 Comparing Architectures

	4.2 Collapsing Scope Graphs
	4.2.1 Collapsing Filters
	4.2.2 Filtering Costs in a Pub/Sub Implementation
	4.2.3 Coping with Graph Updates
	4.2.4 Filter Aggregation in Databases
	4.2.5 Evaluation

	4.3 Scope Address
	4.3.1 Addressing Scheme
	4.3.2 The Resulting Overlay Network
	4.3.3 Evaluation

	4.4 Scopes as Event Brokers
	4.4.1 One Scope, One Broker
	4.4.2 Distributed Scopes
	4.4.3 Collocating Broker Scopes
	4.4.4 Evaluation

	4.5 Integrate Scoping and Routing
	4.5.1 Scopes as Overlays
	4.5.2 Enhancing Routing Tables
	4.5.3 Setting Up Routing Tables
	4.5.4 Scoped Routing
	4.5.5 Crossing Scopes
	4.5.6 Transmission Policies
	4.5.7 Scope Multicast
	4.5.8 Evaluation

	4.6 Combining Different Architectures
	4.6.1 Architectures and Scope Graphs
	4.6.2 Bridging Architectures
	4.6.3 Integration with other Notification Services

	4.7 Discussion

	5 Rebeca-An Implementation of Scopes
	5.1 Software Building Blocks
	5.1.1 Events, Notifications, Messages
	5.1.2 Subscriptions and Filters
	5.1.3 Pub/Sub API
	5.1.4 Broker Network
	5.1.5 Broker Implementation
	5.1.6 Channels

	5.2 Scopes
	5.2.1 Scope Interface
	5.2.2 Implementation: Broker Scope
	5.2.3 Management Interfaces
	5.2.4 Implementation: Integrated Routing

	6 Related Work
	6.1 Distributed Systems
	6.1.1 Middleware
	6.1.2 Communication Paradigms
	6.1.3 Other Notions of Communication
	6.1.4 Application Scenarios

	6.2 Notification Services
	6.2.1 Corba Notification Service
	6.2.2 Java Message Service
	6.2.3 Commercial Systems
	6.2.4 Research Prototypes
	6.2.5 Other Related Work

	6.3 Rule-Based Systems
	6.4 Data Management
	6.4.1 Active Database Management Systems
	6.4.2 Reactive Functionality
	6.4.3 Heterogeneity and Data Integration

	6.5 Coordination Models
	6.6 Software Engineering
	6.6.1 Software Architecture
	6.6.2 Software Integration
	6.6.3 Component Models
	6.6.4 Programming Loosely Coupled Systems
	6.6.5 Aspects and Reflection

	6.7 GUI Design

	7 Conclusions and Future Work
	Bibliography

