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Visibility of the amplitude (Higgs) mode in condensed matter
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The amplitude mode is a ubiquitous collective excitation in condensed-matter systems with broken continuous
symmetry. It is expected in antiferromagnets, short coherence length superconductors, charge density waves,
and lattice Bose condensates. Its detection is a valuable test of the corresponding field theory, and its mass
gap measures the proximity to a quantum critical point. However, since the amplitude mode can decay into
low-energy Goldstone modes, its experimental visibility has been questioned. Here we show that the visibility
depends on the symmetry of the measured susceptibility. The longitudinal susceptibility diverges at low frequency
as Im χσσ ∼ ω−1 (d = 2) or log(1/|ω|) (d = 3), which can completely obscure the amplitude peak. In contrast,
the scalar susceptibility is suppressed by four extra powers of frequency, exposing the amplitude peak throughout
the ordered phase. We discuss experimental setups for measuring the scalar susceptibility. The conductivity of the
O(2) theory (relativistic superfluid) is a scalar response and therefore exhibits suppressed absorption below the
Higgs mass threshold, σ ∼ ω2d+1. In layered, short coherence length superconductors, (relevant, e.g., to cuprates)
this threshold is raised by the interlayer plasma frequency.
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I. INTRODUCTION

A fundamental consequence of spontaneous (continuous)
symmetry breaking (SSB) of N -component order parameters
is the emergence of collective order parameter oscillations:
Goldstone modes and a massive amplitude (Higgs) mode.
Examples in condensed-matter systems are plentiful: for
example, Heisenberg and XY spin systems, superconductors,
cold atom condensates in optical lattices, and incommensurate
charge density waves.1 In particle theory, the Higgs boson2

is modeled by the amplitude mode of a gauged bosonic
condensate.

While long-wavelength Goldstone modes are sharp exci-
tations in the broken symmetry phase, the amplitude mode is
long-lived only at the classical (weak coupling) level. Quantum
corrections allow for its decay into pairs of Goldstone modes.
Previous authors3,4 have therefore questioned the experimental
visibility of the amplitude mode. Indeed, in ordered phases of
two and three dimensions, the longitudinal susceptibility ex-
hibits an infrared singularity, which can broaden the amplitude
mode peak into an undetectable shoulder, as in Fig. 1.

Is the amplitude mode therefore overdamped? This paper
shows that, surprisingly, it is not. Rather, the infrared singu-
larity is a property of the chosen susceptibility. The amplitude
mode produces, in fact, a pronounced peak in the scalar
(rotationally invariant) susceptibility, as depicted in Fig. 1.
Similarly, for the O(2) model (relativistic superfluids), the
mode produces a well-defined pseudogap in the optical con-
ductivity, as previously noted in Kubo formula computations.5

Here we find at two-loop order an additional weak absorption
tail below the Higgs mass threshold, σ ∼ ω2d+1.

The two types of susceptibility are associated with different
ways of parametrizing the fluctuations of the order parameter
�. Within the ordered phase, the order parameter gets an
expectation value |〈�〉| = �0, and fluctuations in its value
can be written as

� = (�0 + σ,π ) = �0(1 +
√

Nρ)n̂. (1)

In the first parametrization, the fields σ and π describe, in
turn, the longitudinal and transverse fluctuations relative to
the ordering direction. In the second parametrization, ρ is the
fluctuation in the magnitude of the order parameter, while n̂
is the ordering direction. We find that the scalar susceptibility,
associated with ρ, can display a sharp peak at the Higgs mass,
even in cases where the longitudinal susceptibility, associated
with σ , does not.

The difference between longitudinal and amplitude fluc-
tuations can be understood heuristically by considering os-
cillations of a particle near the minimum of the Mexican
hat potential shown in Fig. 2. The longitudinal component
(in the broken symmetry direction) loses coherence rapidly
as the particle oscillates and also meanders around the rim.
In contrast, amplitude oscillations, that is, fluctuations in the
radial distance ρ, are much longer lived since their interaction
with long-wavelength Goldstone fluctuations is suppressed
by two derivatives. Thus, the infrared singularity in the
longitudinal response is due to “contamination” of Goldstone
modes in the response function and not due to overdamping of
the amplitude mode itself.6,7 This explanation is made precise
by calculating the scalar susceptibility of the relativistic O(N )
field theory in the broken symmetry phase.

This paper is organized as follows: In Sec. II, we introduce
the O(N ) field theory on which we base our analysis,
define longitudinal and scalar susceptibilities of the order
parameter, and show how to define conductivity in O(N )
models. In Sec. III we compute in the weak coupling limit the
susceptibilities to one-loop order and the optical conductivity
up to two-loop order. We show that a cancellation of self-
energy and vertex diagrams suppress the subgap spectra of
the scalar susceptibility and the O(2) conductivity by four
powers of frequency relative to non symmetric response
functions. In Sec. IV we compute the O(N ) susceptibilities
in the large N limit and find a suppression by the same four
powers of frequency in the scalar susceptibility relative to
the longitudinal susceptibility. We conclude in Sec. V by

174522-11098-0121/2011/84(17)/174522(17) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.174522


DANIEL PODOLSKY, ASSA AUERBACH, AND DANIEL P. AROVAS PHYSICAL REVIEW B 84, 174522 (2011)

FIG. 1. (Color online) Visibility of the amplitude mode. The
longitudinal and scalar susceptibilities of the two-dimensional O(N )
model at zero temperature are plotted in the large N limit. m is
the renormalized amplitude mode mass. The coupling constant is
g = 0.84 g∞

c , which is within the broken symmetry phase. Note that
dissipation into Goldstone modes has very different effects on the
low-frequency behavior of the two susceptibilities and on the visibility
of the amplitude mode around ω = m.

proposing various scalar probes for the amplitude mode in
cold atoms, magnetic systems, and layered superconductors
with long-range Coulomb interactions. In the cuprates, for
example, we suggest that the midinfrared spectral weight in the
optical conductivity might be related to the amplitude mode of
tightly bound Cooper pairs.8 This is followed by appendixes
which provide detailed derivations of some of the technical
results discussed in the main text.

II. O(N) FIELD THEORY

The relativistic O(N ) field theory describes long-
wavelength correlations of condensed-matter systems with
N real parameter fields �, with global O(N ) symmetry and
two time derivatives in the Lagrangian.9 For example, O(3)
theory describes unfrustrated Heisenberg antiferromagnets,10

and O(2) theory describes strongly interacting lattice bosons
at commensurate11 and half-commensurate5 fillings. The role

FIG. 2. (Color online) Fluctuations in the Mexican hat potential.
〈�〉 is the order parameter. The massive Higgs and massless
Goldstone modes can be represented either in terms of longitudinal
(σ ) and transverse (π) degrees of freedom, respectively, or in terms
of scalar (ρ) and direction (∂μn̂) degrees of freedom.

of the speed of light is played by a spin wave or sound velocity.
The Euclidean time action reads as

S = 1

2g

∫
�

dd+1x

[
(∂μ�)2 + m2

0

4N
(|�|2 − N )2

]
. (2)

Here � is dimensionless, the momenta integrals are cut off by
the ultraviolet wave vector �, and the bare mass m0 is given
by the microscopic scale of the system, of order �.

Note that Eq. (2) can be regarded as a coarse-grained
version of the O(N ) nonlinear σ model. Very deep inside
the ordered phase, the σ model does not allow for amplitude
fluctuations; that is, the amplitude excitations are infinitely
gapped. More generally, the model can be coarse-grained to a
soft-spin model, as treated here, and the amplitude excitations
have a finite energy.

For d � 2, there is an ordered SSB phase at weak coupling
g < gc(�). Deep in the ordered phase (g � gc) the order
parameter is |〈�〉| � √

N . Quantum fluctuations reduce the
order parameter to r(g,�)

√
N , while the amplitude mode

mass is reduced from its bare value m0 to a renormalized
value m(g,�) until they both vanish at the quantum critical
point gc (Ref. 9). For Eq. (2) to describe the amplitude mode,
the cutoff must be large enough to satisfy � 	 m, which holds
particularly well in the vicinity of a quantum critical point.

Fluctuations in the broken symmetry phase can be
parametrized by

� = (r
√

N + σ,π ), (3)

where r is a constant. σ is the longitudinal (not scalar)
fluctuation and π are N − 1 gapless transverse Goldstone
modes, as depicted in Fig. 2. Equation (2) can be expanded
into harmonic, anharmonic, and counterterm parts, S = S 0 +
SA + SC,

S 0 = 1

2g

∫
�

dd+1x[(∂μσ )2 + r2m2
0 σ 2 + (∂μπ )2],

SA = m2
0

2g

∫
�

dd+1x

[
r√
N

(σ 3 + σπ2) + 1

4N
(σ 2 + π2)2

]
,

SC = (r2 − 1) m2
0

4g

∫
�

dd+1x[2r
√

N σ + σ 2 + π2], (4)

where the renormalized mass is m = rm0, and r is determined
by requiring 〈σ 〉 = 0 order by order in powers of g and/or
1/N . This counterterm prescription ensures that the Goldstone
propagators remain massless at each order (see Appendix A).

A. Dynamical susceptibilities

Susceptibilities are generally defined by

χ AB(q) =
∫

dd+1xeiq·x〈A(x) B(0)〉c, (5)

where A = σ , π , π2, etc. Here the subscript c denotes the
connected average, q = (ωn,q) is the Euclidean momentum,
and ωn is a bosonic Matsubara frequency. The spectral function
is χ ′′

AB(q,ω) = Im χ AB(q,ω + i0+).
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In the broken symmetry phase, the longitudinal suscepti-
bility as defined by (3) is χ σσ . In contrast, scalar fluctuations
are given by

ρ(x) ≡ 1√
N

(|�(x)|2 − r2N ) = 2rσ + σ 2 + π2

√
N

. (6)

One then defines the scalar susceptibility χ ρρ , which is related
to a sum of cross-susceptibilities,

χ ρρ = r2(4χ σσ + χ sing + χ reg),

χ sing = 4

r
√

N
χ σπ2 + 1

r2N
χ π2π2 , (7)

χ reg = 1

r2N
χ σ 2σ 2 + 4

r
√

N
χ σ 2σ + 2

r2N
χ σ 2π2 .

Anharmonic interactions SA in Eq. (4) are responsible for
cross-susceptibilities between the σ and π fields. In Secs. III
and IV we calculate the longitudinal and scalar susceptibilities
using weak coupling and large N expansions, respectively.
Both approaches show that in the ω → 0 (infrared) limit, χ ′′

σσ

and χ ′′
sing are singular, while χ ′′

reg is infrared regular.

B. Conductivity

For all N � 2, currents and conductivities can be defined
as derivatives with respect to matrix gauge fields introduced
into Eq. (2) by setting ∂μ� → ∂μ� + eAaμT a�. The T a are
the O(N ) symmetry generators and e is the charge.9

When the O(N ) symmetry is broken, the generators T a

fall into two classes: broken and unbroken. The N − 1 broken
generators rotate between �1 ≡ σ and �j ≡ π j−1, with j =
2, . . . ,N . The remaining 1

2 (N − 1)(N − 2) unbroken genera-
tors rotate among the (N − 1) components of the π field. In
analogy with the O(2) case, which has a single generator of the
first kind (T = i

2σy), we define the (paramagnetic) currents of
the broken generators by

I
para
bμ

(x) = e

g
∂μ� · T b�, (8)

their correlators as

Kbb
μν(x,x ′) = 〈

I
para
bμ

(x) I
para
bν

(x ′)
〉
, (9)

and the generalized O(N ) conductivity as

σ (ω) = Im
1

ω + iε

(
Kbb

xx (ω + i0+,q = 0) − e2

g
〈|�|2〉

)
,

(10)

where the last term is the diamagnetic contribution. The O(N )
conductivity is discussed more thoroughly in Appendix D.

III. WEAK COUPLING LIMIT (g � 1)

Diagrammatic perturbation theory for χ in powers of g

amounts to counting loops. To one loop order,

χ σσ (q) = χ0(q) + χ0(q)�0(q)χ0(q) + O(g3), (11)

where χ0 = g/(q2 + m2) is the zeroth-order longitudinal sus-
ceptibility and �0 is the polarization bubble, shown in Fig. 3.

FIG. 3. Infrared divergences at weak coupling. Diagrams de-
scribing the infrared divergent weak coupling corrections to the
longitudinal and scalar susceptibilities in Eqs. (7) and (11). Solid
lines are σ propagators; dashed lines represent π propagators.

Since �0 is a convolution of two massless π propagators, it
diverges as (Appendix B)

�0(q) = m4
0r

2(N − 1)

2N

∫
dd+1k

(2π )D
1

k2(k + q)2

= m4
0r

2(N − 1)

N

{
1

16 |q| (d = 2),
1

32π2

[
1 + ln

(
�2

q2

)]
(d = 3).

(12)

We ignore all other diagrams of the same order in g which
do not contribute to the low-frequency dependence, such as
the loop of massive σ propagators. Analytically continuing
|q| →

√
q2 − (ω + iε)2 and taking the imaginary part yields

χ ′′
σσ = πg

2
√

q2 + m2
δ(ω −

√
q2 + m2)

+ g2 (N − 1) m4
0r

2

32πN

�(ω2 − q2)

(q2 + m2 − ω2)2

·
{

2π√
ω2−q2

(d = 2),

1 (d = 3).
(13)

Note that χ ′′
σσ at zero momentum behaves as ωd−3, which

is a direct consequence of the low-momentum divergence of
�0(q). This divergence is the quantum version of the divergent
longitudinal susceptibility of the O(N ) ferromagnet (N > 2)
in d + 1 dimensions in its low-temperature ordered phase.12

The leading order corrections of χ ρρ are given by the
terms in Eq. (7) which are dominated by infrared-divergent �0

factors. The dominant terms are depicted in Fig. 3. Computing
the scalar susceptibility up to one loop yields

χ ρρ = 4gr2

q2 + m2
+ 4g2q4r2

(q2 + m2)2
�0(q) + r2χ reg(q). (14)

Note that the infrared singularities cancel out, leaving χ ρρ

to rise as q4�0(q) at low q. As a consequence, the scalar
susceptibility decays rapidly at low frequencies,

χ ′′
ρρ ∼

{
(ω2 − q2)3/2 �(ω − |q|) (d = 2),

(ω2 − q2)2 ln |ω − |q|| (d = 3),
(15)

which enables a pronounced amplitude mode peak at ω ∼ m

due to the mass pole of χ0. Note that when the action is
parametrized in terms of ρ and n̂, the amplitude-direction
coupling ρ(∂μn̂)2 gets two extra derivatives relative to the
longitudinal-transverse coupling σπ2. This is responsible for
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FIG. 4. (Color online) Weak coupling expansion for the dy-
namical conductivity. (a) Order g−1 contribution to the weight of
the superfluid δ function at ω = 0. (b) Order g0 diagram has a
threshold at the amplitude mode mass. (c),(d) Two-loop self-energy
and vertex corrections which contribute to the subgap conductivity.
As N → ∞ diagram (c) dominates and yields σ ∼ ω2d−3. For N = 2
(the relativistic superfluid), cancellations between diagrams (c) and
(d) suppress the subgap conductivity by four powers of ω, and
σ ∼ ω2d+1 (see text).

infrared suppression by a factor ω4 between Eqs. (13) and (15).
This behavior is also seen at large N , as derived in Sec. IV and
shown in Fig. 1.

A. Conductivity

Diagrams contributing to σ (ω) are depicted in Fig. 4. The
leading order conductivity (10) is of order g−1 and is all
contained in the δ function weight at zero frequency,

σ (ω) = Aδ(ω) + σ̃ (ω), (16)

where A = Ne2md−2g−1 + O(g0). A nontrivial frequency
dependence arises at order O(1) from the σ -π bubble diagram
shown in Fig. 4. It exhibits a power law rise above a mass gap
threshold:

σ̃ 0(ω) = πSde
2

dω2md−2

(
ω2 − m2

4πωm

)d

�(ω2 − m2), (17)

where Sd is the surface area of a unit sphere in d dimensions.
The O(1) threshold conductivity is depicted in the main part
of Fig. 5. OtherO(1) diagrams introduce frequency-dependent
corrections at twice the mass gap, and overall renormalizations
of the superfluid density A and the mass gap m.

Two-loop diagrams are of order O(g). The two diagrams
which produce finite subgap conductivity are depicted in the
bottom of Fig. 4. As N → ∞, diagram (c) dominates the
subgap conductivity. By power counting, the diagram scales
as σ ∼ ω2d−3, implying a significant subgap absorption for
d = 2 for the large N conductivity.

At smaller N , however, diagram (d) becomes comparable
to (c) but opposite in sign, tending to cancel the subgap con-
ductivity. After a lengthy calculation, shown in Appendix E,
we obtain the power series in frequency,

σ̃ d=2
g = ge2

28Nπ

{
(N − 2)

(
16ω

15m
+ 32ω3

105m3

)
+ (3N − 5)

16ω5

315m5
+ · · ·

}
,

FIG. 5. (Color online) Dynamical conductivity for O(2) (rela-
tivistic bosons) in two dimensions. The arrow at zero frequency
denotes is the superfluid δ function response. For neutral bosons, there
is a weak O(g) subgap tail (see inset). The conductivity of a bosonic
layered superconductor (red online) is plotted for using intralayer
plasma frequency ωp = 10 m and a much smaller interlayer plasma
frequency of ωc

p = 0.1 m.

σ̃ d=3
g = ge2m

3π229N

{
(N − 2)

(
ω3

4m3
+ ω5

10m5

)
+ (9N − 16)

ω7

180m7
+ · · ·

}
. (18)

Remarkably, we find that for N = 2, the coefficients of
the two lowest powers vanish. This result can be understood
as a consequence of the complete O(2) symmetry of the
conductivity, which implies that it does not excite Goldstone
fluctuations, similar to the scalar susceptibility. In contrast for
N > 2, the conductivity is not a pure scalar response, since it
depends explicitly on the broken symmetry direction.

IV. LARGE N LIMIT

The inverse number of components 1/N controls an
expansion about the N = ∞ limit for all values of g. This
allows us to approximate the finite N system in both ordered
and disordered phases, except close to the quantum phase
transition at gc. Note that all anharmonic terms in SA are
suppressed by negative powers of N .

The large N renormalization of the order parameter is (see
Appendix A)

r2(g,�) = 1 − g

∫
dd+1q

(2π )d+1

1

q2
≡ 1 − g

g∞
c

, (19)

with r2 vanishing linearly with g at the quantum critical point,

g∞
c =

{
4π/� d = 2,

8π2/�2 d = 3.
(20)

The renormalized mass m2 = m2
0 (1 − g/g∞

c ) also vanishes at
g∞

c .
Now we evaluate the large N longitudinal susceptibility,

given by

χ∞
σσ (q) = g

q2 + m2 − g�σ (q)
, (21)
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where �σ is the longitudinal self-energy given by the RPA
sum,3

�σ (q) = �0(q)

1 + g �0(q)/m2
, (22)

as shown in Appendix C. Note that, since �0(q) diverges
as q → 0, �σ (0) = m2/g, in agreement with an exact Ward
identity.7,13 As a consequence, the pole in χσσ at q2 = m2 gets
replaced by a branch cut starting at q2 = 0. For instance, for
d = 2 we obtain

χσσ (q) = g

q2 + 16 |q|m2

gm2
0+16 |q|

. (23)

This infrared singularity, given at large N to all orders in g,
agrees with the singularity obtained for all N at order g2 in
Eq. (13).

Now we evaluate the scalar susceptibility [Eq. (7)],

χρρ = 4r2χ σσ + r2χ sing + O(1/N ). (24)

χ σπ2 and χ π2π2 are given by

4

r
√

N
χσπ2 (q) = − 4g2�σ (q)/m2

q2 + m2 − g�σ (q)
(25)

and

1

r2N
χπ2π2 (q) = 4g2(q2 + m2)�σ (q)/m4

q2 + m2 − g�σ (q)
. (26)

Summing all the contributions in Eq. (7) yields

χ ρρ(q) = 4gr2

q2 + m2

(
1 + g q4�σ (q)/m4

q2 + m2 − g�σ (q)

)
. (27)

Note that the factor of q4 in the numerator suppresses the
low q singularity in the denominator, and χρρ(q) ∝ |q|d+1 at
low momenta, just as in the weak coupling case. In Fig. 1 the
large N approximations for χ ′′

σσ (ω) and χ ′′
ρρ(ω) are plotted for

d = 2. We take g/g∞
c (�) = 0.84, inside the ordered phase.

The amplitude mode peak is clearly visible in χ ′′
ρρ while it is

difficult to detect in χ ′′
σσ .

A. Width of the scalar peak

Thus far we have compared the scalar and longitudinal
susceptibilities and have shown that a peak can be discerned in
χ ′′

ρρ(ω) even in cases where it is hidden by infrared divergences
in χ ′′

σσ (ω) (see Fig. 1). Deep inside the ordered phase, g �
gc, the peak in χ ′′

ρρ(ω) becomes very sharp in relation to its
energy ω = m. However, as one approaches the disordered
phase, g → gc, the relative width grows until close enough
to the transition the peak in χ ′′

ρρ(ω) becomes broader than m.
Thus, close enough to the transition, it becomes impossible to
identify the Higgs energy from χ ′′

ρρ(ω).
We can study the width of the peak systematically in the

large N limit. The scalar susceptibility at q = 0 can be written
as

χ ′′
ρρ(ω) = 4g

m2
0

ω4Im[F ∗(ω)]

|ω2 + (ω2 − m2)F (ω)|2 , (28)

 0
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FIG. 6. (Color online) Dependence of the scalar peak on g. Scalar
susceptibility χ ′′

ρρ(ω) for different values of g/gc in d = 2 dimensions.
Results shown in the large N limit for � = 2m0. (Inset) Renormalized
mass m (solid curve) and width γ (dashed curve) of the peak in χ ′′

ρρ(ω)
as a function of the tuning parameter g, expressed in units of the
bare mass m0. For g → 0, deep inside the ordered phase, the mass
approaches its bare value m0 and the peak is very sharp, γ → 0. As
g approaches gc, the mass is softened and the width grows, until for
g/gc > 0.96 the peak energy is smaller than the width.

where

F (ω) ≡ m2

g�0(−iω)
. (29)

For example, from Eq. (12) we find that for d = 2 and N = ∞,
F (ω) = −iω/(2γ ), where

γ = gm2
0

32
. (30)

Thus,

χ ′′
ρρ(ω) = 4g

m2
0

2γω3

(ω2 − m2)2 + 4γ 2ω2
, (31)

For γ < m, Eq. (31) is peaked at ω = m with width smaller
than m. On the other hand, for γ > m, the width becomes
larger than m and the peak is shifted to energies larger than m.
Hence, γ = m marks the point beyond which the Higgs mass
cannot be determined accurately from the peak in χ ′′

ρρ(ω).
Note that γ grows linearly with g, whereas m = m0r

vanishes at g = gc, according to Eq. (19). This is depicted
in Fig. 6, where it is seen that close enough to gc the width
of the peak γ exceeds the renormalized Higgs mass m. The
question of how close one can get to the transition before this
happens is nonuniversal, since it depends on the ratio �/m0.
For � = 2m0, this occurs at g/gc = 0.96, corresponding to
m/m0 = 0.19. For larger values of �/m0, the softening of the
Higgs mode can be tracked to very low energies before its
mass can no longer be detected reliably.

For d = 3 and N = ∞, we obtain

χ ′′
ρρ(ω) = 4g

m2
0

η2πω4sign(ω)[
ω2 − m2 + η2ω2

(
1 + log �2

ω2

)]2 + η4π2ω4
,

(32)
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where

η2 = gm2
0

32π2
. (33)

In this case, in contrast to d = 2, a sharp peak can be observed
arbitrarily close to the critical point gc, that is, for arbitrarily
small m/m0.

V. EXPERIMENTAL PROBES

A. Lattice bosons near the Mott transition

Ultracold bosons in an optical lattice undergo a Mott transi-
tion at integer fillings as the lattice potential is strengthened.11

The transition is well described by an O(2) relativistic field
theory,14 with the lattice strength controlling the radius of the
Mexican hat. Amplitude oscillations could, in principle, be
observed after quenching the Mott phase into the superfluid
phase, similar to coherence peaks recovery seen by Greiner
et al.,15 who studied the opposite quench direction. More
directly, by modulating the lattice potential at some frequency
ω, one can excite the scalar mode of the superfluid.16 Thus, the
system is predicted to absorb energy at a rate ω χ ′′

ρρ(ω). Such
measurements have indeed been carried out,17 and although no
sharp peaks were observed, this can likely be attributed to the
presence of a harmonic trapping potential, whose effect is to
smear the energy of the amplitude mode, and the application of
long-lasting modulation pulses that pushed the system outside
of the linear response regime.

The phase of the optical lattice can also be modulated
instead of its amplitude. The energy absorption rate is then
given the optical conductivity σ (ω) at the phase modulation
frequency18 which, as shown above, has a threshold at the
Higgs mass.

Finally, recent experiments using Bragg spectroscopy19

have shown evidence of the amplitude mode in interacting
lattice bosons. Although these experiments were carried
out beyond the linear response regime treated here, they
demonstrate that the Higgs mode is, in principle, observable
though the use of these probes.

B. Raman scattering in antiferromagnets and charge-density
wave systems

Heisenberg antiferromagnets, and incommensurate charge
density wave systems can be effectively described by rela-
tivistic O(3) and O(2) theories, respectively. Inelastic light
scattering20,21 can effectively couple to the square of the local
order parameter. For example, in antiferromagnetic insulators,
light couples to bond spin operators,22,23

H Raman = D
∑
x,η

Eη E′
η Sx · Sx+η

∝
∑

η

∫
ddx Eη E′

η (|�(x)|2 + · · ·). (34)

Thus, with incoming (outgoing) electric field polarization
E (E′), consistent with the crystal symmetry, the Raman
spectrum measures the scalar susceptibility χ ′′

ρρ(ω). The small
but finite separation between the two spin operators leads
to small corrections, denoted by · · · in Eq. (34). The most

important of these corrections, proportional to (η · ∇π )2 gives
a direct coupling of light to pairs of spin waves and leads to
a broad background signal. The background is well-behaved
in the infrared due to the extra spatial derivatives in the
coupling and hence is not expected to hide any peaks present
in χ ′′

ρρ(ω).
Indeed, a pronounced Raman peak has been measured

in several magnetic compounds.24 Theoretically, it has been
analyzed as a two-magnon resonance, or bound state,23 which
is equivalent (in its quantum numbers) to the amplitude mode.
We note that inelastic neutron scattering probes the longitudi-
nal susceptibility of antiferromagnets, since the neutron spin
couples locally to the Néel vector. At the Bragg wave vectors,
the amplitude mode peak is therefore expected to be obscured
by the singular low-energy scattering.

For incommensurate charge density wave the order param-
eter has a massive amplitude mode, and a soft translational
mode. Light excites the amplitude mode by inducing inter-
band transitions.25 This has been used to detect the amplitude
mode in low-dimensional CDW systems through Raman
scattering26 and femtosecond pump-probe spectroscopy27–29

experiments. In contrast to antiferromagnets, in the case of
CDW order, neutrons couple to the local charge density and
hence act as a scalar measurement. Indeed, the amplitude mode
of a CDW has been measured using neutrons.30 Similarly,
neutrons have been proposed to detect the amplitude mode of
a DDW state.31

C. Superconductors

Granular superconducting films and low-capacitance
Josephson junction arrays which exhibit superconductor to
insulator transitions, can be effectively described in terms of a
bosonic O(2) relativistic field theory.11 By proximity to a Mott
insulating phase, the amplitude mode may be suppressed below
the BCS pairing gap, and appear as a long-lived collective
excitation.

In homogenous BCS superconductors, the detection of the
amplitude mode by Raman scattering has been proposed in
the presence of a coexistent charge density wave.32 Here we
propose that the amplitude mode may be observed in a class
of “bosonic” superconductors, that is, those exhibiting short
coherence length, low superfluid density, and perhaps a pairing
gap above Tc (e.g., in cuprates33,34). Such superconductors
may be described by charged lattice bosons, which may
be treated by the O(2) theory of Eq. (2) with long-range
Coulomb interactions. The optical conductivity of HCB cou-
ples directly to the amplitude mode5; however, since Cooper
pairs are charged, long-ranged Coulomb interactions modify
the Goldstone mode’s dispersion. In a three-dimensional
sample, the phase fluctuations are gapped at the plasma
frequency ωp.

Nevertheless, in highly anisotropic layered superconduc-
tors such as the cuprates,35 the threshold for optical absorption
at zero temperature is shifted from m by the relatively small
c-axis plasma frequency ωc

p � ωp, as shown in Appendix F.
We propose that Raman scattering, which couples to the O(2)
scalar susceptibility, may be used to observe the amplitude
mode peak. The mass m of this mode is expected to be of the
order of the superfluid density and Tc and decrease toward the
quantum phase transition into the insulating phase.
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For example, in Bi2Sr2CaCu2O8+δ , ωab ∼ 1 eV, while ωc ∼
1 meV, leading to conductivity qualitatively similar to the
charged latice bosons shown in Fig. 5. We propose that the
amplitude mode may be partially responsible for the rise in
optical conductivity in the midinfrared regime, as observed
above 400 cm−18.

VI. SUMMARY

We have calculated the scalar susceptibility and the
conductivity by weak coupling large N expansions within
the SSB phase of the two- and three-dimensional O(N )
field theory. In contrast to the longitudinal susceptibility,
where low-frequency dissipation by Goldstone modes can
entirely mask the amplitude mode, the O(N ) symmetric
susceptibility exposes the amplitude mode as a finite-width
peak that is uncontaminated by infrared contributions arising
from the Goldstone modes. Similarly, the O(2) conductivity
exposes the amplitude mode as a broadened threshold in
frequency.

From an operational point of view, the mass m can
be extracted experimentally from the peak in the O(N )
susceptibility. While the determination of the peak energy
is limited by the width of the peak, one can identify such a
peak unambiguously as arising from a Higgs mode by tracking
the peak position m as a function of a tuning parameter near
a quantum phase transition. Deep in the ordered phase, the
peak is very sharp relative to its energy m. As one approaches
the phase transition, the peak energy softens and its width
grows. Tracking the softening of the peak position is then
possible except for a region very close to the transition, when
the peak width becomes comparable to its energy. Similar
considerations apply to the broadened threshold in the O(2)
conductivity.

The suppression of subgap absorption by four powers
of frequency was derived by precise cancellations between
self-energy and vertex corrections in the conductivity. It is
easier to understand in the amplitude-direction representation,
where ρ is coupled to the derivatives of the order parameter
direction ρ (∂μn̂)2. Thus, the intrinsic dissipation of the ρ

self-energy is suppressed by four powers of momenta. The
current operators in all non-Abelian theories N > 2 are not
O(N ) symmetric, since they contain explicit coupling to
the angle variables. For O(2), however, the current operator
jx = eρ ∂xϕ is rotationally invariant and therefore has four
higher powers of subgap absorption than the non-Abelian
conductivities.

Our conclusion is therefore that the amplitude mode is, in
fact, long-lived even for moderate g < gc, but its detection
requires using O(N ) symmetric experimental probes. We
propose Raman scattering for antiferromagnets and supercon-
ductors; coherence peak oscillations and lattice modulation
experiments in superfluids near the Mott transition; and optical
conductivity in bosonic superconductors.
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APPENDIX A: COUNTERTERMS IN THE BROKEN
SYMMETRY PHASE

At small g < gc, the order parameter acquires a finite
vacuum expectation value (VEV) 〈�σ 〉 = r

√
N in the σ

direction. We choose to expand the Euclidean-time action
about the VEV,

� = (r
√

N + σ ,π ), (A1)

which leads to the action

S = S 0 + SA + SC,

S 0 = 1

2g

∫
�

dd+1x
[
(∂μσ )2 + r2m2

0 σ 2 + (∂μπ)2],
SA = m2

0

2g

∫
�

dd+1x

[
r√
N

(σ 3 + σπ2) + 1

4N
(σ 2 + π2)2

]
,

SC = (r2 − 1) m2
0

4g

∫
�

dd+1x[2r
√

N σ + σ 2 + π2]. (A2)

The harmonic action S 0 provides zeroth-order massive and
massless propagators,

G0
σσ = g

k2 + m2
, G0

π iπ j
= g

k2
δij , (A3)

where m = r m0 is the renormalized mass.
The parameter r is chosen such that that the VEV of σ is

zero, that is to say, that the fields σ and π are expanded about
one of the true ground states of the system. This is equivalent
to requiring the vanishing of the σ tadpole; that is, the sum of
all 1PI diagrams with a single external σ line must vanish.

In the large N limit, we can compute r in closed form. At
leading order in N , O(

√
N ), there are only two 1PI diagrams:

a σ line terminating in a π loop,

−m2
0 r (N − 1)

2g
√

N

∫ � dd+1k
(2π )d+1

g

k2
, (A4)

and a σ line ending in a counter term vertex,

−m2
0 r (r2 − 1)

√
N

2g
. (A5)

Setting the sum of the two terms to zero yields (for N → ∞)

r2 = 1 − g

∫
dd+1k

(2π )d+1

1

k2
+ O

(
1

N

)
= 1 − g/g∞

c . (A6)

Evaluating the integral with a cutoff � on the spatial momenta
(but no cutoff on the Matsubara frequencies) yields

g∞
c =

{
4π/� d = 2,

8π2/�2 d = 3.
(A7)

Since we expand the fluctuations about the true ground
state, Goldstone’s theorem guarantees that the π field is
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massless. Indeed, in the large N limit, the π self-energy is
the sum of two diagrams, a π loop and a counterterm:

�π iπ j
= −δij

m2
0

2g

[∫ � dd+1k
(2π )d+1

g

k2
+ (r2 − 1)

]
+ O

(
1

N

)
= 0. (A8)

Thus, for N = ∞, the bare and renormalized π propagators
are identical to each other.

A similar computation shows that the constant (momentum-
independent) contribution to the σ self-energy cancels for N =
∞, thus identifying m = m0r as the renormalized mass of the
amplitude mode beyond tree level.

In the weak coupling regime, all of our computations are
carried out to leading nontrivial order in g. In this case, we can
set r = 1 and also ignore the counterterms, which only correct
our results at subleading orders in g.

APPENDIX B: COMPUTING THE LONGITUDINAL
SUSCEPTIBILITY IN THE WEAK COUPLING

LIMIT g � 1

In momentum space, the bare susceptibility χ0
σσ (q) is

χ0
σσ (q) = g

q2 + m2
, (B1)

where q2 ≡ qμ qμ. The full susceptibility is

χ σσ (q) = 1[
χ0

σσ (q)
]−1 − �σ (q)

. (B2)

Expanding, we have

χ σσ (q) = g

q2 + m2
+

(
g

q2 + m2

)2

�σ (q) + O(g3). (B3)

For small q, �σ (q) is dominated by the polarization insertion
�0(q), computed in the next section. We write

�σ (q) = �0(q) + · · · , (B4)

where · · · denotes terms that are either of higher order in g or
infrared finite.

1. Polarization insertion

The integral we must do is

�0(q) ≡ m4
0r

2(N − 1)

N
ID(q), (B5)

Here D = d + 1, where d is the spatial dimension, and

ID(q) ≡ 1

2

∫ � dDk

(2π )D
1

k2(k + q)2

= qD−4

2(2π )D

∫ �/q

0
dp pD−3

∫
d�D

p2 + 2p cos θ 1 + 1
.

(B6)

The D-dimensional unit vector is

n̂ = (cos θ 1, sin θ 1 cos θ 2, . . . , sin θ 1 · · · sin θ D−2 cos φ),

and the metric is

d�D = (sinD−2 θ 1 dθ 1) · · · (sin θ D−2 dθ D−2) dφ. (B7)

Here D = d + 1, where d is the spatial dimension.
For d = 2, we have D = 3 and we can take � → ∞,

I3(q) = 1

2q

1

8π3

∫ ∞

0
dp

∫ π

0
dθ sin θ

×
∫ 2π

0
dφ

1

p2 + 2p cos θ + 1

= 1

8π2q

∫ ∞

0
dp

∫ 1

−1
dx

1

p2 + 2xp + 1

= 1

8π2q

∫ ∞

0

dp

p
ln

p + 1

p − 1
= 1

4π2q

∫ 1

0

dp

p
ln

1 + p

1 − p

= 1

2π2q

(
1 + 1

32
+ 1

52
+ · · ·

)
= 1

16 q
.

For d = 3, we have D = 4. We must retain the ultraviolet
cutoff �, which we take for convenience to be isotropic in the
spatial and temporal dimensions. We make use of∫ π

−π

dψ
1

a + b cos ψ
= 2π√

a2 − b2
· �(a2 − b2). (B8)

We have

I4(q) = 1

2

1

(2π )4

∫ �/q

0
dp p

∫ π

0
dθ sin2 θ · 4π

· 1

p2 + 2p cos θ + 1

= 1

16π3

∫ �/q

0
dp

∫ π

−π

dθ
p(1 − cos2 θ )

p2 + 2p cos θ + 1

= 1

8π2

∫ �/q

0
dp

[
p

|p2 − 1| + p2 + 1

4p

− (p2 + 1)2

4p

1

|p2 − 1|
]

= 1

8π2

∫ �/q

0
dp

[
(p2 + 1) − |p2 − 1|

4p

]
= 1

32π2

[
1 + ln

(
�2

q2

)]
. (B9)

These results for d = 2 and d = 3 are consistent with the
general results in Eqs. (13) and (14) of Ref. 7.

2. Analytic continuation to real frequency

We set

q =
√

q2 − (ω + iε)2

=
{ √

q2 − ω2 if ω2 < q2,

e−iπ/2
√

ω2 − q2 if ω2 > q2.
(B10)

The susceptibility is

χ σσ = g

q2 + 1 − (ω + iε)2

+ g2 (N − 1)m4
0r

2

16N

1

[q2 + 1 − (ω + iε)2]

×
{ 1√

q2−(ω+iε)2
(d = 2),

1
2π2

[
1 + ln

(
�2

q2−(ω+iε)2

)]
(d = 3).

(B11)
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Therefore,

χ ′′
σσ = πg

2
√

q2 + m2
δ(ω −

√
q2 + m2)

+ g2 (N − 1) m4
0r

2

32πN

�(ω2 − q2)

(q2 + m2 − ω2)2

×
{

2π√
ω2−q2

(d = 2),

1 (d = 3).
(B12)

APPENDIX C: RPA AND LARGE N THEORY

Let us evaluate �σ (q) to order K in perturbation theory,
where we include two σπ2 vertices and K(π2)2 vertices (see
Fig. 7). There is an overall factor of (−1)K+2/(K + 2)! from
the exponential. Selecting two of the σπ2 vertices from the
K + 2 terms results in a combinatoric factor (K+2

2 ). The two
σπ2 vertices can be interchanged, and the K (π2)2 vertices
can be permuted, resulting in a factor of 2! · K!. When we
contract one of the π legs of the first σπ2 vertex with the
first (π2)2 vertex, there are four choices of legs from the latter
vertex to choose from. For the second leg, there are three
choices, but if we want to maximize powers of N there is
only one choice. (Recall that we are contracting σπαπα with
πβπβπγ πγ .) We are left with two uncontracted legs of the
first (π2)2 vertex, and we get another factor of four from the
second (π2)2 vertex. After running through all K of these (π2)2

vertices, we have two remaining legs to contract with the π

legs from the second σπ2 vertex, yielding two possibilities.
Each of the K (π2)2 vertices comes with a factor m2

0/8gN , and
each of the two σπ2 vertices comes with a factor m2

0r/2g
√

N .
After all the legs are contracted, we are left with (K + 1) loops,
each containing a πα propagator at momentum k + q and a πα

propagator at momentum −k. The propagator at momentum
k is g/k2, where k2 = kμkμ. For each of the loops, there are
N − 1 choices of the vector index α for πα . Putting this all
together, we obtain a contribution

(−1)K+2

(K+2)!
·
(

K + 2

2

)
· 2! · K! · 4K · 2 ·

(
m2

0r

2g
√

N

)2

·
(

m2
0

8gN

)K

·
(∫

dDk

(2π )D
(N − 1)g2

k2 (k + q)2

)K+1

= �0(q) ·
(
− g

m2
�0(q)

)K

.

FIG. 7. Diagrams in the large-N limit. For N = ∞, only the RPA
sums shown here contribute.

Summing this over all non-negative K , we obtain the RPA
self-energy for the σ field,

�RPA
σ (q) = �0(q)

1 + g �0(q)/m2
. (C1)

The RPA captures the leading order behavior in the N → ∞
limit. Thus,

χN=∞
σσ (q) = g

q2 + m2 − g�RPA
σ (q)

. (C2)

Similarly, the scalar susceptibility is obtained from Eq. (7)
using the RPA sums shown in Fig. 7:

χN=∞
ρρ (q) = 4gr2

q2 + m2

(
1 + g q4 �RPA

σ (q)/m4

q2 + m2 − g�RPA
σ (q)

)
. (C3)

APPENDIX D: CONDUCTIVITY OF O(N) MODELS

An O(N ) field theory can couple to a set of gauge
fields, with which currents and conductivities can be defined.
Consider a local gauge transformation,

�(x) → O(x) �(x) = e�a (x) T a

�(x), (D1)

where {T a} are the 1
2N (N − 1) generators of the group O(N ).

The generators are real antisymmetric matrices which we
normalize according to the convention Tr(T aT b) = −2 δab.
A convenient basis then is the set of matrices

T a
ij = δi,I δj,J − δi,J δj,I , (D2)

where a denotes the composite index (I,J ), where I < J ,
which runs from 1 to 1

2N (N − 1). For this basis we have

T a
ij T a

kl = δik δjl − δil δjk. (D3)

The gauged O(N ) model is defined by the Lagrangian
density

LE = 1

2g
(∂μ� + Aμ�)2 + m2

0

8Ng
(|�|2 − N )2, (D4)

where Aμ is an antisymmetric tensor vector potential which
can be expanded in the generators, viz., Aμ = Aaμ T a . Gauge
invariance follows from the gauge transformation rules,

� → O�, (D5)

Aμ → OTAμO − OT∂μO. (D6)

There are 1
2N (N − 1) O(N ) currents, one for each genera-

tor. We have

I aμ(x) = δSE

δAaμ(x)
(D7)

= 1

g
∂μ� · T a� + 1

g
Abμ T a� · T b�

≡ IP
aμ(x) + ID

aμ(x), (D8)

where IP(D)
aμ is the paramagnetic (diamagnetic) current. The

corresponding Kubo formula is

〈I aμ(x)〉 = −
∫

dDx ′ Kab
μν(x,x ′) Abν(x ′) + O(A2), (D9)
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with

Kab
μν(x,x ′) = 〈I aμ(x) I bν(x ′)〉 − 1

g
δμν δ4(x − x ′)

×〈T a�(x) · T b�(x)〉. (D10)

We separate K into paramagnetic and diamagnetic con-
tributions, with Kab

μν = KP ab
μν + KD ab

μν and KP ab
μν (x,x ′) =

〈IP
aμ(x) IP

bν(x ′)〉.

1. Symmetric phase

In the symmetric phase, 〈�〉 = 0, and the response function
Kab

μν(x,x ′) is diagonal in (a,b). Summing over all O(N )
generator indices, we define

Kμν(x,x ′) = 2

N (N − 1)

1
2 N(N−1)∑

a=1

Kaa
μν(x,x ′),

which equal

1

N (N−1)g2
〈(�i∂μ�j −�j∂μ�i)x (�i∂ ν�j −�j∂ ν�i)x ′ 〉

− 2

Ng
δμνδ

4(x − x ′) 〈�i(x)�i(x
′)〉. (D11)

Note that we have normalized by dividing by the total number
of generators. We can define an O(N ) conductivity σ (ω) as

σ (ω) = i

ωd

d∑
μ=1

Kμμ(ω,q = 0), (D12)

where the sum is over the spatial values of the space-time
indices.

Writing � = (N + ρ)1/2 n̂ as before, we have

∂μ� = (N + ρ)1/2 ∂μn̂ + n̂ ∂μρ

2 (N + ρ)1/2
. (D13)

Making use of Eq. (D3), we can write

Kμν(x,x ′) = 1

N (N − 1)g2
〈Jij,μ(x) Jij,ν(x ′)〉

− 2

Ng
δμνδ

4(x − x ′) 〈 (N + ρ)x(N + ρ)x ′ 〉,
(D14)

where

Jij,μ(x) ≡ (N + ρ)x (ni∂μnj − nj∂μni)x. (D15)

Note that for N = 2 we have n̂ = (cos ϕ , sin ϕ) and
(n2 ∂μn1 − n1 ∂μn2) = ∂μ ϕ, in which case the above expres-
sion reduces to a familiar form.

A. Broken symmetry phase

When the O(N ) symmetry is broken, the generators T a

fall into two classes. We define class A generators as those
which rotate between �1 ≡ σ and �1+j ≡ π j . There are (N −
1) generators of this class, with j = 1, . . . ,N − 1. Class B
generators rotate between �1+j and �1+j ′

. There are 1
2 (N −

1)(N − 2) generators of this class. Note that the total number

of generators in classes A and B is (N − 1) + 1
2 (N − 1)(N −

2) = 1
2N (N − 1), the dimension of O(N ). Thus, we can take

T
(j )
kl = δk,1δl,j − δl,1δk,j (1 < j ), (D16)

T
(jj ′)
kl = δk,j δ l,j ′ − δl,j δk,j ′ (1 < j < j ′). (D17)

The response function Kab
μν is diagonal in the generator indices,

so we can, in principle, study two response functions, KAA
μν and

KBB
μν . Note that KAB

μν = KBA
μν = 0.

For the class A generator T a with a = (j ), we have

IP
aμ = 1

g
[π j ∂μσ − (r

√
N + σ ) ∂μπ j ]. (D18)

The diamagnetic contribution to the response function is

KD ab
μν (x,x ′) = − 1

g
δabδμνδ

(4)(x − x ′)

·〈[r√N + σ (x)]2 + π2
j (x)

〉
. (D19)

For the class B generator T a with a = (jj ′), we have

IP
aμ = 1

g
(π j ′∂μπ j − π j∂μπ j ′ ). (D20)

The diamagnetic contribution to the response function is

KD ab
μν (x,x ′) = − 1

g
δabδμνδ

(4)(x − x ′)
〈
π2

j (x) + π2
j ′ (x)

〉
.

(D21)

Note that for N = 2, class B is the empty set. Hence,
in analogy with the O(2) conductivity, in what follows we
focus on the class A response function and will drop the AA
superscript. Then, averaging over the (N − 1) generators in
this class, we have

KP
μν(x,x ′) = r2N

(N − 1)g2
〈∂μπ x · ∂ νπ x ′ 〉

+ r
√

N

(N − 1)g2
〈∂μπ x · (σ∂ νπ − π∂ νσ )x ′ 〉

+ r
√

N

(N − 1)g2
〈(σ∂μπ − π∂μσ )x · ∂ νπ x ′ 〉

+ 1

(N − 1)g2
〈(σ∂μπ − π∂μσ )x

· (σ∂ νπ − π∂ νσ )x ′ 〉. (D22)

We are interested in the imaginary conductivity at q = 0
and finite frequency, which we compute up to two-loop order.
Thus, we can omit the diamagnetic term, and the first three
terms of Eq. (D22). Taking the Fourier transform, we then
obtain

Kμν(q) = 1

(N − 1)g2

∫
dDx eiq·(x−x ′)

×〈(σ∂μπ − π∂μσ )x · (σ∂ νπ − π∂ νσ )x ′ 〉,
(D23)

where q · x ≡ qμxμ. In what follows, we evaluate this expres-
sion to one- and two-loop order and use Eq. (D12) to compute
the optical conductivity.
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APPENDIX E: OPTICAL CONDUCTIVITY TO ORDER g

1. Conductivity at order g0

At order g0, Eq. (D23) factorizes into the product of a σ propagator and a π propagator. This yields the one-loop integral,

Kμν(q) = 1

β

∑
νm

∫
ddk

(2π )d
(2kμ + qμ)(2kν + qν)

(k2 + 1)(k + q)2
. (E1)

We set μ = ν = x and q = (iωn,q = 0). We then have

Kxx(iωn) = 4

β

∑
νm

∫
ddk

(2π )d
k2

k2 + 1 + (iνm)2

1

k2 + (iνm + iωn)2

= 4

d

Sd

(2π )d

∫ �

0
dk kd+1 1

β

∑
νm

1

iνm + ak

1

iνm − ak

1

iνm + iωn + bk

1

iνm + iωn − bk

, (E2)

where ak = √
k2 + 1 and bk = k.

Now the bosonic Matsubara sum can be written as
1

β

∑
νm

h(iνm) = −
∑

ν̃

n(ν̃)Res[h(ν̃)], (E3)

where the sum is over the poles ν̃ of h, and where n(ν) = [exp(ν/T ) − 1]−1 is the Bose function. Note that n(±b − iωn) = n(±b)
when ωn is a bosonic Matsbara frequency. Hence,

F (a,b,iωn) ≡ 1

β

∑
νm

1

(iνm + a)(iνm − a)(iνm + iωn + b)(iνm + iωn − b)

= n(−a)

2a[(iωn − a)2 − b2]
− n(a)

2a[(iωn + a)2 − b2]
+ n(−b)

2b[(iωn + b)2 − a2]
− n(b)

2b[(iωn − b)2 − a2]
. (E4)

Thus, at T = 0,

F (ak,bk,ω + iε) = 1

4akbk

[
1

ω + iε + ak + bk

− 1

ω + iε − ak − bk

]
, (E5)

and the conductivity at order g0 is

σ (ω) = 1

ω
Im Kxx(ω + iε,q = 0)

= π

dω

Sd

(2π )d

∫ �

0
dk

kd

√
k2 + 1

[δ(ω − k −
√

k2 + 1) − δ(ω + k +
√

k2 + 1)] = πSd

dω2

(
ω2 − 1

4πω

)d

�(ω2 − 1). (E6)

2. Conductivity at order g

There are 11 two-loop diagrams which enter the conductivity at order g. Of these, most either renormalize the zero-frequency
superfluid stiffness peak or have a threshold at high frequency. This leaves three contributions, diagrammatically represented in
Fig. 8, which affect the finite frequency response below ω = 2m. We have

q = (0 , iωj ), k = (k , iνm), p = ( p , iξ n). (E7)

We find it convenient to define

k1 = k, k2 = − p, k3 = p − k, (E8)

so that k1 + k2 + k3 = 0; that is, the vectors k1,2,3 form the legs of a triangle.

The contributions K A, K B, and K C are given by

K A = 1

(N − 1)g2
· 1

8Ng2
· (N − 1)2 · 4 · 4

d

∫
ddk1

(2π )d

∫
ddk2

(2π )d

· 1

β

∑
νm

1

β

∑
ξ n

k2
1

g[
k2

1 + m2 − (iνm + iωj )2
]2

g

k2
1 − (iνm)2

· g

k2
2 − (iξ n + iωj )2

g

k2
3 − (iξ n − iνm)2

, (E9)
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K B = − 1

(N − 1)g2
· 1

8Ng2
· (N − 1) · 8 · 4

d

∫
ddk1

(2π )d

∫
ddk2

(2π )d

· 1

β

∑
νm

1

β

∑
ξ n

k1 · k2
g

k2
1 + m2 − (iνm + iωj )2

g

k2
2 + m2 − (iξ n)2

· g

k2
1 − (iνm)2

· g

k2
3 − (iνm − iξ n)2

g

k2
2 − (iξ n)2

,

(E10)

and

K C = 1

(N − 1)g2
· 1

8Ng2
· (N − 1) · 12 · 4

d

∫
ddk1

(2π )d

∫
ddk2

(2π )d
· 1

β

∑
νm

1

β

×
∑
ξ n

k1 · k2
g

k2
1 − (iνm)2

g

k2
2 + m2 − (iωj + iξ n)2

· g

k2
3 + m2 − (iνm − iξ n)2

g

k2
1 + m2 − (iνm + iωj )2

g

k2
2 − (iξ n)2

.

(E11)

Carrying out the Matsubara sum using Eq. (E3), first over ξ n and then over νm, we obtain

K A = −g (N − 1)

Nd

∫
ddk1

(2π )d

∫
ddk2

(2π )d
∑

ν

Res

[
k2

1

k2

n(ν)

(ν + iωj + k2)2 − k2
3

1

ν2 − k2
1

1[
(ν + iωj )2 − k2

1 − m2
]2

+ k2
1

k3

n(ν)

(ν + iωj − k3)2 − k2
2

1

ν2 − k2
1

1[
(ν + iωj )2 − k2

1 − m2
]2

]
,

K B = g

Nd

∫
ddk1

(2π )d

∫
ddk2

(2π )d
(
k2

1 + k2
2 − k2

3

)∑
ν

Res

[
n(ν)√

k2
2 + m2

1(
iωj −

√
k2

2 + m2
)2 − k2

2

1(
ν +

√
k2

2 + m2
) − k2

3

× 1

ν2 − k2
1

1

(ν + iωj )2 − k2
1 − m2

+ n(ν)

k2

1

(iωj + k2)2 − k2
2 − m2

1

(ν + iωj + k2)2 − k2
3

1

ν2 − k2
1

1

(ν + iωj )2 − k2
1 − m2

+ n(ν)

k3

1

(ν − k3)2 − k2
2

1

(ν + iωj − k3)2 − k2
2

1

ν2 − k2
1

1

(ν + iωj )2 − k2
1 − m2

]
, (E12)

and

K C = 3g

Nd

∫
ddk1

(2π )d

∫
ddk2

(2π )d
(
k2

1 + k2
2 − k2

3

)∑
ν

Res

{
n(ν)

ν2 − k2
1

1

(ν + iωj )2 − k2
1 − m2

×
[

1

k2

1

(ν + k2)2 − k2
3 − m2

1

(iωj − k2)2 − k2
2 − m2

+ 1√
k2

2 + m2

1(
ν + iωj +

√
k2

2 + m2
)2 − k2

3 − m2

× 1(
iωj +

√
k2

2 + m2
)2 − k2

2

+ 1√
k2

3 + m2

1(
ν −

√
k2

3 + m2
)2 − k2

2

1(
ν + iωj −

√
k2

3 + m2
)2 − k2

2 − m2

]}
.

Using Eq. (D12), we next obtain the O(g) conductivity from these expressions.

a. The O(g) contribution σA(ω)

In computing the contribution σ A(ω), we must compute

∑
ν

Res

[
F (ν)[

(ν + iωj )2 − b2
1

]2

]
=

∑
ν

Res
[

F (ν)

(ν + iωj + b1)2 (ν + iωj − b1)2

]
= 1

4b3
1

[
F (−iωj − b1) + b1 F ′(−iωj − b1) − F (−iωj + b1) + b1 F ′(−iωj + b1)2

]
+

∑
ν

1[
(ν + iωj )2 − b2

1

]2 · Res[F (ν)], (E13)
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where bj =
√

k2
j + m2, with j ∈ {1,2,3}. Note that at T = 0, n(−iωj − b1) = −1 and n(−iωj + b1) = 0, where n(z) =

[exp(z) − 1]−1 is the Bose function. We now set iωn = ω + i0+, in which case,

σ A(ω) = g (N − 1)

Nd
Im

1

ω

∫
ddk1

(2π )d

∫
ddk2

(2π )d

{
k2

1

4b3
1k2k3

(
1

(ω + b1)2 − k2
1

+ 2b1(ω + b1)[
(ω + b1)2 − k2

1

]2

)

×
(

k3

(b1 − k2)2 − k2
3

+ k2

(b1 + k3)2 − k2
2

)
+ k2

1

4b2
1k2k3

1

(ω + b1)2 − k2
1

(
2(b1 − k2)k3[

(b1 − k2)2 − k2
3

]2 + 2(b1 + k3)k2[
(b1 + k3)2 − k2

2

]2

)

− k1

2k2k3

1[
(ω − k1)2 − b2

1

]2

(
k3

(ω − k1 + k2)2 − k2
3

+ k2

(ω − k1 − k3)2 − k2
2

)

− k2
1

2k2k3

1[
(k2 + k3)2 − b2

1

]2

1

(ω + k2 + k3)2 − k2
1

}
. (E14)

Combining terms, we find

σ A(ω) = g (N − 1)

Nd
Im

1

ω

∫
ddk1

(2π )d

∫
ddk2

(2π )d

{
k2

1

4b3
1k2k3

k2 + k3

b2
1 − (k2 + k3)2

(
1

(ω + b1)2 − k2
1

+ 2b1(ω + b1)[
(ω + b1)2 − k2

1

]2

)

+ k2
1

2b1k2k3

1

(ω + b1)2 − k2
1

k2 + k3[
b2

1 − (k2 + k3)2
]2 − k1

2k2k3

1[
(ω − k1)2 − b2

1

]2

k2 + k3

(ω − k1)2 − (k2 + k3)2

− k2
1

2k2k3

1[
(k2 + k3)2 − b2

1

]2

1

(ω + k2 + k3)2 − k2
1

}
. (E15)

Now we use

Im
1

[(ω − k)2 − b2]2
= π

4b2
[δ′(ω − b − k) + δ′(ω + b − k)] (E16)

and set ω > 0 to obtain

σ A(ω > 0) = πg (N − 1)

8Ndω

∫
ddk1

(2π )d

∫
ddk2

(2π )d

{
2k1

k2k3

δ(ω − k1 − k2 − k3)[
b2

1 − (k2 + k3)2
]2 − k1(k2 + k3)

b2
1 k2k3

δ′(ω − k1 − b1)

b2
1 − (k2 + k3)2

}
. (E17)

The first term inside the large braces integrates to a result which is finite for arbitrarily small ω. The second term yields a threshold
behavior and is finite only for ω � m.

b. The O(g) contribution σB

Summing the residues, we find

σ B(ω) = g

2Nd
Im

1

ω

∫
ddk1

(2π )d

∫
ddk2

(2π )d
(
k2

1 + k2
2 − k2

3

) {
1

k1b2

1

(ω − b2)2 − k2
2

1

(b2 − k1)2 − k2
3

1

(ω − k1)2 − b2
1

+ 1

k1k2

× 1

(ω + k2)2−b2
2

1

(ω − k1 + k2)2−k2
3

1

(ω−k1)2−b2
1

+ 1

k1k3

1

(k1 + k3)2−b2
2

1

(ω − k1−k3)2−k2
2

1

(ω − k1)2−b2
1

+ 1

b1b2

1

(ω−b2)2−k2
2

1

(ω + b1−b2)2−k2
3

1

(ω + b1)2−k2
1

+ 1

b1k2

1

(ω + k2)2 − b2
2

1

(b1−k2)2−k2
3

1

(ω + b1)2 − k2
1

+ 1

b1k3

1

(ω + b1 + k3)2 − b2
2

1

(b1 + k3)2 − k2
2

1

(ω + b1)2 − k2
1

+ 1

b2k3

1

(ω − b2)2 − k2
2

1

(b2 + k3)2 − k2
1

× 1

(ω − b2 − k3)2 − b2
1

+ 1

k2k3

1

(ω + k2)2 − b2
2

1

(ω + k2 + k3)2 − k2
1

1

(k2 + k3)2 − b2
1

}
. (E18)

After some grinding, we obtain

σ B(ω > 0) = − πg

4Ndω

∫
ddk1

(2π )d

∫
ddk2

(2π )d
(
k2

1 + k2
2 − k2

3

) {[
1

b1k1k2

1

(b1 + k2)2 − k2
3

1

(b1 + k1 + k2)2 − b2
2

+ 1

b1k1k2

1

(b1 − k2)2 − k2
3

1

(b1 + k1 − k2)2 − b2
2

+ 1

k1b1b2

1

(b2 − k1)2 − k2
3

1

(k1 + b1 − b2)2 − k2
2
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+ 1

k1b1b2

1

(b2 + k1)2 − k2
3

1

(b1 + b2 + k2)2 − k2
1

+ 1

k1b1k3

1

(k1 + k3)2 − b2
2

1

(b1 − k3)2 − k2
2

+ 1

k1b1k3

1

(k1 − k3)2 − b2
2

1

(b1 + k3)2 − k2
2

]
δ(ω − b1 − k1)

+ 1

b1b2k3

1

(b1 + k3)2 − k2
2

1

(b2 + k3)2 − k2
1

δ(ω − b1 − b2 − k3)

+ 1

k1k2k3

1

(k1 + k3)2 − b2
2

1

(k2 + k3)2 − b2
1

δ(ω − k1 − k2 − k3)

}
. (E19)

The last term inside the large braces integrates to a result which is finite for arbitrarily small ω. The first six terms, which are
multiplied by δ(ω − b1 − k1), are finite for ω � m. The seventh term has a threshold ω = 2m.

c. The O(g) contribution σC

Proceeding in a similar manner, we obtain

σ C(ω > 0) = 3πg

2Ndω

∫
ddk1

(2π )d

∫
ddk2

(2π )d
(
k2

1 + k2
2 − k2

3

) {[
1

b1k1k2

1

(k1 − k2)2 − k2
3

1

(b1 + k1 − k2)2 − b2
2

+ 1

b1k1b2

1

(b1 + b2)2 − b2
3

1

(b1 + k1 + b2)2 − k2
2

+ 1

b1k1b3

1

(k1 + b3)2 − k2
2

1

(b1 − b3)2 − b2
2

]
δ(ω − b1 − k1)

+ 1

k1b2b3

1

(k1 + b3)2 − k2
2

1

(b2 + b3)2 − b2
1

δ(ω − k1 − b2 − b3)

}
. (E20)

The first Dirac δ has a threshold at ω = m, and the second Dirac δ has a threshold at ω = 2m.

3. Subgap conductivity to order g

The complicated expressions derived above can, in principle, be evaluated numerically. Here we focus on the limit ω < m,
where we can obtain an analytic expression for the subgap conductivity as a power series in ω/m. Of all the terms computed
above, only the first term in σ A and the last term in σ B are nonzero for ω < m. These add up to

σ g(ω) = πg

4Nd

∫
ddk1

(2π )d

∫
ddk2

(2π )d
δ(ω − k1 − k2 − k3)

ωk1k2k3

1

m2 + k2
1 − (k2 + k3)2

×
[

(N − 1) k2
1

m2 + k2
1 − (k2 + k3)2

− k2
1 + k2

2 − k2
3

m2 + k2
2 − (k1 + k3)2

]
. (E21)

We can write

k3 =
√

k2
1 + k2

2 + 2xk1k2, (E22)

where x is the cosine of the angle between k1 and k2. Then

δ(ω − k1 − k2 − k3)

ωk1k2k3
= δ[x − x(k1,k2,ω)]

ωk2
1k

2
2

, (E23)

where

x(k1,k2,ω) = 1 + ω2 − 2(k1 + k2) ω

2k1k2
. (E24)

The constraints over the k1 and k2 integrals are the following. First, since ω = k1 + k2 + k3, we must have k1 + k2 � ω. Second,
we must have x � 1, which gives k1 + k2 > 1

2ω. Finally, we must have x � −1, which gives (2k1 − ω)(2k2 − ω) � 0. Putting
this all together, we find that k1 and k2 are to be integrated over the shaded triangle in Fig. 9.

It is convenient to define k1 ≡ 1
2ωu and k2 ≡ 1

2ωv. Then the vertices of the triangle in the (u,v) plane are (1,0), (1,1), and
(0,1). We then have

1

m2 + k2
1 − (k2 + k3)2

[
k2

1(N − 1)

m2 + k2
1 − (k2 + k3)2

− k2
1 + k2

2 − k2
3

m2 + k2
2 − (k1 + k3)2

]

= ω2/4

m2 − ω2(1 − u)

[
u2(N − 1)

m2 − ω2(1 − u)
+ 2(uv − 2u − 2v + 2)

m2 − ω2(1 − v)

]
, (E25)
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as well as

x = 1 + 2

uv
(1 − u − v). (E26)

We obtain, in d = 3 space dimensions, the low-frequency behavior (ω � m)

σ g(ω) = g ω3

293Nπ3

∫ 1

0
du

∫ 1

1−u

dv
1

m2 − ω2(1 − u)

[
u2(N − 1)

m2 − ω2(1 − u)
+ 2(uv − 2u − 2v + 2)

m2 − ω2(1 − v)

]
= ge2m

3π229

{
N − 2

N

(
ω3

4m3
+ ω5

10m5

)
+ 9N − 16

N

ω7

180m7
+ · · ·

}
. (E27)

For d = 2 we find

σ g(ω) = gω

28Nπ2

∫ 1

0
du

∫ 1

1−u

dv
1√

(u + v − 1)(1 − u)(1 − v)

1

m2 − ω2(1 − u)

[
u2(N − 1)

m2 − ω2(1 − u)
+ 2(uv − 2u − 2v + 2)

m2 − ω2(1 − v)

]
= ge2

28π

{
N − 2

N

(
16ω

15m
+ 32ω3

105m3

)
+ 3N − 5

N

16ω5

315m5
+ · · ·

}
. (E28)

Remarkably, in the case N = 2, the conductivity vanishes for small powers of ω/m for both d = 2 and d = 3, leading to a
strong pseudogap behavior in the optical conductivity.

APPENDIX F: LAYERED LATTICE BOSONS WITH
COULOMB INTERACTIONS

The Lagrangian density for layered charged bosons is [see
Ref. 35, Eqs. (7)–(9)]

LE = 1

2gQ2
(∇π̇)2+ 1

2g
σ̇ 2+ 1

2g
Cij (∇ iσ ∇ j σ + ∇ iπ ∇ jπ )

+Lint, (F1)

where Q2 = 16πe2/ε is the effective electric charge of the
bosons and C = diag(1,1,α), with α2 � 1 the ratio of c-axis
and in-plane superfluid stiffness. The bare propagators are
now

Gσσ (k) = g

ω2
n + k2

ab + α2k2
c + 1

, (F2)

FIG. 8. (Color online) Order g diagrams contributing to the
optical conductivity for ω < 2m. Solid brown lines are σ propagators
while dashed blue lines are π propagators. Note that diagram (c) does
not contribute to the subgap conductivity and is therefore not shown
in Fig. 4.

Gππ (k) = gQ2

k2[ω2
n + ω2

pf 2
p (k)

] , (F3)

fp(k) =
√

k2
ab + α2

pk2
c

k2
. (F4)

Here ωp and αpωp are the in-plane and c-axis plasma
frequencies given by

ω2
p = Q2

ac

, α2
p = α2ac

a2
ab

, (F5)

where ai are the lattice constants.
We evaluate the O(g0) (one-loop) conductivity:

Kμν(iωm) = 1

β

∑
νm

∫
ddk

(2π )d
4kμkνGσσ (iνn,kab,kc)

×Gππ (iωm + iνn,kab,kc). (F6)

FIG. 9. The range of (k1,k2) integration is the gray triangle.
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We set μ = ν = x and q = (iωn,q = 0). We then have

Kxx = 2Q2

β

∑
νm

∫
d2kab

(2π )2k2

∫
dkc

2π

k2
ab

k2
ab + αk2

c + 1 − (iνm)2

× 1

ωp(k)2 − (iνm + iωn)2
(F7)

= Q2

2βπ2

∑
νm

∫
dkab

∫
dkc

k3
ab

k2

1

(iνm + ak)(iνm − ak)

× 1

(iνm + iωn + bk)(iνm + iωn − bk)
, (F8)

where

a k =
√

k2
ab + αk2

c + 1, bk = ωpfp(k). (F9)

This is of similar form to Eq. (E2), but with a different choice
of a k and bk. We can then use Eqs. (E4) and (E5) to obtain the
conductivity for ω > 0,

σ (ω) = Q2

8πω

∫
dkab

∫
dkc

k3
ab

akbkk2
δ(ω − ak − bk). (F10)

Define kab = k cos θ and anisotropy functions

f (θ ) =
√

cos2 θ + α2 sin2 θ,
(F11)

fp(θ ) =
√

cos2 θ + α2
p sin2 θ,

such that

a k =
√

1 + k2f 2(θ ), bk = ωpfp(θ ). (F12)

The conductivity integrals can be evaluated in cylindrical
coordinates,

σ = Q2

2πωωp

∫ ∞

0
dk k2

∫ π/2

0
dθ

cos3 θ√
1 + k2f 2(θ )fp(θ )

× δ[ω −
√

1 + k2f 2(θ ) − ωpfp(θ )]. (F13)

Changing the argument of the δ function from ω to k2, provided
[ω − ωpfp(θ )] � 1, yields

k2
θ,ω ≡ [ω − ωpfp(θ )]2 − 1

f 2(θ )
. (F14)

Thus,

δ(ω − ωk2 ) = δ
(
k2 − k2

ω

)dk2
θ,ω

dω
(F15)

= 2δ
(
k2 − k2

ω

)√
1 + k2f 2(θ )

f 2(θ )
. (F16)

This yields a simplified expression,

σ (ω) = Q2

πωωp

∫ π/2

0
dθ

cos3 θ

fp(θ )f 3(θ )

√
[ω − ωpfp(θ )]2 − 1

×�[ω − ωpfp(θ ) − 1]. (F17)

This expression is plotted in Fig. 5 for the parameters ωp = 10,
ωc = 0.1, and α = 10−2.
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