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ABSTRACT 

 

We conducted a series of human subjective studies where we 

found that the visibility of flicker distortions on naturalistic 

videos is strongly reduced when the speed of coherent object 

motion is large. Based on this, we propose a model of flicker 

visibility on naturalistic videos. The model predicts target-

related activation levels in the excitatory layer of neurons for 

a video using spatiotemporal backward masking. The target-

related activation level is then shifted and scaled according 

to video quality level changes that cause flicker distortions. 

Finally, flicker visibility is predicted based on neural flicker 

adaptation processes. Results show that the predicted flicker 

visibility using the model correlates well with human 

perception of flicker distortions on naturalistic videos.  

 

Index Terms— Motion, flicker distortion, visibility of 

distortion, backward masking, and video quality 

 

1. INTRODUCTION 

 

As the global volume of digital videos grows exponentially, 

reliable and accurate video quality assessment (VQA) is 

essential to satisfy users’ Quality of Experience [1]. Since 

humans are generally the ultimate recipients of videos, the 

perceptual quality of the received videos is significant in the 

design of video processing systems, from capture to display. 

One important component in the design of VQA models that 

remains poorly understood is the effect of temporal visual 

masking on the visibility of temporal distortions. 

Digital videos not only suffer from spatial distortions 

such as blocking, blurring, ringing, mosaic patterns, and 

noise, but are also degraded by temporal artifacts including 

motion compensation mismatches, flicker, mosquito effects, 

ghosting, jerkiness, smearing, and so forth [2]. Early VQA 

models incorporated features for capturing spatial artifacts in 

each frame, then applied temporal weights to pool the spatial 

quality scores. However, a temporally weighted pooling of 

spatial quality scores does not explain perceptually relevant 

temporal distortions [3]. Hence, researchers have started to 

explore temporal variations of spatial distortions [4] and to 

directly measure temporal distortions [3]. 

The mere presence of spatial or temporal distortions 

does not imply quality degradation since the visibility of 

distortions can be strongly reduced or completely eliminated 

by visual masking effects [5]. Visual masking occurs when a 

stimulus (the mask) is superimposed on another stimulus 

(the target) typically of similar motion, frequency, color, or 

orientation [6]. For example, the detectability of a deviation 

I + ∆I from a patch luminance I is proportional to the ratio 

∆I / I, so a localized distortion ∆I is more likely visible in a 

dark region than a bright one [7]. This is called luminance 

masking. In contrast masking, local high-frequency energy 

in an image reduces the visibility of other high-frequency 

features such as noise [8]. Spatial masking is well-known 

and plays a central role in the design of image quality models 

[9], video compression [10], and watermarking [11].  

Regarding temporal masking, psychophysical tests have 

been executed using flashes, sine wave-gratings, and vernier 

stimuli. Recently, a striking “motion silencing” illusion [12] 

was presented, where the salient temporal changes of objects 

in luminance, color, size, and shape appear to stop in the 

presence of large, coherent object motions. This implies that 

object motion dramatically alters the visibility of temporal 

distortions. Although a spatiotemporal filter model precisely 

predicts when human perceives a motion silencing illusion 

as a function of object change rate and velocity [13], since 

the effect has been studied on highly synthetic stimuli such 

as moving dots, there is a significant need to understand the 

impact of motion on flicker visibility in naturalistic videos.  

In video processing research, temporal masking was 

first studied in the early days of analog TV. It was found that 

human observers could not perceive a temporary reduction 

of the spatial details in TV signals after scene changes [14]. 

Later, temporal masking of distortions was studied in the 

context of video compression. Netravali et al. [10] examined 

the effects of luminance transitions on the perception of 

quantization noise. Puri et al. [15] designed an adaptive 

video coder using the visibility of noises on textures, edges, 

and flat areas. Haskell et al. [16] proposed that observers are 

more tolerant of distortions in moving images than in 

stationary images. However, implementations of video 

compression have been largely heuristic based on anecdotal 

evidence. More recently, the just-noticeable distortion (JND) 

has been applied to adaptive image coding [17] and on the 

visibility of noises in videos [18]. Although JND is related 

to the visibility of distortions, the effect of object motion has 

not been explicitly analyzed in this context.  



Here we propose a visibility prediction model of flicker 

distortions on naturalistic videos. The model predicts target-

related activation levels in the excitatory layer of neural 

networks for displayed video frames against immediately 

following frames via spatiotemporal backward masking [19]. 

The target-related activation level is then shifted and scaled 

based on the flicker intensity. Finally, an accumulation or 

adaptation process is applied. The predicted results correlate 

well with human perception of flicker visibility.  

 

2. PREDICTION OF FLICKER VISIBILITY 

 

2.1. Target-related Activation Level of Neurons 
Neurons at the retina collectively receive inputs from 

the photoreceptors (rods and cones) and produce “center- 

surround” excitatory-inhibitory responses to local cone (or 

rod) cell signals and their surrounding neighbors, yielding a 

reduced-entropy residual signal. Each receptive field (RF) 

describing a neuron’s response may be well modeled as 

having an excitatory layer and an inhibitory layer [7]. An 

excitatory layer increases firing rates, while an inhibitory 

layer suppresses the firing of the cells. Two layers interact in 

an antagonistic way, and the overlap of RFs controls firing 

rates to increase spatial resolution. The excitatory-inhibitory 

interactions can be modeled via neural field equations [20]. 

We predicted the firing rate of neurons, called target-

related activation levels, on naturalistic videos via Hermen’s 

spatiotemporal backward masking. Since backward masking 

is the most dominant temporal masking in naturalistic videos 

as proposed by interruption theory [21] and scene change 

tests [22], we adopted Hermen’s model. The target-related 

activation level monotonically relates to the percentage of 

correct responses to neural stimuli. In our context, it is the 

visibility of a current frame masked by following frames.  

Neural interactions between and within excitatory and 

inhibitory layers were first computed on the test videos used 

in human psychophysical experiments [23]. Example frames 

of the test videos are shown in Fig. 1. We assigned a current 

frame as the target and following two frames as the masks, 

as shown in Fig. 2. Since we were interested in the impact of 

motion on flicker visibility, we selected the moving object as 

a region of interest (ROI) and ignored or zeroed other 

regions. The population activities of excitatory layers (Ae) 

and inhibitory layers (Ai) can be expressed following [19]:  
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The parameters τe and τi are time constants; wee, wei, wie, and 

wii are coupling strengths; subscripts e and i mean excitatory 

and inhibitory layers; x is a two-dimensional position vector 

in one of the neural layers; and t means time. The symbol ‘’   

 
Bb BMX La 

 
Mr Rc Tr 

Fig. 1. Example frames of the test videos used in the experiments. 

The red/green marked regions indicate moving objects, while blue 

arrows denote the approximate paths of moving objects [23].  
 

 
Fig. 2. The target and masks on naturalistic video stimuli. 

 

denotes convolution. The functions he,i(x) = x ∙ se,i (x) when x 

> 0, otherwise, he,i(x) = 0, where se and si are neuronal gain. 

Recurrent interaction We,i between the layers is modeled by 

Gaussian kernels. The input into both layers is computed by 

( , ) ( )( , ) ( ', ) ( ') 'I x t S V x t S x t V x x dx
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on a video frame S, while the input kernel V is the difference 

of Gaussians [19]. The spatial kernels are set so that each 

cell receives recurring excitation from its spatial neighbors 

and recurring inhibition from a larger set of cells around the 

excitatory set of cells. Hence, these equations show a neural 

network that describes the recurrent center-surround RF 

responses of each cell. Finally, the target activation level,  

    0( , ) ( ) ,e T
x

T A x r S x dx                       (4) 

where ST is the ROI of the target frame, and r0 is the readout 

time of the excitatory activity (110ms) after the target onset. 

We allowed the size of ST to vary with the video content 

unlike Hermens’s fixed constant target by dividing it by the 

size of the ROI. We observed only small variations of T 

when more mask frames were added or when the readout 

time was varied in the range [80, 140] ms. 

The target activation levels are shown in Fig. 3 for the 

“Bb” and “BMX” test videos. One percent of the original T 

was shown. Although T effectively captures the suppressed 

visibility of the target as a function of object motion, it does 

not discriminate different flicker intensities. We interpret 

this result to mean that T generally captures the temporal 

variation of the visibility of distortions on the targets, but the 

visibility of flicker distortions is apparently also dependent 

on flicker intensity. For example, when the flicker intensity is 

small, the visibility of the flicker distortions may vary within 

a small range, while when the flicker intensity is large, 

flicker visibility may fluctuate over a large range.  



2.2. Initial Flicker Visibility  
Physiologically, the target (flicker) in the test videos 

results from the intensity changes caused by alternations of 

quantization parameter (QP) in H.264 video compression 

(e.g., between QP44 and QP26), while the mask (object 

motion) originates from the intensity changes created by 

natural object movements. We selected this form of flicker 

as such rate changes are caused by adaptive rate control 

algorithms. Thus, the appearance of the flicker distortion is 

more realistic than, for example, simple luminance flicker. 

Fig. 4 shows examples of the target and masks for different 

object motion in a video. Fig. 4a shows frames containing 

different object motions. Fig. 4b shows the target and the 

masks. The target is computed as the difference between the 

luminance frame for QP44 and QP26 at the same frame 

number, while the masks are the frame differences of 

consecutive frames. The intensities of the ROI are inversely 

rendered by magnifying the original intensities by a 

multiplicative factor of 10 for comparisons. While the target 

intensity is similar at different object motions, the intensities 

of the masks are quite different. The inset boxes in Fig. 4c 

and 4d show the object energies of frame differences for 

small object motions. QP changes between (QP32, QP26) 

and (QP44, QP26) caused different flicker intensities.  

Since the visibility of flicker distortions also depends on 

flicker intensity, we shifted and scaled T as a function of 

quality level changes corresponding to QP alternations. We 

estimated the perceptual quality level changes using the 

multi-scale structural similarity (MS-SSIM) index [24], then 

applied the logarithm to the quality level changes in order to 

compute flicker quality factor [25]. Let msssimjq denote the 

MS-SSIM index on video j at QP q (= 26, 32, 38, and 44), 

msssimijq be the MS-SSIM index on video j at frame number 

i and QP q, and N be the total number of frames. The flicker 

intensity, fijp, of video j for a QP change between QP26 and 

QP p (= 32, 38 and 44) is then given by,  
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   26log( ).jp j jpfi msssim msssim                       (5-2)     

In addition, since video quality remains depend on the video 

content even when the QP is fixed, to unbias fi from content, 

we converted fi to Z-scores, then mapped the Z-scores to 

human flicker visibility scores, hfv, using a leave-one-out 

cross validation protocol [26]. Each time we selected one 

video from the six videos shown in Fig. 1, trained the 

necessary parameters on the other five videos, then predicted 

the initial flicker visibility as follows:  
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(a) (b) 

Fig. 3. The target related activation levels: (a) Bb and (b) BMX in 

spatiotemporal backward masking. Motion velocity is overlapped.   
 

   

(a) (b) 

  
(c) (d) 

Fig. 4. Target (flicker) and masks (object motion). (a) Frames at 

different object motions. (b) Magnitude of target and masks. 

Object energy of frame differences: (c) between QP32 and QP26 

and (d) between QP44 and QP26 at the same object motion. 
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where zfi_jp and zhfv_jp are Z-scores for fijp and hfvjp; {μ(fij), 

σ(fij)} and {μ(hfvj), σ(hfvj)} are {mean, standard deviation} 

at video j for fijp and hfvjp, respectively; and the hat symbol 

“^” means predicted quantities. We predicted the parameters 

α and β following [27] using a least squares fit of μ(hfv) at { 

j }
c
, where j = 1, 2, …, 6. σ

^
(hfvj) is the mean of σ(hfv) at { j 

}
c
. We used hfv

^
jp as the initial flicker visibility at video j and 

QP p. Since we obtained the initial flicker visibility at the 

51
th

 frame [23], we used the value of hfv at the 51
th

 frame to 

predict hfv
^

jp. Next, since the range of flicker distortion 

visibility also depends on the initial flicker visibility, we 

shifted and scaled the T values as follows:  
51

_
( /100) ( ) ,

jp jpss jp
T hfv T T hfv               (7) 

where Tss_jp is the shifted and scaled T at video j and QP p,  

and T  

51
 is T at the 51

th
 frame. We define Tss as a general 

change pattern of the flicker visibility.  
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2.3. Prediction Algorithm of Flicker Visibility  
Human’s sensitivity to flicker distortions is accumulated 

or attenuated after prolonged exposure to flickering stimuli 

[28]. Due to the limited dynamic range of a neuron, visual 

processing in the retina efficiently adjusts or adapts visual 

stimuli. When a viewer is exposed to large flicker distortions 

for a longer period of time (e.g., 100ms), flicker visibility 

may be affected by “visual persistence,” [29] whereby a 

visual stimulus is retained for a period of time beyond the 

termination of the stimulus. Conversely, when small flicker 

distortions are prolonged, the visual systems dynamically 

control the flicker sensitivity and allocate a finite range of 

neural signaling, so an observer’s flicker sensitivity may be 

attenuated [28]. This accumulation or adaptation process 

may be found in viewers’ responses to time-varying video 

quality as a “recency effect” [30] or “temporal hysteresis” 

[31]. We extend the flicker accumulation and adaptation by 

accounting for the impact of motion on flicker visibility.  

We filtered the obtained Tss and object motion using a 

temporal Gaussian weighting function [32] to remove noise. 

The Gaussian window duration was one second. We then 

applied visual persistence and recency effects to adopt the 

influence of flicker accumulation or adaptation as a function 

of stimuli duration and object motion as shown in Algorithm 

1. Let FV
i
 represent the predicted flicker visibility at the i

th
 

frame and mvth be a threshold velocity that sharply decreases 

flicker visibility. We obtained mvth (=10.1945) from the 

human studies [23] using the average of all measured mvth 

and found the results do not significantly differ when mvth 

varies in the range [8, 12] pixel/frame. The parameters t1, t2, 

and t3 are time durations where mv
i
 ≤ mvth, mv

i
 ≥ mvth and 

mv
i
 ≥ mv

i-1
, and mv

i
 ≥ mvth and mv

i
 < mv

i-1
, respectively.  

When mv
i
 ≤ mvth, accumulation or adaptation effects are 

large, while the impact of motion on flicker visibility is 

small. Since visual persistence almost changes linearly with 

log stimulus duration at a given visual intensity, FV
i
 may be 

computed as a logarithmic function of time duration t1 from 

a base-level, T
i
ss. γ is a rate parameter of accumulation or 

attenuation, which was set to -0.4356, 0.7599, and 3.3629 

using a least square fit of human experiment data [23] when 

the QP changes from 32, 38, 44, to 26 respectively.  

When mv
i
 ≥ mvth, both motion and flicker accumulation 

or adaptation affect flicker visibility. We accounted for the 

effect of motion by measuring the difference of Tss (e.g., T 
i+1
ss  

- T
i
ss) to estimate γ. To include the memory effect, we define 

a memory component x(i) at each frame i by averaging the 

difference of Tss over the time duration t2 or t3. We then 

build a flicker visibility change rate y(i) at each frame i using 

T
i
ss - T 

i-1
ss . We linearly combine the past memory component 

x(i) and the current change rate y(i), thereby yielding an 

overall visibility accumulation or adaptation rate that seeks 

to explain recency effects at frame i. The linear factor λ was 

0.7. The results do not vary significantly when λ is above 0.5, 

similar to [31]. Finally, FV
i
 is iteratively solved to ensure 

that the predicted flicker visibility is smoothly varying. 

Algorithm 1 Flicker visibility prediction algorithm 

Inputs:  N, mv, mvth, t1 = 0, t2 = 0, t3 = 0, j = 0, γ, and Tss  
1:        for i = 51 : N  

2:            if mvi ≤ mvth and j = 0 

3:                t1 = t1 + 1, t2 = 0, t3 = 0  

4:                FV i = T i
ss + γ× log(t1), where γ = [-0.4356, 0.7599, 3.3629] 

5:             else 
6:                if mvi ≥ mvth and mvi ≥ mvi-1 

7:                        t2 = t2 + 1, t1 = 0, t3 = 0, j = 1, k = 2 

8:                  elseif mvi ≥ mvth and mvi < mvi-1 
9:                        t3 = t3 + 1, t1 = 0, t2 = 0, j = 1, k = 3 
10:              elseif mvi ≤ mvth and j = 1 
11:                      t1 = t1 + 1, t2 = 0, t3 = 0, j = 1, k = 1 
12:              end 
13:              x(i) = mean[(T i-tkss , …, T i-1 ss) − (T i-tk-1 ss , …, T i-2 ss)]  

14:              y(i) = T i
 ss − T i-1 ss 

15:              FV i = FV i-1 + [λy(i) + (1-λ)x(i)] × log(tk), λ = 0.7 

16:          end 

17:      end 

 

   3. PERFORMANCE EVALUATION 

 

We evaluated the performance of the proposed model on 24 

test videos, which contain six reference videos and the 

corresponding 18 flicker distorted videos simulated by 

alternating QP pairs at (QP44, QP26), (QP38, QP26), and 

(QP32, QP26), respectively. As mentioned earlier, this type 

of flicker was used as it resembles distortions that can be 

caused by video rate adaptation algorithms. We refer to [23] 

for the details of the human psychophysical studies.  

The predicted flicker visibility from the model and the 

95% confidence interval (CI) of the measured flicker 

visibility by humans were shown in Fig. 5. We compared the 

results in the frame interval [51, 208] for “Bb” and [51, 265] 

for other videos since observers required at least 1.67 

seconds (50 frames) to judge the initial flicker visibility, 

since when moving objects disappeared, no data was 

obtained, and since the last 35 frames were shifted to 

account for a lag response. When the object motion was 

small, flicker visibility was largely affected by flicker 

intensities and persistent durations, while the object motion 

was large, flicker visibility was strongly affected by motion. 

 One interesting observation is that large jumps of 

flicker visibility on the videos “La” and “Mr” were observed. 

These may have arisen from the drastic changes of size of 

the moving objects. For example, the occlusion of the player 

by a referee in “La” and the looming train in “Mr” 

influenced the prediction of the T and subsequently may 

have affected the prediction of flicker visibility. Overall, the 

proposed model can effectively predict variations of flicker 

visibility as reported by humans.    

We showed model performance in Table 1 and 2 using 

the Pearson’s linear correlation coefficient (LCC) and the 

Spearman’s rank ordered correlation coefficient (SROCC) 

between the predicted and the perceived flicker visibility on 

the test videos after non-linear regression, as described in 

[33]. Although results vary depending on the contents and 

QP alternations, the average of LCC values, 0.8573, is high.  



 

 

 
Fig. 5. Comparison between the predicted flicker visibility by the 

model and the 95% CI of the measured flicker visibility by humans. 

 
Table 1. LCC of the proposed model on the test videos 

 Bb BMX La Mr Rc Tr 

QP44 - QP26 0.9534 0.7815 0.6477 0.8712 0.9183 0.8952 

QP38 - QP26 0.9880 0.7523 0.8721 0.8515 0.9034 0.9156 

QP32 - QP26 0.9796 0.7959 0.8187 0.7773 0.7882 0.9267 

 
Table 2. SROCC of the proposed model on the test videos 

 Bb BMX La Mr Rc Tr 

QP44 - QP26 0.7069 0.6656 0.0640 0.0620 0.9284 0.4922 

QP38 - QP26 0.8125 0.3775 0.1050 0.1440 0.5777 0.6103 

QP32 - QP26 0.9880 0.2028 0.7755 0.5445 0.6975 0.8840 

   

 4. CONCLUSION AND FUTURE WORK 

 

We proposed a model of flicker visibility on naturalistic 

videos using spatiotemporal backward masking and neural 

adaptation processes. Results show that the proposed model 

accurately predicts flicker visibility as perceived by humans. 

Since many factors could underlie the discrepancy between 

model predictions and human percepts of flicker visibility, 

such as the experimentally obtained model parameters and 

the drastic size changes of moving objects, further research 

is necessary. Our future work will seek to connect the 

visibility of flicker distortions with perceptual VQA models. 
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