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Abstract. Large scale reconstructions of camera matrices and point
clouds have been created using structure from motion from community
photo collections. Such a dataset is rich in information; it represents
a sampling of the geometry and appearance of the underlying space.
In this paper, we encode the visibility information between and among
points and cameras as visibility probabilities. The conditional visibility
probability of a set of points on a point (or a set of cameras on a camera)
can rank points (or cameras) based on their mutual dependence. We
combine the conditional probability with a distance measure to prioritize
points for fast guided search for the image localization problem. We
define dual problem of feature triangulation as finding the 3D coordinates
of a given image feature point. We use conditional visibility probability
to quickly identify a subset of cameras in which a feature is visible.

1 Introduction

Structure from motion (SfM) from community collections has created sparse
point clouds and images of many large monuments and other spaces. Point-
directed visualization of photo collections has been the primary use of these
datasets. The dataset is being used for localization [1–4] and to build dense
models of the underlying space [5, 6]. A typical SfM dataset contains many
points and several camera images. A few million points and a few thousand
images are common today. The visibility of each point in the images is recorded
as a track. The camera matrices and point coordinates are known in a common
frame.

An SfM dataset encodes a rich sampling of the geometry and appearance of the
space. In this paper, we explore the probabilistic structure of visibility induced
by the points and images of an SfM dataset. We define the visibility probability

of points and images and the joint visibility probability among points and among
cameras. We then estimate the conditional visibility probability among points
and cameras. We use the probability structure to efficiently guide the search for
points in the localization problem. We also introduce the dual problem of feature
triangulation as estimating the 3D coordinates of a given 2D feature and solve
it efficiently using the visibility probability among cameras.
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We extend the terminology by Li et al. [3] to describe different entities. An
image is a photograph of the space. It contains several features, each of which is a
2D interest point with an associated (SIFT) descriptor. The image gets upgraded
to a camera when its projection matrix is estimated. Similarly, a feature gets
upgraded to a point when its 3D coordinates are known. An SfM dataset contains
a number of cameras, points, and their mappings. Additional images and features
of the same space are easily available from several sources. Image localization
aims to estimate the camera from an image while feature triangulation aims to
estimate the point from a feature.

Image localization uses a few 3D points to 2D feature mappings in the query
image to estimate its camera by searching the space of SfM points for match
in the query image. Feature triangulation identifies a few cameras in which the
query feature is visible for triangulation by searching the space of SfM cameras
for visibility of the query feature. We show how these searches can be guided
effectively using the conditional visibility probability among points and among
cameras, the distance between them, etc. Our probability-guided exploration
generates RANSAC inliers in high proportions as matching proceeds.

Our localization method successfully registers as many or more new images
as the prior work, while performing about 10-20% nearest neighbor searches as
them. We only need to generate less than 25% of matches to localize successfully.
Our scheme can match over 4 new images per second on a normal workstation.
Our feature triangulation method increases the point density at typical locations
by upto 3 times and performs well in generating points in regions with repetitive
appearance, where the 2D-2D match of SfM performs poorly.

2 Related Work

PhotoTourism created large SfM datasets from unstructured photographs and
to interactively browse them using the points and cameras [7]. The process of
SfM reconstruction has been made efficient in many ways by Agarwal et al. [8]
and Frahm et al. [8, 9]. Crandall et al. used an MRF framework to model the
constraints between camera and scene pairs to initialize the SfM pipeline well
[10]. Image based location recognition has been attempted using databases of
rectified images of buildings [11] vocabulary tree of informative features [12],
distance augmented visual words [1], and probability distribution over a large
collection of images [13]. SLAM literature studied image-based localization from
videos [14, 15]. Alcantarilla et al. used SfM reconstructions along with camera
pose priors to predict the visible 3D points in a query image [16]. Compressed
scene representations using epitomes of locations [17], iconic scene graphs [18],
and skeletal sets [19] have also been used for this.

Irschara et al. used the SfM point cloud for image localization, using a vo-
cabulary tree built on a compressed set of images [2]. Li et al. used a 3D-2D
matching scheme using a prioritization on SfM points for matching points in the
query image [3]. They explore the model starting with a subset of highly visible
points that cover the space. The priority of points changed heuristically. Sattler
et al. arranged the 3D points as lists that quantized to the same visual word [4].
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Fig. 1. Bipartite graph of points and cameras. Visibility probability is approximated
by fractions of cameras that see single point/camera or a pair of them.

Features in the query image were matched to these lists to get a large number
of highly noisy matches. They used RANSAC to overcome the highly noisy na-
ture. Goesele et al. [5], Furukawa et al. [6] and Fuhrmann et al. [20] presented
methods to get dense matches starting with an SfM dataset. Roberts et al. [21]
attempted structure recovery in the presence of large duplicate structures.

3 Visibility Probability and Joint Visibility Probability

The SfM dataset consists of m cameras, n points, and the visibility of each
point’s track in the cameras. This can be represented as a bipartite, visibility
graph [3] as shown in Figure 1. We define the visibility probability of a point Xi

as the probability that a given point Xi is visible in a randomly selected view.
We approximate it with respect to the SfM dataset as the fraction of cameras

in which the point is visible as p(Xi) == d(Xi)
m

, where d(Xi) is the degree of
Xi in the graph (Figure 1). This approaches the true visibility probability when
camera and point positions are dense. The joint visibility probability p(Xi, Xj)
of two points is similarly defined as the fraction of cameras in which both are
visible (Figure 1). The conditional probability of Xi on Xj then becomes the
fraction of d(Xi) in which Xj is visible given by

p(Xj |Xi) =
p(Xj , Xi)

p(Xi)
=

no. of cams that see Xi and Xj

no. of cams that see Xi

. (1)

Equation 1 gives the probability of Xj being visible given that Xi is or the
dependence of Xj on Xi. The dependence will be high on nearby points but
could be lower if occluded in some views. We use the terms dependence and
independence not in the sense of statistical independence, but to mean how one
is not influenced by the other. We can measure the influence of a set S of points
on the visibility of a Xj as

p(Xj |S) = 1−
∏

Xi∈S

[1− p(Xj |Xi)] , (2)

as a point is independent of a set of other points only if it is independent of each
one in the set.
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Fig. 2. Diagram showing the steps of visibility probability guided image localization

Similarly, we can define the visibility probability p(Ci) and the joint visibility
probability p(Ci, Cj) of a camerasCi, Cj with respect to a SfM dataset as fraction
of points visible in Ci and in Ci and Cj respectively (Figure 1). The conditional
visibility probability of cameras Ci on Cj and the influence of a set S of cameras
on a camera Cj become

p(Cj |Ci) =
p(Cj , Ci)

p(Ci)
and p(Cj |S) = 1−

∏

Ci∈S

[1− p(Cj |Ci)] . (3)

The probability structure between and among points and cameras can be used
to predict which points are likely to be visible in a camera given a few other
visible points and which camera see a point given a few other cameras that see
it. This helps to efficiently search for points visible in images or cameras that
see features.

4 Image Localization

Image localization aims to compute the camera parameters of a given query
image by matching a number of SfM points in them. Our image localization
algorithm is guided by the conditional visibility probabilities among points (Eq.
2). It has three parts: seed generation, probability-guided point matching, and
camera estimation. Algorithm 1 and Figure 2 outline our localization procedure.

4.1 Seed Generation

Localization starts with identifying a seed point from the SfM dataset in the query
image I. We adapt the 2D-3D searching method used by Sattler et al. [4] for this.
We first build the lists of points whose descriptors quantize to the same visual
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Algorithm 1. Localize (Image I)

1: Compute SIFT interest points and descriptors of the query image I

2: Find a seed point and set it as set S.
If number of seeds generated exceeds maxSeed, declare failure and exit

3: while S contains fewer than t1 points do
4: Update the candidate set G of points using joint visibility to points in S

5: If |S| < t2, set p(Xi|S)D(Xi, S) as the priority of points Xi ∈ G

6: Otherwise, set (1− p(Xi|S))D(Xi, S) as the priority.
7: Search each Xi ∈ G in priority order by finding 2 closest descriptors in I

8: If distances to the descriptors satisfy the ratio test, add Xi to S

9: If no more points in G, proceed to Step 11
10: end while

11: If |S| < t2 or |S| < t1 in expansion mode, discard S,G and start over from Step 2
12: If |S| < t1, repeat from Step 3 in the expansion mode.

Start over from Step 2 if t1 points can’t be found.
13: Estimate camera pose using RANSAC over DLT
14: If number of inliers is less than 12, start over from Step 2
15: Declare success and return camera matrix

word. SIFT features extracted from the query image are also quantized to visual
words. The lists for the visual words in the query image are arranged in decreasing
order of their lengths, in contrast to Sattler et al. Each query-image feature is
searched linearly in the lists in order. A feature matches a point if it clears the
ratio test in the list and is considered a potential seed. Reverse matching of the
potential seed using the ratio test in image I confirms it as a seed.

Sattler et al. start the search from the shortest list to exploit uniqueness [4].
We search from the longest list to prefer more popular visual words over less
popular ones. The average number of reverse matching steps needed before find-
ing a seed was 14 when searched in the descreasing order compared to 230 when
search was in the increasing order. Sattler et al. did not use reverse matching for
confirmation and relied on RANSAC to remove the outliers. Our seed generation
can thus be described as a 2D-3D-2D matching approach.

4.2 Probability-Guided Point Matching

Guided matching starts with a set S of points (initially with the seed point) that
are already matched in the query image I. The process repeatedly identifies a
candidate set G of points for matching and prioritizes them based on parameters
like their independence of S, distance, etc. The points are searched in the query
image in the priority order. The matched ones are added to S. The process
restarts with a new seed otherwise. It fails after trying a certain number of
seeds. Figure 3 shows the results for a few steps.

In the normal mode, the candidate set G is the subset of SfM points that are
jointly visible to all points in S (Step 4). We include a point Xj into G if the
product

∏
Xi∈S p(Xj , Xi) exceeds a threshold. A very small threshold (0.0001)

is used to get more points. Other data-dependent thresholds can be used if
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suitable. The set G is large when S has a single point and shrinks fast as points
are added. An expansion mode is used for G by including points with the sum∑

Xi∈S p(Xj , Xi) exceeding a threshold when G gets empty with a few promising
matches in S (Step 12). G then contains points that are jointly visible with any
point in S in this mode.

The priority assigned to a point in G should reflect its potential contribution
to localization. Points independent of the already matched ones can contribute
more. Since p(Xi|S) gives the dependence ofXi on points in S, 1−p(Xi|S) as the
priority will consider independent points early (Step 7). Distant matching points
contribute more to the linear estimation of camera matrix than proximate ones.
Independent and distant points can be preferred with (1− p(Xi|S))D(Xi, S) as
the priority to points Xi ∈ G in Step 5, where D() a distance measure. We
use a triangle function of the Euclidean distance of Xi to the closest point in
S as D(Xi, S). The function increases linearly till distance equals 0.25 times
the model extent and falls linearly beyond it, emphasizing distant points while
de-emphasizing very far off ones. The use of the distance measure achieves the
same localization error using half the number of point matches. As each matched
point is added to S, the candidate set changes and the priorities are updated.
A safe mode is used in the initial phase to include points close to point in S

by using p(Xi|S)D(Xi, S) as the priority. This continues until t2 (currently 5)
points are matched (Step 6). Table 1 shows the performance using different t2
thresholds on the three datasets.

Points are considered in the descending order of priority for matching (Step 7).
A point matches if its two nearest neighbors of I in the descriptor space satisfies
the ratio test [22]. We proceed to a RANSAC-based camera estimation after
finding t1 matches (currently 20). Table 2 shows the impact of increasing t1. The
high RANSAC inlier percentage indicates that our scheme searches promising
points early. If G gets empty before matching t2 points, the seed selection is
faulty and we restart the process (Step 11). An expansion mode is used if fewer
than t1 matches are obtained, which happens less than 10% of the time. A new
seed is tried if these efforts cannot produce sufficient matches (Step 12).

The threshold t1 controls the matching effort and the accuracy of localiza-
tion. A value of 20 to 30 provides a good balance between accuracy and effort
(Table 2). The matching methods by Li et al. [3] and Sattler et al. [4] need to

Table 1. Localization performance: The inlier ratio is high, number of seeds is low, and
the number of nearest neighbor queries is low. t2 = 5 enhances performance greatly.

Dataset
Thres- # Imgs Avg Inlier With Avg Avg # NN Avg Loc. Avg. Regn
hold t2 Localized Ratio 1 Seed # Seeds queries accuracy time (sec)

Dubr- 0 786 0.73 621 1.76 1323 42.32 0.25
ovnik 5 788 0.78 692 1.3 840 34.79 0.25

Rome
0 976 0.78 539 2.94 3647 - 0.31
5 977 0.81 755 2.74 3253 - 0.27

Vienna
0 218 0.75 144 2.22 1918 - 0.42
5 219 0.74 144 2.25 972 - 0.40
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Fig. 3. Steps shown over the point cloud. Query image is the inset. From left: Seed
(green) and ground truth camera, candidate set G with priority (increasing from blue
to red), matched point and new G with priority, prioritized G after 3 matches, and
after 5 matches. See the electronic version.

Table 2. Performance for different t1 values on the Dubrovnik dataset. Matching 20-30
points provides the best performance-effort tradeoff.

No. points in S 15 20 30 50 100

Inlier percentage 79.9 78.12 76.15 75.32 66.76

No. images registered 727 788 789 789 789

No. points searched 523 839 1679 2893 4597

Error in localization using RANSAC

Median 0.0037 0.0023 0.0023 0.0022 0.0021

70th percentile 0.011 0.0073 0.0058 0.0063 0.006

Mean 0.1177 0.0267 0.0498 0.0261 0.0512

Error in localization without RANSAC

70th percentile 0.0231 0.0243 0.0263 0.0345 0.0425

produce 100 or more potential matches before estimating the camera. If RANSAC
produces fewer than 12 inliers, the seed is discarded (Step 14). If the number of
seeds tried exceeds a limit, the localization of the query image fails. Around 88%
of the query images in the Dubrovnik dataset are successfully localized using the
first seed. The average number of seeds tried was 1.3 for successful query images
and 5 for unsuccessful ones (Table 3).

Discussion: Li et al. use a prioritized selection of points for matching [3]. They
update the priorities of jointly visible points when a new point is matched by
a factor inversely proportional to its degree. Our probability structure allows
better pruning, prioritizing and reordering of the remaining points than the
above heuristic. We search fewer points (Table 8) and get better localization
accuracy (Table 4) as a result. Sattler et al. [4] extend the 2D-3D matching until
a large number of matches are found, with static priorities for points. While
they perform well on images that localized well, they do much more work on
rejection. Our rejection and registration times are comparable (Table 5).

4.3 Camera Estimation

We estimate the camera parameters using RANSAC over DLT from the 3D-
2D matches obtained. Our approach generates reliable matches, with over 78%
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Table 3. Localization performance for registered and rejected images for Dubrovnik,
Rome and Vienna datasets (from top to bottom). The computation times are similar.

Successfully registered images Rejected images
# of Inlier Ratio With 1 Avg # Avg # NN Time Avg # Avg # NN Time

Images (Avg) Seed Seeds queries (sec) Seeds queries (sec)

788 0.78 692 1.3 839.6 0.25 5.01 4199 0.51

977 0.81 755 2.74 3253 0.27 6.21 5876 0.61

219 0.74 144 2.25 972 0.40 4.23 3369 0.49

RANSAC inliers. About 20 matches are sufficient in most cases, but an accuracy-
speed tradeoff is provided by adjusting t1 as seen in Table 2. We use the basic p6p
method for camera estimation. Techniques like p4pfr and p3p do not improve
the accuracy by much, but require higher computation time.

4.4 Pre-computation and Representation

We pre-compute the visual-word based sorted lists for the seed generation step
[4]. SfM datasets contain large numbers of points, all of which may not be in-
formative. We use the method by Li et al. to select 3-5% of the points in the
dataset using the K-Cover algorithm that includes the most valuable points [3].
In practice, using all points showed no major gain in accuracy but suffered in
speed. The n× n sparse visibility matrix between all pairs of points with (i, j)
entry storing the number of cameras that see points i and j is precomputed and
stored in a compressed row format.

4.5 Experimental Results

We use the Dubrovnik (6044 images, 2M points), Rome (15179 images, 4M
points), and Vienna (1324 images, 1M points) datasets for experiments [2–4]. We
first select 75K, 100K and 50K points respectively using the K-cover algorithm
We use the same query images (800 for Dubrovnik, 1000 for Rome and 266 for
Vienna) to facilitate direct comparison. We match more images than previous
efforts and do so with lesser effort in terms of the number of nearest neighbor
queries (Table 3). We also generate promising matches early as seen from the
RANSAC inlier ratio. We match 4 images per second on the average.

Table 4 compares the localization accuracy of our approach with prior work
on the Dubrovnik dataset. We achieve better localization compared to Li et al.
[3]. The mean error seems worse because we match more images than them, with
most of them being of low quality for matching. Sattler et al. [4] perform better
on median error, but has very high mean error due to several images localized
very badly. This is true even though they register fewer images.

Images from Rome dataset were searched in Dubrovnik and Vienna datasets
and images from Dubrovnik in Rome to study the rejection performance. Table
5 shows the results. The candidate set gets exhausted fast and the search termi-
nates quickly in our approach. Rejection involves more nearest-neighbor queries
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Table 4. Comparision of localization accuracy in meters for Dubrovnik dataset

Method #Reg. Images Average Median 1st Quartile 3rd Quartile

Our Method 788 34.79 3.104 0.88 11.83

Sattler et al. [4] 784 53.9 1.4 0.4 5.9

Li et al. [3] 753 18.3 9.3 7.5 13.4

Table 5. Rejection performance on negative examples from other datasets

Dataset # Images # Rejected Avg #Seeds Avg #NN Queries Time (sec)

Dubrovnik 1000 1000 2.8 3451 0.4

Rome 800 800 2.70 5026 0.54

Vienna 1000 1000 3.44 2810 0.22

than registration. Our rejection times are only slightly more than registration
times. This is in contrast to rejection being typically an order of magnitude
slower for the previous methods [3, 4] (Table 6). Rejecting images from other
datasets is slightly faster than rejecting images from the same dataset.

The performance of localizing new images of the same space is given in Table 7.
We collected general images from Flickr using relevant keywords for Dubrovnik,
Rome, and Vienna. These images were taken in 2011 or later. They registered
quickly and produced low reprojection errors. Six registered and four rejected
images of Dubrovnik are shown in Figure 4.

Our localizing performance is compared with methods by Li et al. and Sattler
et al. in Table 8. Our method successfully registers more images in each data
set while searching far fewer points. We search only 10-20% of the points as Li
et al. The visibility probability is thus successful in guiding the search to the
successful points and in rejecting matches.

5 Feature Triangulation

We define this problem as follows: Given a feature-point with 2D coordinates
and a descriptor, find its 3D coordinates. By assuming that the feature is taken
from the space of the SfM dataset, we can match it in two or more cameras. Tri-
angulation can be used to give the point coordinates after matching in cameras
(whose calibration matrices are known). This is a dual problem of image local-
ization, with the roles of cameras and points reversed. However, there usually are
at least two orders of magnitude more features than images in a dataset. Hence,

Table 6. Rejection performance comparison on 3 datasets for images from same dataset
and negative examples from other datasets

Method

Dubrovnik Rome Vienna

Negative Same Negative Same Negative Same
examples dataset examples dataset examples dataset

Ours 0.4 0.51 0.54 0.61 0.22 0.49

Sattler at al. [4] - 1.70 - 1.66 - 2.43

Li et al. [3] 3.96 - 4.67 - 3.62 -
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Fig. 4. Six registered (left) and four rejected (right) new images of Dubrovnik

Table 7. Registration performance on new images obtained from internet

Dataset
# Query #Regi- Avg # Avg #NN Avg Inlier Avg Reproj. Avg Time
Images stered Seeds Queries Ratio Error (sec)

Dubrovnik 70 64 2.81 950 0.80 1.25 0.21

Rome 44 40 3.1 3834 0.78 1.7 0.3

Vienna 40 27 2.59 2381 0.81 0.5 0.36

it will be more useful to triangulate several features from an image. Our fea-
ture triangulation algorithm is the dual of our localization algorithm. It has has
three steps: feature selection, view selection and two-way matching. Algorithm
2 outlines our triangulation approach.

Feature-Point Selection: This step identifies the 2D feature-points in an image to
be triangulated. We use a camera-image C0 from the SfM dataset as the image
from which features are selected. We detect interest points and descriptors in
the selected image first. We restrict the features to lie sufficiently far from the
image borders. Alternately, the user can draw a rectangle to restrict the features.
We discard interest points that are within 4 pixels of an existing point in the
image. This ensures we triangulate new features. The guided camera selection
starts with an image and a feature in it.

Probability-Guided Camera Selection: This step starts with a set S of selected
cameras (initially only C0) which contains the query feature F . Cameras that are
jointly visible to every camera in S are selected as the candidate set G (Step 3).
We include cameras Cj in G if

∏
Ci∈S p(Cj , Ci) ≥ 0.0001. The candidate set is

very large initially as typical cameras contain many points. Cameras of that are
most independent of S are most useful for triangulation and hence 1−p(Ci|S) is
a good priority measure for Ci. Cameras at greater distances in 3D and angular
spaces from the cameras in S are more useful in triangulation. We also use a local

Table 8. Localization performance comparison on three datasets. The query set had
800, 1000, and 266 images for Dubrovnik, Rome, and Vienna datasets.

Method

Dubrovnik Rome Vienna

# regis- # points Time # regis- # points Time # regis- # points Time
tered searched (sec) tered searched (sec) image searched (sec)

Ours 789 839.6 0.25 977 3253 0.27 219 972 0.40

Sattler [4] 784 - 0.28 975 - 0.25 207 - 0.46

Li [3] 753 9756 0.73 921 12963 0.91 204 6245 0.55
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Algorithm 2. Feature Triangulation (Camera C0, Feature F )

1: Initialize S as the camera C0

2: while S contains fewer than q1 cameras do

3: Update the candidate set G of cameras using visibility to cameras in S

4: Assign lv(Ci)(1− p(Ci|S))α(Ci, S) as the priority to cameras Ci ∈ G

5: Examine camera Ci ∈ G in priority order. Match F in it.
6: If Ci satisfies two-way matching, add it to S

7: If no more cameras in G, proceed to Step 9
8: end while

9: if |S| ≥ 2 then

10: Triangulate camera projections to estimate a 3d point
11: else

12: Declare Failure
13: end if

view prior lv(Ci) based on the feature F . We first identify K points (typically 10)
that are closest to F in C0 using image distances. The lv(Ci) for Ci is the fraction
of these points visible in Ci. This promotes cameras that see more points that are
close to F . We can also use a distance measure D(Ci, S) and an angle measure
α(Ci, S) in the priority, both of which are triangle functions based on the distance
from cameras in S. In practice, the angle measure does the better than the
distance measure. Thus, the priority of Ci is lv(Ci)(1 − p(Xi|S))α(Ci, S) (Step
4). The use of local view prior typically results in the successful triangulation of
twice the number of features.

The cameras are selected in their priority order to match the query feature F

in them. We use a two-way matching process (Step 5). To match F in Ci, we find
the 10 nearest neighbors of F in Ci in the descriptor space. The feature-point
p closest to the epipolar line of F in Ci is considered a potential match if its
epipolar distance in Ci is less than 4 pixels. We then find the nearest neighbor
of p in camera C0. If its nearest neighbor is the feature F , we consider F to
be matched in Ci. This method finds matches of even repetitive feature-points,
which are rejected by the traditional ratio test. Finding 3D points among diffi-
cult repetitive structures is the primary advantage of our feature triangulation
approach. As each camera is added to S, the candidate set shrinks (Step 3) and

Fig. 5. Steps shown over the point cloud with chosen camera and query feature as
inset. From left: First camera, candidate set G (blue), next matched camera and new
G, prioritized G after 3 matches, and after 4 matches. See the electronic version.
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the priorities of cameras change. The guided camera selection continues while
there are cameras left in G or when q1 cameras are in S. A value of q1 in the
range 7 to 10 performs well in practice. Triangulation fails if F matches in less
than 2 cameras. We try to match only 20 cameras for each query feature. Figure
5 shows results of a few steps of the process.

Point Estimation: The 3D coordinates of the query feature F are computed by
triangulating its projections in the cameras in S. We use RANSAC over a simple
2-view triangulation for this. Robust triangulation is a well studied problem [23].
However, our problem involves highly noisy cameras for which these methods
aren’t suitable. We get adequate accuracy using the simple method, though
better techniques should be explored for this step in the future.

5.1 Experimental Results

We used the already triangulated points from 55 random Dubrovnik images to
evaluate the performance of triangulation, with their original coordinates treated
as the ground truth. The 2D feature point of each point from an image in its track
was used as the query for triangulation. Tables 9 and 10 give the triangulation
results, grouped by their track lengths and reprojection errors. Triangulation
error is the Euclidean distance between original point and the point generated
by our method. Table 9 shows that points with longer tracks are triangulated
better. Better triangulated points involve larger variances in viewing angles and
show larger reprojection errors (Table 10). That is, low reprojection error is not
indicative of better triangulation. The limit on using 20 images based on the
local-view prior resulted in very fast triangulation with low error.

Table 11 compares two-way matching and ratio-test matching on 9K randomly
selected points from Dubrovnik. Both methods worked well on the SfM points
because they passed the ratio test in the original SfM process. The performance
of adding new points to images with repetitive structures (Figure 6) is better for
two-way matching. It adds 8 to 20 times more points on images with repetitive
structures than ratio test. The point density at these locations increases by upto
3 times. Image 1 (Fig. 6, left) had 1946 points to which 1692 new points were
added. Image 2 (Fig. 6, center) had 1747 triangulated points to which 3359 new
points are added. Image 3 (Fig. 6, right) had 187 triangulated points to which
613 new points were added.

Table 9. Triangulation results by track lengths on 55 random Dubrovnik images

Track No. pts No. images Triangulation Reprojection Running
Length triangulated tried error error time [s]

2 6000 20 0.0276 0.2108 0.10

3 5887 20 0.0201 1.5218 0.11

4 4631 20 0.0125 1.9844 0.11

5 3071 20 0.0060 2.1592 0.12

> 5 6547 18.84 0.0030 2.2799 0.12
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Table 10. Triangulation results by reprojection errors on 55 random Dubrovnik images

Reprojection No. pts No. images Triangulation Reprojection Running
Error triangulated Tried error error time [s]

< 1 pixels 9697 19.89 0.0205 0.3968 0.10

< 2 pixels 17005 19.80 0.0144 0.8664 0.11

< 3 pixels 22440 19.74 0.0153 1.2541 0.11

Table 11. Effect of different matching techniques on repetitive structures

Dataset
Two Way Matching Using Ratio Test

#Pts #Images Tri. Reproj. Time #Pts #Images Tri. Reproj. Time
added Tried error error (sec) added Tried error error (sec)

9126 Pts 8830 267.36 0.0105 1.40 0.728 8950 270.29 0.0097 1.7 0.69

Image 1 1692 19.99 - 0.81 0.13 215 20 - 0.94 0.08

Image 2 3359 19.99 - 0.85 0.50 172 19.97 - 1.02 0.20

Image 3 613 20 - 1.13 0.36 49 20 - 1.35 0.19

Fig. 6. Triangulated points shown in red from different view points. Side view is shown
with red borders. The starting image is the inset.

6 Conclusions

In this paper, we defined the visibility probability structure of an SfM dataset
and applied it to the dual problems of image localization and feature triangula-
tion. Our method produced fast and efficient point and camera matches for both
registration and rejection, increasing the point density by upto 3 times in places
with repetitive structures. In the future, reliable image features can be recon-
structed using th SfM process with the rest of the features triangulated using our
approach. The high storage requirements for the joint visibility information is a
drawback of this work. The formulation depends on the probability structure to
guide the matching process. This can have difficulty in sparse regions of space,
where the empirical probabilities are unreliable.
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