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Abstract. In this paper we explore some novel aspects of visibility for stationary and
moving points inside a simple polygonP. We provide a mechanism for expressing the
visibility polygon from a point as the disjoint union of logarithmically many canonical
pieces using a quadratic-space data structure. This allows us to report visibility polygons in
time proportional to their size, but without the cubic space overhead of earlier methods. The
same canonical decomposition can be used to determine visibility within a frustum, or to
compute various attributes of the visibility polygon efficiently. By exploring the connection
between visibility polygons and shortest-path trees, we obtain a kinetic algorithm that can
track the visibility polygon as the viewpoint moves along polygonal paths insideP, at a
polylogarithmic cost per combinatorial change in the visibility or in the flight plan of the
point. The combination of the static and kinetic algorithms leads to a new static algorithm
in which we can trade off space for increased overhead in the query time. As another
application, we obtain an algorithm which computes the weak visibility polygon from a
query segment insideP in output-sensitive time.
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1. Introduction

In this paper we consider two visibility-related problems in simple polygons—one is the
visibility-query problem from a fixed observer; the other is the problem of maintaining
the visibility from a moving observer. In the former problem, we are given a simple
polygon P, and we want to process it into a data structure so that, for any query point
q inside P, the visibility polygonV(q) from q can be reported efficiently. In the latter
problem we would like to maintain this visibility polygon while the viewpoint moves
along linear segments. In the following discussion the size of a polygon is understood
as the number of its vertices. We denote byn the size ofP and by |V(q)| the size
of V(q).

There have been many studies on computing visibility polygons in a simple polygon.
An algorithm with linear running time is first achieved in[7]. Some other linear algorithms
based on triangulation are given in[5] and [10]. In the worst case these algorithms are
optimal as visibility polygons may have up to linear complexity. However, in practice,
the visibility polygons are usually much less complex than the environment, and, in many
applications, we would like to compute the visibilities from many different viewpoints.
In these cases it is desired to make the running time of the algorithm output-sensitive.
That is, we would like the running time of our algorithm to be proportional to the size
of the output, after certain preprocessing of the environment.

In [17] an algorithm withO(|V(q)| log(n/|V(q)|)) query time after a preprocessing
stage ofO(n2) space and time is given. Another method to achieve output sensitivity is by
building a linear-size,O(logn)-time ray-shooting query structure as in[12] and shooting
rays to discover the visibility polygon. This way, one can construct an algorithm that
requires only linear storage and preprocessing time andO(|V(q)| logn) query time for a
query pointq. Note the appearance of a multiplicative overhead in the query time bounds
of the above algorithms. In[2] and[11] an optimal query time without multiplicative
overhead is achieved. The query time of their algorithms isO(logn+ |V(q)|), but the
storage and preprocessing time is cubic. If the queries are restricted to a given line
segment, then there exists an algorithm that reportsV(q) in O(logn+ |V(q)|) time for
any query pointq after O(n logn) time preprocessing[6]. However, the method in[6]
does not extend to the general case.

A general technique used to answer visibility queries is to decompose the interior
of a polygon into regions so that points in the same region see “equivalent” visibility
polygons. A point location structure built on such a decomposition is then used to answer
queries. In[2] and [11] theO(logn+ |V(q)|) query time is achieved by storing such a
decomposition inO(n3) space. In this paper we show how to decompose the polygon into
canonical pieces in order to keep their visibility information separately, so as to reduce
the storage and preprocessing time. As a result, our algorithm constructs a data structure
of sizeO(n2) which can be computed in timeO(n2 logn) so that the visibility polygon
V(q) from any query pointq ∈ P can be reported inO(log2 n+|V(q)|) time. Note that
in our algorithm, there is no multiplicative overhead in the query time. In addition, our
method for finding the visibility polygon expresses this polygon as the union ofO(logn)
canonical pieces, which need not be constructed explicitly unless needed. By exploiting
this fact we are able to answer efficiently additional types of queries. For example, we
can report the (combinatorial) size of the visibility polygon inO(log2 n) time, and have
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output-sensitive visibility queries when visibility is delimited by a cone centered at the
observer and defining the viewing frustum.

We also consider the problem of maintaining visibility from a linearly moving view-
point. This problem appears in many typical application settings, such as architectural
walk-throughs, where one wants to compute the visibility from a continuously moving
viewpoint. A similar problem is studied in[6]. In that paper the point moves along a
given line segment, so that the direction of the motion is fixed. Here, we allow the mo-
tion of the point be updated in an on-line fashion. By exploiting the intimate connection
between visibility and shortest-path trees, we obtain an algorithm that can maintain the
visibility polygon from a point which moves along linear segments, using linear space
andO(log2 n) time per event. An event is defined to be either a (combinatorial) change
of the visibility polygon, or an update of the linear motion.

Lastly, we show some applications of the combination of our methods for visibility
queries and maintenance of a visibility polygon with a moving viewpoint. In[2] it is
asked if there exists a smooth tradeoff between preprocessing storage and query time
for the visibility query problem. A combination of the above two procedures provides
an algorithm with the tradeoff ofO(m) space,O(m logn) preprocessing time, and
O((n2/m) log3 n + |V(q)|) query time for anym betweenn log3 n andn2 logn. Our
second application is to solving the weak visibility query problem. We provide a method
for reporting the weak visibility polygon of a query line segments ⊂ P in output-
sensitive time by combining both of our methods.

The paper is organized as follows. We first give some definitions and notation in
Section 2. In Section 3 we show how to answer visibility queries in nearly optimal time.
The algorithm which maintains the visibility polygon from a moving viewpoint is given
in Section 4. In Section 5 we describe the applications.

2. Preliminaries

2.1. Definitions and Geometric Facts

SupposeP is a simple polygon. Denote the boundary ofP by ∂P. ∂P consists of
vertices and edges. Throughout this paper we assume polygons are in general position,
i.e., no three vertices ofP are collinear. Degenerate cases can be handled by standard
perturbation techniques.

Two pointsp,q canseeeach other if the line segmentpq lies in the polygon. If two
boundary pointsp,q are mutually visible,pq is called achord. A chord is also called a
diagonalif both its endpoints are vertices. A chords separates a simple polygon into two
connected components. If two points are in the same component, they are also called on
the same side with respect tos. The visibility polygon V(p) of a point p ∈ P consists
of all the points that can be seen fromp. A visibility polygon is a star-shaped polygon
whose boundary consists of parts of polygon boundaries and chords, calledwindows.
Any point invisible top is separated fromV(p) by a window.

A point p canseea subsetS insideP if p sees at least one point inS. Similarly, define
theweak visibility polygonof S, denoted byV(S), to be the set of points inP which can
seeS, or, equivalently,V(S) =⋃p∈S V(p) (Fig. 1).
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Fig. 1. Visibility polygon and weak visibility polygon. The shaded regions areV(p) andV(e), respectively.
The dotted segments on the boundary of the visibility polygons are windows.

A visibility polygon can be represented geometrically by a circular list of the vertices
with their planar coordinates. With the prior knowledge of the polygonP, one can rep-
resent visibility polygons combinatorially by a circular list of vertices and edges ofP
in the order in which they appear on the boundary of the visibility polygon. This list is
called thecombinatorial representationof V(p). The actual coordinates of each vertex
of V(p) can be computed inO(1) time given the combinatorial representation. From
now on, when we refer to a visibility polygon, we mean its combinatorial representation,
unless otherwise stated. Two visibility polygons are (combinatorially)equivalentif their
combinatorial representations are identical (up to a circular permutation). An important
property of simple polygons is that once the vertices and edges visible from a point are
known, the order in which they appear on the visibility polygon is uniquely determined,
as it coincides with the order along the boundary of the original polygon. This property
implies that if two points see the same set of vertices and edges ofP, then they have equiv-
alent visibility polygons. Note that this statement breaks down for non-simple polygons.

In a simple polygon the portion of a line segments visible to a pointp or weakly
visible to another segments′ is, if non-empty, a contiguous subsegment ofs. We denote
by Cs(p) the infinite cone with apexp and delimited by the endpoints of the visible
portion ofs.

A line ` is tangentto a polygonP at vertexv if ` passes throughv, and` is insideP in
an open neighborhood ofv. Notice that a line can be tangent toP only at a reflex vertex.
For a pointp ∈ P and a vertexv, consider the ray emanating fromp, aimed atv, and
crossing∂P at a pointw afterv (w 6= v). If pw is insideP and the line containingpw is
tangent toP atv, the chordvw is called theconstraintinduced bypandv (we say it is “in-
duced byp” when the vertexv is unimportant or understood from context) and is denoted
by c(p, v). An easy observation is that for any pointp insideP, the constraints induced
by p are exactly the windows ofV(p). Further, when bothp andv are polygon vertices,
the constraintc(p, v) is called acritical constraint(Fig. 2). All the critical constraints
partition the interior of the polygon into cells, which is called thevisibility decomposition
and denoted byV(P) (Fig. 2). According to the following lemma, the visibility decom-
position decomposes the interior ofP into cells with equivalent visibility polygons.

Lemma 2.1. Suppose p,q are two points inside a simple polygon P and not on any
critical constraint. They see different sets of vertices and edges if and only if they are on
opposite sides of some critical constraint.
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Fig. 2. The visibility decomposition of the polygonP; v1w1, v2w2 are the critical constraints reduced byp
andv1, v2, respectively.

Proof. Consider all the visibility polygons of vertices ofP and the weak visibility
polygons of its edges. They are simple polygons whose boundaries consist of polygon
edges and critical constraints. Thus, ifp,q are on the same side for all the critical
constraints, their visibility (weak visibility) from all the vertices (resp. edges) is the
same. That is, they see the same set of vertices and edges.

On the other hand, ifp,q see equivalent visibility polygons, we shall prove that
no critical constraint separates them. We prove this by contradiction. Suppose that
there is a critical constraint separating them. Let1p,1q denote the cells in the vis-
ibility complex that containp and q, respectively. Then1p and1q must be dif-
ferent. Since they are both convex cells, there must be a critical constraint on the
boundary of1p separating them. Supposec(u, v) is on the boundary of1p and sep-
arates1p and1q (Fig. 3). Clearly,v is visible from p. By the assumption thatp,q
see the same set of vertices,v is also visible fromq. If the line uv separates the
edges incident tov from 1p, then the edgee1 incident tou is visible from p but
not from q. If the edges incident tov are on the same side as1p, then the exten-
sion of the line segmentqv must hit a polygon edge, saye2. Thene2 is visible from
q but not from p. In both cases we have derived contradiction. Therefore, there can-
not be any critical constraint separatingp and q if they see the equivalent visibility
polygon.
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Fig. 3. Proof of Lemma 2.1.
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Remark 2.1. The proof of the above “folklore” result is presented here because we
could not find a proof for the “if” part in the literature, while there have been several
proofs for the “only if” part.

Remark 2.2. In the above lemma we did not include the case when a point is on a
critical constraint. However, a point on a segment has the visibility polygon equivalent
to that of a point to one side of the segment—to which side to perturb depends on how
the vertex on the critical constraint blocks the visibility.

Remark 2.3. Notice that in our definition the combinatorial representation consists of
both the vertices and edges visible to a point. If only the vertices are considered, the
above lemma is not true. It is very easy to construct an example where two points in
different faces of the arrangement of critical constraints can see the same set of vertices.

Since there areO(n2) critical constraints, an immediate upper bound on the complex-
ity of visibility decomposition isO(n4). However, the following fact implies a better
bound ofO(n3), which is tight in the worst case.

Lemma 2.2. Any segment s inside a simple polygon P can cross at most O(n) critical
constraints of P.

Proof. Refer to[2] and [11].

By Lemma 2.2, the number of vertices and, therefore, the complexity of the visibility
decomposition isO(n3).

Another geometric object closely connected to visibility is the shortest path. The
shortest pathπ(p,q)between two pointsp,q ∈ P is the path with the shortest Euclidean
length among all the paths joiningp,q insideP. The pathπ(p,q) is a polygonal path in
which all the intermediate vertices are reflex polygon vertices. The union of the shortest
paths connectingp and all the vertices ofP form a tree rooted atp. This rooted tree is
known as theshortest-path tree(Fig. 4) and is denoted byT(p). Clearly, if a vertexu is
a child of p in the treeT(p), thenu is visible fromp. From the shortest path treeT(p),
it is very easy to obtain the visibility polygonV(p) [10].

In Section 4 we show how to maintain the shortest-path tree, and thus the visibility
polygon, of a moving point.
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Fig. 4. The shortest-path treeT(p) of a point p.
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2.2. Persistent Red-Black Tree

In our method we usepersistent data structuresto reduce space cost. Further, in our
tradeoff result, we need to extend the notion of a persistent data structure to handle
transientdynamic updates. These data structures are described in this section.

The termpersistent data structurewas coined by Sarnak and Tarjan in[16]. In general,
a persistent data structure is one that accepts an arbitrarily long sequence of updates, but
is able to remember at any time all its earlier versions. Persistent data structures have
proven very useful for storing a sequence of data sets with only slight changes between
any adjacent two in the sequence. Here, we focus our attention on persistent red-black
trees.

Suppose we have a set ofn linearly ordered items and a sequence ofm updates
(i.e., insertions and deletions) of these items. Let theversion at time t, for 1 ≤ t ≤
m, be the set resulting from applying the firstt updates in the sequence to an empty
set. According to[16], a persistent red-black tree can be built so that any version can
be accessed with the same time bounds as stored in a standard (ephemeral) red-black
tree. Furthermore, the structure can be constructed inO((m+ n) logn) time by using
O(m+ n) space. In this paper, in addition to accessing a version, we are also interested
in accessing the set obtained by applying some updates to any version. Formally, a
query is a tuple of the form(t,update1, . . . ,updatek,acc). For such a query, we need
to return the result of the access operationacc to the set that results from applying
the sequence of updates(update1, . . . ,updatek) to the set of versiont . The updates in
such a query are not persistent, and we do not keep them after the desired accesses
are made. We call such updatestransient. To be able to perform transient updates on
a persistent red-black tree, we proceed as follows. In each node we add fields which
are labeledtransient to hold the necessary data for an ephemeral red-black tree,
i.e., the color and pointers pointing to the parent and children. We also add a one-
bit field per node to indicate if the transient fields are used or not. During an update,
whenever we need to insert a new item, we create a node labeledtransient ; when
we need to redirect a pointer or recolor a node, we store all the information in the
transient fields without modifying the original data structure. We also keep track of all
the places where an update has happened by linking all such nodes in a list. When we
need to follow a pointer, we first check the indicator to see if the transient field has
been updated. If it has, we follow the pointer stored in that transient field. Otherwise,
we follow the one in the original data structure. After accesses are made, the data
structures are cleaned up by deleting all the “transient” nodes and resetting all the
transient indicators. The operations can be done inO(logn) time per transient
update (and for the final access) because they can be viewed as ephemeral red-black tree
operations.

To summarize, we have

Lemma 2.3. A sequence of m updates of n linearly ordered items can be processed in
time O((m+ n) logn) into a data structure using O(m+ n) space so that each version
can be accessed in the same time bound as a red-black tree. Further, transient updates
can be made to any version in O(logn) time per up date.
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3. Answering Visibility Queries

In this section we provide an algorithm withO(log2 n + |V(q)|) query time, which is
nearly optimal and requiresO(n2 logn) preprocessing time andO(n2) storage. Com-
pared with the algorithms in[2] and [11], the storage and preprocessing time has one
fewer linear factor. Further, we show that the algorithm can be extended to handle
the problems of counting the size of a visibility polygon and answeringcone-visibility
queries.

Intuitively, our algorithm works as follows: we first observe that when a pointq is not
inside a subpolygonP′ of P, it is “easy” to compute thepartial visibility polygon V(q)∩
P′. Then we compute a hierarchical representation of the polygon by using balanced
triangulation hierarchies. For any query pointq, we can decompose the polygon into
O(logn) disjoint subpolygons, each represented by a node in the balanced triangulation
tree, such that all the subpolygons, except for the triangle containingq, do not containq.
For each subpolygonP′, we then compute the corresponding partial visibility polygon
and glue all the partial visibility polygons together to obtainV(q).

In Section 3.1 we show how to construct a data structure to answer a partial visibility
polygon query efficiently. In Section 3.2 we describe the balanced triangulation and
present the full algorithm and its extensions.

3.1. Computing Partial Visibility Polygons

For a polygonQ contained inP, define thepartial visibility polygon VQ(q) to be the
polygonV(q)∩Q. SupposeP is divided into two parts,L andR, by a diagonale. In this
section we show how to compute the partial visibility polygonVL(q) for a pointq ∈ R.

For an edgee, we denote bye+ ande− the half-space to the left and right side of the
line passinge, respectively. We assume thatL is to the left of`, the line on which the
diagonale lies, that is,L is in e+. In general, this is not true asL may “bend over” to
cross̀ . However, we can conceptually truncateL by the extension ofebecauseq cannot
see any part ofL on the right side tò—more precisely,L is the connected component
of P ∩ e+ which containse. Further, notice that ifq lies in the same side asL to `, then
q cannot see any part ofL, except for at most one vertex ofe. Thus, in the following,
we also assume thatq lies to the right of̀ , i.e.,q ∈ e−.

Observe that for any two pointsp ∈ L andq ∈ R, q can seep if and only if pq does
not cross∂P. Since∂P = (∂L\e) ∪ (∂R\e), we consider them separately as follows.
Recall that the visibility coneCe(q) is delimited by the endpoints of the portion ofe
which is visible toq. Therefore,pq does not cross∂R\e if and only if p lies inside the
coneCe(q), because no portion ofL can block the visibility of a point one to q ∈ R.
On the other hand, if we define theexterior visibility polygon EVL(q) of q with respect
to L to be the portion ofL which can be seen byq throughe as if all the edges of∂R
are transparent, thenpq does not cross∂L\e if and only if p ∈ EVL(q). Therefore, the
intersection between the point setsCe(q) andEVL(q) is exactly the set of all the points
p wherepq does not cross properly∂L\eand∂R\e. That is,VL(q) = Ce(q)∩ EVL(q).
The above procedure is depicted in Fig. 5. In the following sections we show how to
computeCe(q), EVL(q), and their intersectionVL(q).
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Fig. 5. Computing the partial visibility polygon.

3.1.1. Computing Ce(q). SinceP is a simple polygon, the portion ofe visible toq is
a line segment. To computeCe(q), we just need to find the endpoints of this segment
or, in other words, the extremal points one thatq can see. By exploiting the connection
between visibility and shortest-path trees, we can show that the extremal points can be
computed inO(logn) time after linear time precomputation.

Suppose thatv1, v2 are the endpoints of the edgee. Consider the shortest pathsπ(q, v1)

andπ(q, v2). Following the terminology of[10], π(q, v1), π(q, v2) form afunnelwhich
may consist of a shared initial pathγ = π(q, v1) ∩ π(q, v2) and a region bounded by
two outward convex chains and the segmente. To compute the endpoints, we distinguish
three cases (refer to Fig. 6):

1. There is no common initial path, i.e.,γ = {q}. Let s1, s2 be the edges ofπ(q, v1),
π(q, v2), respectively, incident toq. By the convexity of the funnel, the extensions
of s1, s2 will meet the edgee without intersecting any other polygon edges. Thus,
the intersection points delimit the portion visible toq.
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Fig. 6. Different cases in computingCe(q).
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2. The pathγ consists of a single segment, says, ands is collinear with the adjacent
segment on at least one of the two shortest paths. In this case,q sees exactly one
point one, namely, the intersection point between the extension ofsand the edgee.

3. The pathγ consists of a single segment and this segment is not collinear with
any of its adjacent segments on the two shortest paths, orγ consists of several
segments. In this case,q cannot see anything one.

Thus,Ce(q) can be computed by checking the first two edges on the shortest paths
π(q, v1) andπ(q, v2). In [9] it is shown that a data structure can be built in linear time
by using linear space so that, for any two query points, the length of the shortest path can
be reported inO(logn) time. Using the same structure with slight modification, the first
two edges on the shortest path can be reported inO(logn) time as well. Thus, we have

Lemma 3.1. Given a simple n-gon P, it can be processed into a structure in O(n)
space and O(n) preprocessing time so that for any diagonal e of P and any query point,
Ce(q) can be computed in O(logn) time.

As we will see later, the use of the shortest-path query data structure here is just for
description convenience. We can actually obtainCe(q) as the algorithm proceeds, as
remarked in Section 3.2.

3.1.2. Computing EVL(q). Recall thatL ⊂ e+ andq ∈ e−. To computeEVL(q),
similar to the visibility decomposition, we decomposee− into cells so that two points
in the same cell see equivalent visibility polygons inL. This decomposition is called
exterior visibility decompositionand denoted byEV L . Once we have constructedEV L ,
EVL(q) can be computed by locatingq in the cell decomposition and retrieving the
corresponding exterior visibility polygon. The way thatEV L is formed is similar to that
of the visibility decomposition. It can be regarded as a special case of the visibility
decomposition. Imagine the bounding boxB of R (i.e., a minimal rectangle containing
R) with one side lying oǹ. We form a simple polygonQ by taking the union ofL andB
(Fig. 7(a)). We then compute the visibility decomposition for this polygon and consider
the decomposition clipped in the boxB. Clearly, for any two points inB, if they are
in the same cell of this decomposition, they will see the same visibility polygon ofL.
Further, it suffices to considerB only becauseR⊂ B (Fig. 7(b)).
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Fig. 7. (a) The union ofL andB. Note thatL is clipped by the half-spacee+. (b) The visibility decomposition
where only the part inB is drawn.
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Which critical constraints can contribute to form the decomposition ofB? The answer
is that they must be those induced by a pair of vertices inL and crossing the diagonal
edgee. According to Lemma 2.2, the number of such critical constraints isO(n). Thus,
effectively, we reduce the number of critical constraints under consideration fromn2 to
n. Furthermore, those constraints can be computed inO(n logn) time as shown in[6].
By a topological sweep, their arrangement can be built inO(n2) time (Fig. 7(b)).

For each of the cells inEV L , we compute and store the corresponding visibility
polygon. If implemented in a naive way, it may take2(n3) space and preprocessing
time because a visibility polygon may have2(n) complexity. However, note that any
two adjacent cells have onlyO(1) differences in their visibility polygons because they
are separated by only one critical constraint. By using a persistent data structure, we can
reduce the costs toO(n2 logn) preprocessing time andO(n2) storage. More precisely,
we form a dual graphD of the decomposition and compute a spanning tree ofD. By
performing a depth-first traversal of the tree, we can obtain a tour visiting all the cells and
traversing each edge ofEV L at most twice inEV L . Recall that each visibility polygon
can be represented by a circular list of the visible vertices and edges in the order in
which they appear on the boundary of the original polygon.EVL(q′) can be obtained
from EVL(q) by O(1) updates ifq,q′ are points in adjacent cells.

Thus, we can start from an arbitrary node in the dual graph, walk along the tour, and
construct a persistent red-black tree on the combinatorial representation of the visibility
polygon for all the nodes. As per Lemma 2.3, the structure takesO(n2) storage and
can be built inO(n2 logn) preprocessing time. In addition, we also build a point loca-
tion structure on top of the arrangement which can be done inO(n2) time andO(n2)

space[13].
To answer a queryq, we first locate the cell ofEV L in whichq lies, and then retrieve

the corresponding root pointer in the persistent data structure. Both steps can be done
in O(logn) time. Once we obtain the root pointer, we can either reportEVL(q) by
traversing the tree or perform any other search in the tree. To summarize, we have

Lemma 3.2. A simple n-gon L with a distinguished edge e, where L⊂ e+, can be
processed into a data structure by using O(n2) space and O(n2 logn) preprocessing
time so that, for any query point q∈ e−, a pointer pointing to a red-black tree which
stores EVL(q) can be returned in O(logn) time.

3.1.3. Computing VL(q). Once we have computedCe(q) and (a pointer to a searchable
representation of)EVL(q), VL(q) can be computed by extracting the portion ofEVL(q)
inside the coneCe(q). Because the visibility polygon is star-shaped, and the visible
vertices and edges are stored in a red-black tree in the order of their appearance on
the visibility polygon, the pruning procedure amounts to reporting all the elements of a
red-black tree within a given range of keys. For the persistent data structure in[16], this
can be done inO(logn+ k) time wherek is the output size. Therefore, we have

Theorem 3.3. Given a polygon P and a diagonal e which cuts P into two parts, L
and R, by using O(n2 logn) time, we can construct a data structure of size O(n2) so
that, for any query point q∈ R, the partial visibility polygon VL(q) can be reported in
O(logn+ |VL(q)|) time.
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3.2. Computing Visibility Polygons by Balanced Triangulation

In Section 3.1 we showed how to compute a partial visibility polygon. In this section we
show how to combine it with a balanced triangulation to compute the entire visibility
polygon.

Thebalanced triangulationof a simple polygonP was introduced by Chazelle[3].
The key observation is that there always exists a diagonale of a simple polygonP that
cuts P into two pieces, each with at most 2n/3 vertices. By recursively subdividing
each of the subregions resulting from cuttingP alonge, a balanced binary tree can be
created where each interior nodei corresponds to a subpolygonPi and a diagonalei

of Pi . The left and right subtrees ofi correspond to two polygons,Li , Ri , obtained by
cutting Pi alongei . The leaves are the triangles of the balanced triangulation. Denote by
lc(i ), rc(i ),pa(i ) i ’s left child, right child, and parent, respectively. Also assign the level
of nodei to the diagonalei (Fig. 8(a)).

In addition, for interior nodei in the tree, we build a structure as described in Sec-
tion 3.1 for reporting the partial visibility polygon inLi and Ri with respect to the
diagonalei . We also construct a point location structure on top of the triangulation. For
simplicity of notation, letVi (q) denoteVPi (q).

Now, to computeV(q) of a query pointq, we first locateq among the leaf triangles.
Let the path, from the leaf to the root, bei1(leaf), i2, . . . , i k(root) (Fig. 8(b)). We will see
how to construct all theVi (q)’s for i in the path inductively. For the leaf nodei1, Vi1(q)
is simply the corresponding triangle. In the inductive step, suppose we have constructed
Vi j (q), and without loss of generality, supposei j = lc(i j+1), i.e., i j is the left child
of i j+1. We first computeVrc(i j+1)(q) by querying the structure stored in the nodei j+1.
If it is empty, we simply returnVi j+1 = Vi j . Otherwise, we glueVi j (q) = Vlc(i j+1)(q)
andVrc(i j+1)(q) along the diagonalei j+1 to obtainVi j+1(q). To obtain efficient gluing, we
represent eachVi (q) in a circular list and store in an auxiliary array the pointers pointing
to the diagonal edges appearing inVi (q). Since a partial visibility polygon has at most
one diagonal edge of each level, we can simply keep the pointers indexed by their levels.
To glue two partial visibility polygons, we first locate the diagonal edgee along which
they possibly can be glued. This can be done inO(1) time by a direct access to the
auxiliary array. Then we split two circular lists by deleting the entries corresponding to
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Fig. 8. (a) A balanced triangulation ofP, where the number next to each edge is the level of that edge.
(b) The procedure to glue partial visibility polygons together to obtain the visibility polygon. The diagonal
edges shown in the figure are those edges on the path in the balanced triangulation.
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ei j1
and merge two lists together. We also need to update the auxiliary array. Since we

know there is at most one edge from a level, it takesO(logn) time by simply copying
the pointers from two previous arrays into the current one.

Thus, we have

Theorem 3.4. A simple polygon P can be processed in O(n2 logn) time into a data
structure of size O(n2) so that, for any query point q, V(q) can be reported in time
O(log2 n+ |V(q)|).

Proof. Note that in preprocessing, the space and time used by constructing exterior
visibility decompositions dominate—all the other structures use a total ofO(n) space
andO(n logn) preprocessing time.

The space and preprocessing time used to construct an individual exterior visibility
decomposition for anm-sided polygon areO(m2) andO(m2 logm), respectively. Thus,
the space, denoted byS(n), and preprocessing time, denoted byT(n), used for ann-sided
polygon in our algorithm satisfy the following recurrence:

S(n) = maxn/3≤m≤2n/3(S(m)+ S(n−m))+2(n2),

T(n) = maxn/3≤m≤2n/3(T(m)+ T(n−m))+2(n2 logn).

Therefore,S(n) = 2(n2), andT(n) = 2(n2 logn).
As for the query time, point location can be performed inO(logn) time. In addition,

because the triangulation is balanced, the length of any path from the root to a leaf is
O(logn). For each nodei , the time needed to query the structureVi (q) is O(logn +
|Vi (q)|) as shown in Theorem 3.3. Each merging can be done inO(logn) time according
to the above discussion. Therefore, in total, the query time isO(logn +∑i (logn +
|Vi (q)|)) = O(log2 n+ |V(q)|).

Remark 3.1. In Section 3.1.1 we used the shortest-path query data structure to compute
Ce(q). It is unnecessary as in the above procedure, once we have computedVi j (q), we
know the visibility fromq to ei j+1. This is becauseei j+1 is the separating diagonal and
on the boundary of bothLi j+1 and Ri j+1. If it is visible to q, then it must appear on the
boundary ofVi j (q).

Since for a red-black tree, we can report the number of items inside any range in
O(logn) time, the above algorithm can be modified to report the size of the visibility
polygon of any query point inO(log2 n) time.

Corollary 3.5. A simple polygon P can be preprocessed into a data structure using
O(n2) space and O(n2 logn) time so that for any query point q, the size|V(q)| of V(q)
can be reported in O(log2 n) time.

As another application, the above method can be extended to the cone visibility query
problem. In acone visibility query problem, in addition to a query pointq, a query also
includes a cone withq as the apex which delimits the visibility ofq. We are asked to
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report the visibility fromq within the cone. This can be done in the same space and time
bound as above—to answer a cone visibility query, we still compute partial visibility
polygons and glue them together. The only difference is that we need to prune each
exterior visibility polygon by the query coneC(q) before gluing them together. We can
first overlay two conesC(q),Ce(q) to obtain a single cone inO(1) time and use this
cone to perform a range search in the procedure described in Section 3.1.3.

Corollary 3.6. Given a simple polygon P, we can process it into a data structure with
O(n2) space and in O(n2 logn) time so that, for any query point q and a cone C(q), the
visible region from q within the cone C(q) can be reported in time O(log2 n+ k) where
k is the output size.

The algorithm that we have just described needs quadratic space. Although this can
happen in the worst case, we may expect a lower complexity of the visibility decomposi-
tion in practice. There are many different ways to measure the complexity of a scene. For
example, we can consider the maximum complexity of the visibility polygon. If every
point in P can see at mostA vertices, then we know that the number of constraint lines is
O(n A) as a constraint line can only be created by a pair of mutually visible vertices. This
gives us anO(n2A) bound on the complexity of the visibility decomposition. While this
does not seem to help us to reduce the quadratic complexity of our algorithm, another
measurement, the maximum number of intersections between any line segment inside
P and critical constraints, can be used to measure the complexity of the algorithm.

Corollary 3.7. If for any line segment inside P, it can intersect at most S critical con-
straints, then the space and preprocessing time are O(nS) and O(nSlogn), respectively.

Proof. We focus on the complexity of constructing exterior visibility decompositions.
Since any line segment insideP intersects at mostS critical constraints, each exterior
visibility decomposition is formed by at mostS lines, the constraint lines that cut a
specific diagonal edge.

Thus, we can replacen2 by S2 in the recurrence in the proof of Theorem 3.4 and stop
recursion ifn is smaller thanS. It is easy to verify that the space needed isO(nS), and
the preprocessing time isO(nSlogn).

Remark 3.2. In the above corollary we used the strong condition that each line segment
in P can intersect at mostSconstraint lines. However, we actually only require that this
holds for diagonal edges. Is there a better characterization to capture this condition?

4. Maintaining Visibility from a Moving Viewpoint

In this section we present an algorithm to maintain the visibility from a moving view-
point. Suppose that we have a pointp inside the polygonP, and p moves along a
line. We will present a data structure by which the visibility can be maintained cor-
rectly as time goes on. To be precise, we maintain the combinatorial structure ofV(p)
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which only changes at discrete points in time. Our goal is to detect all such critical
times and update the combinatorial structure accordingly at those times. In addition,
our algorithm maintains the visibility in an on-line fashion, namely, once the motion of
the point changes, the data structure can be updated efficiently. In fact, our algorithm
fits the framework of kinetic data structures in[1] very well and satisfies all the effi-
ciency criteria proposed in that paper. Further, the algorithm achieves output sensitivity
as, in the terminology of[1], all the events here areexternal eventsthat change the
structure.

We denote byp(t) the position ofp at time t . Then the combinatorial structure of
V(p(t)) will generally change as time goes on. Denote byt−, t+ the time immediately
before and aftert , respectively. When we say that a structurechanges at time t, what is
meant is that it is different att− andt+.

Remark 4.1. The point p moves on along a fixed line, but its velocity need not be
constant. The results in this section are valid as long as this motion along the line is such
that we are able to compute in constant time the first time whenp reaches a specific point
on the line. For example,p’s position along the line could be a low-degree algebraic
function of timet .

Remark 4.2. We assume thatp never collides with the boundary ofP, i.e., p always
moves in the interior ofP. In fact, while we are maintainingV(p), it is straightforward
to detect such collisions.

Remark 4.3. Again, we make the general position assumption. That is, no three ver-
tices of P are collinear andp never moves on a line that passes through two polygon
vertices although it may cross such a line.

4.1. Combinatorial Changes of the Shortest-Path Tree

Instead of maintaining the visibility polygon, we maintain the shortest-path decompo-
sition of p. This is sufficient since, as we have noted, the visibility polygon is a cell in
the shortest-path decomposition. Further, the shortest-path decomposition can be eas-
ily obtained from the shortest-path tree by extending tree edges. We therefore reduce
the problem to the maintenance of the shortest-path tree. In the following we discuss
how to maintain the shortest-path tree. However, the shortest-path decomposition can be
maintained by the same method.

Recall that the shortest-path treeT(p) is the tree rooted atp formed by taking the
union of the shortest paths fromp to every vertex ofP (Fig. 4). We show how to maintain
the shortest-path tree (resp. decomposition) and thus the visibility polygon. Define the
principal childvertex (edge) of a non-root nodev of T(p) to be the vertexw (resp. edge
vw) of T(p) among the children ofv such that the angle formed by−→vw and−→uv , whereu
is the parent ofv, is the smallest among all such angles. This corresponds to clockwise
and counterclockwise extensions of visibility edges in [8] depending on the direction in
which the shortest path turns.
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On the combinatorial changes of the shortest-path tree, we have the following
characterization.

Lemma 4.1. As p moves in P, T(p) changes combinatorially at time t if and only if at
time t, p is collinear with two vertices that are either consecutive children of p or one,
say u, is a child of p and the other is the principal child of u at time t−.

Proof. Observe thatT(p) changes if and only ifπ(p, w) changes combinatorially for
some vertexw of P. Consider the shortest-path decomposition ofw,TD(w). Forπ(p, w)
to change at timet , p must be on a constraint ofTD(w), which is a critical constraint of
P. Thus, we know thatp is collinear with two vertices, sayu, v, that are visible to it at
time t . Without loss of generality, we assume thatu ∈ pv. If p can see both vertices at
time t−, thenu, v are consecutive first-level vertices ofT(p) at timet−. Otherwise,v is
the principal child ofu on T(p).

On the other hand, we shall show that any such collinearity causes a change ofT(p).
It is obvious that ifp becomes collinear with a childu andu’s principal childv, T(p)
changes att becausev will be properly visible top at t+, causingv to become a child
of p (Fig. 9). Whenp is collinear with two consecutive childrenu, v, we will show that
eitheru is on pv or v is on pu. If this were not true, thenp would be onuv. Sinceuv
is insideP, it is a diagonal ofP and dividesP into two polygonsP1, P2. Since every
point in a polygon canproperlysee at least three vertices,p must be able to see properly
at least one vertex other thanu, v, of P1 andP2, respectively. These two vertices would
be p’s children onT(p) and separateu, v, contradicting the assumption thatu, v are
consecutive children ofp on T(p).

Now, assume thatu is on pv, then att+ the visibility of v to p will be blocked byu,
causingv to be deleted fromp and inserted asu’s principal child (Fig. 9).

The update ofT(p) from t− to t+ is quite straightforward according to the above
proof. If p is collinear with a first-level vertexu andu’s principal childv, thenv becomes
visible from p at t+. In this case we cutv (and the subtree) fromu and insert it as a child

u

p

v

a b

f h

gd e

c

p
u

v

a
b

c

d

e

f

g
h

u

v

a
b

c

d

e

f

g
h

p

u

p

v

a b

f h

gd e

c

Fig. 9. Events in the maintenance of the shortest-path tree. In the first figure the principal children ofu, v
arev,a, respectively.
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of p. If p is collinear with two consecutive first level verticesu, v, that means that one
of those two vertices, sayu, blocks the visibility fromp to the other vertexv. In this
case,v becomes the principal child ofu at t+ (Fig. 9).

4.2. Tracking Shortest-Path Tree and Visibility Changes

Notice that the number of children ofp in T(p) is O(|V(p)|). As per Lemma 4.1, it is
sufficient to check when the pointp is collinear with|V(p)| pairs of vertices to detect
when T(p) changes. The checking of collinearity is equivalent to detecting whenp
crosses the lines defined by those pairs. Assuming thatp moves in a known manner, a
simple solution is to maintain a priority queue in which we store the time whenp crosses
each of the constraint lines. Therefore, a change ofT(p) can be detected and processed
in O(log|V(p)|) time if the motion ofp is fixed. However, ifp is permitted to change
the line along which the motion occurs, we have to recompute the times whenp crosses
each constraint which would takeO(|V(p)|) time. To reduce this cost, we consider the
convex faceτ in the arrangement formed by all the constraint lines which contains the
current pointp. If we maintain the boundary ofτ in a manner suitable for searching,
for any change ofp’s motion, a binary search on the boundary ofτ will tell us which
edge is the next onep is going to cross providedp keeps moving along the current
direction. The faceτ can be maintained by a dynamic half-space intersection algorithm
with O(log2 n) cost per update. The algorithm is as follows.

For anyP and a given initial positionp, construct the shortest-path treeT(p) from p
to all vertices ofP in linear time as in[10]. In additional linear time, we can obtain, for
each vertexv, the doubly linked list of its children, sorted aroundv, with pointers to the
first and last. Each vertex also stores a pointer to its principal child, which will always
be either the first or the last one depending on how the shortest-path tree is bent locally.

By examining the first-level vertices of the shortest-path treeT(p) and their principal
children, we collect a set ofO(|V(p)|) lines that are defined by two consecutive children
of p or by a child ofp and its principal child, as per Lemma 4.1. Process the intersection
of the half-spaces bounded by these lines and containingp, i.e., the faceτ (Fig. 10), into
a dynamic maintenance algorithm for half-spaces intersection as given by Overmars and
van Leeuwen[15]. The structure can be initialized inO(|V(p)| log|V(p)|) time using
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Fig. 10. Computing of the faceτ . The thin lines in the figure are lines defined by first level vertices and their
principal children. For clarity, the shortest-path tree is not drawn.
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O(|V(p)|) space and updated inO(log2|V(p)|) time per insertion and deletion[15]. In
O(log|V(p)|) time we can compute when the pointp crosses the boundary ofτ along
the current direction asτ is a convex face.

After the above preprocessing, the shortest-path tree can be maintained by processing
two types of events. One is whenp crosses a constraint, i.e., the boundary of the face
τ . This is whenT(p) changes. Depending on the way thatp crosses the constraint,
we updateT(p) as shown in Fig. 9. Namely, we either cut a principal childv from
a first-level vertexu and insertv immediately beforeu as a first-level vertex or vice
versa (Fig. 9). Because we store all the children of a vertex in a list in the order they
appear onT(p) and keep a pointer pointing to the principal child, these updates can be
done inO(1) time. Furthermore, we add and remove the appropriate constraints in the
dynamic data structure representing the current faceτ which containsp. Since there is
a constant number of changes, this operation takesO(log2|V(p)|) time by Overmars
and van Leeuwen’s algorithm. Finally, we compute the next time whenp crosses the
boundary ofτ again inO(log|τ |) = O(log|V(p)|) time.

The other type of events is when the motion ofp is updated. Since its motion is linear,
we just need to perform a search to determine which edge, on the boundary ofτ , p is
going to cross next. This can be done again inO(log|V(p)|) time.

The above algorithm gives us a way to maintain the shortest-path tree of a moving
point. If, for each tree edgevw, with v the parent ofw, we also maintain the edge of
P hit by c(v,w), we can effectively maintain the shortest-path map in the same time
bound.

To summarize, we have

Theorem 4.2. Let P be a simple polygon and let p be a point in P. After O(n logn)
time and O(n) space preprocessing, if p undergoes linear motion, the time when the first
combinatorial change happens in T(p) (and TD(p)) can be determined in O(log|V(p)|)
time. The data structure can be updated in time O(log2|V(p)|) per change of T(p) and
in time O(log|V(p)|) per flight plan change.

Since the visibility polygon ofp is the same as the cell inTD(p) that containsp, the
above theorem implies that

Corollary 4.3. For a simple polygon P and a point p moving inside P with a linear
motion, the visibility polygon V(p) can be maintained in O(log2|V(p)|) time per change
where a change might be either a combinatorial change of V(p) or a flight plan change
of the motion of p.

5. Applications

In previous sections we propose algorithms for answering visibility queries and main-
taining the visibility polygon from a moving viewpoint. In this section we exploit the
connection between them and show some applications of their combination. We consider
two problems. One is the space–query-time tradeoff in answering visibility queries. The
other is the weak visibility query problem.
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5.1. Space–Query-Time Tradeoff in Answering Visibility Queries

In this section we combine the results from Sections 3 and 4 to give an algorithm with
a space–query-time tradeoff. Namely, we can guarantee query timeO((n2/m) log3 n+
|V(q)|) if O(m) space is allowed for the data structure, which can be computed in
O(m logn) time, wherem is betweenÄ(n log3 n) andO(n2 logn).

Notice that in the algorithm presented in Section 3, the space bottleneck comes from
storing the entire exterior visibility decomposition, which may have size2(n2). In what
follows we focus on constructing and querying the exterior visibility decomposition.
The storage and time bounds of the full algorithm then follow easily.

To obtain a tradeoff we compute a coarser decomposition, use it to determine visibility
information for a nearby point, and then construct the answer to the query by walking
from the nearby point to it while maintaining visibility during the walk.

A (1/r )-cuttingof an arrangement of lines is the decomposition of the plane intor 2

triangularcellsso that each cell is intersected by at mostn/r lines. Such a decomposition
always exists and can be constructed inO(nr +n logn) time [14], [4] for anyr between
1 andn. Recall that the exterior visibility decomposition is an arrangement ofn line
segments created by clipping lines in a boxB. We can thus construct a(1/r )-cutting
of those lines and intersect the cells in the cutting withB. This way we obtain a cell
decompositionR of B with r 2 cells and with each cell intersected byO(n/r ) critical
constraints inEVL(q).

Now, in a manner similar to the algorithm computingEVL(q), by a depth-first traversal
of the 1-skeleton ofR, we can obtain a pathγ that visits every vertex ofR and does not
traverse any edge more than twice. The number of edges inγ is clearlyO(|R|) = O(r 2).
We compute and store visibility informationV(p), for all verticesp ofR, in a common
persistent data structure, in the order of their appearance onγ . The space required is
proportional to the sum of the number of differences betweenV(p)andV(p′), for all pairs
of adjacent vertices(p, p′) on γ and, given the changes between consecutive vertices,
the time required to build the structure isO(logn) times the storage requirements[16].
Actually, the structure we build is slightly different from that presented in[16] as we also
require to be able to perform transient updates; see the discussion in Section 2.2.

When we traverse an edgee= (q,q′) onγ , since we know which constraintsecuts,
we can compute all the intersections and sort them according to the order of crossinge.
During the traversal, we updateV(·) accordingly once a constraint is crossed, using the
algorithm presented in Section 4. Since the number of constraints meeting the interior
of a cell is n/r , the sorting procedure takesO(n/r log(n/r )) time, and, during the
transversal, there are at mostn/r updates, each resulting inO(1) changes inV(·), at
the price ofO(logn) per change. Thus collecting all the listsV(p) and building the
persistent data structure requires

|R| · O(n/r ) · O(logn) = O(rn logn)

time andO(rn) space. In addition, we preprocess the decompositionR into a point-
location structure. This can be done inO(|R| log|R|) = O(r 2 logr ) time, using standard
point-location algorithms (e.g.,[16]).

After the above structures are built, a query is answered by looking up the cell1 of
R containingq. We then pick any vertexp of 1 and retrieve the entry ofV(p) stored
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in the persistent data structure. Then, compute the intersections betweenpq and the
constraints cutting1, and trace the segmentpq using the on-line algorithm. The tracing
requires at mostn/r updates where each update is a transient update, so it can be done in
O((n/r ) logn) time as per Lemma 2.3. As noted in Section 3.1.2, the resulting structure
should be suitable for searching inV(q), without explicitly exhibiting it, to obtain output
sensitivity. Since the visibility polygons are stored in a persistent red-black tree allowing
transient updates, the structure we obtained satisfies the requirement.

Thus for computing the partial visibility polygon, preprocessing time isO(rn logn),
space isO(rn), and query time isO((n/r ) logn). As for the entire algorithm, plugging
these bounds into the recurrence in the proof of Theorem 3.4, we have that the prepro-
cessing time isO(rn log2 n), space isO(rn logn), and query time isO((n/r ) log2 n).
Now recall thatr can be chosen between 1 andn, so puttingm= rn logn, we obtain:

Theorem 5.1. Given a simple n-gon in the plane and a number m between nlog3 n
and n2 logn, one can preprocess the polygon in O(m logn) time and O(m) space so
that, for a query point q, V(q) can be computed in O((n2/m) log3 n+ |V(q)|) time.

Remark 5.1. We choosem to beÄ(n log3 n) because the overhead should be at most
linear to be interesting.

5.2. Answering Weak Visibility Queries

In this section we show the application of the combination of visibility query and mainte-
nance algorithms developed in the previous sections to the weak visibility query problem.
In the weak visibility query problem, we are given a simple polygonP and asked to
build a data structure to return the weak visibility polygonV(s) for any query segment
s in P. There are algorithms solving this problem in linear time without preprocessing.
Here, again our goal is to report the weak visibility polygons in output-sensitive time.

To computeV(s), imagine that there is a point moving alongs from one to the other
endpoint with constant velocity. Once we can maintain the visibility polygon from this
moving viewpoint, we can computeV(s) becauseV(s) is the union of all the visibility
polygons of the points ons. First note that we cannot copy the algorithm in Section 4
directly because we cannot afford the initialization cost of building the shortest-path
tree, which may take linear time. However, we needed the shortest-path tree in order to
compute the constraints in Lemma 4.1. In the following we show another method for
computing those constraints without constructing the shortest-path tree.

Recall that there are two types of constraints. Constraints of the first type are created
by two adjacent vertices in the visibility polygon. The others are created by a vertex on
the visibility polygon and its principal child in the shortest-path tree. It is straightforward
to compute the constraints of the former type once we have the visibility polygon. For
the latter ones, we need an efficient way to compute the principal child,w, of a vertex
v ∈ V(p) on the shortest-path treeT(p). Consider the circular polar order on all the
vertices with respect to the vertexv. According to the definition, the principal childw of
v is the vertex inV(v) so thatw is the rightmost/leftmost vertex on the left/right side
of the extension ofpv—which side to consider depends on how the shortest path turns
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at v. In the following, without loss of generality, we assume that the principal child is
the rightmost vertex on the left side of the extension ofpv.

As in Section 3.2, we decompose the polygonP into canonical pieces. For a canonical
polygonQ, call the rightmost vertex inVQ(v) on the left side of the extension ofpv the
candidateprincipal child ofp. Then the principal child is the one closest to the extension
of pv among all theO(logn) candidate principal children. To find the candidate principal
child for a subpolygonQ, we follow the method presented in Section 3.1.3. Instead of
querying the exterior visibility polygon by a range, we can query it by “finding the element
closest to a querykeyon the appropriatesidewithin a queryrange,” where the query key
corresponds to the extension ofpv, the side corresponds to which side we would like to
search, and the query range corresponds to the visibility cone in Section 3.1.1. This gives
us the candidate principal child in that subpolygon inO(logn) time. Thus, the principal
child can be computed inO(log2 n) time once we have the structure built in Section 3.

Combining with the maintenance part in Section 4.2, we can still maintain the visibility
polygon of a moving viewpoint inO(log2 n) time per event afterO(|V(p)| log2 n)
initialization cost.

Regarding the number of events that occur whilep traverses a segment, we have the
following lemma.

Lemma 5.2. The number of events that occur while the viewpoint moves from one
endpoint of segment s⊂ P to the other is O(|V(s)|).

Proof. For any vertexv on∂P, the portion ofsvisible tov is a single subsegment ofs if
P is simple. In other words, if a viewpointp moves from one endpoint ofs to the other, it
can seev only when it is in a contiguous interval ofs. Therefore, once a vertex disappears
from V(p) during the traversal, it will never come to be visible top again. Since each
event must cause a vertex to appear or disappear fromV(p), we charge that event to
that vertex in both cases. There areO(|V(s)|) vertices which can be charged, and each
vertex can be charged at most twice. Thus, the total number of events isO(|V(s)|).

Therefore, for a pointp moving along the segments, the total number of changes
of V(p) is O(|V(s)|), and we can detect each change inO(log2 n) time and update
the data structure inO(log2 n) time per change. As in Section 4.2, we can update the
combinatorial description of the weak visibility polygon accordingly onceV(p) changes.

There is one more issue on how to computeV(s) from its combinatorial description.
Unlike the visibility polygon of a point,V(s) is not star-shaped. Therefore, for an edge
e ∈ V(s), we need additional information to compute the portion ofe that is weakly
visible tos. Since that portion is a subsegment ofe, it suffices if we know how to compute
its endpoints, i.e., the extreme points onethat are weakly visible tos. Observe that during
the above traversal, we know whene starts or ceases to be visible from the imaginary
moving point, i.e., we know the endpoints of the subsegment ofs that is weakly visible
to e. By the following lemma, it suffices to consider the visibility frome to these two
endpoints, which can be done inO(logn) time as in Section 3.1.1.

Lemma 5.3. For two segments s1, s2 inside a simple polygon P, denote by b1 (b2) the
set of points on s1 (s2) weakly visible to s2 (s1). Then b1,b2 are either empty sets or
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line segments. Further, each endpoint of b1 is either an endpoint of s1 or visible to an
endpoint of b2 and vice versa.

Proof. By simplicity of P, b1,b2 are connected sets. Thus, they are either empty sets
or line segments.

We observe that an interior pointp of s1 can be an endpoint ofb1 if and only if it sees
exactly one point ons2. Further, ifq ∈ s2 is the only point visible top, then p is also
the only point visible toq. These two facts imply the above lemma.

Thus, we obtain that

Theorem 5.4. Given a simple n-gon P in the plane, one can preprocess P in O(n2)

space and O(n2 logn) time so that, for any segment s inside P, V(s) can be computed
in O(|V(s)| log2 n) time.

6. Conclusion

In this paper we showed how to answer visibility queries in nearly optimal time by using
quadratic preprocessing time and storage, which improves on the previous algorithms by
a linear factor. Then we provided an algorithm which can maintain a visibility polygon
from a point in linear space andO(log2 n) time per change in visibility or flight plan.

A nice property of our method of answering visibility queries is that the visibility
polygons are represented in a small number of canonical parts, each stored in a form
suitable for searching. By exploiting this fact, we obtained algorithms for some other
visibility problems. Later, we showed how to combine the results to yield a tradeoff for
visibility queries and an output-sensitive algorithm for the weak visibility query problem.

An immediate open question is whether we can improve the space and preprocessing
time further to a nearly linear bound while keeping the query time the same, i.e., a
polylogarithmic additive overhead andO(1) cost for each output. It is also interesting
to find applications of our structures to other related problems, e.g. answering the query
about the area of the visibility polygons. As to the maintenance problem, the bound
relies on the fact that the motion is linear. The situation when the motion follows a
general algebraic curve remains open. For both problems, it is interesting to know if our
techniques can be extended to the case of polygons with holes.

In this paper our complexity bounds are worst-case bounds. However, in reality, the
polygons that we deal with normally have less complex visibility decomposition than
in the worst case. It would be interesting to know if we can design algorithms whose
complexity depends on certain natural parameters. For example, two reasonable measures
could be the maximum or the average number of vertices that any point can see.
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