Discrete Comput Geom 27:461-483 (2002)

Discrete & Computational
DOI: 10.1007s00454-001-0089-9 G e O m et ry

© 2002 Springer-Verlag New York Inc.

Visibility Queries and Maintenance in Simple Polygons

B. Aronov! L. J. Guibag: M. Teichmanrt and L. Zhang'

1Department of Computer and Information Science, Polytechnic University,
Brooklyn, NY 11201-3840, USA
aronov@ziggy.poly.edu

2Computer Science Department, Stanford University,
Stanford, CA 94305, USA
guibas@cs.stanford.edu

SLateral Logic Inc.,
Montreal, Quebec, Canada.
marekt@mit.edu

Abstract. In this paper we explore some novel aspects of visibility for stationary and
moving points inside a simple polygdd. We provide a mechanism for expressing the
visibility polygon from a point as the disjoint union of logarithmically many canonical
pieces using a quadratic-space data structure. This allows us to report visibility polygons in
time proportional to their size, but without the cubic space overhead of earlier methods. The
same canonical decomposition can be used to determine visibility within a frustum, or to
compute various attributes of the visibility polygon efficiently. By exploring the connection
between visibility polygons and shortest-path trees, we obtain a kinetic algorithm that can
track the visibility polygon as the viewpoint moves along polygonal paths inBidet a
polylogarithmic cost per combinatorial change in the visibility or in the flight plan of the
point. The combination of the static and kinetic algorithms leads to a new static algorithm
in which we can trade off space for increased overhead in the query time. As another
application, we obtain an algorithm which computes the weak visibility polygon from a
query segment insidB in output-sensitive time.

* A preliminary extended abstract appearedic. 9th Annual International Symposium on Algorithms
and Computationpp. 327-336, 1998. B. Aronov was patrtially supported by NSF Grant CCR-92-11541 and
a Sloan Research Fellowship. L. J. Guibas and L. Zhang were partially supported by NSF Grants CCR-
9623851, CCR-9910633, U.S. Army Research Office MURI Grant DAAH04-96-1-0007, and DARPA TMR
Grant DAAE07-98-L027. M. Teichmann was supported by the National Science and Engineering Council of
Canada.

T Current address: Compaq Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.
l.zhang@compag.com.

462 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang
1. Introduction

In this paper we consider two visibility-related problems in simple polygons—one is the
visibility-query problem from a fixed observer; the other is the problem of maintaining
the visibility from a moving observer. In the former problem, we are given a simple
polygon P, and we want to process it into a data structure so that, for any query point
g inside P, the visibility polygonV (q) from g can be reported efficiently. In the latter
problem we would like to maintain this visibility polygon while the viewpoint moves
along linear segments. In the following discussion the size of a polygon is understood
as the number of its vertices. We denoterbyhe size of P and by |V (q)| the size

of V(q).

There have been many studies on computing visibility polygons in a simple polygon.
Analgorithmwith linear running time is first achieved . Some other linear algorithms
based on triangulation are given[B] and [10]. In the worst case these algorithms are
optimal as visibility polygons may have up to linear complexity. However, in practice,
the visibility polygons are usually much less complex than the environment, and, in many
applications, we would like to compute the visibilities from many different viewpoints.

In these cases it is desired to make the running time of the algorithm output-sensitive.
That is, we would like the running time of our algorithm to be proportional to the size
of the output, after certain preprocessing of the environment.

In [17] an algorithm withO(]V (q)| log(n/|V (g)|)) query time after a preprocessing
stage ofO(n?) space and time is given. Another method to achieve output sensitivity is by
building a linear-sizeQ (log n)-time ray-shooting query structure agir] and shooting
rays to discover the visibility polygon. This way, one can construct an algorithm that
requires only linear storage and preprocessing timezxid (q) | logn) query time for a
guery poinfg. Note the appearance of a multiplicative overhead in the query time bounds
of the above algorithms. If2] and[11] an optimal query time without multiplicative
overhead is achieved. The query time of their algorithn®{®gn + |V (q)|), but the
storage and preprocessing time is cubic. If the queries are restricted to a given line
segment, then there exists an algorithm that repé¢tp in O(logn + |V (q)|) time for
any query poing after O(nlogn) time preprocessin{$]. However, the method if6]
does not extend to the general case.

A general technique used to answer visibility queries is to decompose the interior
of a polygon into regions so that points in the same region see “equivalent” visibility
polygons. A pointlocation structure built on such a decomposition is then used to answer
queries. IN2] and [11] theO(logn + |V (q)]) query time is achieved by storing such a
decomposition irD(n®) space. In this paper we show how to decompose the polygon into
canonical pieces in order to keep their visibility information separately, so as to reduce
the storage and preprocessing time. As a result, our algorithm constructs a data structure
of sizeO(n?) which can be computed in tim@(n? logn) so that the visibility polygon
V (q) from any query poing| € P can be reported i©(log? n+ |V (q)|) time. Note that
in our algorithm, there is no multiplicative overhead in the query time. In addition, our
method for finding the visibility polygon expresses this polygon as the uni@loig n)
canonical pieces, which need not be constructed explicitly unless needed. By exploiting
this fact we are able to answer efficiently additional types of queries. For example, we
can report the (combinatorial) size of the visibility polygorGrilog? n) time, and have

Visibility Queries and Maintenance in Simple Polygons 463

output-sensitive visibility queries when visibility is delimited by a cone centered at the
observer and defining the viewing frustum.

We also consider the problem of maintaining visibility from a linearly moving view-
point. This problem appears in many typical application settings, such as architectural
walk-throughs, where one wants to compute the visibility from a continuously moving
viewpoint. A similar problem is studied ifg]. In that paper the point moves along a
given line segment, so that the direction of the motion is fixed. Here, we allow the mo-
tion of the point be updated in an on-line fashion. By exploiting the intimate connection
between visibility and shortest-path trees, we obtain an algorithm that can maintain the
visibility polygon from a point which moves along linear segments, using linear space
andO(log? n) time per event. An event is defined to be either a (combinatorial) change
of the visibility polygon, or an update of the linear motion.

Lastly, we show some applications of the combination of our methods for visibility
gueries and maintenance of a visibility polygon with a moving viewpoinf2]rit is
asked if there exists a smooth tradeoff between preprocessing storage and query time
for the visibility query problem. A combination of the above two procedures provides
an algorithm with the tradeoff o©(m) space,O(mlogn) preprocessing time, and
O((n?/m)log®n + |V(q)|) query time for anym betweenn log®n andn?logn. Our
second application is to solving the weak visibility query problem. We provide a method
for reporting the weak visibility polygon of a query line segmentc P in output-
sensitive time by combining both of our methods.

The paper is organized as follows. We first give some definitions and notation in
Section 2. In Section 3 we show how to answer visibility queries in nearly optimal time.
The algorithm which maintains the visibility polygon from a moving viewpoint is given
in Section 4. In Section 5 we describe the applications.

2. Preliminaries
2.1. Definitions and Geometric Facts

SupposeP is a simple polygon. Denote the boundary Bfby dP. 3P consists of
vertices and edges. Throughout this paper we assume polygons are in general position,
i.e., no three vertices d?P are collinear. Degenerate cases can be handled by standard
perturbation techniques.

Two pointsp, g canseeeach other if the line segmepq lies in the polygon. If two
boundary pointg, q are mutually visiblepq is called achord A chord is also called a
diagonalif both its endpoints are vertices. A chadeparates a simple polygon into two
connected components. If two points are in the same component, they are also called on
the same side with respectgoThe visibility polygon \(p) of a pointp € P consists
of all the points that can be seen frgm A visibility polygon is a star-shaped polygon
whose boundary consists of parts of polygon boundaries and chords, wiigolws
Any point invisible top is separated fronv (p) by a window.

A point p canseea subseSinsideP if p sees atleast one point8 Similarly, define
theweak visibility polygorof S, denoted by (S), to be the set of points iR which can
sees, or, equivalentlyV(S) = Upes V (p) (Fig. 1).

464 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

V(p) V(e

Fig. 1. Visibility polygon and weak visibility polygon. The shaded regionsé(e) andV(e), respectively.
The dotted segments on the boundary of the visibility polygons are windows.

A visibility polygon can be represented geometrically by a circular list of the vertices
with their planar coordinates. With the prior knowledge of the poly§omone can rep-
resent visibility polygons combinatorially by a circular list of vertices and edge? of
in the order in which they appear on the boundary of the visibility polygon. This list is
called thecombinatorial representatioaf V (p). The actual coordinates of each vertex
of V(p) can be computed i®(1) time given the combinatorial representation. From
now on, when we refer to a visibility polygon, we mean its combinatorial representation,
unless otherwise stated. Two visibility polygons are (combinatoriatiyivalenif their
combinatorial representations are identical (up to a circular permutation). An important
property of simple polygons is that once the vertices and edges visible from a point are
known, the order in which they appear on the visibility polygon is uniquely determined,
as it coincides with the order along the boundary of the original polygon. This property
implies that if two points see the same set of vertices and eddgggloén they have equiv-
alent visibility polygons. Note that this statement breaks down for non-simple polygons.

In a simple polygon the portion of a line segmeantisible to a pointp or weakly
visible to another segmeastis, if non-empty, a contiguous subsegmens.diVe denote
by Cs(p) the infinite cone with apex and delimited by the endpoints of the visible
portion ofs.

Aline ¢ istangento a polygonP at vertexv if £ passes through, and? is insideP in
an open neighborhood of Notice that a line can be tangentRoonly at a reflex vertex.

For a pointp € P and a vertew, consider the ray emanating from aimed atv, and
crossing P at a pointw afterv (w # v). If pw is insideP and the line containingw is
tangent td® atv, the chordw is called theconstraintinduced byp andv (we say itis “in-
duced byp” when the vertex is unimportant or understood from context) and is denoted
by c(p, v). An easy observation is that for any pominside P, the constraints induced
by p are exactly the windows of (p). Further, when botlp andv are polygon vertices,
the constraint(p, v) is called acritical constraint(Fig. 2). All the critical constraints
partition the interior of the polygon into cells, which is called Wibility decomposition
and denoted by (P) (Fig. 2). According to the following lemma, the visibility decom-
position decomposes the interior Bfinto cells with equivalent visibility polygons.

Lemma2.1. Suppose pgq are two points inside a simple polygon P and not on any
critical constraint They see different sets of vertices and edges if and only if they are on
opposite sides of some critical constraint

Visibility Queries and Maintenance in Simple Polygons 465

Fig. 2. The visibility decomposition of the polygoR; viw1, vawy are the critical constraints reduced py
andv, vy, respectively.

Proof. Consider all the visibility polygons of vertices &f and the weak visibility
polygons of its edges. They are simple polygons whose boundaries consist of polygon
edges and critical constraints. Thus,pfq are on the same side for all the critical
constraints, their visibility (weak visibility) from all the vertices (resp. edges) is the
same. That is, they see the same set of vertices and edges.

On the other hand, ip, g see equivalent visibility polygons, we shall prove that
no critical constraint separates them. We prove this by contradiction. Suppose that
there is a critical constraint separating them. gt Aq denote the cells in the vis-
ibility complex that containp and g, respectively. TherA, and Ay must be dif-
ferent. Since they are both convex cells, there must be a critical constraint on the
boundary ofA, separating them. Supposéu, v) is on the boundary of, and sep-
aratesAp and Aq (Fig. 3). Clearly,v is visible from p. By the assumption thap, g
see the same set of verticas,is also visible fromq. If the line uv separates the
edges incident tw from Ap, then the edges; incident tou is visible from p but
not from g. If the edges incident te are on the same side as,, then the exten-
sion of the line segmerv must hit a polygon edge, sa. Thene; is visible from
g but not from p. In both cases we have derived contradiction. Therefore, there can-
not be any critical constraint separatipgand q if they see the equivalent visibility
polygon. O

Fig. 3. Proof of Lemma 2.1.

466 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

Remark 2.1. The proof of the above “folklore” result is presented here because we
could not find a proof for the “if” part in the literature, while there have been several
proofs for the “only if” part.

Remark 2.2. In the above lemma we did not include the case when a point is on a
critical constraint. However, a point on a segment has the visibility polygon equivalent
to that of a point to one side of the segment—to which side to perturb depends on how
the vertex on the critical constraint blocks the visibility.

Remark 2.3. Notice that in our definition the combinatorial representation consists of
both the vertices and edges visible to a point. If only the vertices are considered, the
above lemma is not true. It is very easy to construct an example where two points in
different faces of the arrangement of critical constraints can see the same set of vertices.

Since there ar®(n?) critical constraints, an immediate upper bound on the complex-
ity of visibility decomposition isO(n%). However, the following fact implies a better
bound ofO(n®), which is tight in the worst case.

Lemma 2.2. Any segments inside a simple polygon P can cross at m@stditical
constraints of P

Proof. Refer to[2] and [11]. O

By Lemma 2.2, the number of vertices and, therefore, the complexity of the visibility
decomposition i€ (n3).

Another geometric object closely connected to visibility is the shortest path. The
shortest patlx (p, q) between two pointp, g € P is the path with the shortest Euclidean
length among all the paths joinimy q insideP. The pathr (p, q) is a polygonal path in
which all the intermediate vertices are reflex polygon vertices. The union of the shortest
paths connecting and all the vertices oP form a tree rooted ap. This rooted tree is
known as theshortest-path tre€-ig. 4) and is denoted by (p). Clearly, if a vertexu is
a child of pin the treeT (p), thenu is visible from p. From the shortest path trde p),
it is very easy to obtain the visibility polygovi(p) [10].

In Section 4 we show how to maintain the shortest-path tree, and thus the visibility
polygon, of a moving point.

Fig. 4. The shortest-path treB(p) of a pointp.

Visibility Queries and Maintenance in Simple Polygons 467
2.2. Persistent Red-Black Tree

In our method we useersistent data structure® reduce space cost. Further, in our
tradeoff result, we need to extend the notion of a persistent data structure to handle
transientdynamic updates. These data structures are described in this section.

The termpersistent data structumgas coined by Sarnak and Tarjarjig]. In general,
a persistent data structure is one that accepts an arbitrarily long sequence of updates, but
is able to remember at any time all its earlier versions. Persistent data structures have
proven very useful for storing a sequence of data sets with only slight changes between
any adjacent two in the sequence. Here, we focus our attention on persistent red-black
trees.

Suppose we have a set oflinearly ordered items and a sequencenofupdates
(i.e., insertions and deletions) of these items. Letuwlesion at time tfor 1 <t <
m, be the set resulting from applying the fitstipdates in the sequence to an empty
set. According td16], a persistent red-black tree can be built so that any version can
be accessed with the same time bounds as stored in a standard (ephemeral) red-black
tree. Furthermore, the structure can be constructed(im + n) logn) time by using
O(m+ n) space. In this paper, in addition to accessing a version, we are also interested
in accessing the set obtained by applying some updates to any version. Formally, a
query is a tuple of the forn(t, update, ..., update, acc). For such a query, we need
to return the result of the access operatamt to the set that results from applying
the sequence of updatéspdatg, .. ., updatg) to the set of version. The updates in
such a query are not persistent, and we do not keep them after the desired accesses
are made. We call such updateansient To be able to perform transient updates on
a persistent red-black tree, we proceed as follows. In each node we add fields which
are labeledransient to hold the necessary data for an ephemeral red-black tree,
i.e., the color and pointers pointing to the parent and children. We also add a one-
bit field per node to indicate if the transient fields are used or not. During an update,
whenever we need to insert a new item, we create a node latpatesibnt ; when
we need to redirect a pointer or recolor a node, we store all the information in the
transient fields without modifying the original data structure. We also keep track of all
the places where an update has happened by linking all such nodes in a list. When we
need to follow a pointer, we first check the indicator to see if the transient field has
been updated. If it has, we follow the pointer stored in that transient field. Otherwise,
we follow the one in the original data structure. After accesses are made, the data
structures are cleaned up by deleting all the “transient” nodes and resetting all the

transient indicators. The operations can be doneQilogn) time per transient
update (and for the final access) because they can be viewed as ephemeral red-black tree
operations.

To summarize, we have

Lemma 2.3. A sequence of m updates of n linearly ordered items can be processed in
time O((m + n) logn) into a data structure using On + n) space so that each version
can be accessed in the same time bound as a red-blackueter, transient updates

can be made to any version in(ldgn) time per up date

468 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang
3. Answering Visibility Queries

In this section we provide an algorithm with(log? n + [V (q)|) query time, which is
nearly optimal and require®(n?logn) preprocessing time an@(n?) storage. Com-
pared with the algorithms if] and [11], the storage and preprocessing time has one
fewer linear factor. Further, we show that the algorithm can be extended to handle
the problems of counting the size of a visibility polygon and answecomge-visibility
queries.

Intuitively, our algorithm works as follows: we first observe that when a mpistot
inside a subpolygo®’ of P, itis “easy” to compute thpartial visibility polygon V(g) N
P’. Then we compute a hierarchical representation of the polygon by using balanced
triangulation hierarchies. For any query poiptwe can decompose the polygon into
O(logn) disjoint subpolygons, each represented by a node in the balanced triangulation
tree, such that all the subpolygons, except for the triangle containithg not contairg.
For each subpolygoR’, we then compute the corresponding partial visibility polygon
and glue all the partial visibility polygons together to obt#ify).

In Section 3.1 we show how to construct a data structure to answer a partial visibility
polygon query efficiently. In Section 3.2 we describe the balanced triangulation and
present the full algorithm and its extensions.

3.1. Computing Partial Visibility Polygons

For a polygonQ contained inP, define thepartial visibility polygon \4(q) to be the
polygonV (g) N Q. SupposeP is divided into two partsl. andR, by a diagonag. In this
section we show how to compute the partial visibility polyggr(q) for a pointq € R.

For an edge, we denote by' ande™ the half-space to the left and right side of the
line passingg, respectively. We assume thiatis to the left of¢, the line on which the
diagonale lies, that is,L is in €. In general, this is not true ds may “bend over” to
crosst. However, we can conceptually truncatéy the extension af because cannot
see any part ok on the right side td&—more preciselyl is the connected component
of P N e™ which contain®. Further, notice that i lies in the same side dsto ¢, then
g cannot see any part &f, except for at most one vertex ef Thus, in the following,
we also assume thagtlies to the right of, i.e.,q € ™.

Observe that for any two poings € L andg € R, g can see if and only if pg does
not crossd P. SincedP = (aL\e) U (dR\e), we consider them separately as follows.
Recall that the visibility con€.(q) is delimited by the endpoints of the portion ef
which is visible toq. Therefore,pq does not cros8 R\e if and only if p lies inside the
coneCeq(q), because no portion df can block the visibility of a point oetoq € R.
On the other hand, if we define tlegterior visibility polygon EV(q) of g with respect
to L to be the portion ol. which can be seen by throughe as if all the edges ai R
are transparent, thegmg does not cros8L \eif and only if p € EV, (q). Therefore, the
intersection between the point s€g(q) andE V_ (q) is exactly the set of all the points
p wherepg does not cross properbl \eanddR\e. Thatis,V, (q) = Ce(q) NEVL(Q).
The above procedure is depicted in Fig. 5. In the following sections we show how to
computeCq(q), EVL(Q), and their intersectioN| (q).

Visibility Queries and Maintenance in Simple Polygons 469

Ce(q) NEVL(Q) VL(@)
Fig. 5. Computing the partial visibility polygon.

3.1.1. Computing G(q). SinceP is a simple polygon, the portion efvisible toq is
a line segment. To compute,(q), we just need to find the endpoints of this segment
or, in other words, the extremal points ethatq can see. By exploiting the connection
between visibility and shortest-path trees, we can show that the extremal points can be
computed inO(logn) time after linear time precomputation.

Supposethat;, v, are the endpoints of the edgeConsider the shortest path&, v;)
andrn (q, v2). Following the terminology of10], (g, v1), 7 (q, v2) form afunnelwhich
may consist of a shared initial path= 7 (q, v1) N 7(q, v2) and a region bounded by
two outward convex chains and the segn&iiio compute the endpoints, we distinguish
three cases (refer to Fig. 6):

1. There is no common initial path, i.¢.,= {q}. Lets, s, be the edges of(q, v1),
(q, v2), respectively, incident tq. By the convexity of the funnel, the extensions
of 51, 5, will meet the edge without intersecting any other polygon edges. Thus,
the intersection points delimit the portion visiblego

Case 2

Fig. 6. Different cases in computinGe(q).

470 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

2. The pathy consists of a single segment, sayands is collinear with the adjacent
segment on at least one of the two shortest paths. In this gases exactly one
point one, namely, the intersection point between the extensicraofl the edge.

3. The pathy consists of a single segment and this segment is not collinear with
any of its adjacent segments on the two shortest pathg,aamsists of several
segments. In this casg,cannot see anything an

Thus,Ce(q) can be computed by checking the first two edges on the shortest paths
(g, v1) andx (g, v2). In[9] it is shown that a data structure can be built in linear time
by using linear space so that, for any two query points, the length of the shortest path can
be reported irD(logn) time. Using the same structure with slight modification, the first
two edges on the shortest path can be reporté&l(ing n) time as well. Thus, we have

Lemma 3.1. Given a simple n-gon Fit can be processed into a structure in(1Q
space and @n) preprocessing time so that for any diagonal e of P and any query point
Ce(q) can be computed in @ogn) time

As we will see later, the use of the shortest-path query data structure here is just for
description convenience. We can actually obt@isiq) as the algorithm proceeds, as
remarked in Section 3.2.

3.1.2. Computing EVY(qg). Recall thatL c e andq € e . To computeEV, (q),
similar to the visibility decomposition, we decompaseinto cells so that two points

in the same cell see equivalent visibility polygonsLinThis decomposition is called
exterior visibility decompositioand denoted by)’| . Once we have constructéd’,
EVL(q) can be computed by locating in the cell decomposition and retrieving the
corresponding exterior visibility polygon. The way tt&at, is formed is similar to that

of the visibility decomposition. It can be regarded as a special case of the visibility
decomposition. Imagine the bounding bByof R (i.e., a minimal rectangle containing

R) with one side lying orf. We form a simple polygo by taking the union of. andB

(Fig. 7(a)). We then compute the visibility decomposition for this polygon and consider
the decomposition clipped in the bdx Clearly, for any two points irB, if they are

in the same cell of this decomposition, they will see the same visibility polygdn of
Further, it suffices to consid@ only becausd c B (Fig. 7(b)).

(@LuB (b)eve

Fig. 7. (a) The union ot andB. Note that_ is clipped by the half-spae . (b) The visibility decomposition
where only the part ifB is drawn.

Visibility Queries and Maintenance in Simple Polygons 471

Which critical constraints can contribute to form the decompositidddThe answer
is that they must be those induced by a pair of verticels and crossing the diagonal
edgee. According to Lemma 2.2, the number of such critical constrain®(is). Thus,
effectively, we reduce the number of critical constraints under consideratiomfom
n. Furthermore, those constraints can be computed(imlogn) time as shown iifi6].

By a topological sweep, their arrangement can be bui®in?) time (Fig. 7(b)).

For each of the cells i€V, we compute and store the corresponding visibility
polygon. If implemented in a naive way, it may ta&gn3) space and preprocessing
time because a visibility polygon may haggn) complexity. However, note that any
two adjacent cells have onl®(1) differences in their visibility polygons because they
are separated by only one critical constraint. By using a persistent data structure, we can
reduce the costs t@(n?logn) preprocessing time an@(n?) storage. More precisely,
we form a dual graptD of the decomposition and compute a spanning tre®.oBy
performing a depth-first traversal of the tree, we can obtain a tour visiting all the cells and
traversing each edge éfV_ at most twice i€V . Recall that each visibility polygon
can be represented by a circular list of the visible vertices and edges in the order in
which they appear on the boundary of the original polygé, (q’) can be obtained
from EV_ (q) by O(1) updates ifg, g’ are points in adjacent cells.

Thus, we can start from an arbitrary node in the dual graph, walk along the tour, and
construct a persistent red-black tree on the combinatorial representation of the visibility
polygon for all the nodes. As per Lemma 2.3, the structure t&ke¥) storage and
can be built inO(n?logn) preprocessing time. In addition, we also build a point loca-
tion structure on top of the arrangement which can be dor@(i?) time andO(n?)
spac€13].

To answer a querg, we first locate the cell af V_ in whichq lies, and then retrieve
the corresponding root pointer in the persistent data structure. Both steps can be done
in O(logn) time. Once we obtain the root pointer, we can either refidvt (q) by
traversing the tree or perform any other search in the tree. To summarize, we have

Lemma 3.2. A simple n-gon L with a distinguished edgendere L c e*, can be
processed into a data structure by usingr®) space and @n?logn) preprocessing
time so thatfor any query point ge e, a pointer pointing to a red-black tree which
stores EY(q) can be returned in @ogn) time

3.1.3. Computing Y(q). Once we have computé&i(q) and (a pointer to a searchable
representation offe V_(q), V. () can be computed by extracting the portiorEd¥, (q)

inside the cone&Cq(q). Because the visibility polygon is star-shaped, and the visible
vertices and edges are stored in a red-black tree in the order of their appearance on
the visibility polygon, the pruning procedure amounts to reporting all the elements of a
red-black tree within a given range of keys. For the persistent data struc{ug, ithis

can be done i©(logn + k) time wherek is the output size. Therefore, we have

Theorem 3.3. Given a polygon P and a diagonal e which cuts P into two pdrts
and R by using Qn?logn) timg we can construct a data structure of siz&r®) so
that, for any query point ge R, the partial visibility polygon Y(q) can be reported in
O(logn + [VL(Q)]) time

472 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

3.2. Computing Visibility Polygons by Balanced Triangulation

In Section 3.1 we showed how to compute a partial visibility polygon. In this section we
show how to combine it with a balanced triangulation to compute the entire visibility
polygon.

Thebalanced triangulatiorof a simple polygorP was introduced by Chazel[8].

The key observation is that there always exists a diagpnéh simple polygorP that

cuts P into two pieces, each with at mosh23 vertices. By recursively subdividing
each of the subregions resulting from cuttiBgalonge, a balanced binary tree can be
created where each interior nodeorresponds to a subpolygdh and a diagonad

of B;. The left and right subtrees ofcorrespond to two polygons,i, R, obtained by
cutting P, alonge . The leaves are the triangles of the balanced triangulation. Denote by
Ic(i), re(i), pa(i) i’s left child, right child, and parent, respectively. Also assign the level
of nodei to the diagonag (Fig. 8(a)).

In addition, for interior nodé in the tree, we build a structure as described in Sec-
tion 3.1 for reporting the partial visibility polygon ih; and R; with respect to the
diagonale . We also construct a point location structure on top of the triangulation. For
simplicity of notation, letV; (q) denoteVp (9).

Now, to computeV (q) of a query pointy, we first locateg among the leaf triangles.

Let the path, from the leaf to the root, h€leaf), i,, . . ., ix(root) (Fig. 8(b)). We will see

how to construct all th&/; (q)’s for i in the path inductively. For the leaf nodg Vi, (q)

is simply the corresponding triangle. In the inductive step, suppose we have constructed
Vi, (q), and without loss of generality, suppoge= Ic(ij 1), i.e.,i; is the left child

of ij11. We first computeV,,, () by querying the structure stored in the nagdg .

If it is empty, we simply return;,,, = V. Otherwise, we glug/; (q) = Vicij,,)(q)
andViq,,, (q) along the diagonad, ., to obtainV;,,, (q). To obtain efficient gluing, we
represent eact (q) in a circular list and store in an auxiliary array the pointers pointing

to the diagonal edges appearingr(q). Since a partial visibility polygon has at most

one diagonal edge of each level, we can simply keep the pointers indexed by their levels.
To glue two partial visibility polygons, we first locate the diagonal edgéong which

they possibly can be glued. This can be don&ifl) time by a direct access to the
auxiliary array. Then we split two circular lists by deleting the entries corresponding to

(b)

Fig. 8. (a) A balanced triangulation d?, where the number next to each edge is the level of that edge.
(b) The procedure to glue partial visibility polygons together to obtain the visibility polygon. The diagonal
edges shown in the figure are those edges on the path in the balanced triangulation.

Visibility Queries and Maintenance in Simple Polygons 473

&, and merge two lists together. We also need to update the auxiliary array. Since we
know there is at most one edge from a level, it takg$ogn) time by simply copying
the pointers from two previous arrays into the current one.

Thus, we have

Theorem 3.4. A simple polygon P can be processed iiin®logn) time into a data
structure of size @?) so that for any query point ¢V (q) can be reported in time
O(log”n + |V (@)]).

Proof. Note that in preprocessing, the space and time used by constructing exterior
visibility decompositions dominate—all the other structures use a tot@l(oj space
andO(nlogn) preprocessing time.

The space and preprocessing time used to construct an individual exterior visibility
decomposition for am-sided polygon ar®(m?) andO(m? logm), respectively. Thus,
the space, denoted I8¢n), and preprocessing time, denotedibyn), used for am-sided
polygon in our algorithm satisfy the following recurrence:

S(n) = MaX,/3=m=2n/3(S(M) + S(N — M)) + O(n?),
T(N) = MaX3<m<2n/3(T (M) + T (N —m)) + O(n?logn).

Therefore,S(n) = ®(n?), andT (n) = O (n?logn).

As for the query time, point location can be performeditiogn) time. In addition,
because the triangulation is balanced, the length of any path from the root to a leaf is
O(logn). For each nodg, the time needed to query the structi¥eq) is O(logn +
[Vi(Q)|) as shown in Theorem 3.3. Each merging can be dofxliog n) time according
to the above discussion. Therefore, in total, the query tim@dsgn +) ; (logn +
IVi (@) = Odog? n + |V (@)]). g

Remark 3.1. InSection 3.1.1we used the shortest-path query data structure to compute
Ce(q). Itis unnecessary as in the above procedure, once we have comfutpdwe

know the visibility fromq to g, ,. This is because, , is the separating diagonal and

on the boundary of both; , andR; . If it is visible to g, then it must appear on the
boundary otV (q).

Since for a red-black tree, we can report the number of items inside any range in
O(logn) time, the above algorithm can be modified to report the size of the visibility
polygon of any query point i (log? n) time.

Corollary 3.5. A simple polygon P can be preprocessed into a data structure using
O(n?) space and @ logn) time so that for any query point ¢he sizgV (q)| of V(q)
can be reported in @og? n) time

As another application, the above method can be extended to the cone visibility query
problem. In acone visibility query problerrin addition to a query poird, a query also
includes a cone witlg as the apex which delimits the visibility of We are asked to

474 B. Aronoy, L. J. Guibas, M. Teichmann, and L. Zhang

report the visibility fromq within the cone. This can be done in the same space and time
bound as above—to answer a cone visibility query, we still compute partial visibility
polygons and glue them together. The only difference is that we need to prune each
exterior visibility polygon by the query cor@(q) before gluing them together. We can
first overlay two cone€(q), C.(q) to obtain a single cone i®(1) time and use this

cone to perform a range search in the procedure described in Section 3.1.3.

Corollary 3.6. Given a simple polygon Rve can process it into a data structure with
O(n?) space and in @?log n) time so thatfor any query point q and a cone(§), the
visible region from g within the cone(@) can be reported in time @og? n + k) where

k is the output size

The algorithm that we have just described needs quadratic space. Although this can
happen in the worst case, we may expect a lower complexity of the visibility decomposi-
tion in practice. There are many different ways to measure the complexity of a scene. For
example, we can consider the maximum complexity of the visibility polygon. If every
pointin P can see at mogk vertices, then we know that the number of constraint lines is
O(n A) as a constraint line can only be created by a pair of mutually visible vertices. This
gives us arO(n?A) bound on the complexity of the visibility decomposition. While this
does not seem to help us to reduce the quadratic complexity of our algorithm, another
measurement, the maximum number of intersections between any line segment inside
P and critical constraints, can be used to measure the complexity of the algorithm.

Corollary 3.7. If for any line segment inside i can intersect at most S critical con-
straints then the space and preprocessing time a@ 8§ and O(n Slog n), respectively

Proof. We focus on the complexity of constructing exterior visibility decompositions.
Since any line segment insid® intersects at moss critical constraints, each exterior
visibility decomposition is formed by at mo& lines, the constraint lines that cut a
specific diagonal edge.

Thus, we can replag# by S in the recurrence in the proof of Theorem 3.4 and stop
recursion ifn is smaller tharS. It is easy to verify that the space neede®ié), and
the preprocessing time 3(n Slogn). O

Remark 3.2. Inthe above corollary we used the strong condition that each line segment
in P can intersect at moS constraint lines. However, we actually only require that this
holds for diagonal edges. Is there a better characterization to capture this condition?

4. Maintaining Visibility from a Moving Viewpoint

In this section we present an algorithm to maintain the visibility from a moving view-
point. Suppose that we have a pointinside the polygonP, and p moves along a
line. We will present a data structure by which the visibility can be maintained cor-
rectly as time goes on. To be precise, we maintain the combinatorial structurgpf

Visibility Queries and Maintenance in Simple Polygons 475

which only changes at discrete points in time. Our goal is to detect all such critical
times and update the combinatorial structure accordingly at those times. In addition,
our algorithm maintains the visibility in an on-line fashion, namely, once the motion of
the point changes, the data structure can be updated efficiently. In fact, our algorithm
fits the framework of kinetic data structures(ij very well and satisfies all the effi-
ciency criteria proposed in that paper. Further, the algorithm achieves output sensitivity
as, in the terminology of1], all the events here arexternal eventshat change the
structure.

We denote byp(t) the position ofp at timet. Then the combinatorial structure of
V (p(t)) will generally change as time goes on. Denota byt the time immediately
before and after, respectively. When we say that a structan@nges at time, twhat is
meant is that it is different at” andt™.

Remark 4.1. The pointp moves on along a fixed line, but its velocity need not be
constant. The results in this section are valid as long as this motion along the line is such
that we are able to compute in constant time the first time wihreaches a specific point

on the line. For examplep’s position along the line could be a low-degree algebraic
function of timet.

Remark 4.2. We assume thab never collides with the boundary &, i.e., p always
moves in the interior oP. In fact, while we are maintaining (p), it is straightforward
to detect such collisions.

Remark 4.3. Again, we make the general position assumption. That is, no three ver-
tices of P are collinear angy never moves on a line that passes through two polygon
vertices although it may cross such a line.

4.1. Combinatorial Changes of the Shortest-Path Tree

Instead of maintaining the visibility polygon, we maintain the shortest-path decompo-
sition of p. This is sufficient since, as we have noted, the visibility polygon is a cell in
the shortest-path decomposition. Further, the shortest-path decomposition can be eas-
ily obtained from the shortest-path tree by extending tree edges. We therefore reduce
the problem to the maintenance of the shortest-path tree. In the following we discuss
how to maintain the shortest-path tree. However, the shortest-path decompaosition can be
maintained by the same method.

Recall that the shortest-path tr&€p) is the tree rooted gp formed by taking the
union of the shortest paths fropto every vertex oP (Fig. 4). We show how to maintain
the shortest-path tree (resp. decomposition) and thus the visibility polygon. Define the
principal child vertex (edge) of a non-root nodef T (p) to be the vertexv (resp. edge
w) of T(p) among the children of such that the angle formed by> andt?, whereu
is the parent ob, is the smallest among all such angles. This corresponds to clockwise
and counterclockwise extensions of visibility edges in [8] depending on the direction in
which the shortest path turns.

476 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

On the combinatorial changes of the shortest-path tree, we have the following
characterization.

Lemma4.1. As p movesin PT(p) changes combinatorially at time t if and only if at
time t, p is collinear with two vertices that are either consecutive children of p or one
say U is a child of p and the other is the principal child of u at tinte t

Proof. Observe thal (p) changes if and only i (p, w) changes combinatorially for
some vertexv of P. Consider the shortest-path decompositiow 0T D(w). Forz (p, w)
to change at timg, p must be on a constraint 3D(w), which is a critical constraint of
P. Thus, we know thap is collinear with two vertices, say, v, that are visible to it at
time t. Without loss of generality, we assume tliat pu. If p can see both vertices at
timet—, thenu, v are consecutive first-level vertices b p) at timet~. Otherwiseyp is
the principal child ofu on T (p).

On the other hand, we shall show that any such collinearity causes a change) of
It is obvious that ifp becomes collinear with a child andu’s principal childv, T (p)
changes att because will be properly visible top att™, causingv to become a child
of p (Fig. 9). Whenp is collinear with two consecutive children v, we will show that
eitheru is onpv or v is onpu. If this were not true, themp would be ontv. Sincetv
is insideP, it is a diagonal ofP and dividesP into two polygonsP;, P,. Since every
point in a polygon caproperlysee at least three verticgsmust be able to see properly
at least one vertex other thanv, of P, andP,, respectively. These two vertices would
be p’s children onT (p) and separata, v, contradicting the assumption thatv are
consecutive children gb on T (p).

Now, assume that is onpu, then att* the visibility of v to p will be blocked byu,
causingu to be deleted fronp and inserted as’s principal child (Fig. 9). O

The update ofT (p) fromt~ to t* is quite straightforward according to the above
proof. If pis collinear with afirst-level vertes andu’s principal childv, thenv becomes
visible from p att™. In this case we cut (and the subtree) fromand insert it as a child

a b "¢ ab "c

Fig. 9. Events in the maintenance of the shortest-path tree. In the first figure the principal children of
arev, a, respectively.

Visibility Queries and Maintenance in Simple Polygons 477

of p. If pis collinear with two consecutive first level verticesv, that means that one
of those two vertices, say, blocks the visibility fromp to the other vertex. In this
casep becomes the principal child efatt™* (Fig. 9).

4.2. Tracking Shortest-Path Tree and Visibility Changes

Notice that the number of children @fin T(p) is O(]V(p)|). As per Lemma 4.1, it is
sufficient to check when the poimtis collinear with|V (p)| pairs of vertices to detect
when T (p) changes. The checking of collinearity is equivalent to detecting when
crosses the lines defined by those pairs. Assumingghmoves in a known manner, a
simple solution is to maintain a priority queue in which we store the time viha@nsses
each of the constraint lines. Therefore, a changk(g) can be detected and processed
in O(log|V (p)|) time if the motion ofp is fixed. However, ifp is permitted to change
the line along which the motion occurs, we have to recompute the times pibiesses
each constraint which would taka(|V (p)|) time. To reduce this cost, we consider the
convex facer in the arrangement formed by all the constraint lines which contains the
current pointp. If we maintain the boundary aof in a manner suitable for searching,
for any change of’s motion, a binary search on the boundaryroill tell us which
edge is the next one is going to cross provideg keeps moving along the current
direction. The face can be maintained by a dynamic half-space intersection algorithm
with O(log? n) cost per update. The algorithm is as follows.

For anyP and a given initial positiom, construct the shortest-path tréép) from p
to all vertices ofP in linear time as irj10]. In additional linear time, we can obtain, for
each vertex, the doubly linked list of its children, sorted aroundvith pointers to the
first and last. Each vertex also stores a pointer to its principal child, which will always
be either the first or the last one depending on how the shortest-path tree is bent locally.

By examining the first-level vertices of the shortest-path Trée) and their principal
children, we collect a set @ (|V (p)|) lines that are defined by two consecutive children
of p or by a child ofp and its principal child, as per Lemma 4.1. Process the intersection
of the half-spaces bounded by these lines and contajing., the face: (Fig. 10), into
a dynamic maintenance algorithm for half-spaces intersection as given by Overmars and
van Leeuwerj15]. The structure can be initialized @(]V (p)| log|V (p)|) time using

Fig. 10. Computing of the face. The thin lines in the figure are lines defined by first level vertices and their
principal children. For clarity, the shortest-path tree is not drawn.

478 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

O(|V(p)|) space and updated @(log?|V (p)|) time per insertion and deletigns]. In
O(loglV (p)|) time we can compute when the pointcrosses the boundary efalong
the current direction asis a convex face.

After the above preprocessing, the shortest-path tree can be maintained by processing
two types of events. One is whemcrosses a constraint, i.e., the boundary of the face
7. This is whenT (p) changes. Depending on the way thatrosses the constraint,
we updateT (p) as shown in Fig. 9. Namely, we either cut a principal childfom
a first-level vertexu and insertv immediately beforau as a first-level vertex or vice
versa (Fig. 9). Because we store all the children of a vertex in a list in the order they
appear orT (p) and keep a pointer pointing to the principal child, these updates can be
done inO(1) time. Furthermore, we add and remove the appropriate constraints in the
dynamic data structure representing the current fashich containsp. Since there is
a constant number of changes, this operation taxéeg?|V (p)|) time by Overmars
and van Leeuwen'’s algorithm. Finally, we compute the next time whernosses the
boundary ofr again inO(log|z|) = O(log|V (p)|) time.

The other type of events is when the motiorpa$ updated. Since its motion is linear,
we just need to perform a search to determine which edge, on the boundary o
going to cross next. This can be done agai®itiog|V (p)|) time.

The above algorithm gives us a way to maintain the shortest-path tree of a moving
point. If, for each tree edgew, with v the parent ofw, we also maintain the edge of
P hit by c(v, w), we can effectively maintain the shortest-path map in the same time
bound.

To summarize, we have

Theorem 4.2. Let P be a simple polygon and let p be a point inAfter O(nlogn)
time and Qn) space preprocessing p undergoes linear motigithe time when the first
combinatorial change happens in() (and TD(p)) can be determined in Qog|V (p)|)
time The data structure can be updated in timél@?|V (p)|) per change of Tp) and
in time O(log|V (p)|) per flight plan change

Since the visibility polygon op is the same as the cell ¥D(p) that containg, the
above theorem implies that

Corollary 4.3. For a simple polygon P and a point p moving inside P with a linear
motion the visibility polygon \(p) can be maintained in Qog?|V (p)|) time per change
where a change might be either a combinatorial change @)\or a flight plan change

of the motion of p

5. Applications

In previous sections we propose algorithms for answering visibility queries and main-
taining the visibility polygon from a moving viewpoint. In this section we exploit the
connection between them and show some applications of their combination. We consider
two problems. One is the space—query-time tradeoff in answering visibility queries. The
other is the weak visibility query problem.

Visibility Queries and Maintenance in Simple Polygons 479
5.1. Space—Query-Time Tradeoff in Answering Visibility Queries

In this section we combine the results from Sections 3 and 4 to give an algorithm with
a space—query-time tradeoff. Namely, we can guarantee quen@iitmé/m) log®n +

[V (q)]) if O(m) space is allowed for the data structure, which can be computed in
O(mlogn) time, wherem is betweer2 (nlog® n) andO(n?logn).

Notice that in the algorithm presented in Section 3, the space bottleneck comes from
storing the entire exterior visibility decomposition, which may have 6ize?). In what
follows we focus on constructing and querying the exterior visibility decomposition.
The storage and time bounds of the full algorithm then follow easily.

To obtain a tradeoff we compute a coarser decomposition, use it to determine visibility
information for a nearby point, and then construct the answer to the query by walking
from the nearby point to it while maintaining visibility during the walk.

A (1/r)-cuttingof an arrangement of lines is the decomposition of the planer fto
triangularcellsso that each cellis intersected by at nost lines. Such a decomposition
always exists and can be constructe®itnr + nlogn) time [14], [4] for anyr between
1 andn. Recall that the exterior visibility decomposition is an arrangemenmt lofe
segments created by clipping lines in a lBxWe can thus construct@,/r)-cutting
of those lines and intersect the cells in the cutting vBthThis way we obtain a cell
decompositioriR of B with r? cells and with each cell intersected Byn/r) critical
constraints inrE V_(q).

Now, inamanner similar to the algorithm computiBy, (q), by a depth-firsttraversal
of the 1-skeleton oRR, we can obtain a patp that visits every vertex oR and does not
traverse any edge more than twice. The number of edgesiolearlyO (|R|) = O(r?).

We compute and store visibility informatidn(p), for all verticesp of R, in a common
persistent data structure, in the order of their appearange die space required is
proportional to the sum of the number of differences betwégm andV (p’), for all pairs

of adjacent verticesp, p’) ony and, given the changes between consecutive vertices,
the time required to build the structure@logn) times the storage requiremefts].
Actually, the structure we build is slightly different from that presentgdéhas we also
require to be able to perform transient updates; see the discussion in Section 2.2.

When we traverse an edge= (g, q') ony, since we know which constraingscuts,
we can compute all the intersections and sort them according to the order of crssing
During the traversal, we updat&(-) accordingly once a constraint is crossed, using the
algorithm presented in Section 4. Since the number of constraints meeting the interior
of a cell isn/r, the sorting procedure také3(n/r log(n/r)) time, and, during the
transversal, there are at mastr updates, each resulting @(1) changes iV (-), at
the price ofO(logn) per change. Thus collecting all the listg p) and building the
persistent data structure requires

IR|-O(/r)-O(logn) = O(rnlogn)

time andO(rn) space. In addition, we preprocess the decomposfiianto a point-
location structure. This can be donedxi| R | log|R|) = O(r?logr) time, using standard
point-location algorithms (e.gi16]).

After the above structures are built, a query is answered by looking up tha céll
‘R containingg. We then pick any vertep of A and retrieve the entry of (p) stored

480 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

in the persistent data structure. Then, compute the intersections bepgesnd the
constraints cutting\, and trace the segmepg using the on-line algorithm. The tracing
requires at most/r updates where each update is a transient update, so it can be done in
O((n/r)logn) time as per Lemma 2.3. As noted in Section 3.1.2, the resulting structure
should be suitable for searching\tiq), without explicitly exhibiting it, to obtain output
sensitivity. Since the visibility polygons are stored in a persistent red-black tree allowing
transient updates, the structure we obtained satisfies the requirement.

Thus for computing the partial visibility polygon, preprocessing tim@{sn logn),
space i0(rn), and query time i©((n/r) logn). As for the entire algorithm, plugging
these bounds into the recurrence in the proof of Theorem 3.4, we have that the prepro-
cessing time i©O(rn log? n), space isO(rn logn), and query time i ((n/r) log?n).
Now recall that can be chosen between 1 amdso puttingm = rn logn, we obtain:

Theorem 5.1. Given a simple n-gon in the plane and a number m betwdeg®m
and r?logn, one can preprocess the polygon ini®logn) time and Qm) space so
that, for a query point gV (q) can be computed in @n?/m)log®n + |V (q)|) time

Remark 5.1. We choosen to be$2(nlog® n) because the overhead should be at most
linear to be interesting.

5.2. Answering Weak Visibility Queries

In this section we show the application of the combination of visibility query and mainte-
nance algorithms developed in the previous sections to the weak visibility query problem.
In the weak visibility query problem, we are given a simple polygdand asked to
build a data structure to return the weak visibility polygé¢s) for any query segment

sin P. There are algorithms solving this problem in linear time without preprocessing.
Here, again our goal is to report the weak visibility polygons in output-sensitive time.

To computeV(s), imagine that there is a point moving alosfyom one to the other
endpoint with constant velocity. Once we can maintain the visibility polygon from this
moving viewpoint, we can compulé(s) becauseé/(s) is the union of all the visibility
polygons of the points oa. First note that we cannot copy the algorithm in Section 4
directly because we cannot afford the initialization cost of building the shortest-path
tree, which may take linear time. However, we needed the shortest-path tree in order to
compute the constraints in Lemma 4.1. In the following we show another method for
computing those constraints without constructing the shortest-path tree.

Recall that there are two types of constraints. Constraints of the first type are created
by two adjacent vertices in the visibility polygon. The others are created by a vertex on
the visibility polygon and its principal child in the shortest-path tree. It is straightforward
to compute the constraints of the former type once we have the visibility polygon. For
the latter ones, we need an efficient way to compute the principal ehjldf a vertex
v € V(p) on the shortest-path trée(p). Consider the circular polar order on all the
vertices with respect to the vertexAccording to the definition, the principal child of
v is the vertex inV (v) so thatw is the rightmostleftmost vertex on the leftight side
of the extension opv—which side to consider depends on how the shortest path turns

Visibility Queries and Maintenance in Simple Polygons 481

atv. In the following, without loss of generality, we assume that the principal child is
the rightmost vertex on the left side of the extensioipof

As in Section 3.2, we decompose the polyddimto canonical pieces. For a canonical
polygonQ, call the rightmost vertex iWg (v) on the left side of the extension pb the
candidateprincipal child of p. Then the principal child is the one closest to the extension
of pv among all theD (log n) candidate principal children. To find the candidate principal
child for a subpolygorQ, we follow the method presented in Section 3.1.3. Instead of
querying the exterior visibility polygon by arange, we can query it by “finding the element
closest to a quereyon the appropriatsidewithin a queryrange” where the query key
corresponds to the extensionaf, the side corresponds to which side we would like to
search, and the query range corresponds to the visibility cone in Section 3.1.1. This gives
us the candidate principal child in that subpolygo©idogn) time. Thus, the principal
child can be computed i®(log? n) time once we have the structure built in Section 3.

Combining with the maintenance partin Section 4.2, we can still maintain the visibility
polygon of a moving viewpoint irO(log®n) time per event afteO(|V (p)|log? n)
initialization cost.

Regarding the number of events that occur wipileaverses a segment, we have the
following lemma.

Lemma5.2. The number of events that occur while the viewpoint moves from one
endpoint of segments P to the otheris Q|V(s)).

Proof. Forany vertex ond P, the portion o visible towv is a single subsegment oif

P is simple. In other words, if a viewpoimt moves from one endpoint sfto the other, it
can see@ only whenitis in a contiguous interval ef Therefore, once a vertex disappears
from V (p) during the traversal, it will never come to be visiblegagain. Since each
event must cause a vertex to appear or disappear ¥fop), we charge that event to
that vertex in both cases. There &¢|V(s)|) vertices which can be charged, and each
vertex can be charged at most twice. Thus, the total number of eved$\vss)|). O

Therefore, for a poinp moving along the segmest the total number of changes
of V(p) is O(|V(s)|), and we can detect each changeQrog? n) time and update
the data structure i®(log? n) time per change. As in Section 4.2, we can update the
combinatorial description of the weak visibility polygon accordingly ovi¢e) changes.

There is one more issue on how to compute) from its combinatorial description.
Unlike the visibility polygon of a pointV(s) is not star-shaped. Therefore, for an edge
e € V(s), we need additional information to compute the portioreadhat is weakly
visible tos. Since that portion is a subsegmenégt suffices if we know how to compute
its endpoints, i.e., the extreme pointsethat are weakly visible te. Observe that during
the above traversal, we know wherstarts or ceases to be visible from the imaginary
moving point, i.e., we know the endpoints of the subsegmestloét is weakly visible
to e. By the following lemma, it suffices to consider the visibility fragrto these two
endpoints, which can be done®logn) time as in Section 3.1.1.

Lemma 5.3. For two segments;ss; inside a simple polygon Rienote by b(b,) the
set of points onss(s;) weakly visible to 5(s;). Then b, b, are either empty sets or

482 B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang

line segmentg-urther, each endpoint of pis either an endpoint of;sor visible to an
endpoint of b and vice versa

Proof. By simplicity of P, by, b, are connected sets. Thus, they are either empty sets
or line segments.

We observe that an interior poiptof s; can be an endpoint & if and only if it sees
exactly one point ors,. Further, ifq € s, is the only point visible top, thenp is also
the only point visible tay. These two facts imply the above lemma. O

Thus, we obtain that

Theorem 5.4. Given a simple n-gon P in the planene can preprocess P in @%)
space and @n?logn) time so thatfor any segment s inside, R'(s) can be computed
in O(|V(s)| log? n) time

6. Conclusion

In this paper we showed how to answer visibility queries in nearly optimal time by using
quadratic preprocessing time and storage, which improves on the previous algorithms by
a linear factor. Then we provided an algorithm which can maintain a visibility polygon
from a point in linear space ar@(log? n) time per change in visibility or flight plan.

A nice property of our method of answering visibility queries is that the visibility
polygons are represented in a small number of canonical parts, each stored in a form
suitable for searching. By exploiting this fact, we obtained algorithms for some other
visibility problems. Later, we showed how to combine the results to yield a tradeoff for
visibility queries and an output-sensitive algorithm for the weak visibility query problem.

An immediate open question is whether we can improve the space and preprocessing
time further to a nearly linear bound while keeping the query time the same, i.e., a
polylogarithmic additive overhead art(1) cost for each output. It is also interesting
to find applications of our structures to other related problems, e.g. answering the query
about the area of the visibility polygons. As to the maintenance problem, the bound
relies on the fact that the motion is linear. The situation when the motion follows a
general algebraic curve remains open. For both problems, it is interesting to know if our
techniques can be extended to the case of polygons with holes.

In this paper our complexity bounds are worst-case bounds. However, in reality, the
polygons that we deal with normally have less complex visibility decomposition than
in the worst case. It would be interesting to know if we can design algorithms whose
complexity depends on certain natural parameters. For example, two reasonable measures
could be the maximum or the average number of vertices that any point can see.

Acknowledgment

The authors thank the anonymous referees for their comments leading to the improvement
of the paper.

Visibility Queries and Maintenance in Simple Polygons 483

References

1. J.Basch, L. Guibas, and J. Hershberger. Data structures for mobile datac.l6th ACM-SIAM Sympos
Discrete Algorithmspages 747—-756, 1997.
2. P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple polygonsPrc. 4th Canad
Conf Comput Geom, pages 23-28, 1992.
3. B. Chazelle. Atheorem on polygon cutting with applicationsPioc. 23rd Annu IEEE SymposFound
Comput Sci, pages 339-349, 1982.
4. B. Chazelle. Cutting hyperplanes for divide-and-congDescrete ComputGeom, 9(2):145-158, 1993.
5. B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geomefyodnlst Annu
ACM SymposComput Geom, pages 135-146, 1985.
6. D. Z. Chen and O. Daescu. Maintaining visibility of a polygon with a moving point of viewrdre. 8th
Canad Conf Comput Geom, pages 240245, 1996.
7. H. EIGindy and D. Avis. A linear algorithm for computing the visibility polygon from a poigt.
Algorithms 2:186-197, 1981.
8. S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graBh&M J
Comput, 20:888-910, 1991.
9. L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple palyGamput System
Sci, 39:126-152, 1989.
10. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygs&gsrithmica 2:209-233, 1987.
11. L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem in two dimensiémesc.In
3rd ACM-SIAM Sympog®iscrete Algorithmspages 259268, 1992.
12. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, takeladMgkithms
18:403-431, 1995.
13. D. G. Kirkpatrick. Optimal search in planar subdivisioB$AM J Comput, 12:28-35, 1983.
14. J. Matosék. Construction of-nets.Discrete ComputGeom, 5:427-448, 1990.
15. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the PlaBiemput System
Sci, 23:166-204, 1981.
16. N. Sarnak and R. E. Tarjan. Planar point location using persistent searciCoeas.ACM, 29:669-679,
1986.
17. G.Vegter. The visibility diagram: a data structure for visibility problems and motion planniRgo¢n2nd
Scand Workshop Algorithm Theorywolume 447 of Lecture Notes in Computer Science, pages 97-110.
Springer-Verlag, Berlin, 1990.

Received Jun&2, 2000and in revised form Augu&t7, 2001 .Online publication Marct27, 2002.

