
Visibility Sorting and Compositing without Splitting
for Image Layer Decompositions

John Snyder and Jed Lengyel
Microsoft Research

Abstract
We present an efficient algorithm for visibility sorting a set of moving
geometric objects into a sequence of image layers which are composited
to produce the final image. Instead of splitting the geometry as in previous
visibility approaches, we detect mutual occluders and resolve them using
an appropriate image compositing expression or merge them into a single
layer. Such an algorithm has many applications in computer graphics;
we demonstrate two: rendering acceleration using image interpolation and
visibility-correct depth of field using image blurring.

We propose a new, incremental method for identifying mutually oc-
cluding sets of objects and computing a visibility sort among these sets.
Occlusion queries are accelerated by testing on convex bounding hulls; less
conservative tests are also discussed. Kd-trees formed by combinations of
directions in object or image space provide an initial cull on potential
occluders, and incremental collision detection algorithms are adapted to
resolve pairwise occlusions, when necessary. Mutual occluders are further
analyzed to generate an image compositing expression; in the case of non-
binary occlusion cycles, an expression can always be generated without
merging the objects into a single layer. Results demonstrate that the algo-
rithm is practical for real-time animation of scenes involving hundreds of
objects each comprising hundreds or thousands of polygons.
CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation -
Display algorithms.
Additional Keywords: visibility sorting, compositing, nonsplitting lay-
ered decomposition, occlusion cycle, occlusion graph, sprite, kd-tree.

1 Introduction
This paper addresses the problem of how to efficiently sort dynamic geom-
etry into image layers. Applications include:

1. image-based rendering acceleration – by using image warping tech-
niques rather than re-rendering to approximate appearance, render-
ing resources can be conserved [Shade96,Schaufler96,Torborg96,
Lengyel97].

2. image stream compression – segmenting a synthetic image stream into
visibility-sorted layers yields greater compression by exploiting the
greater coherence present in the segmented layers [Wang94,Ming97].

3. fast special effects generation – effects such as motion blur and depth-
of-field can be efficiently computed via image post-processing tech-
niques [Potmesil81,Potmesil83,Max85,Rokita93]. Visibility sorting
corrects errors due to the lack of information on occluded surfaces in
[Potmesil81,Potmesil83,Rokita93] (see [Cook84] for a discussion of
these errors), and uses a correct visibility sort instead of the simple
depth sort proposed in [Max85].

Address: 1 Microsoft Way, Redmond WA 98052.
Email: johnsny@microsoft.com, jedl@microsoft.com

4. animation playback with selective display/modification – by storing
the image layers associated with each object and the image com-
positing expression for these layers, layers may be selectively added,
removed, or modified for fast preview or interactive playback. Un-
changed layers require no re-rendering.

5. incorporation of external image streams – hand-drawn character an-
imation, recorded video, or off-line rendered images can be inserted
into a 3D animation using a geometric proxy which is ordered along
with the 3D synthetic elements, but drawn using the 2D image stream.

6. rendering with transparency – while standard z-buffers fail to properly
render arbitrarily-ordered transparent objects, visibility sorting solves
this problem provided the (possibly grouped) objects themselves can
be properly rendered.

7. fast hidden-line rendering – by factoring the geometry into sorted lay-
ers, we reduce the hidden line problem [Appel67,Markosian97] into
a set of much simpler problems. Rasterized hidden line renderings of
occluding layers simply overwrite occluded layers beneath.

8. rendering without or with reduced z-buffer use – the software visibility
sort allows elimination or reduced use of hardware z-buffers. Z-
buffer resolution can also be targeted to the extent of small groups of
mutually occluding objects, rather than the whole scene’s.

To understand the usefulness of visibility sorting, we briefly focus on
rendering acceleration. The goal is to render each coherent object at the ap-
propriate spatial and temporal resolution and interpolate with image warps
between renderings. Several approaches have been used to compose the set
of object images. We use pure image sprites without z information, requir-
ing software visibility sorting [Lengyel97]. Another approach caches im-
ages with sampled (per-pixel) z information [Molnar92,Regan94,Mark97,
Schaufler97], but incurs problems with antialiasing and depth uncover-
ing (disocclusion). A third approach is to use texture-mapped geometric
impostors like single quadrilaterals [Shade96,Schaufler96] or polygonal
meshes [Maciel95,Sillion97]. Such approaches use complex 3D render-
ing rather than simple 2D image transformations and require geometric
impostors suitable for visibility determination, especially demanding for
dynamic scenes. By separating visibility determination from appearance
approximation, we exploit the simplest appearance representation (a 2D
image without z) and warp (affine transformation), without sacrificing cor-
rect visibility results.

In our approach, the content author identifies geometry that forms the
lowest level layers, called parts. Parts (e.g., a tree, car, space vehicle, or
joint in an articulated figure) contain many polygons and form a perceptual
object or object component that is expected to have coherent motion. Very
large continuous objects, like terrain, are a priori split into component ob-
jects. At runtime, for every frame, the visibility relations between parts are
incrementally analyzed to generate a sorted list of layers, each containing
one or more parts, and an image compositing expression ([Porter84]) on
these layers that produces the final image. We assume the renderer can
correctly produce hidden-surface-eliminated images for each layer when
necessary, regardless of whether the layer contains one or more parts.

Once defined, our approach never splits parts at run-time as in BSP-tree
or octree visibility algorithms; the parts are rendered alone or in groups.
There are two reasons for this. First, real-time software visibility sorting
is practical for hundreds of parts but not for the millions of polygons they

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

Supplemental Materials
Supplemental materials for this paper are available in the papers/snyder directory.



Figure 1: Sorting without splitting: This configuration can be visibility sorted for
any viewpoint even though no non-splitting partitioning plane exists.

contain. Second, splitting is undesirable and often unnecessary. In dynamic
situations, the number of splits and their location in image space varies as
the corresponding split object or other objects in its environment move. Not
only is this a major computational burden, but it also destroys coherence,
thereby reducing the reuse rate in image-based rendering acceleration or
the compression ratio in a layered image stream.

BSP and octree decompositions require global separating planes which
induce unnecessary splitting, even though a global separating plane is
not required for a valid visibility ordering (Figure 1). We use pairwise
occlusion tests between convex hulls or unions of convex hulls around each
part. Such visibility testing is conservative, since it fills holes in objects
and counts intersections as occlusions even when the intersection occurs
only in the invisible (back-facing) part of one object. This compromise
permits fast sorting and, in practice, does not cause undue occlusion cycle
growth. Less conservative special cases can also be developed, such as
between a sphere/cylinder joint (see Appendix B). Our algorithm always
finds a correct visibility sort if it exists, with respect to a pairwise occlusion
test, or aggregates mutual occluders and sorts among the resulting groups.
Moreover, we show that splitting is unnecessary even in the presence
of occlusion cycles having no mutually occluding pairs (i.e., no binary
occlusion cycles).

The main contribution of this work is the identification of a new and
useful problem in computer graphics, that of visibility sorting and occlu-
sion cycle detection on dynamic, multi-polygon objects without splitting,
and the description of a fast algorithm for its solution. We introduce the
notion of an occlusion graph, which defines the “layerability” criterion
using pairwise occlusion relations without introducing unnecessary global
partitioning planes. We present a fast method for occlusion culling, and a
hybrid incremental algorithm for performing occlusion testing on convex
bounding polyhedra. We show how non-binary occlusion cycles can be
dynamically handled without grouping the participating objects, by com-
piling and evaluating an appropriate image compositing expression. We
also show how binary occlusion cycles can be eliminated by pre-splitting
geometry. Finally, we demonstrate the practicality of these ideas in sev-
eral situations and applications. Visibility sorting of collections of several
hundred parts can be computed at more than 60Hz on a PC.

2 Previous Work
The problem of visibility has many guises. Recent work has con-
sidered invisibility culling [Greene93,Zhang97], analytic hidden sur-
face removal [McKenna87,Mulmuley89,Naylor92], and global visibility
[Teller93,Durand97]. The problem we solve, production of a layered de-
composition that yields the hidden-surface eliminated result, is an old
problem in computer graphics of particular importance before hardware z-
buffers became widely available [Schumacker69,Newell72,Sutherland74,
Fuchs80]. In our approach, we do not wish to eliminate occluded surfaces,
but to find the correct layering order, since occluded surfaces in the current
frame might be revealed in the next. Unlike the early work, we handle
dynamic, multi-polygon objects without splitting; we call this variant of
the visibility problem non-splitting layered decomposition.

Much previous work in visibility focuses on walkthroughs of static
scenes, but a few do consider dynamic situations. [Sudarsky96] uses oc-
trees for the invisibility culling problem, while [Torres90] uses dynamic
BSP trees to compute a visibility ordering on all polygons in the scene.
Neither technique treats the non-splitting layered decomposition problem,
and the algorithms of [Torres90] remain impractical for real-time anima-
tions. Visibility algorithms can not simply segregate the dynamic and
static elements of the scene and process them independently. A dynamic
object can form an occlusion cycle with static objects that were formerly
orderable. Our algorithms detect such situations without expending much

geometric configuration occlusion graph

CB

A

A B

C

(a)

CB

A

A B

C

(b)

C

B

A

A B

C

(c)

Figure 2: Occlusion graphs: The figure illustrates the occlusion graphs for some
simple configurations. (a) and (b) are acyclic, while (c) contains a cycle.

computation on static components.
To accelerate occlusion testing, we use a spatial hierarchy (kd-tree) to or-

ganize parts. Such structures (octrees, bintrees, kd-trees, and BSP trees) are
a staple of computer graphics algorithms [Fuchs80,Teller91,Funkhouser92,
Naylor92,Greene93,Sudarsky96,Shade96]. Our approach generalizes oc-
trees [Greene93,Sudarsky96] and 3D kd-trees [Teller91,Funkhouser92,
Shade96] in that it allows a fixed but arbitrarily chosen number of direc-
tions in both object and image space. This allows maximum flexibility to
tightly bound scenes with a few directions. Our hierarchy is also dynamic,
allowing fast rebalancing, insertion, and deletion of objects.

Collision and occlusion detection are similar. We use convex bound-
ing volumes to accelerate occlusion testing, as in [Baraff90,Cohen95,
Ponamgi97], and track extents with vertex descent on the convex poly-
hedra, as in [Cohen95] (although this technique is generalized to angular,
or image space, extent tracking as well as spatial). Still, occlusion detec-
tion has several peculiarities, among them that an object A can occlude B
even if they are nonintersecting, or in fact, very far apart. For this reason,
the sweep and prune technique of [Cohen95,Ponamgi97] is inapplicable to
occlusion detection. We instead use kd-trees that allow dynamic deactiva-
tion of objects as the visibility sort proceeds. Pairwise collision of convex
bodies can be applied to occlusion detection; we hybridize techniques from
[Chung96a,Chung96b,Gilbert88].

The work of [Max85] deserves special mention as an early example
of applying visibility sorting and image compositing to special effects
generation. Our work develops the required sorting theory and algorithms.

3 Occlusion Graphs
The central notion for our visibility sorting algorithms is the pairwise
occlusion relation. We use the notation A !E B meaning object A occludes
object B with respect to eye point E. Mathematically, this relation signifies
that there exists a ray emanating from E such that the ray intersects A and
then B.1 It is useful notationally to make the dependence on the eye point
implicit so that A ! B means that A occludes B with respect to an implicit
eye point. The arrow “points” to the object that is occluded.

The set of occlusion relations between pairs of the n parts compris-
ing the entire scene forms a directed graph, called the occlusion graph.
This notion of occlusion graph is very similar to the priority graph of

1A definition for A !E B more suitable for closed objects but harder to compute is that a ray
emanating from E hits a front face of A followed by a front face of B.



Z

A

B

E
zA

zB

Figure 3: Depth ordering does not indicate visibility ordering: While the mini-
mum depth of object B is smaller than A’s (zB < zA), A occludes B as seen from eye
point E. Similarly, by placing E on the right side of the diagram, it can be seen that
maximum depth ordering also fails to correspond to visibility ordering.

[Schumacker69] but uses actual occlusion of the objects rather than the
results of plane equation tests for pairwise separating planes chosen a pri-
ori (view independently). Figure 2 illustrates some example occlusion
graphs. When the directed occlusion graph is acyclic, visibility sorting is
equivalent to topological sorting of the occlusion graph, and produces a
(front-to-back) ordering of the objects hO1;O2; : : : ;Oni such that i < j
implies Oj 6! Oi. Objects so ordered can thus be rendered with correct
hidden surface elimination simply by using “Painter’s algorithm”; i.e., by
rendering On, followed by On�1, and so on until O1. Thus the final image,
I, can be constructed by a sequence of “over” operations on the image
layers of each of the objects:

I � I1 over I2 over : : : over In (1)

where Ii is the shaped image of Oi, containing both color and cover-
age/transparency information [Porter84].

Cycles in the occlusion graph mean that no visibility ordering exists
(see Figure 2c). In this case, parts in the cycle are grouped together and
analyzed further to generate an image compositing expression (Section 5).
The resulting image for the cycle can then be composited in the chain of
over operators as above.

This notion of occlusion ignores the viewing direction; only the eye point
matters. By taking account of visibility relationships all around the eye,
the algorithm described here can respond to rapid shifts in view direction
common in interactive settings and critical in VR applications [Regan94].

4 Incremental Visibility Sorting
Our algorithm for incremental visibility sorting and occlusion cycle detec-
tion (IVS) is related to the Newell, Newell, and Sancha (NNS) algorithm
for visibility ordering a set of polygons [Newell72,Sutherland74]. In brief,
NNS sorts a set of polygons by furthest depth and tests whether the result-
ing order is actually a visibility ordering. NNS traverses the depth-sorted
list of polygons; if the next polygon does not overlap in depth with the re-
maining polygons in the list, the polygon can be removed and placed in the
ordered output. Otherwise, NNS examines the collection of polygons that
overlap in depth using a series of occlusion tests of increasing complexity.
If the polygon is not occluded by any of these overlapping polygons, it
can be sent to the output; otherwise, it is marked and reinserted behind the
overlapping polygons. When NNS encounters a marked polygon, a cyclic
occlusion is indicated and NNS splits the polygon to remove the cycle.

IVS differs from NNS in that it orders aggregate geometry composed of
many polygons rather than individual polygons, and identifies and groups
occlusion cycles rather than splitting to remove them. Most important, IVS
orders incrementally, based on the visibility ordering computed previously,
rather than starting from an ordering based on depth.

This fundamental change has both advantages and disadvantages. It is
advantageous because depth sorting is an unreliable indicator of visibility
order as shown in Figure 3. Applying the NNS algorithm to a coherently
changing scene repeatedly computes the same object reorderings (with
their attendant costly occlusion tests) to convert the initial depth sort to a
visibility sort. The disadvantage is that the sort from the last invocation
provides no restriction on the set of objects that can occlude a given object
for the current invocation. The NNS depth sort, in contrast, has the useful

IVS(L,G) [computes visibility sort]

Input: ordering of non-grouped objects from previous invocation (L)
Output: front-to-back ordering with cyclic elements grouped together (G)
Algorithm:

G ;
unmark all elements of L
while L is nonempty

pop off top(L): A
if A is unmarked

if nothing else in L occludes A
insert A onto G
unmark everything in L

else
[reinsert A onto L]
mark A
find element in L occluding A furthest from top(L): FA
reinsert A into L after FA

endif
else [A is marked]

form list S � hA; L1; L2; : : : ; Lni where L1; : : : ; Ln
are the largest consecutive sequence of marked elements,
starting from top(L)

if detect cycle(S) then
[insert cycle as grouped object onto L]
group cycle-forming elements of S into grouped object C
delete all members of C from L
insert C (unmarked) as top(L)

else
[reinsert A onto L]
find element in L occluding A furthest from top(L): FA
reinsert A into L after FA

endif
endif

endwhile

Figure 4: IVS algorithm. The top object, A, in the current ordering (list L) is
examined for occluders. If nothing occludes A, it is inserted in the output list G.
Otherwise, A is marked and reinserted behind the furthest object in the list that
occludes it, FA. When a marked object is encountered, the sequence of consecutively
marked objects starting at the top of the list is checked for an occlusion cycle using
detect cycle. If an occlusion cycle is found, the participating objects are grouped
and reinserted on top of L. This loop is repeated until L is empty; G then contains the
sorted list of parts with mutual occluders grouped together.

detect cycle(S) [finds a cycle]

Input: list of objects S � hS1; S2; : : : ; Sni
Output: determination of existence of a cycle and a list of

cycle-forming objects, if a cycle is found.
Algorithm:

if n � 1 return NO CYCLE
i1  1
for j = 2 to n + 1

if Sik occludes Sij�1 for k < j � 1 then
cycle is hSik ; Sik+1 ; : : : ; Sij�1 i

return CYCLE
else if no occluder of Sij�1 exists in S then

return NO CYCLE
else

let Sk be an occluder of Sij�1
ij  k

endif
endfor

Figure 5: Cycle detection algorithm used in IVS. This algorithm will find a cycle if
any initial contiguous subsequence of 1 < m � n vertices hS1; S2; : : : ; Smi forms
a cyclically-connected subgraph; i.e., a subgraph in which every part is occluded by
at least one other member of the subgraph. For subgraphs which are not cyclically
connected, the algorithm can fail to find existing cycles, but this is not necessary for
the correctness of IVS (for example, consider the occlusion graph with three nodes
A, B, and C where A! B! A and initial list hC; A; Bi).



L G comment

ABC ; initial state
BC A insert A onto G
C AB insert B onto G
; ABC insert C onto G

Figure 6: IVS Example 1: Each line shows the state of L and G after the next while
loop iteration, using the graph of Figure 2(b) and initial ordering ABC.

L G comment

CBA ; initial state
BC�A ; mark C and reinsert after B

C�AB� ; mark B and reinsert after A
AB�C� ; A unmarked, so reinsert C

BC A insert A onto G, unmark everything
C AB insert B onto G
; ABC insert C onto G

Figure 7: IVS Example 2: Using the graph of Figure 2(b), this time with initial
ordering CBA. The notation P� is used to signify marking. The step from 3 to 4
reinserts C into L because there is an unmarked element, A, between C and the furthest
element occluding it, B.

L G comment

ABC ; initial state
BCA� ; mark A and reinsert

CA�B� ; mark B and reinsert
A�B�C� ; mark C and reinsert

(ABC) ; group cycle
; (ABC) insert (ABC) onto G

Figure 8: IVS Example 3: Using the graph of Figure 2(c) with initial ordering ABC.
The notation (P1; P2; : : : ; Pr) denotes grouping.

property that an object Q further in the list from a given object P, and all
objects after Q, can not occlude P if Q’s min depth exceeds the max depth
of P. Naively, IVS requires testing potentially all n objects to see if any
occlude a given one, resulting in an O(n2) algorithm. Fortunately, we will
see in the next section how the occlusion culling may be sped up using
simple hierarchical techniques, actually improving upon NNS occlusion
culling (see Section 8).

The IVS algorithm is presented in Figures 4 and 5. Mathematically, the
IVS algorithm computes an incremental topological sort on the strongly
connected components of the directed occlusion graph (see [Sedgewick83]
for background on directed graphs, strongly connected components, and
topological sort). A strongly connected component (SCC) in the occlusion
graph is a set of mutually occluding objects, in that for any object pair A
and B in the SCC, either A ! B or there exist objects, X1;X2; :::;Xs also
in the SCC such that

A ! X1 ! X2 ! :::! Xs ! B:

The IVS algorithm finds the parts comprising each SCC, and optionally
computes the occlusion subgraph of the members of each SCC to resolve
nonbinary cycles without aggregating layers (Section 5).

A series of example invocations of the IVS algorithm for some of the
occlusion graphs in Figure 2 are presented in Figures 6, 7, and 8. A proof
of correctness is contained in [Snyder97].

The IVS algorithm takes advantage of coherence in the visibility ordering
from the previous frame. When a given object A is popped off the list, it
is likely that few objects further in the list will occlude it. Typically, no
objects will be found to occlude A and it will be immediately inserted onto
G. If we can quickly determine that no objects occlude A, and the new
ordering requires no rearrangements, the algorithm verifies that the new
order is identical to the old with computation O(n log n) in the total number
of objects. In essence, the algorithm’s incrementality allows it to examine
only a small subset of the potentially O(n2) arcs in the occlusion graph.

We assume that occlusion cycles (SCCs) will be small and of limited
duration in typical scenes. This assumption is important since the cycle de-
tection algorithm has quadratic complexity in the number of cycle elements.
The visibility sorting algorithm does not attempt to exploit coherence in
persistent occlusion cycles.

X1

X2

Z

α0

α1

E
α0

α1

E

A

B
β1

β0

Z

X1

X2

angular extent: [�0; �1] [�0; �1]
T

[�0; �1] = ; ) B 6! A

Figure 9: Angular extent occlusion culling: Angular extents are defined with
respect to an eye point E and a orthogonal coordinate frame (X1; X2; Z) where X2
(out of the page) is perpendicular to the plane in which angles are measured, Z defines
the zero angle, and X1 defines an angle of +�=2 radians. The resulting extent is
simply an interval: [�0; �1]. To determine that B 6! A (right side of figure), we test
for empty interval intersection.

As the number of re-arrangements required in the new order increases
(i.e., as the coherence of the ordering decreases) the IVS algorithm slows
down, until a worst case scenario of starting from what is now a completely
reversed ordering requires O(n2) outer while loop iterations. This is anal-
ogous to using insertion sort for repeatedly sorting a coherently changing
list: typically, the sort is O(n), but can be O(n2) in pathologically incoherent
situations.

The algorithm’s complexity is bounded by (n + r)(s + co + c2) where r is
the number of reinsertions required, c is the maximum number of objects
involved in an occlusion cycle, o is the maximum number of primitive
occluders of a (possibly grouped) object, and s is the complexity of the
search for occluders of a given object. The first factor represents the
number of outer while-loop iterations of IVS. In the second factor, the
three terms represent time to find potential occluders, to reduce this set
to actual occluders (see Section 4.1.3), and to detect occlusion cycles.
Typically, r � O(n), c � O(1), o � O(1), and s � O(log n) resulting in
an O(n log n) algorithm. In the worst case, many reinsertions are required,
many objects are involved in occlusion cycles, and many objects occlude
any given object so that r � O(n2), c � O(n), o � O(n), and s � O(n)
resulting in an O(n4) algorithm. This analysis assumes that occlusion
detection between a pair of parts requires constant time.

When the animation is started and at major changes of scene, there is no
previous visibility sort to be exploited. In this case, we use an initial sort
by distance from the eye point to the centroid of each part’s bounding hull.
Using a sort by z is less effective because it sorts objects behind the eye
in reverse order; sorting by distance is effective even if the view direction
swings around rapidly.

4.1 Occlusion Culling
The fundamental query of the IVS algorithm determines which current
objects occlude a given (possibly grouped) object. To quickly cull the list
of candidate occluders to as small a set as possible, we bound each part with
a convex polyhedron and determine the spatial extent of this convex bound
with respect to a predetermined set of directions, as in [Kay86]. These
directions are of two types. Spatial extents are projections along a given
3D vector. Angular extents are projected angles with respect to a given eye
point and axis. Spatial extents are defined by extremizing (maximizing and
minimizing) S(P) � D � P over all points P in the convex hull. Angular
extents are defined similarly by extremizing2

A(P) � tan�1
�

(P� E) � Z

(P� E) � X1

�
(2)

where E is the “eye” point, Z defines the zero angle direction, and X1
defines the positive angles.

Given two objects, A and B, with interval bounds for each of their extents,
occlusion relationships can be tested with simple interval intersection tests
performed independently for each extent, as shown in Figures 9 and 10.
The content author chooses the number of spatial (ks) and angular (ka)
extents and their directions; let k � ks + ka be the total number. If any of

2Care must be taken when the denominator is close to 0. This is easily accomplished in the C
math library by using the function atan2.



b1

b1

D

a0 a1

E

b0

A
B

a'0 a'1 b0

D

a0 a1

E
A

b1
b0

B

a'0 a'1
b0 b1

D

E

b1
b0

B

b0 b1

a'0 a'1

a0 a1

A

(a) B 6! A (b) B! A (c) B! A

Figure 10: Spatial extent occlusion culling: Spatial extents are defined with respect
to a direction D. To test whether B ! A, A’s spatial extent [a0; a1] is expanded
by E � D to yield [a00; a01]. Three cases can occur. In (a), [a00; a01] is disjoint from
B’s extent [b0; b1], so B 6! A. In (b), [a00; a01] overlaps with [b0; b1], so B ! A
is possible. In (c), [a00; a01] overlaps with [b0; b1] even though A’s extent [a0; a1]
is disjoint from B. Again, B ! A is possible. Note that in case (b) and (c), the
occlusion cull tests must determine B! A for all k extents before concluding B is a
possible occluder of A.

the k tests finds that B 6! A then the test can be concluded and B rejected
as an occluder without testing more extents.

Note that the algorithm computes all intersecting pairs, which is a useful
computational by-product for simulation. View frustum culling is made
trivial by computing the angular extents of the visible region once at the
start of each frame and determining whether each objects’ angular extents
intersect it.

4.1.1 Tracking Extents on Convex Hulls

Spatial extent directions can be fixed in space (e.g., the coordinate axes, but
note that arbitrary directions are allowed) or tied to the camera. Camera-
independent spatial extents only need to be updated when the object moves;
camera-dependent spatial extents must be updated when the object or the
camera moves. Angular extents must also be updated whenever the object
or camera moves. For the results in Section 8, in one case (Tumbling
Toothpicks) we used two orthogonal angular extents (screen x and y direc-
tions) and the orthogonal camera-dependent spatial extent (Z). In another
case with many unmoving objects (Canyon Flyby), we used 3 mutually
orthogonal camera-independent spatial extents.

For convex bounding polyhedra, spatial and angular extents can be
updated simply by “sliding downhill” (i.e., gradient descent) from vertex
to neighboring vertex, evaluating the objective function (S or A) at each
vertex. At each iteration, the neighboring vertex having the minimum
value is accepted as the starting point for the next iteration. If no neighbors
have a smaller objective function, then the computation is halted with the
current vertex returned as the minimizer. Small motions of the convex
hull or the spatial/angular reference frame move the new extremal vertex at
most a few neighbors away from the last one. By starting with the extremal
vertex from the last query, coherence in object and camera motions is thus
exploited.

4.1.2 Accelerating Occlusion Queries with Kd-Trees

We have reduced the problem of finding all potential occluders of an object
A to

1. forming a query extent for A, in which an k-dimensional interval is
created by taking the angular extents without change and the spatial
extents after enlarging by E � D, and

2. finding all objects that overlap this query.

We hierarchically organize part extents using a kd-tree to accelerate finding
the set of overlapping extents for a given query.

A kd-tree [Bentley75] is a binary tree which subdivides along k fixed
dimensions. Each node T in the tree stores both the dimension subdivided
(T:i) and the location of the partitioning point (T:v). Object extents whose
T:i-th dimension interval lower bound is less than T:v are placed in the left
child of node T; those whose upper bound is greater than T:v are placed in
the right child. Objects which straddle kd-planes are simply inserted into
both subtrees. Note that the planes are not used directly to determine the
visibility order; the structure simply accelerates occlusion queries.

A simple minimum cost metric is used to determine a subdivision point
for a list of intervals, representing the 1D extents of the set of objects with
respect to one of the ka angular or ks spatial directions. Our cost metric
sums the length of the longer of the left and right sublists and the number of

intervals shared between left and right. Avoiding lopsided trees and trees
in which many objects are repeated in both subtrees is desirable since such
trees tend to degrade query performance in the average case. The cost can
be computed with a simple traversal of a sorted list containing both upper
and lower bounds; details can be found in [Snyder97].

To build the kd-tree, we begin by sorting each of the k interval sets to
produce k 1D sorted bound lists, containing both upper and lower bounds.
The kd-tree is then built recursively in a top-down fashion. To subdivide
a node, the partitioning cost is computed for each of the k bound lists, and
the dimension of lowest cost actually used to partition. Bound lists for
the partitioned children are built in sorted order by traversing the sorted
parent’s list, inserting to either or both child lists according to the computed
partitioning. We then recurse to the left and right sides of the kd-tree. The
algorithm is terminated when the longer child list is insufficiently smaller
than its parent (we use a threshold of 10). A node T in the final kd-tree
stores the 1D sorted bound list only for dimension T:i, which is used to
update the subdivision value T:v in future queries, and to shift objects
between left and right subtrees as they move. The other lists are deleted.

Since rebuilding is relatively expensive, the algorithm also incorporates
a quick kd-tree rebalancing pass. To rebalance the kd-tree as object extents
change, we visit all its nodes depth-first. At each node T, the 1D sorted
bound list is re-sorted using insertion sort and the cost algorithm is invoked
to find a new optimal subdivision point, T:v. Extents are then repartitioned
with respect to the new T:v, shifting extents between left and right subtrees.
Extent addition is done lazily (i.e., only to the immediate child), with further
insertion occurring when the child nodes are visited. Extent deletion is done
immediately for all subtrees in which the extent appears, an operation that
can be done efficiently by recording a (possibly null) left and right child
pointer for each extent stored in T. Note that coherent changes to the object
extents yield an essentially linear re-sort of bound lists, and few objects
that must be shifted between subtrees.

It is important to realize that the coherence of kd-tree rebalancing de-
pends on fixing the subdivision dimension T:i at each node. If changes
in the subdivided dimension were allowed, large numbers of extents could
be shifted between left and right subtrees, eliminating coherence in all
descendants. Fixing T:i but not T:v restores coherence, but since T:i is
computed only once, the tree can gradually become less efficient for query
acceleration as object extents change. This problem can be dealt with by
rebuilding the tree after a specified number of frames or after measures of
tree effectiveness (e.g., tree balance) so indicate. A new kd-tree can then
be rebuilt as a background process over many frames while simultaneously
rebalancing and querying an older version.

Querying the kd-tree involves simple descent guided by the query. At
a given node T, if the query’s T:i-th interval lower bound is less than
T:v, then the left subtree is recursively visited. Similarly, if the query’s
T:i-th interval upper bound is greater than T:v then the right subtree is
recursively visited. When a terminal node is reached, extents stored there
are tested for overlap with respect to all k dimensions. Overlapping extents
are accumulated into an occluder list. An extent is inserted only once in
the occluder list, though it may occur in multiple leaf nodes.

An additional concern is that the occlusion query should return occluders
of an object A that have not already been inserted into the output list. Re-
stricting the set of occluders to the set remaining in L can be accomplished
by activating/deactivating extents in the kd-tree.When A is popped off the
list L in the IVS algorithm, all objects grouped within it are deactivated.
Deactivated objects are handled by attaching a flag to each object in the list
stored at each terminal node of the kd-tree. Deactivating an object involves
following its left and right subtree pointers, beginning at the kd root, to
arrive at terminal lists containing the object to be deactivated. Activation is
done similarly, with the flag set oppositely. Counts of active objects within
each kd-tree node are kept so that nodes in which all objects have been
deactivated can be ignored during queries.

4.1.3 Avoiding Occlusion Cycle Growth

The occlusion testing described so far is conservative, in the sense that
possible occluders of an object can be returned which do not in fact occlude
it. There are two sources of this conservativeness. First, occlusion is tested
with respect to a fixed set of spatial and/or angular extents, which essentially
creates an object larger than the original convex hull and thus more likely to
be occluded. Second, extents for grouped objects are computed by simple



B

A

C

Figure 11: Occlusion cycle growth with grouped objects: In this example, A and B
have been grouped because they are mutually occluding. A simple bound around their
union, shown by the dashed lines, is occluded by object C, even though the objects
themselves are not. We therefore use the bounded extents around grouped objects for
a quick cull of nonoccluders, but further test objects which are not so culled to make
sure they occlude at least one primitive element of the grouped object.

unioning of the extents of the members, even though the unioned bound
may contain much empty space, as shown in Figure 11. The next section
will show how to compute an exact occlusion test between a pair of convex
objects, thus handling the first problem. This section describes a more
stringent test for grouped objects which removes the second problem.

Occlusion testing that is too conservative can lead very large groupings
of objects in occlusion cycles. In the extreme case every object is inserted
into a single SCC. This is especially problematic because of the second
source of conservatism – that bounds essentially grow to encompass all
members of the current SCC, which in turn occlude further objects, and so
on, until the SCC becomes very large.

To handle this problem, we perform additional tests when a grouped
object A is tested for occlusion. A’s unioned extents are used to return a
candidate list of possible occluders, as usual. Then the list of occluders is
scanned to make sure each occludes at least one of the primitive members
of A, using a simple k-dimensional interval intersection test. Any elements
of the list that do not occlude at least one member of A are rejected,
thus ensuring that “holes” within the grouped object can be seen through
without causing occlusions. Finally, remaining objects can be tested against
primitive members of A using the exact occlusion test.

4.2 Occlusion Testing
The algorithms in Section 4.1 provide a fast but conservative pruning of the
set of objects that can possibly occlude a given object A. To produce the set
of objects that actually occlude A with respect to the convex hull bounds,
we apply an exact test of occlusion for primitive object pairs (A;B), which
determines whether B ! A. The test is used in the IVS algorithm by
scanning the list of primitive elements of the possibly grouped object A
and ensuring that at least one occluder in the returned list occludes it, with
respect to the exact test. The exact test is thus used as a last resort when
the faster methods fail to reject occluders.

The exact occlusion test algorithm is as follows:

ExactConvexOcclusion(A,B,E) [returns whether B!E A]

if all (non eye-expanded) spatial extents of A and B intersect
initiate 3D collision tracking for hA; Bi, if not already
if A and B collide, return B! A
if E on same side of separating plane as A, return B 6! A

endif

if B contains eye point E, return B! A [B occludes everything]
initiate occlusion tracking for hB;Ai, if not already
return result of occlusion test

Both the collision and occlusion query used in the above algorithm can
be computed using the algorithm in Appendix A. While the collision query
is not strictly necessary, it is more efficient in the case of a pair of colliding
objects to track the colliding pair once rather than tracking two queries
which bundle the eye point with each of the respective objects. For scenes
in which collisions are rare, the direct occlusion test should be used.

The IVS algorithm is extended to make use of a hash table of object
pairs for which 3D collision or occlusion tracking have been initialized,
allowing fast access to the information. Tracking is discontinued for a pair
if the information is not accessed after more than one frame.

Note that further occlusion resolution is also possible with respect to the
actual objects rather than convex bounds around them. It is also possible
to inject special knowledge in the occlusion resolution process, such as
the fact that a given separating plane is known to exist between certain
pairs of objects, like joints in an articulated character or adjacent cells in a

pre-partitioned terrain. Special purpose pairwise visibility codes can also
be developed; Appendix B provides an example for a cylinder with endcap
tangent to a sphere that provides a visibility heuristic for articulated joints
in animal-like creatures.

4.3 Conditioning Sort
After each IVS invocation, we have found it useful to perform a condi-
tioning sort on the output that “bubbles up” SCCs based on their midpoint
with respect to a given extent. More precisely, we reorder according to the
absolute value of the difference of the midpoint and the projection of the
eye point along the spatial extents. The camera-dependent Z direction is
typically used as the ordering extent, but other choices also provide ben-
efit. An SCC is only moved up in the order if doing so does not violate
the visibility ordering; i.e., the object does not occlude the object before
which it is inserted. This conditioning sort smooths out computation over
many queries. Without it, unoccluding objects near the eye can remain
well back in the ordering until they finally occlude something, when they
must be moved in front of many objects in the order, reducing coherence.
The conditioning sort also sorts parts within SCCs according to extent mid-
point, but ignoring occlusion relationships (since the SCC is not visibility
sortable).

5 Resolving Non-Binary Cycles
Following [Porter84], we represent a shaped image as a 2D array of 4-
tuples, written

A � [Ar;Ag;Ab;A�]

where Ar;Ag;Ab are the color components of the image and A� is the
transparency, in the range [0; 1].

Consider the cyclic occlusion graph and geometric situation shown in
Figure 2c. Clearly,

A over B over C

produces an incorrect image because C ! A but no part of C comes before
A in the ordering. A simple modification though produces the correct
answer:

A out C + B out A + C out B:

where “out” is defined as

A out B � A(1� B�):

This expression follows from the idea that objects should be attenuated by
the images of all occluding objects. Another correct expression is

(C atop A) over B over C

where “atop” is defined as

A atop B � AB� + (1� A�)B:

In either case, the expression correctly overlays the relevant parts of oc-
cluding objects over the occluded objects, using only shaped images for
the individual objects (refer to Figure 12). Technically, the result is not
correct at any pixels partially covered by all three objects, since the matte
channel encodes coverage as well as transparency. Such pixels tend to be
isolated, if they exist, and the resulting errors of little significance.3

The above example can be generalized to any collection of objects with
a known occlusion graph having no binary cycles: cycles of the form
A ! B;B ! A. The reason binary cycles can not be handled is that in
the region of intersection of the bounding hulls of A and B, we simply
have no information about which object occludes which. Note also that
the compositing expression in this case reduces to A out B + B out A which
incorrectly eliminates the part of the image where A

T
B projects.

A correct compositing expression for n shaped images Ii is given by
nX

i=1

Ii OUT
fj j Oj!Oig

Ij (3)

The notation OUT with a set subscript is analogous to the multiplication
accumulator operator �, creating a chain of “out” operations, as in

D OUT
fA;B;Cg

= D out A out B out C:

3Recall too that overlaying shaped images where the matte channel encodes coverage is itself
an approximation since it assumes uncorrelated silhouette edges.



A B C A2 = C atop A

A1 = A out C B1 = B out A C1 = C out B

A2 over B
over C

A1 + B1 + C1

Figure 12: Compositing expressions for cycle breaking: The original sprite images
are shown as A, B, C. Using “over-atop”, the final image is formed by (C atop A) over
B over C. Using “sum-of-outs”, the final image is formed by (A out C) + (B out A) +
(C out B).

In words, (3) sums the image for each object Oi, attenuated by the “out”
chain of products for each object Oj that occludes Oi (Figure 12, bottom
row).

An alternate recursive formulation using atop is harder to compile but
generates simpler expressions. As before, we have a set of objects O =
fOig together with an occlusion graph G for O containing no binary cycles.
The subgraph of G induced by an object subset X � O is written GX . Then
for any O� 2 O

I(GO) =
�

I(GfOijOi!O�g) atop I(O�)
�

over I(GO�fO�g) (4)

where I(G) represents the shaped image of the collection of objects using
the occlusion graph G. In other words, to render the scene, we can pick any
isolated object O�, find the expression for the subgraph induced by those
objects occluding O�, and compute that expression “atop” O� (Figure 12,
top right). That result is then placed “over” the expression for the subgraph
induced by removing O� from the set of objects O. Note also that the
above expression assumes I(G;) = 0.

Proofs of correctness of the two expressions is available in a technical
report [Snyder98].

Compositing Expression Compilation
An efficient approach to generating an image compositing expression for
the scene uses the IVS algorithm to produce a visibility sorted list of SCCs.
Thus the images for each SCC can be combined using a simple sequence of
“over” operations as in Expression (1). Most SCCs are singletons (contain-
ing a single object). Non-singleton SCCs are further processed to merge
binary cycles, using the occlusion subgraph of the parts comprising the
SCC. Merging must take place iteratively in case binary cycles are present
between objects that were merged in a previous step, until there are no bi-
nary cycles between merged objects. We call such merged groups BMCs,
for binary merged components. Expression (3) or (4) is then evaluated
using the resulting merged occlusion graph to produce an expression for
the SCC. Each BMC must be grouped into a single layer, but not the entire
SCC. For example, Figure 2(c) involves one SCC but three BMCs, since
there are no binary cycles.

It is clear that Expression (3) can be evaluated using two image registers:
one for accumulating a series of “out” operations for all image occluders
of a given object, and another for summing the results. Expression (4) can
be similarly compiled into an expression using two image resisters: one
for “in” or “out” operations and one for sum accumulation [Snyder98].
Two image registers thus suffice to produce the image result for any SCC.
An efficient evaluation for the scene’s image requires a third register to
accumulate the results of the “over” operator on the sorted sequence of
SCCs. This third register allows segregation of the SCCs into separately
compilable units.

Given such a three-register implementation, it can be seen why Expres-
sion (4) is more efficient. For example, for a simple ring cycle of n objects;
i.e., a graph

O1 ! O2 ! � � � ! On ! O1

the “sum-of-outs” formulation (Expression 3) produces

I(O1)outI(On) + I(O2)outI(O1) + I(O3)outI(O2) + � � � + I(On)outI(On�1)

with n “out” and n � 1 addition operations, while the “over-atop” formu-
lation (Expression 4) produces

(I(On) in I(O1) + I(O1) out I(On)) over I(O2) over � � � over I(On)

with n � 1 “over”, 1 “in”, 1 “out”, and 1 addition operators. Assuming
“over” is an indispensable operator for hardware implementations and is
thus atomic, the second formulation takes advantage of “over” to reduce
the expression complexity.

6 Pre-Splitting to Remove Binary Cycles
The use of convex bounding hulls in occlusion testing is sometimes overly
conservative. For example, consider a pencil in a cup or an aircraft flying
within a narrow valley. If the cup or valley form a single part, our visibility
sorting algorithm will always group the pencil and cup, and the aircraft
and valley, in a single layer (BMC) because their convex hulls intersect.
In fact, in the case of the valley it is likely that nearly all of the scene’s
geometry will be contained inside the convex hull of the valley, yielding a
single layer for the entire scene.

To solve this problem, we pre-split objects that are likely to cause un-
wanted aggregation of parts. Objects that are very large, like terrain,
are obvious candidates. Foreground objects that require large rendering
resources and are known to be “containers”, like the cup, may also be
pre-split. Pre-splitting means replacing an object with a set of parts, called
split parts, whose convex hull is less likely to intersect other moving parts.
With enough splitting, the layer aggregation problem can be sufficiently
reduced or eliminated.

Simple methods for splitting usually suffice. Terrain height fields can
be split using a 2D grid of splitting planes, while rotationally symmetric
containers, like a cup, can be split using a cylindrical grid. A 3D grid of
splitting planes can be used for objects without obvious projection planes
or symmetry (e.g., trees). On the other hand, less naive methods that split
more in less convex regions can reduce the number of split parts, improving
performance. Such methods remain to be investigated in future work.

Pre-splitting produces a problem however. At the seam between split
neighbors the compositor produces a pixel-wide gap, because its assump-
tion of uncorrelated edges is incorrect. The split geometry exactly tessel-
lates any split surfaces; thus alpha (coverage) values should be added at
the seam, not over’ed. The result is that seams become visible.

To solve this problem, we extend the region which is included in each
split object to produce overlapping split parts, a technique also used in
[Shade96]. While this eliminates the visible seam artifact, it causes split
parts to intersect, and the layer aggregation problem recurs. Fortunately,
adjacent split parts contain the same geometry in their region of overlap.
We therefore add pairwise separating planes between neighbors, because
both agree on the appearance within the region of overlap so either may be
drawn. This breaks the mutual occlusion relationship between neighbors
and avoids catastrophic layer growth. But we use the convex hulls around
the “inflated” split parts for testing with all other objects, so that the correct
occlusion relationship is still computed.

Note that the occlusion sort does not preclude splitting arrangements
like hexagonal terrain cells that permit no global partitioning planes. All
that is required is pairwise separation.

7 Visibility Correct Depth of Field
2D image blurring is a fast method for simulating depth of field effects
amenable to hardware implementation [Rokita93]. Unfortunately, as ob-
served in [Cook84], any approximation that uses a single hidden-surface-
eliminated image, including [Potmesil81,Rokita93], causes artifacts be-
cause no information is available for occluded surfaces made visible by
depth of field. The worst case is when a blurry foreground object occludes
a background object in focus (Figure 13). As shown in the figure, the
approximation of [Potmesil81] sharpens the edge between the foreground
and background objects, greatly reducing the illusion. Following [Max85],
but using correct visibility sorting, we take advantage of the information in
layer images that would ordinarily be eliminated to correct these problems.

The individual image layers are still approximated by spatially invariant
blurring in the case of objects having small depth extent, or by the spatially
varying convolution from [Potmesil81]. Image compositing is used be-
tween layers. Since a substantial portion of depth of field cues come from



(a) no depth of field (b) single layer depth of field approx. (c) two layer visibility compositing approx.

Figure 13: Simulating depth of field with image blurring.

Figure 14: Toothpick example (nobjs=800, uniform scale): This image shows a
frame from the first experiment, drawn with hidden line elimination by using Painter’s
algorithm with the computed visibility order. For the hidden line processing, singleton
SCCs are simply drawn by finding the part’s silhouette, filling its interior in white
and then its boundary as a black polyline. Nonsingleton SCCs are further processed
to find visible intersection and silhouette edges dynamically, but only the few objects
comprising the SCC need be considered, not the entire scene.

edge relations between foreground and background objects, we consider
this a good approximation, although blurring without correctly integrating
over the lens only approximates the appearance of individual parts.

Grouping parts in a BMC because of occlusion undecomposability ex-
acts a penalty. Such grouping increases the depth extent of the members
of the group so that the constant blur approximation or even the more ex-
pensive depth-based convolution incur substantial error. For groupings of
large extent, the renderer could resort to rendering integration using the ac-
cumulation buffer [Haeberli90]. Such integration requires many rendering
passes (23 were used in images from [Haeberli90]), representing a large
allocation of system resources to be avoided when simple blurring suffices.

8 Results
All timings are reported for one processor of a Gateway E5000-2300MMX
PC with dual Pentium II 300MHz processors and 128MB of memory.
Measured computation includes visibility sorting and kd-tree building and
rebalancing. The kd-tree was built only once at the start of each animation;
the amortized cost to build it is included in the “average” cpu times reported.

Tumbling Toothpicks
The first results involve a simulation of tumbling “toothpicks”, eccentric

ellipsoids, moving in a cubical volume (Figure 14). The toothpicks bounce
off the cube sides, but are allowed to pass through each other. Each
toothpick contains 328 polygons and forms one part. There are 250 frames
in the animation.

In the first series of experiments, we measured cpu time per frame, as
a function of number of toothpicks (Figure 15). Time per frame averaged
over the entire animation and maximum time for any frame are both re-
ported. One experiment, labeled “us” for uniform scale in the figure, adds
more toothpicks of the same size to the volume. This biases the occlusion
complexity superlinearly with number of objects, since there are many
more collisions and the size of the average occlusion cycle increases. With
enough toothpicks, the volume becomes filled with a solid mass of moving
geometry, forming a single SCC. As previously discussed, the algorithm is
designed for situations in which occlusion cycles are relatively small.

A more suitable measure of the algorithm’s complexity preserves the av-
erage complexity per unit volume and simply increases the visible volume.
This effect can be achieved by scaling the toothpicks by the cube root of
their number ratio, so as to preserve average distance between toothpicks
as a fraction of their length. The second experiment, labeled “ud” for uni-
form density presents these results. The results demonstrate the expected
O(n log n) rate of growth. The two experiments are normalized so that the
simulations are identical within timing noise for nobjs=200: the uniform

density experiment applies the scale (200=nobjs)
1
3 to the toothpicks of the

other trials. In particular, note that a simulation with 200 toothpicks (220
total objects including cube parts), can be computed at over 100Hz, making
it practical for real-time applications. To verify the above scaling assump-
tions, the following table summarizes some visibility statistics (averaged
over all frames of the animation) for the baseline scene with 200 toothpicks
and the two scenes with 1600 toothpicks (uniform density, uniform scale):

measurement nobjs=200 nobjs=1600 nobjs=1600
(uniform density) (uniform scale)

fraction of SCCs that
are nonsingleton

.0454 .04633 .2542

fraction of parts in non-
singleton SCCs

.0907 0.0929 .5642

average size of nonsin-
gleton SCCs

2.097 2.107 3.798

max size of SCCs 2.64 3.672 45.588

With the exception of the “max size of nonsingleton SCC” which we
would expect to increase given that the 1600 object simulation produces
greater probability that bigger SCCs will develop, the first two columns in
the table are comparable, indicating a reasonable scaling, while the third
indicates much greater complexity. Note also that the large maximum cpu
time for the 1400 and 1600 uniform scale trials is due to the brief existence
of much larger than average sized occlusion cycles.

The second experiment measures cpu time with varying coherence. We
globally scale the rate of camera movement and the linear and angular
velocities of the toothpicks (Figure 16). The number of toothpicks was
fixed at 200; the trial with velocity scale of 1 is thus identical to the
trial with nobjs=200 in Figure 15. The algorithm is clearly sensitive to
changing coherence, but exhibits only slow growth as the velocities become
very large. Not surprisingly, the difference between average and worst case
query times increases as coherence decreases, but the percentage difference
remains fairly constant, between 17% and 30%.

To calibrate the results of the second experiment, let S be the length
of the image window and W the length of the cube side containing the



0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600

cp
u 

(s
ec

on
ds

/fr
am

e)

no. objects

us max
us avg

ud max
ud avg

no. objs 25 50 100 200 400 800 1600

avg. cpu (ms) [ud] 1.51 2.51 4.81 9.97 23.1 51.7 122
max cpu (ms) [ud] 2.40 3.55 6.28 11.8 26.3 56.9 131

avg. cpu (ms) [us] 1.32 2.17 4.21 10.1 27.0 92.5 849
max cpu (ms) [us] 2.28 3.11 5.57 11.9 30.5 134 3090

Figure 15: Performance with increasing number of objects.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 10 20 30 40 50 60 70

cp
u 

(s
ec

on
ds

/fr
am

e)

velocity scale

ud max
ud avg

vel. scl. .25 .5 1 2 4 8 16 32 64

avg cpu (ms) 9.15 9.52 9.78 11.0 12.6 13.8 16.1 19.3 25.2
max cpu (ms) 10.9 11.2 11.6 13.2 15.3 16.7 19.5 25.0 32.0

Figure 16: Performance with increasing velocity (decreasing coherence).

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600

cp
u 

(s
ec

on
ds

/fr
am

e)

no. objects

k=1 us
k=3 us
k=1 ud
k=3 ud

no. objs 50 100 200 400 800 1600

k = 3 cpu (ms) [ud] 2.51 4.81 9.97 23.1 51.7 122
k = 1 cpu (ms) [ud] 2.65 5.48 12.7 38.0 124 447
% diff. [ud] 5.55% 14.0% 27.7% 64.6% 140% 267%

k = 3 cpu (ms) [us] 2.17 4.21 10.1 27.0 92.5 849
k = 1 cpu (ms) [us] 2.28 4.79 12.9 47.2 215 1780
% diff. [us] 5.05% 13.6% 28.7% 74.4% 132% 109%

Figure 17: Comparison of kd-tree culling with different numbers of extents. Cpu
times are for the average case.

toothpicks. For the unit scale trial the velocity measured at one toothpick
end and averaged over all frames and toothpicks was 0.117% S per frame
(image space) and 0.269% W per frame (world space). This amounts to
an average of 14.2 and 6.2 seconds to traverse the image or cube side
respectively at a 60Hz frame rate.4

In a third experiment (Figure 17), we compared performance of the
algorithm using kd-trees that sort by different numbers of extents. The
same simulations were run as in the first experiment, either exactly as before
(k = 3, using two angular extents and the perpendicular camera-dependent
spatial extent Z), or using kd-tree partitioning only in a single dimension
(k = 1, using only Z). In the second case, the two angular extents were still
used for occlusion culling, but not for kd-tree partitioning. This roughly
simulates the operation of the NNS algorithm, which first examines objects
that overlap in depth before applying further culls using screen bounding
boxes. It can be seen that simultaneously searching all dimensions is much
preferable, especially as the number of objects increases. For example, in
the uniform density case, using a single direction rather than three degrades
performance by 14% for 100 objects, 28% for 200, 65% for 400, up to 267%
for 1600. The differences in the uniform scale case are still significant but
less dramatic, since occlusion culling forms a less important role than layer
reordering and occlusion cycle detection.

We used the visibility sorting results to create a depth of field blurred re-
sult using compositing operations as described in Section 7, and compared
it to a version created with 21 accumulation buffer passes. The results are
shown in Figure 18. For the visibility compositing result, a constant blur
factor was determined from the circle of confusion at the centroid of the
object or object group, for all objects except the cube sides. Because of
the large depth extent of the cube sides, these few parts were generated
using the accumulation buffer technique on the individual layer parts and
composited into the result with the rest.

Canyon Flyby
The second results involve a set of aircraft flying in formation inside a

winding valley (Figure 19). We pre-split the valley terrain (see Section 6)
into split parts using 2D grids of separating planes and an inflation factor
of 20%. The animation involves six aircraft each divided into six parts
(body, wing, rudder, engine, hinge, and tail); polygon counts are given in
the table below:

object polygons hull polygons

body 1558 192
engine 1255 230
wing 1421 80
tail 22 22
rudder 48 28
hinge 64 46
sky (sphere) 480 -
terrain (unsplit) 2473 -

Using terrain splitting grids of various resolutions, we investigated ren-
dering acceleration using image-based interpolation of part images. The
following table shows average polygon counts per split part for terrain
splits using 2D grids of 20�20, 14�14, 10�10, 7�7, and 5�5:

grid split objects polygons/object hull polygons/object

20 � 20 390 31.98 29.01
14 � 14 191 48.91 37.78
10 � 10 100 76.48 42.42
7 � 7 49 130.45 57.51
5 � 5 25 225.32 72.72

Note that the “polygons” and “polygons/object” column in the above
tables are a measure of the average rendering cost of each part, while the
“hull polygons” and “hull polygons/object” column is an indirect measure
of computational cost for the visibility sorting algorithm, since it deals with
hulls rather than actual geometry.

Following results from [Lengyel97], we assumed the 6 parts of each
aircraft required a 20% update rate (i.e., could be rendered every fifth
frame and interpolated the rest), the terrain a 70% update rate, and the
sky a 40% update rate. These choices produce a result in which the
interpolation artifacts are almost imperceptible. To account for the loss

4While this baseline may seem somewhat slow-moving, it should be noted that small movements
of the parts in this simulation can cause large changes in their occlusion graph with attendant
computational cost. We believe this situation to be more difficult than typical computer graphics
animations. Stated another way, most computer graphics animations will produce similar occlusion
topology changes only at much higher velocities.



(a) Accumulation buffer (21 passes)

(b) Visibility compositing

Figure 18: Comparison of depth of field generation methods: The images show
two different depth of field renderings from the tumbling toothpicks experiment.
Toothpicks comprising a multi-object layer share a common color; singleton layers
are drawn in white. Note the occlusion relationships between the sphere/cylinder
joints at the cube sides, computed using the algorithm in Appendix B. While pairs
of spheres and cylinders are sometimes mutually occluding, the algorithm is able to
prevent any further occlusion cycle growth.

Figure 19: Scene from canyon flyby: computed using image compositing of sorted
layers with 14� 14 terrain split. The highlighted terrain portion is one involved in a
detected occlusion cycle with the ship above it, with respect to the bounding convex
hulls.

of coherence which occurs when parts are aggregated into a single layer,
we conservatively assumed that all parts so aggregated must be rendered
every frame (100% update rate), which we call the aggregation penalty.
The results are summarized in Figure 20.

The column “cpu” shows average and maximum cpu time per frame in
milliseconds. The next column (“terrain expansion factor”) is the factor
increase in number of polygons due to splitting and overlap; this is equal
to the total number of polygons in the split terrain divided by the original
number, 2473. The next columns show the fraction of visible layers that
include more than one part (“aggregate layers fraction”), followed by the
fraction of visible parts that are aggregated (“aggregated parts fraction”).
Visible in this context means not outside the viewable volume. Average re-
rendering (update) rates under various weightings and assumptions follow:
unit weighting per part with and without the aggregation penalty (“update
rate, unit weighting, (agg)” and “: : : (no agg)”), followed by the analogs
for polygon number weighting. Smaller rates are better in that they indicate
greater reuse of image layers through interpolation and less actual render-
ing. The factors without aggregation are included to show how much the
rendering rate is affected by the presence of undecomposable multi-object
layers. The polygon-weighted rates account for the fact that the terrain has
been decomposed into an increased number of polygons. This is done by
scaling the rates of all terrain objects by the terrain expansion factor.

In summary, the best polygon-weighted reuse rate in this experiment,
38%, is achieved by the 14 � 14 split. Finer splitting incurs a penalty for
increasing the number of polygons in the terrain, without enough payoff
in terms of reducing aggregation. Coarser splitting decreases the splitting
penalty but also increases the number of layer aggregations, in turn reducing
the reuse rate via the aggregation penalty. Note the dramatic increase from
7 � 7 to 5 � 5 in poly-weighted update rate with aggregation penalty
(second rightmost column) – splits below this level fill up concavities in
the valley too much, greatly increasing the portion of aggregated objects.

It should be noted that the reuse numbers in this experiment become
higher if the fraction of polygons in objects with more coherence (in this
case, the aircraft) are increased or more such objects are added. Allow-
ing independent update of the terrain’s layers would also improve reuse,
although as pointed out in [Lengyel97] this results in artificial apparent
motion between terrain parts.

9 Conclusion
Many applications exist for an algorithm that performs visibility sorting
without splitting, including rendering acceleration, fast special effects gen-
eration, animation design, and incorporation of external image streams into
a synthetic animation. These techniques all derive from the observation
that 2D image processing is cheaper than 3D rendering and often suffices.
By avoiding unnecessary splitting, these techniques better exploit the tem-
poral coherence present in most animations, and allow sorting at the level
of objects rather than polygons. We have shown that the non-splitting
visibility sorting required in these applications can be computed in real-
time on PCs, for scenes of high geometric and occlusion complexity, and
demonstrated a few of the many applications.

Much future work remains. Using more adaptive ways of splitting
container objects is a straightforward extension. Incorporation of space-
time volumes would allow visibility-correct motion blur using 2D image
processing techniques. Further work is needed to incorporate visibility
sorting in animation design systems allowing preview of modifications in
their complete context without re-rendering unmodified elements. Op-
portunities also exist to invent faster and less conservative occlusion tests
for special geometric cases. Finally, further development is needed for
fast hardware which exploits software visibility sorting and performs 3D
rendering and 2D real-time image operations, such as compositing with
multiple image registers, blurring, warping, and interpolation.

Acknowledgments
We thank the Siggraph reviewers for their careful reading and many helpful
suggestions. Jim Blinn suggested the “sum of outs” resolution for nonbi-
nary cycles. Brian Guenter provided a most helpful critical reading. Susan
Temple has been an early adopter of a system based on these ideas and has
contributed many helpful suggestions. Jim Kajiya and Conal Elliot were
involved in many discussions during the formative phase of this work.



split cpu (ms) terrain layers agg. parts agg. update rate
avg max expan. fraction fraction unit weighting poly weighting

fac. (agg) (no agg) (agg) (no agg)

20�20 17.33 29.82 5.04 0.1% 0.2% 58.3% 58.1% 41.8% 40.7%
14�14 8.08 14.59 3.78 0.4% 1.0% 51.3% 50.2% 38.0% 36.0%
10�10 5.17 9.88 3.09 1.9% 6.4% 48.7% 40.9% 40.4% 30.7%

7�7 4.51 9.68 2.58 5.2% 22.5% 51.9% 37.8% 42.4% 27.8%
5�5 5.37 11.01 2.28 13.0% 53.1% 71.5% 32.3% 72.0% 26.1%

Figure 20: Canyon flyby results.

References
[Appel67] Appel A., “The Notion of Quantitative Invisibility and the Machine Ren-

dering of Solids,” In Proceedings of the ACM National Conference, pp. 387-393,
1967.

[Baraff90] Baraff, David, “Curved Surfaces and Coherence for Non-Penetrating
Rigid Body Simulation,” Siggraph ‘90, August 1990, pp. 19-28.

[Bentley75] Bentley, J.L., “Multidimensional Binary Search Trees Used for Asso-
ciative Searching,” Communications of the ACM, 18(1975), pp. 509-517.

[Chen96] Chen, Han-Ming, and Wen-Teng Wang, “The Feudal Priority Algorithm
on Hidden-Surface Removal,” Siggraph ’96, August 1996, pp. 55-64.

[Chung96a] Chung, Kelvin, and Wenping Wang, “Quick Collision Detection of
Polytopes in Virtual Environments,” ACM Symposium on Virtual Reality Soft-
ware and Technology 1996, July 1996, pp. 1-4.

[Chung96b] Chung, Tat Leung (Kelvin), “An Efficient Collision Detection Algo-
rithm for Polytopes in Virtual Environments,” M. Phil Thesis at the University
of Hong Kong, 1996 [www.cs.hku.hk/ tlchung/collision library.html].

[Cohen95] Cohen, D.J., M.C. Lin, D. Manocha, and M. Ponamgi, “I-Collide: An In-
teractive and Exact Collision Detection System for Large-Scale Environments,”
Proceedings of the Symposium on Interactive 3D Graphics,, 1995, pp. 189-196.

[Cook84] Cook, Robert, “Distributed Ray Tracing,” Siggraph ’84, July 1984, pp.
137-145.

[Durand97] Durand, Fredo, George Drettakis, and Claude Puech, “The Visibility
Skeleton: A Powerful and Efficient Multi-Purpose Global Visibility Tool,” Sig-
graph ’97, August 1997, pp. 89-100.

[Fuchs80] Fuchs, H., Z.M. Kedem, and B.F. Naylor, “On Visible Surface Generation
by A Priori Tree Structures,” Siggraph ’80, July 1980, pp. 124-133.

[Funkhouser92] Funkhouser, T.A., C.H. Sequin, and S.J. Teller, “Management of
Large Amounts of Data in Interactive Building Walkthroughs,” Proceedings of
1992 Symposium on Interactive 3D Graphics, July 1991, pp. 11-20.

[Gilbert88] Gilbert, Elmer G., Daniel W. Johnson, and S. Sathiya A. Keerthi, “A Fast
Procedure for Computing the Distance Between Complex Objects in Three-
Dimensional Space,” IEEE Journal of Robotics and Automation, 4(2), April
1988, pp. 193-203.

[Greene93] Greene, N., M. Kass, and G. Miller, “Hierarchical Z-buffer Visibility,”
Siggraph ’93, August 1993, pp. 231-238.

[Haeberli90] Haeberli, Paul, and Kurt Akeley, “The Accumulation Buffer: Hardware
Support for High-Quality Rendering,” Siggraph ’90, August 1990, pp. 309-318.

[Kay86] Kay, Tim, and J. Kajiya, “Ray Tracing Complex Scenes,” Siggraph ’86,
August 1986, pp. 269-278.

[Lengyel97] Lengyel, Jed, and John Snyder, “Rendering with Coherent Layers,”
Siggraph ’97, August 1997, pp. 233-242.

[Maciel95] Maciel, Paolo W.C. and Peter Shirley, “Visual Navigation of Large Envi-
ronments Using Textured Clusters,” Proceedings 1995 Symposium on Interactive
3D Graphics, April 1995, pp. 95-102.

[Mark97] Mark, William R., Leonard McMillan, and Gary Bishop, “Post-Rendering
3D Warping,” Proceedings 1997 Symposium on Interactive 3D Graphics, April
1997, pp. 7-16.

[Markosian97] Markosian, Lee, M.A. Kowalski, S.J. Trychin, L.D. Bourdev, D.
Goodstein, and J.F. Hughes, “Real-Time Nonphotorealistic Rendering,” Sig-
graph ’97, August 1997, pp. 415-420.

[Max85] Max, Nelson, and Douglas Lerner, “A Two-and-a-Half-D Motion-Blur
Algorithm,” Siggraph ’85, July 1985, pp. 85-93.

[McKenna87] McKenna, M., “Worst-Case Optimal Hidden Surface Removal,” ACM
Transactions on Graphics, 1987, 6, pp. 19-28.

[Ming97] Ming-Chieh Lee, Wei-ge Chen, Chih-lung Bruce Lin, Chunag Gu, Tomis-
lav Markoc, Steven I. Zabinsky, and Richard Szeliski, “A Layered Video Object
Coding System Using Sprite and Affine Motion Model,” IEEE Transactions on
Circuits and Systems for Video Technology, 7(1), February 1997, pp. 130-145.

[Molnar92] Molnar, Steve, John Eyles, and John Poulton, “PixelFlow: High-Speed
Rendering Using Image Compositing,” Siggraph ’92, August 1992, pp. 231-140.

[Mulmuley89] Mulmuley, K., “An Efficient Algorithm for Hidden Surface Re-
moval,” Siggraph ’89, July 1989, pp. 379-388.

[Naylor92] Naylor, B.F., “Partitioning Tree Image Representation and Generation
from 3D Geometric Models,” Proceedings of Graphics Interface ’92, May 1992,
pp. 201-212.

[Newell72] Newell, M. E., R. G. Newell, and T. L. Sancha, “A Solution to the Hidden
Surface Problem,” Proc. ACM National Conf., 1972.

[Ponamgi97] Ponamgi, Madhav K., Dinesh Manocha, and Ming C. Lin, “Incre-
mental Algorithms for Collision Detection between Polygonal Models,” IEEE
Transactions on Visualization and Computer Graphics, 3(1), March 1997, pp
51-64.

[Porter84] Porter, Thomas, and Tom Duff, “Compositing Digital Images,” Siggraph
’84, July 1984, pp. 253-258.

[Potmesil81] Potmesil, Michael, and Indranil Chakravarty, “A Lens and Aperture
Camera Model for Synthetic Image Generation,” Siggraph ’81, August 1981,
pp. 389-399.

[Potmesil83] Potmesil, Michael, and Indranil Chakravarty, “Modeling Motion Blur
in Computer-Generated Images,” Siggraph ’83, July 1983, pp. 389-399.

[Regan94] Regan, Matthew, and Ronald Pose, “Priority Rendering with a Virtual
Address Recalculation Pipeline,” Siggraph ’94, August 1994, pp. 155-162.

[Rokita93] Rokita, Przemyslaw, “Fast Generation of Depth of Field Effects in Com-
puter Graphics,” Computers and Graphics, 17(5), 1993, pp. 593-595.

[Schaufler96] Schaufler, Gernot, and Wolfgang Stürzlinger, “A Three Dimensional
Image Cache for Virtual Reality,” Proceedings of Eurographics ’96, August
1996, pp. 227-235.

[Schaufler97] Schaufler, Gernot, “Nailboards: A Rendering Primitive for Image
Caching in Dynamic Scenes,” in Proceedings of the 8th Eurographics Workshop
on Rendering ’97, St. Etienne, France, June 16-18, 1997, pp. 151-162.

[Schumacker69] Schumacker, R.A., B. Brand, M. Gilliland, and W. Sharp, “Study
for Applying Computer-Generated Images to Visual Simulation,” AFHRL-TR-
69-14, U.S. Air Force Human Resources Laboratory, Sept. 1969.

[Sedgewick83] Sedgewick, Robert, Algorithms, Addison-Wesley, Reading, MA,
1983.

[Shade96] Shade, Jonathan, Dani Lischinski, David H. Salesin, Tony DeRose, and
John Snyder, ”Hierarchical Image Caching for Accelerated Walkthroughs of
Complex Environments,” Siggraph ’96, August 1996, pp. 75-82.

[Sillion97] Sillion, François, George Drettakis, and Benoit Bodelet, “Efficient Im-
postor Manipulation for Real-Time Visualization of Urban Scenery,” Proceed-
ings of Eurographics ’97, Sept 1997, pp. 207-218.

[Snyder97] Snyder, John, and Jed Lengyel, “Visibility Sorting and Compositing for
Image-Based Rendering,” Microsoft Technical Report, MSR-TR-97-11, April
1997.

[Snyder98] Snyder, John, Jed Lengyel, and Jim Blinn, “Resolving Non-Binary
Cyclic Occlusions with Image Compositing,” Microsoft Technical Report, MSR-
TR-98-05, March 1998.

[Sudarsky96] Sudarsky, Oded, and Craig Gotsman, “Output-Sensitive Visibility Al-
gorithms for Dynamic Scenes with Applications to Virtual Reality,” Computer
Graphics Forum, 15(3), Proceedings of Eurographics ’96, pp. 249-258.

[Sutherland74] Sutherland, Ivan E., Robert F. Sproull, and Robert A. Schumacker,
“A Characterization of Ten Hidden-Surface Algorithms,” Computing Surveys,
6(1), March 1974, pp. 293-347.

[Teller91] Teller, Seth, and C.H. Sequin, “Visibility Preprocessing for Interactive
Walkthroughs,” Siggraph ’91, July 1991, pp. 61-19.

[Teller93] Teller, Seth, and P. Hanrahan, “Global Visibility Algorithms for Illumi-
nation Computations,” Siggraph ’93, August 1993, pp. 239-246.



[Torborg96] Torborg, Jay, and James T. Kajiya, “Talisman: Commodity Realtime
3D Graphics for the PC,” Siggraph ’96, August 1996, pp. 353-364.

[Torres90] Torres, E., “Optimization of the Binary Space Partition Algorithm (BSP)
for the Visualization of Dynamic Scenes,” Proceedings of Eurographics ’90,
Sept. 1990, pp. 507-518.

[Wang94] Wang, J.Y.A., and E.H. Adelson, “Representing Moving Images with
Layers,” IEEE Trans. Image Processing, vol. 3, September 1994, pp. 625-638.

[Zhang97] Zhang, Hansong, Dinesh Manocha, Thomas Hudson, and Kenneth Hoff
III, “Visibility Culling Using Hierarchical Occlusion Maps,” Siggraph ’97, Au-
gust 1997, pp. 77-88.

A Convex Collision/Occlusion Detection
To incrementally detect collisions and occlusions between moving 3D
convex polyhedra, we use a modification of Chung’s algorithm [Chung96a,
Chung96b]. The main idea is to iterate over a potential separating plane
direction between the two objects. Given a direction, it is easy to find
the extremal vertices with respect to that direction as already discussed in
Section 4.1.1. If the current direction D points outward from the first object
A, and the respective extremal vertices with respect to D are vA on object
A and vB on object B,5 then D is a separating direction if

D � vA < D � vB:

If D fails to separate the objects, then it is updated by reflecting with respect
to the line joining the two extremal points. Mathematically,

D0 � D � 2(R � D) R

where R is the unit vector in the direction vB�vA. [Chung96b] proves that if
the objects are indeed disjoint, then this algorithm converges to a separating
direction for the objects A and B. Coherence is achieved for disjoint objects
because the separating direction from the previous invocation often suffices
as a witness to their disjointness in the current invocation, or suffices after
a few of the above iterations.

While it is well known that collisions between linearly transforming and
translating convex polyhedra can be detected with efficient, coherent algo-
rithms, Chung’s algorithm has several advantages over previous methods,
notably Voronoi feature tracking algorithm ([Ponamgi97]) and Gilbert’s
algorithm ([Gilbert88]). The inner loop of Chung’s algorithm finds the
extremal vertex with respect to a current direction, a very fast algorithm
for convex polyhedra. Also, the direction can be transformed to the local
space of each convex hull once and then used in the vertex gradient de-
scent algorithm. Chung found a substantial speedup factor in experiments
comparing his algorithm with its fastest competitors. Furthermore, Chung
found that most queries were resolved with only a few iterations (< 4) of
the separating direction.

To detect the case of object collision, Chung’s algorithm keeps track of
the directions from vA to vB generated at each iteration and detects when
these vectors span greater than a hemispherical set of directions in S2.
This approach works well in the 3D simulation domain where collision
responses are generated that tend to keep objects from interpenetrating,
making collisions relatively evanescent. In the visibility sorting domain
however, there is no guarantee that a collision between the convex hulls
of some object pairs will not persist in time. For example, a terrain cell’s
convex hull may encompasses several objects for many frames. In this
case, Chung’s algorithm is quite inefficient.

To achieve coherence for colliding objects, we use a variant of Gilbert’s
algorithm [Gilbert88]. In brief, Gilbert’s algorithm iterates over vertices on
the Minkowski difference of the two objects, by finding extremal vertices
on the two objects with respect to computed directions. A set of up to four
vertex pairs are stored, and the closest point to the origin on the convex
hull of these points computed at each iteration, using Johnson’s algorithm
for computing the closest point on a simplex to the origin. If the convex
hull contains the origin, then the two objects intersect. Otherwise, the
direction to this point becomes the direction to locate extremal vertices for
the next iteration. In the case of collision, a tetrahedron on the Minkowski
difference serves as a coherent witness to the objects’ collision. We also
note that the extremal vertex searching employed in Gilbert’s algorithm can
be made more spatially coherent by caching the vertex from the previous

5Here, vA maximizes the dot product with respect to D over object A and vB minimizes the dot
product over object B, in a common coordinate system.

VC

s r

Ph
r

Figure 21: Sphere/cylinder joint occlusion: A cylinder of radius r in direction V
is tangent to the sphere of radius s with center C. An occlusion relationship can be
derived using the plane through the intersection, at distance h from C along V, and
the cone with apex at P such that lines tangent to the sphere through P pass through
the circle of intersection.

search on each of the two objects and always starting from that vertex in a
search query.

The final, hybrid algorithm uses up to 4 Chung iterations if in the
previous invocation the objects were disjoint. If the algorithm finds a
separating plane, it is halted. Otherwise, Gilbert’s iteration is used to find a
witness to collision or find a separating plane. In the case in which Chung
iteration fails, Gilbert’s algorithm is initialized with the 4 pairs of vertices
found in the Chung iterations. The result is an algorithm which functions
incrementally for both colliding and disjoint objects and requires only a
single query on geometry that returns the extremal vertex on the object
given a direction.

The algorithm can be used to detect collisions between two convex
polyhedra, or for point inclusion queries (i.e., single point vs. convex
polyhedron). It can also be used for occlusion detection between convex
polyhedra given an eye point E. To detect whether A ! B, we can test
whether B0 � convex hull(B

S
E) intersects with A. Fortunately, there

is no need to actually compute the polytope B0. Instead, the extremal
direction search of B0 is computed by first searching B as before. We then
simply compare that result with the dot product of the direction with E to
see if is more extreme and, if so, return E.

B Occlusion Testing for Sphere/Cylinder Joint
This section presents an method for testing occlusion between a sphere

and a cylinder tangent to it with respect to its end cap. Let the sphere
have center at C and radius s. The cylinder has unit-length central axis
in direction V away from the sphere, and radius r, r � s. Note that the
convex hulls of such a configuration intersect (one cylindrical endcap is
entirely inside the sphere), and thus the methods of Section 4.2 always
indicate mutual occlusion. However, two exact tests can be used to “split”
the cycle, indicating a single occlusion arc between the sphere and cylinder.
We assume the eye point E is not inside either object.

The cylinder occludes the sphere (and not vice versa) if the eye is on
cylinder side of endcap plane; i.e.

V � (E � C) � h � 0

where E is the eye point, and where h �
p

s2 � r2 is the distance from C
to the plane of intersection.

The sphere occludes the cylinder (and not vice versa) if the circle where
the sphere and cylinder intersect is invisible. This can be tested using
the cone formed by the apex P along the cylinder’s central axis for which
emanating rays are tangent to the sphere at the circle of intersection. If
the eye point is inside this cone, then the circle of intersection is entirely
occluded by the sphere. We define l � sr

h + h representing the distance
from P to C; P is thus given by C+lV . Then the sphere completely occludes
the circle of intersection if

(E � P) � (C � P) � 0

and
[(E � P) � (C � P)]2 � (l2 � s2)(E � P) � (E � P)

where the first test indicates whether E is in front of the cone apex, and the
second efficiently tests the square of the cosine of the angle, without using
square roots. Note that h and l can be computed once as a preprocess, even
if C and v vary as the joint moves.

If both these tests fails, then the sphere and cylinder are mutually oc-
cluding.


