
Visibility with a Moving Point of View

Marshall Bern ∗ David Dobkin † David Eppstein ‡ Robert Grossman §

Abstract

We investigate 3-d visibility problems in which the viewing position moves along
a straight flightpath. Specifically we focus on two problems: determining the points
along the flightpath at which the topology of the viewed scene changes, and answering
ray-shooting queries for rays with origin on the flightpath. Three progressively more
specialized problems are considered: general scenes, terrains, and terrains with vertical
flightpaths.

1. Introduction

In recent years computer-generated images have grown commonplace, but computer-
generated animations—sequences of images—are still prohibitively expensive for all but
a few uses. For the most part, this disparity is inherent: high-quality animation uses at
least 12 distinct images per second. On the other hand, this disparity is partially due to a
lack of algorithms. Successive images are typically treated independently, even though they
may differ only slightly.

In this paper we investigate a very simple type of animation: a fixed three-dimensional
scene is viewed from a sequence of different points of view. More specifically, successive
images correspond to perspective views of a polygonal scene from sample points along a
straight trajectory, or flightpath. Though this problem is quite basic, it is also widely
applicable in flight simulation and data visualization.

We assume that scenes are to be computed in object-space, that is, output is given as
device-independent 2-d coordinates, rather than pixel-by-pixel [27]. The currently prac-
tical solutions to this problem are image-space solutions: either z-buffers, or the priority
method with priority orderings computed using binary space partitions [8, 20]. Image space
solutions, however, suffer from aliasing and hence tend to produce lower quality images.

In a sequence of views of a static scene, transitions between viewpoints will typically be
smooth, rapidly-computable transformations. However, at certain points along the flight-
path topology changes occur—for example, when an object first peeks around the edge of
a closer object—and the visible scene is not so easily computed. We develop algorithms
∗Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304.
†Dept. of Computer Science, Princeton University, Princeton, NJ 08544, Supported in part by NSF Grant

CCR87-00917 and a Guggenheim Fellowship, work done while visiting Xerox PARC.
‡Dept. of Information and Computer Science, University of California, Irvine, CA 92717, work done while

at Xerox PARC.
§Dept. of Mathematics, U. of Illinois - Chicago, Chicago, IL 60680, work done while visiting Xerox PARC.

1



for discovering topology changes, meaning the critical flightpath points as well as the cor-
responding changes to the topology of the visible scene. We also describe data structures
that answer ray-shooting queries, that is, given a ray r with origin on the flightpath and
arbitrary direction, return the first polygon struck by r. This type of query is fundamental
to the technique of ray-tracing.

The running times of our algorithms depend on three parameters: n, the total number
of edges in all objects; `, the number of transparent topology changes (that is, the num-
ber of different scene topologies visible along the flightpath, assuming that all objects are
transparent); and k, the number of opaque topology changes. A major open problem in this
area is to replace dependence on ` by dependence on k, which is typically much smaller. In
general, 0 ≤ k ≤ ` < n3/3. We obtain the following results for finding topology changes.
In the first case we find all transparent—including opaque—topology changes; in the other
two we discover only opaque topology changes.

• For general polygonal scenes, a simple algorithm with running time O((n2 + `) logn)
and a more complicated algorithm with time O(n2 + ` log n).

• For terrains, an algorithm with time O((n+ k)λ3(n) logn). A terrain is a polyhedral
surface intersected at most once by any line parallel to the z-axis. The functions λi(n)
are slightly superlinear for each i [26].

• For terrains with vertical flightpaths, an algorithm with time O(nλ4(n) logn), match-
ing an earlier result of Cole and Sharir [5]. The two algorithms are similar, but our
explanation is more geometric and theirs more algebraic.

Techniques used in our algorithms include geometric sweeps and transforms similar to
skewed projection [12]. There are relationships between finding topology changes and two
planar problems: the well-studied problem of line segment intersection and the problem of
finding the external contour of a union of polygons.

The ray-shooting problem is, in a sense, a special case of point location in a 3-d subdi-
vision (the visible scene cross time). For this problem we obtain the following results.

• For the general problem, a data structure of size O(n2 +k) with query time O(log2 n).
Space improvement is possible if queries are ordered by time.

• For terrains with vertical flightpaths, a data structure of size O(nλ4(n)) with query
time O(log n), improving upon a known O(log2 n) [5] and giving the first O(log n)
point-location method for a transforming subdivision.

There has been surprisingly little work on these two problems directly, though there
has been a fair amount of related work. Cole and Sharir [5] solve a number of visibility
problems on terrains, including finding topology changes and ray-shooting for the special
case of vertical flightpaths. Hubschman and Zucker [11] treat convex objects. Swart [28]
considers the problem of viewing independently and linearly moving objects with trajectories
that can be dynamically changed. His running times, however, depend on events such as
changes in x-coordinate order of vertices in a projection of the scene. Plantinga [21, 22]
and others give algorithms that compute “aspect graphs” and “aspect representations” for
orthographic views of an object. These data structures have vertices or regions for each
of the O(n4) topologically distinct views of an object. Translating our results into their

2



Figure 1. Skewed projection of a polygonal scene.

terminology, we show that to determine all views along a given flightpath, only a small
portion of the (perspective) aspect representation need be computed.

2. Preliminaries

Assume we have a set S of polygons, nonintersecting except along boundaries, and an
oriented line segment f , the flightpath, in 3-space. Let f be parametrized by “time” t,
running from 0 to 1. The point on f with parameter value t will be denoted p(t).

We imagine projecting all polygons in S from a given point p(t) on f onto a sphere
centered at p(t) that is large enough to contain S. One can view this projection as an
embedding of a planar graph Gt, which has vertex set containing all intersection points of
edges and the obvious edge set. Vertices of Gt are labeled, perhaps with the “names” of the
intersecting edges. A point q along an edge of S is visible at time t if the line segment qp(t)
does not pass through the interior of a polygon of S. The projection from p(t) of all visible
points of S defines a labeled, embedded subgraph of Gt called Ht. The edges of Gt that
are not in Ht are called hidden lines. The visible scene at time t is the embedded graph Ht

with each face labeled by the name of the polygon of S visible within that face.
We say Gt and G′t are isomorphic if they are isomorphic as embedded, labeled graphs;

that is, the mapping must preserve the embedding and the vertex labels. A transparent
(opaque) topology change occurs at t if Gt (respectively, Ht) changes, that is, for each small
ε > 0, Gt−ε and Gt are nonisomorphic.

The problem of “finding all topology changes” is the following: given S and f , compute
a list of the critical values of t at which a topology change occurs. This list should be in
order of increasing t, and each entry in the list should include a description (of length O(1))
of the changes to the visible scene. The following lemma is immediate.

Lemma 1. A transparent topology change occurs at time t if and only if there are three
edges e1, e2, and e3 of (not necessarily distinct) polygons in S such that there is a line that
intersects p(t), e1, e2, and e3. An opaque topology change occurs at time t if, in addition,
there is a line segment with one endpoint at p(t) that intersects e1, e2, and e3 and passes
through no polygon interiors.

Now let e be a line segment, not lying on the same line as the fixed flightpath f , and
parametrized by u running between 0 and 1. Let T be the interior of the tetrahedron
defined by all line segments with one endpoint on e and one on f . We define a mapping

3



spe : T → [0, 1] × [0, 1] as follows: a point p ∈ T maps to (u, t), where p(u) and p(t) are
the points on e and f with parameter values u and t, and are the endpoints of the (unique)
line segment l passing through p with endpoints on e and f . If e1 is a line segment in T ,
then it is not hard to confirm that spe(e1) is either a line segment or a connected piece of
a hyperbola in [0, 1]× [0, 1].

If e and f were complete lines rather than segments, spe could be extended to a map
from R3 to R2 ∪ {∞}. This extension is essentially the same as the skewed projection
introduced by Jaromczyk and Kowaluk [12].

It is not hard to see that a transparent topology change involving edge e of a polygon
in S corresponds exactly to the intersection of two curves spe(e1) and spe(e2) in the skewed
projection of S ∩ T . The next lemma relates opaque topology changes to the external
contour of a union of skewed projections of polygons. See Figure 1.

Lemma 2. An opaque topology change occurs at time t if and only if there exists an edge
e of S and u ∈ [0, 1] such that (u, t) is a vertex of the boundary of spe(S).

Proof: If (u, t) is a vertex of the boundary of spe(S), then the line segment with endpoints
p(t) on f and p(u) on e intersects 3 edges and the flightpath, but no polygon interior.
Conversely, if there is a line segment that intersects the points p(t) and p(u) and two
edges in T , then (u, t) must be the intersection of two curves in the skewed projection. If
in addition this segment intersects no polygon interiors, then (u, t) must be a boundary
vertex.

3. General Scenes

We first give a simple, practical algorithm and then a more complicated, but asymptotically
faster, algorithm.

Theorem 1. All topology changes for a general scene with a line segment flightpath can
be computed in time O((n2 + `) logn) and space O(n), where n is the total number of edges
in all polygons and ` is the number of transparent topology changes.

Proof: Below we shall describe an algorithm that computes ` 4-tuples, each consisting of
a critical value of t and three edges that are coincident as viewed from p(t). In all our
algorithms for the topology-change problem, we consider a point p(t) to be the site of more
than one topology change if more than three edges are coincident as viewed from p(t). In
such a case, more than one 4-tuple would share the same t. An example is the case of a
vertex of a polyhedron coming into view from behind a closer object.

After computing all 4-tuples, we sort them by increasing t. We then compute the graphs
G0 and H0. Each face of H0 is labeled with the polygon of S visible within that face; this
gives the first visible scene. Each vertex of G0 is labeled with the first polygon “below” that
vertex; that is, the vertex at the intersection of the projections of edges e and f is labeled
with the first polygon after both e and f along the viewing ray from p(0) through e and f .
The label “background” means that the viewing ray continues forever. The computation
and labeling of G0 and H0 can be accomplished in time O(n2) using McKenna’s hidden
surface removal algorithm [15].

We then run through the sequence of 4-tuples while updating the labeled graphs Gt and
Ht. Each update takes time O(1). Notice that labels change only at transparent topology
changes. A newly-visible face in Ht is either bounded by an edge of the polygon visible

4



Figure 2. Sweep-plane algorithm for general scenes.

within that face, or it is a “window” formed by 3 (or more) polygons through which a
more distant polygon is visible. In the latter case, the face’s label is computed using an
appropriate vertex label from Gt; indeed, windows are the only reason to maintain these
labels.

We now describe how to compute the list of 4-tuples. For each edge e of a polygon in
S, we perform a rotational sweep around e, similar to Bentley and Ottmann’s line segment
intersection algorithm [4]. Let Tt be the triangle with base equal to flightpath e and apex
at point p(t) on f . A pierce point of Tt is the intersection of Tt and an edge of a polygon in
S.

The sweep proceeds from t = 0 to t = 1 as shown in Figure 2. During the sweep,
a balanced binary tree maintains the pierce points of Tt sorted by angle around p(t). A
priority queue maintains future events by increasing t. The events to be handled are: (1) An
endpoint of a edge is reached, (2) a polygon edge intersects an edge of Tt, thereby entering
or leaving the sweep tetrahedron, and (3) two adjacent pierce points exchange position in
the angular order. There are at most 2n events of types (1) and (2); scheduling these
events is straightforward. The lines passing through e, f , and any other segment define
a quadratic surface S (see [12]). A fourth segment can intersect S in at most two points;
thus the number of events of type (3) for a fixed edge e is at most n(n− 1). Scheduling an
event of type (3) amounts to finding the minimum future t at which e, f , and two other
given segments are colinear. This computation—straightforward analytic geometry that we
omit—takes time O(1). After an event of any of the three types, at most two future events
of type (3)—the upcoming colinearities of the newly adjacent pairs—must be scheduled and
inserted into the priority queue. After events of types (1) or (2), at most two future events
that have already been scheduled must be deleted.

A priority queue with O(log n) update times results in O((n+`e) logn) time for a sweep
around edge e, where `e is the number of transparent topology changes discovered. The
sum of all `e values is `.

Theorem 2. All topology changes for a general scene with a line segment flightpath can
be computed in time O(n2 + ` log n) and space O(n2).

Proof: We perform a rotational sweep around f in order to discover critical values of t;
the remainder of the algorithm after the computation of the 4-tuples is the same as in the
first algorithm.

The configuration of pierce points of segments of S can be represented by its dual
arrangement of lines, a data structure of size O(n2). Events are (1) the appearance or

5



disappearance of a line (corresponding to reaching a vertex of S), or (2) three lines becoming
coincident (corresponding to transparent topology changes).

The arrangment is represented as a graph with a node for each border segment of a
face and edges between borders that share an endpoint. Each intersection of lines in the
arrangement is the meeting of 8 border segments; the edges between their corresponding
nodes are augmented with directional information so that faces may be traced either clock-
wise or counterclockwise. We also provide pointers so that the border segments incident to
an intersection can be found in O(1) time given the identifiers of the two intersecting lines.
Events of type (1) necessitate O(n) work in updating this data structure, corresponding to
the total complexity of all faces bordering the line that is inserted or deleted [7]. Events of
type (2) necessitate O(1) work as only O(1) border incidences are changed.

A priority queue (implemented as a heap) holds a schedule of possible future events,
including the times at which each triangular cell in the arrangement degenerates to a point.
Notice that the initial O(n2) possible events can be formed into a heap in O(n2) time. As
triangles “invert”, future events are inserted or deleted, resulting in the O(` log n) part of
the running time.

It is possible to compute an unsorted list of critical values of t in time O(n2 log n + `),
faster than the algorithm above for large `. We perform the following steps for each polygon
edge e. We compute the projection spe(Q) of each polygon Q intersecting tetrahedron T .
Each spe(Q) will be a “curved polygon”, one with sides that are portions of hyperbolas. Next
we use Mulmuley’s randomized segment or curve intersection algorithm [17] to compute
all intersections in spe(S) in expected time O(n log n + `e), where `e is the number of
intersections. The expectation is over the randomization used in the algorithm, not over a
distribution of inputs. The sum of all `e is `.

This algorithm explicitly computes the points of intersection of a set of curved polygons.
By Lemma 2, the computation of the 4-tuples for all opaque topology changes can be reduced
to n computations of the external contour of a union of curved polygons. We expect that
an improved algorithm to compute the external contour of a union of ordinary polygons
should also have implications for the case of curved polygons, and hence for the problem of
finding topology changes.

4. Terrains

A terrain is a polyhedral surface that is intersected at most once by any line parallel to the
z-axis [5, 25]. Thus the projection of a terrain onto the xy-plane is a planar subdivision.
In this section S denotes a terrain with n edges. The advantage of a terrain is given by the
following lemma, in which a forward ray with origin on flightpath f is one that has positive
dotproduct with f oriented in the direction of increasing t.

Lemma 4. In time O(n log n), the edges of S can be ordered e1, e2, . . . en, such that if there
is a forward ray from a point on f that intersects first ei and next ej , then i < j.

Proof: Let S∗ (respectively f∗) denote the projection of S (f) onto the xy-plane. As in
Lee and Preparata’s point location algorithm [14, 23], the edges of S∗ can be assigned to
polygonal chains, monotone with respect to lines perpendicular to f∗. (A polygonal chain is
a path of line segments connected only at successive endpoints; it is monotone with respect
to a line l if its intersection with any line perpendicular to l is at most one point [23].)

6



Figure 3. Events in the view of a terrain

Chains can be ordered front to back with respect to f∗, where front is the direction of
decreasing t. Within chains edges may be ordered arbitrarily. It is easy to confirm that this
ordering has the desired property.

We define the i-th silhouette St(i) to be the “horizon line” at flightpath point t, con-
sidering only the first i edges. That is, St(i) is an ordered set of segments, each of which
is a piece of an edge of index at most i, such that no line of sight through a segment of
St(i) passes below an edge ej , j ≤ i. St(i) is monotone with respect to a horizontal line
in the viewed scene. For each t and i the silhouette St(i) has at most λ3(i) vertices [5].
The function λ3(n) is known to be Θ(nα(n)), where α(n) is the very slowly growing inverse
Ackermann function [9]. The function λ4(n) is known to be Θ(n2α(n)) [2].

Theorem 3. All k opaque topology changes for a terrain with an arbitrary flightpath can
be computed in time O((n+ k)λ3(n) logn) and space O(nλ3(n)).

Proof: We show how to discover topology changes that are visible along forward rays
in order along the flightpath as t increases. Running the algorithm twice, once with time
reversed, computes all topology changes. Updating the visible scene is especially straight-
forward for terrains, as each face must be bounded by an edge of the polygon visible within
that face; that is, there are no “windows”. Thus in order to label Ht, we need not maintain
Gt as in the previous section.

The first step is to compute all silhouettes for p(0) using a standard hidden surface
algorithm [15]. Our algorithm will maintain an unordered set Et(i) of all polygon edges
that contribute at least once to silhouette St(i) and an ordered list Vt(i) of all vertices of
the silhouette, implemented as a binary search tree. The edges can be specified simply by
index, while the vertices are specified by ordered pairs of indices with the order implying
the segments of St(i). (As a practical matter, these edges and lists can be maintained by a
similar lists or persistent data structure [6], though this is not necessary for the bounds of
the theorem.)

As in the algorithm of Theorem 1, a priority queue maintains future events. The priority
queue contains future events of two kinds sorted by increasing t: (1) some future point p(t)
on f , an endpoint of edge ei, and a point on some edge in Et(i − 1) are colinear, and (2)
some future p(t) on f , some point on edge ei, and a vertex in Vt(i − 1) are colinear. See
Figure 3. Given a vertex (either an endpoint of an edge ei or a vertex of Vt(i − 1)) and
an edge, it is possible to determine their next colinearity in O(1) time, since in the viewed
scene vertices have either linear or quadratic apparent motion.

Notice that for each endpoint of edge ei, each colinearity, not just the one that occurs
first, with an edge of Et(i−1) is queued. Similarly, for each vertex of Vt(i−1) each colinearity
is queued. Thus throughout the algorithm, the priority queue contains O(nλ3(n)) events.

7



An event of type (1) may not actually be an opaque topology change, as the edge of
Et(i− 1) involved in the colinearity may not be part of St(i− 1) at that intersection point.
An event of type (2) always will be an opaque topology change, and all opaque topology
changes will be of one type or the other. Events of type (1) are each reported at least twice,
once for each of the edges of S sharing the endpoint. A minor modification avoids this
redundancy. When an event of type (1) occurs, it is tested to see whether it is an opaque
topology change. An event involving an endpoint of edge ei and edge ej ∈ Et(i − 1) can
be tested in time O(log n) by searching within the list Vt(i − 1) and checking whether the
endpoint of ei lies on St(i−1) at the current time t. There are at most O(n2) events of type
(1) that are not opaque topology changes, since each vertex and edge combine to produce
at most one.

In the case of an event involving ei that is also an opaque topology change, we update
each Et(j) and Vt(j), j ≥ i, along with the priority queue. For each j, the list Et(j)
(respectively Vt(j)) is updated by inserting or deleting O(1) affected edges (vertices). The
priority queue is updated by deleting all events involving a vertex of Vt(j) (respectively,
edge of Et(j)) that no longer exists and inserting all events involving a new vertex of Vt(j)
(new edge of Et(j)). In order to find the events that must be deleted, a dictionary into the
priority queue to look up events by vertex (edge) must be provided.

The number of events of type (1) scheduled at t = 0 is bounded by 2n2 since (in the
absence of degeneracies) each endpoint and edge uniquely specifies a future event time. The
number of initial events of type (2) is bounded by 2nλ3(n) since each vertex in Vt(i − 1)
may combine with ei to produce at most two events. Events that are also opaque topology
changes incur extra work of time O(λ3(n) logn) in inserting and deleting O(λ3(n)) events
from the priority queue.

It may be possible to improve Theorem 3 with a sweep algorithm that, for each edge ei,
queues only its next event, rather than all future events with the current silhouette St(i−1).
A difficult data structure problem arises in attempting such an improvement: a query asks
for the earliest intersection of a line segment, each endpoint of which has linear motion,
and a polygonal chain, each vertex of which has quadratic motion. The solution should be
dynamic, allowing fairly rapid updates of the polygonal chain.

Cole and Sharir [5] give an example in which k is Θ(n3): flying past Ω(n) tall peaks
with a scene of complexity Ω(n2) (such as a mesh of tall peaks and broad valleys) in the
distant background. Thus the algorithms of Section 3 are preferable in the case of large k.

5. Terrains with Vertical Flightpaths

In this section S is a terrain and f is a flightpath parallel to the z-axis. Let e be a line
segment, not lying on the same line as f .

Lemma 5. Each vertical (constant u) line in [0, 1]× [0, 1] intersects the boundary of spe(S)
at most once.

Proof: Assume two points (u, t1) and (u, t3) both lie outside spe(S), but some point (u, t2)
with t1 < t2 < t3 lies inside. Then the interior of the vertical triangle in 3-space with
vertices at point u on e and points t1 and t3 on f intersects S, but the lower edge of this
triangle does not intersect S. This contradicts the fact that S is a terrain.

8



Theorem 4. All O(nλ4(n)) opaque topology changes for a terrain with a vertical line
segment flightpath can be computed in time O(nλ4(n) logn) and space O(λ4(n)).

Proof: We first compute 4-tuples of critical times and edges as follows. For each edge e
of S, we repeat the following steps. We compute the image spe(g) of each edge g of S. By
Lemmas 2 and 5 topology changes occur at exactly the vertices of the pointwise maximum
of the curved segments spe(g). To compute the pointwise maximum, one can use a divide-
and-conquer method [3, 10]: recursively compute the pointwise maximum of two halves of
the set of curved segments and then merge these maxima. The pointwise maximum has
complexity O(λ4(n)) and the divide-and-conquer algorithm takes time O(λ4(n) logn).

It takes time O(nλ4(n) logn) to merge the lists of 4-tuples for all edges e. Adding the
descriptions of the scene changes to the 4-tuples is straightforward.

Cole and Sharir adapt Wiernik and Sharir’s arrangement of line segments with super-
linear lower-envelope complexity [29] to show that the number of opaque topology changes
for terrains with vertical flight paths may be Ω(nλ3(n)). It is unknown whether the number
of topology changes may be as high as Θ(nλ4(n)).

6. Ray-shooting for General Scenes

In this section we sketch a data structure to answer ray-shooting queries for a general
polygonal scene with an arbitrary flightpath. In the next section, we specialize to the case
of terrains with vertical flightpaths. In the first case, we use a direct approach, that is, we
maintain the visible scene as a subdivision of a 2-sphere and treat ray-shooting queries as
point location queries. In the second case we use the dual approach of Cole and Sharir [5].

An interesting feature of this problem is that the subdivision is dynamic in two senses.
At topology changes edges must be inserted or deleted; between topology changes the
subdivision transforms continuously. Preparata and Tamassia [24] have recently considered
the problem of monotone planar subdivisions dynamic in the first sense; we make use of
their results. Very briefly, their method uses two total orders on the union of the sets of
vertices, edges, and faces. These orders induce a unique decomposition of the subdivision
edges into polygonal chains and guide the restructuring of these chains during an update.

We also make use of persistent data structures, specifically persistent search trees of
various kinds. A persistent data structure is a data structure that in effect includes all its
own old versions. A query to a persistent search tree includes a look-up key, as usual, along
with a “time”, that specifies which old version to search. The usual method of providing
persistence is to copy the root-to-leaf access path of a newly-inserted or deleted node, so
as to preserve both old and new versions. An initial search into a list of roots at various
“times” then allows access to all old versions of the data structure. Path-copying requires
O(m logm) space, where m is the total number of data items over all time. Driscoll et al.
[6] showed that by adding a few extra pointers to each node and copying a node only when
all its extra pointers are in use, the space requirement can be reduced to only O(m).

Assume without loss of generality that line segment f lies along the z-axis. Sphere
St will be centered at point p(t) on f ; each St is the same size and large enough that it
contains all of S. Assume that St is parametrized by spherical coordinates φ (latitude) and
θ (longitude) with f lying along its polar axis. Thus lines parallel to the z-axis project to
constant-θ lines (meridians).

9



Figure 4. Making a subdivision monotone.

The first step is to compute the projection of S onto the initial sphere S0. Next,
hidden lines are removed, giving an initial view of the scene that may be considered as a
planar graph H0 or as a polygonal subdivision of S0. The polygonal subdivision can be
made monotone with respect to latitude lines (that is, the intersection of any cell with
a meridian is a single segment) by adding some artificial edges that extend latitudinally
(along constant-φ lines) from interior cusps, as shown in Figure 4. We then compute Lee
and Preparata’s chain tree in order to answer point location queries in this subdivision
[14, 23]. A chain tree stores a monotone polygonal chain at each node. Each edge of the
subdivision is explicitly listed in only one chain, though we may think of each chain as
completely dividing the subdivision into higher-latitude and lower-latitude parts. Because
we have fixed the orientation of the scene by choosing f to lie along the polar axis, some
“monotone” chains may include meridial segments; this degeneracy does not cause any real
difficulties. (We call a line segment meridial if it lies along a meridian.)

Notice that there is a one-to-one correspondence between point location queries in the
subdivision and ray-shooting queries with origin at p(0). The following lemma assures us
that a chain that is monotone with respect to latitude remains monotone as we vary t, so
long as its topology remains unchanged. Notice that under a smooth transformation an
edge must become meridial before it “bends backwards”.

Lemma 6. If edge e projects to a meridial segment from some point along f , then e
projects to a meridial segment from every point along f .

Proof: If edge e projects to a meridial segment from some point p(t) along f , then e is
contained in a plane containing f .

Notice that the chain tree, unlike other planar point location data structures, does not
need to change as the subdivision transforms smoothly while remaining monotone. That is,
comparing a query ray (given by time t and spherical coordinates φ and θ) against a chain
C still takes only O(log n) time, since the spherical coordinates of a given vertex or edge of
C at time t can be computed in O(1) time.

Each topology change necessitates the addition or deletion of O(1) edges and vertices
from the polygonal subdivision. When an interior cusp first comes into view an artificial
edge must also be added. Each addition or deletion is an update that can be handled by
the methods of Preparata and Tamassia [24]; in fact, our updates are local, special cases.
Thus we can update the chain tree in time O(log2 n). By using the persistence methods of
Driscoll et al. [6] to maintain “old versions” of the chain tree, we can answer ray-shooting

10



queries with arbitrary origins on f . If ray-shooting queries are ordered by time, then we
may update the chain tree nonpersistently instead.

In addition to handling topology changes, however, we must also handle artificial topol-
ogy changes, that is, points along f at which graph Ht changes because an artificial edge
a of Ht intersects a vertex v not previously on a. At artificial topology changes we must
add a new vertex v′ to the subdivision (at first coincident with v) and redefine the artificial
edge to lie between v′ and the interior cusp. The next lemma shows that the number of
artificial topology changes is not excessive.

Lemma 7. There are O(n2) artificial topology changes along f .

Proof: Assume artificial edge a lies within a polygonal face F in the embedding of Ht and
that a intersects a vertex v of Ht at time t but not at any prior time after the last topology
change. Then v must be a vertex of the boundary of F at which the interior angle is reflex;
hence v must be the projection of a vertex of a polygon of S. Thus at time t, two vertices
of S—the one that induces artificial edge a and the one corresponding to v—project to the
same φ-coordinate, and these vertices do not project to the same φ-coordinate at all times.
There are O(n2) such t.

Theorem 5. For general scenes with arbitrary flightpaths, a data structure of space O(n2+
k) that answers ray-shooting queries in time O(log2 n) can be built in preprocessing time
O((n2 + k) log2 n + p log n). If queries are ordered by time, then the space can be reduced
to the maximum complexity of a visible scene along f .

Proof: We first run the algorithm of Theorem 1 and remember all opaque topology changes.
We also compute all artificial topology changes in time O(n2) by testing each pair of vertices
of S. We then follow the method given above: compute the initial scene with hidden
lines removed, build a chain tree, and persistently update the chain tree through topology
changes. The preprocessing time follows from Theorem 1, the query time from the chain
method [14, 24], and the space bound for unordered queries from the space-saving methods
of Driscoll et al. [6].

7. Ray-shooting for Terrains with Vertical Flightpaths

Assume S is a terrain and f is a segment along the z-axis. For simplicity, assume f is
the entire z-axis. Below we describe a data structure that answers ray-shooting queries for
rays with origin on f in time O(log n). As above, a ray is given by a triple (t, θ, φ), where
t = z is a parameter running along the flightpath, θ is longitude around sphere St, and φ is
latitude.

We briefly describe the method of Cole and Sharir [5]. Consider the intersection of S
with the vertical half-plane with boundary f and a fixed longitude θ0. The intersection is
a polygonal chain C as shown in Figure 5(a). If points in the vertical half-plane are given
by cylindrical coordinates (r, z), then a ray with origin p(t) on f and longitude θ0 can be
specified by an equation z = ar + t, r ≥ 0. A duality mapping takes such a ray to a point
(−a, t). Each polygon Pi in Figure 5(b) consists of exactly those points that are dual to rays
that first strike a given segment of the chain in 5(a). Polygons in 5(b) are unbounded, since
one can see the entire terrain from a sufficiently high viewpoint. (Think of the horizontal
axis as φ, though φ varies nonlinearly with horizontal distance.) Furthermore, each edge

11



Figure 5. (a) Cross-section of S at θ0. (b) Dual subdivision D(θ0). (c) A topology change in D(θ).

of the polygonal subdivision D(θ0) in 5(b) lies on a ray ri formed by the union of edges of
D(θ0). (Rays ri are the duals of viewing rays through a vertex of C.)

Point location on D(θ0) answers ray-shooting queries with longitude θ0. What happens
to this polygonal subdivision as θ varies? Between two successive critical longitudes, the
topology of subdivision D(θ) remains constant. There are two types of critical longitudes:
(C1) the longitudes of vertices of S, and (C2) longitudes at which 3 vertices of C and
flightpath f can be connected by a straight segment that passes through no interiors of
edges of C. There are at most n critical longitudes of type (C1) and O(nλ4(n)) of type (C2)
[5]. At a critical longitude of type (C2), two vertices vi of D(θ) pass through each other as
shown in Figure 5(c). Below we view such a topology change as a rotation in a binary tree.

The crux of the ray-shooting problem is to give a planar point location method that
works for varying θ. Cole and Sharir use chain trees. In the proof below we describe a faster
method that exploits the fact that for each θ the edges of D(θ) form a tree.

Theorem 6. For terrains with vertical flightpaths, a data structure with space complexity
O(nλ4(n)) that answers ray-shooting queries in time O(log n) can be built in preprocessing
time O(nλ4(n) logn).

Proof: We first divide S into wedge-shaped strips by cutting outwards from f along a
plane of constant θ through each vertex of S. We shall build a separate search structure
for each strip. Building an initial search structure for a strip can be accomplished in time
O(n log n) and finding the strip for a given ray-shooting query takes time O(log n), so we
may treat strips separately. (A unified structure, however, should be an improvement in
practice.)

Now consider the polygonal subdivison D(θ0) in the dual space of rays for the minimum
longitude θ0 in a strip as in Figure 5(b). D(θ0) gives an unbalanced binary search tree Tθ0
by defining a node for each vertex of D(θ0) and adding edges between nodes that correspond
to adjacent vertices, as shown in Figure 6(a). Each node of Tθ0 then corresponds to a ray
of D(θ0), namely the one with origin at the corresponding vertex. In searching tree Tθ0 ,
an O(1)-time test at each node determines whether a query point (t, φ) lies above or below
the line through the ray corresponding to the node. Notice that such a search tree remains
invariant as D(θ) transforms smoothly.

We now show how to create a balanced search tree using “parallel tree contraction”, a
technique used in the design of parallel algorithms. Following Miller and Reif [16], we define

12



Figure 6. (a) Polygonal subdivision tree Tθ0 . (b) As merged by Rake and Compress. (c) Balanced
search tree Rθ0 .

an operation Rake on rooted trees that merges each leaf with its parent. Call a connected
set of degree-2 nodes in a tree a path; a node is called a path node if it lies on a path.
Define an operation Compress that merges adjacent pairs of path nodes simultaneously all
over the tree. Any set of adjacent pairs may be chosen, so long as any set of 4 successive
vertices along a path contains a pair that merge. This is a nondeterministic, generalized
version of Compress; the ordinary version merges successive pairs. The proof of Miller and
Reif [16] immediately generalizes to show that any n-node tree is reduced to a single node
after at most c · log n alternating applications of Rake and Compress, where c is a constant.

We alternately apply Rake and Compress, starting with Rake, to Tθ0 until we obtain
a single supernode, as shown in Figure 6(b). Here a dashed oval represents a merging due
to Rake and a solid oval a merging due to Compress; numbers indicate the order in which
supernodes merge. For simplicity, the Rake operation numbered 1 is not shown; Compress
operations 6 and 8 do nothing.

We can define a new search tree level-by-level by considering each combined supernode
as the parent of the combining supernodes. Each internal node in the new search tree Rθ0
results from the merger of two supernodes along an edge of Tθ0 or from the merger of two
leaves and their parent. Thus at least one of the child supernodes corresponds to a proper
subtree of Tθ0 . A proper subtree of Tθ0 corresponds, in turn, with a roughly wedge-shaped
unbounded polygon in Dθ0 . This polygon has a lower boundary that is a ray and an upper
boundary that is a convex chain. For example, the root of Rθ0 in Figure 6(c) corresponds
to merger 9 in Figure 6(b), which is along the edge between the nodes labeled r1 and r8 in
Figure 6(a), which in turn corresponds to the edge between v1 and v8 in Figure 5(b). The
associated wedge has vertex v8 and an upper boundary formed by r8 and r11.

We augment each internal node of Rθ0 with the following information:

(I1) the coordinates (t, φ) of the leftmost vertex vi of the corresponding wedge-shaped
polygon in D(θ0) (as named in Figure 6(c));

(I2) the slope of the polygon’s lower boundary; and

(I3) the largest slope of a boundary segment of the wedge-shaped polygon.

Notice that (I1), (I2), and (I3) will vary predictably with θ once longitude is unfixed. This
information allows an O(1)-time “within-wedge” test to determine whether a given point

13



Figure 7. Before and after a rotation in Tθ.

query (t, φ) lies in the left or right subtree of a node in Rθ0 . Points in the polygon Pi
immediately above the wedge-shaped polygon may go either way in this test. For example,
a point just above the line segment between v6 and v7 in Figure 5(b) may go either way
when tested at the node marked v3, depending on whether it falls to the right or left of a
line through v3 with the same slope as r7. Say this point tests inside v3’s and v5’s wedges,
outside v7’s wedge, and finally inside v6’s wedge; then a single, final test determines whether
the point lies in P6 or P8. These extra tests are indicated at the leaves in Figure 6(c); thus
the number of tests needed for point location may be one more than the height of Rθ0 . In
Figure 6(c), i marks the direction to take if a point tests in the wedge. Altogether point
location for queries at longitude θ0 can be accomplished using tree Rθ0 in O(log n) time.

Search tree Rθ0 is actually valid for all θ until the next critical longitude. At a critical
longitude, either the strip ends or a rotation occurs in tree Tθ. We now show that by
changing only O(log n) nodes and edges of Rθ at a rotation of Tθ, we can maintain the
invariant that Rθ is a tree that could have resulted from Tθ by an alternating sequence of
Rake and Compress operations.

A generic rotation is shown in Figure 7, with the Tθ trees shown before and after a
critical longitude. (Of course, before and after could be reversed.) After an alternating
sequence of Rake and Compress operations, call a supernode in the left tree clean if it
contains neither y nor z and is not the parent of a supernode containing y. After any
number of Rake and Compress operations, there are at most 3 unclean supernodes, and
they induce a path in the left tree.

Assume inductively that each clean supernode on the left, except at most one, has a
counterpart on the right, that is, a supernode containing exactly the same set of original
nodes of Tθ. This condition certainly holds before any Rake and Compress operations
have been performed. Now consider applying Rake to both the left and right trees. The
counterparts of each pair of clean supernodes that merge on the left will merge on the
right, since the adjacencies of clean supernodes and their counterparts are identical. A
supernode on the left that results from a merger including an unclean supernode is itself
unclean. And finally, a supernode on the left that results from a merger including a clean
supernode without a counterpart, will reproduce the one allowable clean supernode without
a counterpart.

Now consider applying Compress to the left. We assert that there exists a valid Com-
press for the right tree that maintains counterparts for each clean supernode. We join the
counterparts of each merging pair of clean supernodes in this Compress. The pairing of
other supernodes on the right is then dictated by this earlier pairing. For example, if A
and B are both single nodes in Figure 7, then the first Compress on the left may combine

14



x and y but x′ may have to remain unchanged on the right. The next merger above x and
y, however, can be mimicked on the right. As in this example, the pairing on the right may
leave gaps, that is, the merging pairs may be nonsuccessive along a path, but gaps of one
are legal in our nondeterministic version of Compress.

There is also the case that the Compress on the right must merge the counterparts of a
pair that did not merge on the left. Thus a single clean supernode on the left can lose its
counterpart on the right. This loss cannot be repeated, however, until it has been reversed
(i.e., until every clean supernode on the left has regained a counterpart), since the forced
merger on the right only occurs when the length of the path from the root on the right to
the supernode containing x′ is one more than the length of the path from the root on the
left to x. Thus after any number of Rake and Compress operations, there is a one-to-one
mapping that takes all but one clean supernode on the left to a counterpart on the right;
except for O(1) nodes on the right this mapping is onto.

Altogether we conclude that only O(1) supernodes in each level of search tree Rθ must
change at a critical longitude. Furthermore, information (I1), (I2), and (I3) can be updated
in time O(1) per changed supernode by consulting that information at children of the
changing supernode.

All changes to Rθ at a critical longitude lie along O(1) root-leaf paths. Thus these
changes can be performed persistently [6] to give a data structure that can answer ray
queries for arbitrary θ within the strip. Altogether we obtain an O(log n)-time search
structure for each strip of the scene.

Remark. An anonymous referee pointed out that parallel tree contraction methods that
do not use Compress [1, 13] should give somewhat simpler proofs of Theorem 6. We are
not sure which parallel tree contraction method gives the most satisfactory data structure,
and we leave this question to interested readers.

8. Conclusions

We have given algorithms for some natural computer graphics problems that have not
received sufficient attention. There are numerous possibilities for improvements to our
algorithms. We list some specific open questions that we find intriguing.

• Can an unsorted list of points at which transparent topology changes occur be com-
puted in time O(n2 + `)?

• Can the external contour of a union of triangles (or curved triangles) be found in time
faster than the total number of intersections of sides? (It appears that Mulmuley’s
randomized methods give a positive answer to these questions, with running time
proportional to a sum in which each intersection contributes the reciprocal of one
more than the number of polygons strictly containing it [18]. This would improve the
running time of the algorithm given after Theorem 2.)

• Can all opaque topology changes for general scenes be found in time sensitive to
k? (The analogous question for static viewpoints is the longstanding, largely open,
question of finding an output-sensitive hidden line removal algorithm [19].)

• Can the “sensitivity”—i.e., the term involving k—of our algorithm for terrains with
arbitrary flightpaths be improved?

15



• Can ray-shooting queries for general scenes be answered in time O(log n)? Even in
the special case of no opaque topology changes along f?

• Can our results be generalized to linearly moving objects?

References

[1] K. Abrahamson, N. Dadoun, D. K. Kirkpatrick, and T. Przytycka, A simple parallel
tree contraction algorithm, Proc. 25th Annual Allerton Conf. on Comm. Control, and
Computing , 1987, 624–633.

[2] P. K. Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements ,
Cambridge University Press, 1991.

[3] M. J. Atallah, Some dynamic computational geometry problems, Computers and
Math. with Applications 11 (1985), 1171–1181.

[4] J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric
intersections, IEEE Trans. on Computers 28 (1979), 643–647.

[5] R. Cole and M. Sharir, Visibility problems for polyhedral terrains, J. Symbolic Com-
putation 7 (1989), 11–30.

[6] J. R. Driscoll, N. Sarnak, D. Sleator, and R. E. Tarjan, Making Data Structures
Persistent, J. Computer and Systems Sciences 38 (1989), 86–124.

[7] H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and
hyperplanes with applications, SIAM J. Computing 15 (1986), 341–363.

[8] H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible surface generation by a priori
tree structures, Computer Graphics 14 (1980), 124–133.

[9] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of gener-
alized path compression schemes, Combinatorica 6 (1986), 151–177.

[10] J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time,
Inform. Proc. Letters 33, 1989, 169–174.

[11] H. Hubschman and S. Zucker, Frame-to-frame coherence and the hidden surface
computation: constraints for a convex world, Computer Graphics 15 (August 1981),
45–54.

[12] J. W. Jaromczyk and M. Kowaluk, Skewed projections with an application to line
stabbing in R3, Proc. 4th ACM Symp. on Comp. Geometry, 1988, 362–370.

[13] S. R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured
computation by ranking, VLSI Algorithms and Architectures: 3rd Aegean Workshop
on Computing , 1988, 101–110.

[14] D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its
applications, SIAM J. Computing 6 (1977), 594–606.

16



[15] M. McKenna, Worst-case optimal hidden surface removal, ACM Trans. Graphics 6
(1987), 19–28.

[16] G. L. Miller and J. H. Reif, Parallel tree contraction and its applications, Proc. 26th
IEEE Foundations of Comp. Science, 1985, 478–489.

[17] K. Mulmuley, A fast planar partition algorithm, I, Proc. 29th IEEE Foundations of
Comp. Science, 1988, 580–589.

[18] K. Mulmuley, On obstructions in relation to a fixed viewpoint, Proc. 30th IEEE
Foundations of Comp. Science, 1989, 592–597.

[19] M. Overmars and M. Sharir, Output-sensitive hidden surface removal, Proc. 30th
IEEE Foundations of Comp. Science, 1989, 598–603.

[20] M. Paterson and F. F. Yao, Binary partitions with applications to hidden surface
removal and solid modelling, Discrete Comput. Geometry 5 (1990), 485–504.

[21] W. H. Plantinga and C. R. Dyer, An algorithm for constructing the aspect graph,
Proc. 27th IEEE Foundations of Comp. Science, 1986, 123–131.

[22] W. H. Plantinga, C. R. Dyer, and B. Seales, Real-time hidden-Line elimination for a
rotating polyhedral scene using the aspect representation, manuscript, 1988.

[23] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985.

[24] F. P. Preparata and R. Tamassia, Fully dynamic point location in a monotone sub-
division, SIAM J. Computing 18 (1989), 811–830.

[25] J. H. Reif and S. Sen, An efficient output-sensitive hidden-surface removal algorithm
and its parallelization, Proc. 4th ACM Symp. on Comp. Geometry, 1988, 194-200.

[26] M. Sharir, Almost linear upper bounds on the length of general Davenport-Schinzel
sequences, Combinatorica 7 (1987), 131–143.

[27] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A characterization of ten
hidden-surface algorithms, Computing Surveys 6 (1974), 1-25.

[28] G. R. Swart, A schema for real time hidden line removal, Tech. Report, Dept. of
Computer Science, U. of Washington, 1984.

[29] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel se-
quences by segments, Discrete Comput. Geometry 3 (1988), 15–47.

17


