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Clay minerals are the most reactive and important inorganic components in soils, but soil mineralogy classifies as a minor topic in
soil sciences. Revisiting soil mineralogy has been gradually required. Clay minerals in soils are more complex and less well
crystallized than those in sedimentary rocks, and thus, they display more complicated X-ray diffraction (XRD) patterns. Tra-
ditional characterization methods such as XRD are usually expensive and time-consuming, and they are therefore inappropriate
for large datasets, whereas visible and near-infrared reflectance spectroscopy (VNIR) is a quick, cost-efficient, and nondestructive
technique for analyzing soil mineralogic properties of large datasets. )e main objectives of this review are to bring readers up to
date with information and understanding of VNIR as it relates to soil mineralogy and attracts more attention from a wide variety
of readers to revisit soil mineralogy. We begin our review with a description of fundamentals of VNIR. We then review common
methods to process soil VNIR spectra and summary spectral features of soil minerals with particular attention to those <2 μm
fractions. We further critically review applications of chemometric methods and related model building in spectroscopic soil
mineral studies. We then compare spectral measurement with multivariate calibration methods, and we suggest that they both
produce excellent results depending on the situation. Finally, we suggest a few avenues of future research, including the de-
velopment of theoretical calibrations of VNIRmore suitable for various soil samples worldwide, better elucidation of claymineral-
soil organic carbon (SOC) interactions, and building the concept of integrated soil mapping through combined information
(e.g., mineral composition, soil organic matter-SOM, SOC, pH, and moisture).

1. Introduction

Soils are open, complex, and dynamic systems as well as
fundamental natural environments for animals, plants, mi-
croorganisms, and human interaction [1]. Mineral composi-
tion is the most fundamental property of a soil, and soil
minerals account generally for half the soil volume [2].
According to Churchman [3], clay minerals in the soil context
are “secondary inorganic compounds of <2μm size” including
Fe, Al, andMn oxides (hydroxides and oxyhydroxides), as well
as noncrystalline phases. Importantly, they are the most re-
active and important inorganic components in soils, and they
occur commonly in close association with the most reactive

organic matter [4, 5]. Clays influence soil function through
both their bulk properties and their associationswith their huge
outer/inner surfaces (e.g., cation exchange capacity [6]). )e
effort involved in comprehensive understanding of the nature
of soil minerals is of particular importance as they may help us
explain and predict how different soil types function [7].

However, soil mineralogy (mainly clay mineralogy) is
still a minor topic in soil sciences. )is may be due partly to
the unjustified assumption that a given soil mineral will
have the same properties as those of its better-crystallized
counterpart that formed in a more “geologic” context
(e.g., sedimentary kaolinite will have the same properties as
pedogenic kaolinite) [4]. Revisiting soil mineralogy has
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been gradually important, for instance, in terms of the
manner by which soil minerals are defined and investigated
[8].

�e most commonly used method to characterize soil
minerals is XRD, which is fundamentally qualitative. Since
soil clay minerals are generally more complex and less well
crystallized than those of geological environments [9–11],
they display more complicated XRD patterns [12, 13]. De-
spite quantitative improvements of XRD [14], mineral
characterization is usually expensive and time-consuming
[2]. Some chemical extraction procedures can be useful in
the analysis of Fe oxides. However, this is expensive, time-
consuming, and can complicate our scientific interpretation
of the soil by changing the chemical equilibrium between soil
solution and solid phases in soil specimens [15, 16]. �us,
these conventional analyses are not appropriate for larger
scale soil studies, and we must use an alternative method to
target and characterize soil minerals.

Visible and near-infrared reflectance spectroscopy
(VNIR, 350–2500 nm), that is, the study of light of the visible
and near-infrared reflected frommaterial surfaces, is a quick,
cost-efficient, and nondestructive technique in soil sciences
[17, 18]. �is technique has been greatly developed in soil
sciences in the past several decades and has seen apparent
exponential growth over the past 20 years [19]. VNIR has
been of increasing interest for the analyses of soil parameters
including soil organic carbon, pH, bulk texture, elemental
concentration, and cation exchange capacity [20, 21]. In soil
mineralogy, VNIR can be used to characterize various soil
mineralogic properties such as clay mineral composition,
clay content, and mineral weathering/alteration degree, al-
though quartz and feldspar have weak/nonexistent ab-
sorption in the VNIR range [22–24]. In this paper, we aim to
bring readers up to date with VNIR as it relates to soil
mineralogy and we seek to attract more attention from
readers to revisit soil mineralogy.

2. Fundamentals of VNIR

�eVNIR part of the electromagnetic spectrum includes both
the visible (350–780 nm) and near-infrared (780–2500 nm)
ranges, which overlaps with the optical radiation range
(100–1000 nm; Figure 1). Sometimes, the 350–1000 wave-
length range is referred as VNIR (visible-near-infrared), and
the 1000–2500 range is referred as the SWIR (short-wave
infrared) in remote sensing literature [25]. �e human eyes
and brain can process spectral information from the visible
region and see color, while modern spectroscopy can observe
precise details over a much broader wavelength range.

2.1. Absorption, Scattering, and Emission. When photons
enter a solid, liquid, or gaseous material, they will either be
absorbed, reflected from its surface, or pass through it [26].
�e reflective process is defined as scattering, and the
scattered photons can be detected and measured. Photons
can also be detected when they are emitted from a surface
with a temperature above absolute zero [25]. �ree general
physical processes (i.e., electronic transitions, vibrational

transitions, and rotational transitions) result in the absorption
bands in the spectra of materials. �e absorption bands in the
VNIR range are derived from both the electronic and vi-
brational transitions [27, 28].

2.2. Causes of Absorptions in the VNIR Region

2.2.1. Electronic Transitions. Discrete ions and atoms have
independent energy states. A photon is emitted from an
atomwhen one of its electrons moves to a lower energy state.
When an atom absorbs a photon of a given wavelength, its
electrons move from a relatively low electron state to
a higher one [25]. �ese electron processes occur because of
their high energy and mobility. �e electronic processes are
mainly caused by (1) crystal-field effects. Since iron is a very
common transition element in minerals, a common elec-
tronic process revealed in the visible region is due to unfilled
d-orbitals of Fe-oxide minerals [24, 29]. Electron energy
levels are influenced by many factors, including the valence
state of the atom (e.g., Fe2+ and Fe3+), the type of ligands, the
asymmetry of the location it occupies, the distance between
the metal ion and the ligand, and the deformation degree of
the site [28]. (2) Charge transfer: it is dominated by min-
eralogy, and it is hundred times more powerful than the
crystal-field effects. It is the main reason of the red color of
hydroxides and Fe oxides. Moreover, the conduction bands
and color centers can also be causes of the electronic
transitions in some minerals [25].

2.2.2. Vibrational Transitions. �e bonds in a crystal lattice
or molecule vibrate like springs.�emolecule’s mass and the
strength of each molecular bond dominate their vibration
frequency [25]. �e absorption bands in the VNIR range are
observed as a consequence of molecular vibrations [30]. Soil
minerals (e.g., phyllosilicate and carbonate minerals), in
particular, have unique absorption features in the VNIR
region due to overtones and vibrational combinations re-
lated to the stretching and bending of the molecular bonds
such as O-H, C-H, C-C, and N-H [31].

3. Spectroscopic Measurements

3.1. Spectral Preprocessing. �e raw spectra are usually
preprocessed through various approaches to accentuate
features and remove signal noise [32]. �e processed soil
spectra facilitate mineral identification, and the accuracy of
soil mineral prediction is greatly improved through the use
of various preprocessing methods [33]. �e following
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Figure 1: Optical spectrum between 102 to 106 nm.

2 Journal of Spectroscopy



preprocessing methods for spectra have been used in pre-
vious soil mineralogic studies.

3.1.1. Continuum Removal Approaches. �e continuum
removal approach aims to remove background noise and
isolate particular absorption features for identification and
analysis [34]. �e continuum is usually determined using
local maxima to generate a hull of boundary points
(Figure 2(a)) [22]. All the boundary points are fitted by
straight-line segments, and then, the continuum removal is
calculated by removing the original reflectance intensities
from corresponding intensities of the continuum (Figure 2(b))
[23]. Continuum removal analysis is a particularly robust tool
for detecting and predicting iron oxides and phyllosilicate
minerals.�us, it is feasible to substitute a statistical method to
apply to soil mineralogy studies [10, 20, 22, 24].

Absorption bands in the VNIR region can be described
by geometrical parameters derived from the continuum
removal curve (Figure 2(b)). Four parameters are directly
displayed in Figure 2(b), which include position (P), width
(W), depth (D), and full width at half maximum (FWHM,
abbreviated to “F”). �e parameter asymmetry (AS) is
calculated as follows:

AS �
Fleft

Fright

, (1)

where Fleft represents the left width at half maximum, and
Fright represents the right width at half maximum [20].

3.1.2. Smoothing Techniques. Smoothing techniques are used
to extract the maximum amount of information from each
spectrum possibly byminimizing the influence of background
noise [32]. Commonly used smoothing techniques include
the Savitzky–Golay transform (SG [35]), Norris smoothing
filter (NG [36]), and averaging spectra [37]. SG smoothing

eliminates the influences of ground interference noise and
baseline float, thus enhancing the signal-to-noise ratio. NG
smoothing removes the effects of particle-size variation when
the soil samples vary in texture, moisture, and grain size [32].

3.1.3. Derivative Algorithms. Derivative algorithms can
rapidly identify characteristic positions of spectral mini-
mum, maximum, and inflection point values [32]. Addi-
tionally, the effect of variation in optical setup and sample
grinding is eliminated after derivative transformation [38].
Because the spectral noise tends to amplify with derivative
transform, a smoothing technique is often used before the
derivative algorithm [37]. �e spectral curve after the first
derivative, for example, is better at discriminating goethite
and hematite and estimating their abundance, with two
peaks at 435 and 535 nm for goethite and a single absorption
at ∼570 nm for hematite (Figure 3) [39].

3.2. Spectral Features of Soil Minerals

3.2.1. Fe-Oxide Minerals. Fe-oxide minerals are known to be
pedogenic indicators for investigating soil temperature and
moisture regimes, which are directly related to pedogenic
climate evolution [24, 40]. Fe-oxide minerals are the main
active components in the VNIR region (350–1000 nm) since
most electron transitions are caused by various kinds of iron
oxides [41, 42].�emost common Fe-oxide minerals in soils
are goethite (α-FeOOH) and hematite (α-Fe2O3), which can
track climate change [43, 44]. Goethite and hematite exhibit
diagnostic spectral features in the VNIR region, and the
absorption bands are generally broad and smooth (Figure 3).
A strong absorption band near 920 nm indicates the pres-
ence of goethite (Figure 3(a)), and four absorption bands
at 420, 480, 600, and 1700 nm can be used to map its dis-
tribution [39]. Hematite is dominated by three absorption
bands at 520, 650, and 880 nm [45]. Both goethite and
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Figure 2: (a) Continuum removal of the spectrum corresponding to a red earth soil sample [24]; (b) a continuum-removed spectrum and
some spectral parameters (i.e., W, D, and F).
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hematite have an absorption band at around 500 nm (480 for
goethite and 520 for hematite, resp.); the band for goethite
(at 480 nm) is narrow with intense reflectance, while the
band for hematite (at 520 nm) is wide with low reflectance
(Figure 3(a)). �e absorptions in the VNIR region cause the
vivid colors of Fe oxides, for example, yellow goethite and
red hematite [37]. For a spectral curve representing a sample
soil mixture, the width of the absorption band at ∼870 nm
(W870) is higher when the soil sample contains more Fe
oxides [46]. �e concave shape of the 800–1000 nm range
indicates the crystallinity of the Fe-oxide minerals. When
a soil sample is composed of well-crystallized minerals, the
corresponding spectrum reveals a symmetric and deeper
feature in this range [47].

3.2.2. Clay Minerals. Clay minerals are frequently used as
climatic indicators since their nature is directly influenced
by the temperature and amount of precipitation at the site
during pedogenesis [9, 48]. As climate conditions shift from
cool/dry to warm/moist, the dominant clay minerals go from
chlorite/illite→ vermiculite→montmorillonite→ kaolinite
[24, 49]. �e dominant clays in soils show diagnostic ab-
sorptions in the SWIR domain [39]. �ese absorption bands
are caused by vibrational transitions and commonly display
sharp and narrow features (Figure 4). �e diagnostic bands
are mainly focused on ∼1400 nm (overtones caused by OH),
∼1900 nm (overtones caused by molecular water), and
∼2200 nm (combination tones caused by Al-OH [50, 51]).

Additionally, someweak absorption bands in the 2300–2500nm
region are related to the presence of Fe-OH and/or Mg-OH
in the clay minerals [24].
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Figure 3: Raw spectra for goethite (a) and hematite (b) and the first-derivative spectra of goethite (c) and hematite (d) (modified from Zheng
et al. [39]).
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)e spectral characteristics of some clay minerals are
showed in Figure 4 and Table 1. Chlorites are a group of clay
minerals containing specific octahedral cations such as Fe,
Mg, and Al [52]. )eir reflectance spectra exhibit a weak
absorption band at approximately 1400 nm and triple ab-
sorption features near 2300 nm. )e bands at 2250 and
2350 nm are related to Fe-OH andMg-OH, respectively [53].
Illite is characterized by three prominent absorptions at
∼1400,∼1900, and∼2200nm. Two secondary diagnostic Al-OH
absorption peaks close to 2344 and 2445 nm are modified by
Fe and Mg tschermak cation exchange [24, 31]. Vermiculite
has two broad absorptions at 1400 and 1900 nm and two
weak absorptions near 2200 and 2300 nm [39]. Montmo-
rillonite has three strong and sharp absorption bands at
∼1400, ∼1900, and ∼2200 nm, which are similar to but
generally stronger than illite.

Additionally, the combination bands produced by the
vibrations of absorbed water cause weak shoulders near
1468 nm and 1970 nm for montmorillonite spectra [37].
Kaolinite is featured by two spectral doublets: one is near
1400 nm (1390 and 1410 nm), and the other is near 2200 nm
(2160 and 2210 nm).

3.2.3. Carbonates. In soils, carbonates are leached from the
surface with time and accumulate in the subsoil at a certain
depth [54]. )e presence of carbonate is widely used as
a basic soil characteristic to describe soil types and quantify
soil erosion [22]. Carbonates are characterized by several
absorptions in the VNIR domain, caused by overtones and
combinations of fundamental vibrations of the CO3

2− ion
(Figure 5) [31, 37]. A strong absorption band at ∼2350 nm

and three weak absorption bands at ∼1900, ∼2000, and
∼2160 nm were reported by Hunt and Salisbury [55] for
carbonates in the NIR region, with the ∼2350 nm absorption
showing obvious double-band structures (Figure 5).

3.3. Prediction from the Continuum Removal Spectra. As
discussed in Section 3.1.1, several geometrical features of the
absorption bands can be extracted through the continuum
removal method.)ose parameters (e.g., P, D, and AS) from
the continuum removal spectra are key to characterizing and
predicting mineral compositions in soils. Viscarra Rossel
et al. [23] quantitatively estimated the mineral composition
by using the continuum removal method. Compositions of
soil minerals such as kaolinite, illite, Al-smectite, goethite,
and hematite are considered in this study, and the parameter

Table 1: Spectral features of some predominant soil minerals.

Absorption band Origin
Diagnostic
feature

Description Assigned soil minerals

∼465 nm
Electronic
transition

6A1g → 4T1g,4Eg Width
Narrow Goethite
Wide Hematite

∼650 nm 6A1g → 4T2g Position Left → right Goethite → hematite
∼900 nm 6A1g → 4T1g Position Left → right Hematite → goethite

∼1400 nm

Molecular
vibration

OH

Double absorption band
(1395 nm and 1415 nm)

Kaolinite

Asymmetry
>1 Kaolinite
<1 Montmorillonite

∼1900 nm H2O

Position
<1910 nm Montmorillonite/vermiculite
>1910 nm Kaolinite/illite

Depth Intense → shallow
Montmorillonite → illite →

kaolinite

Width
Narrow Montmorillonite
Wide Vermiculite/illite

∼2200 nm Al-OH

Double absorption band
(2163 nm and 2208 nm)

Kaolinite

Depth
Intense Kaolinite
Shallow Vermiculite/montmorillonite/illite

Asymmetry
>1 Kaolinite
<1 Montmorillonite

>2300 nm Fe-OH and Mg-OH
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Figure 5: Absorptions for calcite in the VNIR domain, caused by
overtones and combinations of fundamental vibrations of the
CO3

2− ion.
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D is selected for prediction. )e spectroscopic predictions
are generally in consistence with those interpreted by XRD
analysis. According to Dufrechou et al. [20], the parameterD
at ∼1400, ∼1900, and ∼2200 nm was strongly affected by the
amounts of kaolinite, illite, and montmorillonite in soil
mixtures. Additionally, the estimation of montmorillonite
abundance shows reliability when compared with XRD
results. Five parameters (P,D,W, F, and AS) were used in the
work by Zhao et al. [24] for assessing the utility of the
continuum removal method. We compared these parame-
ters with the results from both XRD and DRS analyses and
found that some of the parameters are good at mineral
content prediction. Furthermore, some parameters (e.g., AS
at ∼2200 nm) are confirmed as reliable proxies for soil
weathering and paleoclimate reconstruction.

4. Chemometric Methods

VNIR spectra of soil mixtures are commonly weak and
nonspecific due to (1) low concentration of particular soil
minerals, (2) scatter effects caused by soil structure, (3)
overlapping absorptions of soil attributes, and (4) in-
fluences of specific constituents such as quartz [37]. All of
these factors pose a challenge for VNIR analyses. )erefore,
useful information needs to be mathematically extracted
from the spectra and correlated with soil attributes [45].
)e development of VNIR in soil studies would have been
impossible without the parallel application of chemometric
methods [56].

Building a predictive soil mineral abundance model
(i.e., multivariate calibration) is an important first step in
chemometric analysis. Overall, we should understand the
data and the objective of the modeling prior to building
a model. )en, the spectral dataset is preprocessed and
subdivided. Finally, we can proceed to build, evaluate, and
select models [57].

4.1. Prior to Model Building. )e first step in any model
building process for the study of spectral pedology is to
understand the characteristics of the dataset. We need to
consider three main concepts in understanding the dataset
process [57]: (1) understanding the distribution of the re-
sponses (i.e., outcomes): the responses are either numerical or
categorical. In the model building process for soil mineral
analysis, the outcomes (e.g., contents of clay/Fe-oxide
minerals) are described numerically. Understanding the
characteristics of responses provides better ways for
partitioning the data into calibration and validation sets;
(2) understanding the nature of the predictors: the predictors
in the spectral dataset are numerical, since they are usually
the spectral signals between 350 and 2500 nm. In fact, these
predictors are highly related, leading to numerically re-
dundant information. Different predictors are suitable for
different kinds of models. For example, partial least squares
can be used for correlated predictors, while recursive par-
titioning can manage missing predictor information [58];
(3) the relationship between the amount of the predictor set
(P) and the sample set (N): when building a model for a soil

mineral study, the dataset commonly has far fewer samples
(N< 200) than predictors (P> 2000). )erefore, a model
that can handle dataset where N<P is preferred.

After understanding the dataset, a preprocessing pro-
cedure is often used for improving the performance of
the model [47, 59]. For a model used in a soil mineral study,
the data transformations for multiple predictors contain the
following methods: (1) data reduction: principal component
analysis (PCA [60]) is a commonly used data reduction
technique. In this technique, the number of datasets is largely
reduced by seeking principle components (PC)—linear
combinations of the predictors that capture the greatest
possible variance; (2) removing predictors: in some cases,
removing predictors prior to modeling has potential ad-
vantages. For example, Adeline et al. [59] showed that per-
formances of the predictive models were globally stable and
accurate when the spectral resolution decreased from 3nm to
60 nm. Additionally, for a model based on a spectral signal
dataset, the spectra were transformed to apparent absorbance:
A � log(1/R) prior to developing a regression model, and the
spectral preprocessing methods discussed in Section 3 also
have potential for model performance improvement [18, 23].

4.2. CandidateModels. Once we fully understand the dataset,
the next step is to setup several candidate models. )e most
commonly used type of model in soil mineral analysis is
a regression model, which is defined as a model that predicts
numerical outcomes [57]. Establishing a regression model
related to the soil VNIR spectral data is the basic role of
chemometric analysis [61]. )e regression models are sub-
divided into linear and nonlinear regressions. Linear re-
gressions are the dominant calibration methods for spectral
pedology and include partial least squares regression (PLSR
[62]) and principal component regression (PCR [63]). )e
nonlinear data are managed by data mining techniques,
namely, multivariate adaptive regression splines (MARS
[38]), neural networks (NN [64]), and regression tree analysis
(RTA [65]).

4.2.1. Linear Regression Models. Both PLSR and PCR can
deal with predictors that are highly collinear and are effective
in situations where the number of predictors is far beyond the
number of available samples [37]. Furthermore, PLSR and
PCR are closely related and share similar prediction errors in
most situations [61]. Regardless, the PLSR algorithm is usually
preferred in spectral pedology analysis because (1) it maxi-
mizes covariance between response variables and predictors
so that the model is more interpretable, and (2) it is a faster
algorithm [45].

PLSR has been widely and successfully used in pre-
dicting the mineralogic compositions of weathering levels
of soils. Viscarra Rossel et al. [2] accurately predicted
the concentrations of kaolinite, illite, and smectite
(R2 � 0.94, 0.96, and 0.92, resp.) in mineral mixtures,
although the prediction for Fe oxides was biased against
measurement. Summers et al. [66] and Ostovari et al. [67]
showed that the PLSR method is good at predicting
CaCO3 content with R2 values of 0.69 and 0.71 for soil
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samples from Australia and Iran, respectively. )e total
clay content and free iron in soils were also proven to be
predictable attributes by the PLSR model [68, 69].

4.2.2. Nonlinear Regression Models. )e use of models that
are inherently nonlinear in nature (i.e., data mining tech-
niques) has gained increasing attention in recent years
[37, 61]. Amore detailed description of the nonlinear models
is available in Kuhn and Johnson [57]. Previous studies have
suggested that nonlinear regression models or the combi-
nation of nonlinear and linear models may provide better
predictions for soil properties. Mouazen et al. [70] showed
that a combined PLSR-NN model was better at predicting
soil properties than a PLSR model. Viscarra Rossel and
Behrens [45] proposed that the combined FSVIP-ANN and
FSMARS-ANN models were the best models for predicting
clay content, pH, and soil organic carbon (SOC) when both
the parsimony and accuracy of the model were taken into
consideration. Mulder et al. [71] determined the mineral
composition of a soil by coupling an RTA model with ex-
ponential Gaussian optimization results. )e abundances of
kaolinite and calcite were predicted with acceptable RMSE
values (<0.1) in both laboratory and field samples.

4.3. Model Evaluation. Two techniques are commonly used
to test the prediction performance of the model [33, 56]. In
the first, the soil spectral configuration database is randomly
divided into a calibration dataset and a validation dataset
[72]. )e calibration dataset (usually ∼2/3 of the complete
database) is used to derive the model, while the validation
dataset (commonly contains 1/3 of the complete database) is
set aside to exclusively validate the derived model. )is
process is used to obtain realistic estimates of prediction
accuracy. )e second is a procedure called cross validation.
It uses the “leave-group-out” method (namely, repeated
random subsampling validation method [73]) and was
adopted to verify the predictive capability for the calibration
dataset. A calibration dataset containing X samples is built
from the total database N (N≥X + 1). )e soil property
value of the other N−X samples for validation is predicted.
)e prediction of relative soil mineral abundance is obtained
by repeating the cross-validation process [74].

ParLeS version 3.0 is usually used for multivariate cal-
ibration performance [75]. )e bias and accuracy of the
prediction models are assessed by adjusting the coefficient of
determination (R2) between observed and predicted values,
the mean error (ME)

ME �∑
N

i�1

Yi′−Yi( ), (2)

and the root mean-square error (RMSE)

RMSE �

�������������
1

N
∑
n

i�0

Yi′−Yi( )2
√√

, (3)

where N is the number of the dataset, Yi is the observed
value, and Yi′ represents the predicted value [18, 23].

We compromise between model parsimony and model
accuracy to find the most satisfactory model [76]. )e
Akaike information criterion (AIC) is suggested for best-
performing algorithm selection [45]:

AIC � 2p + n ×(ln RMSE), (4)

where p is the number of factors, and n is the number of
samples used in the prediction. )e best model will have the
minimum AIC value.

4.4. Feature Selection. Feature selection is mainly applied to
remove redundant and/or noninformative predictors from
the model [57] and may improve model accuracy. Some
models such as PLSR, MARS, and RT will provide a feature
selection procedure by default.

)e variable importance of the projection (VIP) and
b-coefficient scores obtained by the PLSR model help us
measure the statistical significance of predictors and select
the most important ones [77]. )e VIP score of the kth
predictor is calculated as follows:

VIPk � K ·∑
aopt

a�1

w2
ak · R

2
a, (5)

where K represents the total number of the predictor var-
iables, aopt is an optimal number of latent variables selected
by the PLSR model, wak is the loading weight for the kth
latent variable, and R2

a represents the adjust coefficient of
determination of the ath latent variable in the PLSR model
[78]. A predictor (such as wavelength) is selected and
considered to be very important if (1) the VIP exceeds the
threshold value of one (Chong and Jun [77]) and (2) its
b-coefficient is higher than the b-coefficient based on all
spectral bands [23].

According to Gomez et al. [22], the important spectral
bands selected by the PLSR model are related to the
presence of clay minerals such as kaolinite and illite.
Additionally, surrogate spectral features selected by VIP
and b-coefficient approach contain enough information to
satisfactorily estimate the studied soil attributes. According
to Viscarra Rossel and Behrens [45], a combined NN and
feature selection model (FSvip-ANN) is the best method to
predict clay content and pH and produce smaller RSME
and AIC values.

5. Comparison between Spectral Measurement
and Multivariate Calibration

)e relative abundance of minerals in a soil sample can be
predicted either by spectral analyses (e.g., continuum re-
moval) or chemometric methods (e.g., PLSR and NN)
[20, 24, 45, 47]. Although both types of methods correlate
the spectral signal with information about the soil minerals,
they differ in many ways, including their focused spectral
bands, complexity, and how they are applied.
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5.1. Focused Spectral Bands. Spectral analyses focus on
specific absorption bands representative of the corresponding
soil minerals, while the multivariable regression algorithms
commonly use the signals from the whole 350–2500 nm re-
gion. In some cases, the 350–400 nm and 2450–2500 nm
ranges with low instrumental signal-to-noise ratios are re-
moved [59, 79]. )erefore, a multivariable regression model
deals with over 1000 spectral bands—many more than the
number of focused bands in a continuum removal study.
Moreover, several geometric parameters can be extracted
from each band in a spectral measurement, including P,W,D,
F, and AS, whereas only the information of depth for each
band can be gleaned from a chemometric study. Note that
some algorithms intrinsically provide a feature selection
method (e.g., SMLR and PLSR), and it has been shown that
themost important features selected by a regressionmodel are
the ones that we should pay the most attention to in a spectral
measurement study [22].

5.2. Complexity. )eoretically, multivariate calibration is
very complicated because it involves a larger number of
algorithms and because different algorithms have the po-
tential to be combined into better predictive models,
depending on the situation [45, 70, 79]. However, in
practice, multivariate modeling and prediction is not that
complicated. )anks to the development of executable and
fast running software such as ParLeS and Unscrambler
[75, 80], the difficult calculation process can be done much
more easily. On the other hand, spectral measurement
studies cost more time because we must (1) identify a soil
mineral based on the spectral features, (2) extract parameters
from the bands, and (3) relate those parameters with the
information about the soil mineral.

5.3. Application Preference. )e geometric features of the
spectra are more suitable for monitoring the molecular
structural changes of soil minerals, since the variations of
the absorption bands are caused by electron transitions
(e.g., Fe2+ to Fe3+) andmolecular vibration (e.g., Al-OH versus
H2O). )us, spectral measurement is widely and successfully
applied to (1) measure mineral physicochemistry that is
sensitive to changes in metamorphic grade [53, 81], (2) map
and monitor mineral erosion, deposition, and weathering of
minerals [24, 51], and (3) explore water and potential life on
extraterrestrial objects [10, 21]. Chemometric methods are
more often used in monitoring overall soil properties, since
almost all of the signals in the VNIR domain are involved in
the modeling process. Several soil attributes are successfully
determined by an appropriate multivariate calibration tech-
nique, including soil clay [23, 69], organic matter [32, 67], and
nitrogen content [82, 83].

Table 2 is a review of some soil mineralogic attributes
predicted by VNIR spectroscopy using either chemometric
analysis or spectral-based measurement. In this summary,
most of the studies used soil samples for analysis, and many
of them are among diverse soil types (Table 2). )e pre-
dictions of the soil properties are still good when there is
great range of soil types (e.g., 22, 45, 84, and 85). A single

mineral (e.g., kaolinite and goethite) is more precisely pre-
dicted when mineral mixtures are used in the measurements
[2, 86]. )e studies in Table 2 include both data collected in
the laboratory and data based on field soil sensing. In the lab,
the sample pretreatment and illumination conditions can be
controlled to eliminate the influences of the moisture and the
grain size of the soil sample [18]. While in the field, the VNIR
spectroscopy may be affected by many potential problems
such as variable distances between the sensor and the soil, the
smearing of soil surfaces, the size of the soil aggregates, and
the amount of moisture [87]. )ese potential problems may
reduce the prediction accuracy of field-based analysis [22, 85].
However, the field-based VNIR spectroscopy is more at-
tractive because it (1) enables the potential analysis of soil
properties with promising results in previous studies [87] and
(2) reduces the cost of the measurement by simplifying the
sample preparation. Based on the results of the studies, PLSR
is proved to be the most robust soil mineralogic analysis
method amongst all of the multivariate calibrations (Table 2;
0.43<R2 < 0.96). )e CR-based model is good at predicting
clay mineral concentration (e.g., 20, 47, and 88; R2 > 0.79). In
some cases, the nonlinear models (NN and MARS) exhibit
better estimation in predicting soil mineralogy than the PLSR
model (e.g., 45 and 89). In general, when a soil mineral is
investigated by spectroscopy, the PLSR and the CR-based
models are the most promising methods to provide estimates
of mineral abundance.

6. Conclusions and Future Research Directions

Clay minerals in soils are more complex and less well crys-
tallized than those in sedimentary rocks. Traditional char-
acterization methods such as XRD are usually expensive and
time-consuming, whereas VNIR is a quick, cost-efficient, and
nondestructive technique for analyzing the soil mineralogic
properties of large datasets. )e major strength of soil
mineralogy studies is that there is a direct relationship be-
tween soil minerals and their spectra, since the diagnostic
absorption bands of soil minerals lie within the VNIR region.
)erefore, the nature of soil mineralogy can be approached
through both spectral measurement and multivariate cali-
bration. )e spectral measurement is focused on geometric
information extracted from several bands (e.g., 350–400,
∼1900, ∼2200, and 2450–2500 nm) that relate to soil minerals.
)e parameters derived from the continuum removal method
are mainly used for mineral identification and prediction. In
a multivariate calibration analysis, the dataset contains the
entire VNIR domain. )e most robust model for soil mineral
estimation is selected after understanding the data, data
preprocessing, candidate model building, and performance
assessment.

Firstly, VNIR has been greatly developed in soil sciences
over the past several decades. However, no definitive results
on theoretical calculations have yet been found because most
soil studies occur on a regional scale so their results are only
regionally representative. )us, it is essential to further
develop the theoretical calibrations of VNIR that are more
suitable for soil samples worldwide, despite difficulties due
to high soil variability across the globe.
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Table 2: A review of VNIR spectroscopy for the prediction of soil attributes using feature-based and chemometric methods in previous
studies.

Soil mineralogic
attributea

Soil typeb Location Samplec ncal/nval
d Methode R2f RMSEg Source

ClayT Alfisols and entisols Romania Lab/sieved (2)-air-dried 210/90 SVR 0.27 84.4 [90]
ClayT Not mentioned France Lab/sieved (2)-air-dried 99/49 PLSR 0.76 33.6 [59]
ClayT Diverse Romania Lab/sieved (2)-air-dried 210/90 SVR 0.46 85.3 [91]
ClayT Vertisols and alfisols India Lab/sieved (2)-air-dried 175/58 PLSR 0.80 2.2 [92]
ClayT Diverse Denmark Lab/sieved (2)-air-dried 480CV PLSR 0.94 17 [84]

ClayT
Entisol and
inceptisols

Italy Lab/sieved (2)-oven-dried 175/60 PLSR 0.80 0.17 [93]

ClayT Diverse Australia Lab/sieved (2)-air-dried 1104CV
DWT-
ANN

0.88 64.2 [45]

ClayT Diverse Australia Lab/sieved (2)-air-dried 1104CV PLSR 0.83 77.7 [45]
ClayT Entisol Turkey Lab/sieved (2)-air-dried 502CV PLSR 0.84 38.20 [89]
ClayT Entisol Turkey Lab/sieved (2)-air-dried 502CV MARS 0.86 35.10 [89]
ClayT Diverse France Lab/sieved (2)-oven-dried 52CV PLSR 0.85 31.2 [22]
ClayT Diverse France Lab/sieved (2)-oven-dried 52CV CR 0.73 44 [22]
ClayT Diverse France Field/fresh 52CV PLSR 0.64 49.6 [22]
ClayT Diverse France Field/fresh 52CV CR 0.58 82 [22]
ClayT Diverse USA Lab/sieved (2)-air-dried 72CV PLSR 0.92 41 [85]
ClayT Diverse USA Field/fresh 72CV PLSR 0.83 61 [85]
ClayK Diverse Australia Lab/sieved (2)-air-dried 102CV PLSR 0.95 111.5 [94]

ClayK Not mentioned China Lab/sieved (2)-air-dried 20CV
CR-
MLR

0.80 10.41 [88]

ClayK Diverse topsoil Australia Lab/sieved (2)-air-dried 4606CV
Model
trees

0.52 0.8 [95]

ClayK Diverse subsoil Australia Lab/sieved (2)-air-dried 2492CV
Model
trees

0.46 1.1 [95]

ClayK
Mineral-organic

mixes
Australia Lab/sieved (0.2)-oven-dried 8CV PLSR 0.94 0.36 [2]

ClayI Diverse Australia Lab/sieved (2)-air-dried 90CV PLSR 0.96 102.1 [94]

ClayI Not mentioned China Lab/sieved (2)-air-dried 20CV
CR-
MLR

0.79 28.14 [88]

ClayI Diverse topsoil Australia Lab/sieved (2)-air-dried 4606CV
Model
trees

0.41 1.2 [95]

ClayI Diverse subsoil Australia Lab/sieved (2)-air-dried 2492CV
Model
trees

0.40 1.5 [95]

ClayI
Mineral-organic

mixes
Australia Lab/sieved (0.2)-oven-dried 8CV PLSR 0.96 0.34 [2]

ClayS Diverse Australia Lab/sieved (2)-air-dried 98CV PLSR 0.94 118.7 [94]

ClayS Not mentioned China Lab/sieved (2)-air-dried 20CV
CR-
MLR

0.84 21.35 [88]

ClayS Diverse France Lab/sieved (2)-air-dried 63CV CR 0.83 158 [20]

ClayS Diverse topsoil Australia Lab/sieved (2)-air-dried 4606CV
Model
trees

0.61 0.8 [95]

ClayS Diverse subsoil Australia Lab/sieved (2)-air-dried 2492CV
Model
trees

0.44 1.2 [95]

ClayS
Mineral-organic

mixes
Australia Lab/sieved (0.2)-oven-dried 8CV PLSR 0.92 0.34 [2]

ClayS Not mentioned USA Lab/sieved (2)-air-dried 178CV PLSR 0.83 1 [96]

Clay2:1

Argiudoll,
hapludolls, and

eutrudox
Brazil Lab/sieved (2)-oven-dried 29CV CR 0.80 — [47]

FeT Not mentioned France Lab/sieved (2)-air-dried 99/49 PLSR 0.84 24h [59]
FeT Vertisols and alfisols India Lab/sieved (2)-air-dried 175/58 PLSR 0.78 0.15h [92]
FeT Diverse Moravia Lab/sieved (2)-air-dried 97CV MLR 0.37 12.76h [97]

FeT
Cambisols and

luvisols
South Africa Lab/sieved (2)-air-dried 123/40

CR-
MLR

0.21 9.3 [98]

FeT
Cambisols and

luvisols
South Africa Field/fresh 94/31

CR-
MLR

0.23 16.3 [98]

Journal of Spectroscopy 9



Secondly, more field analyses are required for obtaining
full potential of VNIR.)e in situ data collection in the field is
one of the advantages compared with conventional tech-
niques. )e heterogeneity of the technical and environmental
factors (e.g., soil moisture, soil surface condition, and bi-
ological residue) will directly influence the characteristics of
the absorption bands, causing increased uncertainty of the
spectral measurements. Nevertheless, multivariate calibration
models for field data show good or even better mineral
prediction than laboratory data.)ere has been a lack of more
systematic studies on the various effects of field sample data
and variations in mineralogy, moisture, organic matter, and
their interactions. )erefore, future work should focus on
these types of studies rather than laboratory spectra.

)irdly, VNIR may have the potential to help us in-
vestigate interactions between soil clay minerals and SOC.
Mechanisms of SOC stabilization have attracted increasing
interest due to their potential to influence the global carbon
cycle. It is widely suggested that soil clay minerals play
a central role in capturing and permanently sequestering
atmospheric CO2. Both clay content and clay mineral type
exert important influences on the carbon sequestration.
Because VNIR is capable of characterizing most of carbon-
and hydroxyl-related properties, it should allow us to study
clay-SOC interactions when combined with the other com-
mon or state-of-the-art techniques.

Finally, integrated soil mapping is needed in future large-
scale soil analysis. )e VNIR spectrum contains integrative
information (e.g., mineral composition, SOM, SOC, pH, and
moisture) of the soil attributes that reflect the nature of a soil

system. )us, we could use VNIR to map soils. More col-
laborative and strategic spectral studies are needed to better
understand the complete nature of soil [101, 102]. Some global
or national spectral libraries [103, 104] have been established
to build collaborative networks for soil spectroscopy, but more
spectral libraries will facilitate the wider use of VNIR andmake
global-scale soil monitoring possible.
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