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Abstract. Image visibility is affected by the presence of haze, fog, smoke, aerosol, etc. Image dehazing using

either single visible image or visible and near-infrared (NIR) image pair is often considered as a solution to

improve the visual quality of such scenes. In this paper, we address this problem from a visible–NIR image

fusion perspective, instead of the conventional haze imaging model. The proposed algorithm uses a Laplacian–

Gaussian pyramid based multi-resolution fusion process, guided by weight maps generated using local entropy,

local contrast and visibility as metrics that control the fusion result. The proposed algorithm is free from any

human intervention, and produces results that outperform the existing image-dehazing algorithms both visually

as well as quantitatively. The algorithm proves to be efficient not only for the outdoor scenes with or without

haze, but also for the indoor scenes in improving scene visibility.

Keywords. Image dehazing; Laplacian–Gaussian pyramid; multi-resolution fusion; visible–NIR image fusion;

weight map.

1. Introduction

Visibility and colour of an image are greatly affected by

bad weather such as haze, fog, smoke, aerosol, etc. The

attenuation and the smoothing effect as a result of scatter-

ing due to such conditions result in loss of contrast and

details, and at the same time changes the colour perception

of the camera while capturing image. Recovering the actual

scene information is a challenge and is often termed as

dehazing.

The traditional methods like gamma correction and his-

togram equalization provide a limited enhancement of such

images and at some points their results can look more

artificial. Some researchers have proposed algorithms that

make use of multiple images of the same scene under dif-

ferent weather conditions to enhance visibility [1]. Some

dehazing algorithms make use of multiple images captured

at different degrees of polarization [2, 3]. In both these

cases, the algorithms are not suitable to handle dynamic

scenes and are highly sensitive to the way in which these

multiple images are captured.

In the last decade, many algorithms based on single-

image dehazing have been proposed by different

researchers [5–10]. These algorithms estimate airlight and

transmission based on certain assumptions or inputs from

the user. The main limitation of these single-dehazing

algorithms is that, the details that are not registered in the

image cannot be restored and are lost completely, no matter

how good the performance of the algorithm is. Also, most

single-image dehazing algorithms proposed in the literature

require human intervention and are computationally

complex.

To tackle this issue, dehazing based on the combination

of visible and near-infrared (NIR) image has become pop-

ular in recent times. Digital camera sensors can capture

visible spectrum (400–700 nm) as well as NIR spectrum

(700–1100 nm). To capture a visible image, an infrared

filter popularly called hot mirror is placed in front of

camera sensors to prevent NIR light falling on the sensor.

Removing the hot mirror will capture visible and NIR

spectrum at the same time. To capture NIR image, it is

necessary to put a visible light blocking filter on the top.

For complete details of NIR image acquisition, readers are

referred to Fredembach and Süsstrunk [11], Zhang et al

[12], Zhuo et al [13] and Sadeghipoor et al [14].

The NIR images so captured exhibit high contrast.

Also, NIR can see through haze and it gives bright

response for vegetation and clouds. These features of NIR

images become handy to cater to dehazing problem. The

pair of visible–NIR images is used by some researchers

[15] to estimate airlight and transmission. Algorithms

without estimation of haze or airlight, with a pair of

visible–NIR images, have also been proposed in literature

[12, 13, 16].

In this paper, we propose a mechanism to fuse visible

and NIR images. The multi-resolution fusion process is*For correspondence
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guided by weight maps generated using the characteristics

of visible and NIR images, so that the final fused result has

enhanced details, contrast and is vibrant in colour. An

example is demonstrated in figure 1. The algorithm is fully

automatic and is less computationally demanding. It is

capable of handling both outdoor and indoor scenes. The

results produced by this algorithm are also superior in

quantitative analysis.

2. Related work

The optical model used for representing image degradation

due to hazy conditions consists of direct attenuation and

airlight as follows [5, 7, 8]:

Iðx; yÞ ¼ Jðx; yÞ tðx; yÞ þ A 1� tðx; yÞð Þ ð1Þ

where, Iðx; yÞ is the observed image, Jðx; yÞ is the haze-free
image, A is the global atmospheric light (also called as

airlight colour) and t(x, y) is the medium transmission

describing the portion of the light that is not scattered and

reaches the camera for the image pixel (x, y). The term

Jðx; yÞtðx; yÞ is called as direct attenuation and the term

A 1� tðx; yÞð Þ is called as airlight. The transmission t(x, y)

is defined as

tðx; yÞ ¼ e�bdðx;yÞ ð2Þ

where, b is the scattering coefficient of the atmosphere and

d(x, y) is the scene depth. Recovering a haze-free image J

from I needs estimation of A and t, which is an ill-posed

problem and correct assumptions play an important role in

getting good results. Most popular dehazing algorithms are

based on this haze imaging model.

One of the popular algorithms in single-image dehazing

was proposed by Fattal [5]. Fattal’s approach is based on

the assumption that the shading and transmission functions

are locally statistically uncorrelated. His model accounts

for surface shading along with the scene transmission. It

finds constant-albedo regions and resolves the airlight–

albedo ambiguity using the constraint of surface shading.

The airlight colour is also estimated using the uncorrelation

principle. It recovers haze-free scene contrast, but its per-

formance greatly depends on the statistics of the input data.

The assumption fails in cases of very dense haze.

Tan’s [8] work is based on two assumptions: first, images

with enhanced visibility have more contrast than hazy

images; second, airlight has a smooth variation depending

on the distance of objects to the viewer. The image is

dehazed by maximizing the local contrast of the restored

image in the framework of Markov random fields (MRFs).

The results tend to have over-saturated colours. Also, it has

halo artifact at depth discontinuities.

He et al [7] proposed a dark channel prior to remove

haze from a single-input image. The dark channel prior is

based on the statistics of outdoor haze-free images.

According to this prior, most local patches in outdoor haze-

free images contain some pixels whose intensity is very low

in at least one colour channel. Based on this prior and the

haze imaging model as described in Eq. (1), they directly

estimate haze and depth map, which is then used to recover

a dehazed image. The method depends on the haze imaging

model, and may fail when this model is physically invalid.

Also, the method may fail to recover the true scene radiance

of the distant objects as it assumes common transmission

for all colour channels. A few researchers [17, 18] have

extended the use of the dark channel prior for dehazing

remotely sensed images.

Zhang et al [10] reconstructed a haze-free image through

haze layer estimation based on the image filtering approach

using both low-rank technique and the overlap averaging

scheme. Guo et al [6] considered the haze as the veil layer

instead of transmission. They employed the retinex algo-

rithm and the depth information of the original image to

remove the veil layer. Lan et al [19] proposed a three-stage

Figure 1. Demonstration of visible–NIR image fusion: note the

improvement in the details and contrast of the visible image with

vibrant colour perception for our result. (Images courtesy: EPFL

database EPFL [4].)
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algorithm for haze removal, considering sensor blur and

noise. It involved elimination of blur/noise interference and

estimation of transmission and atmospheric light by the

dark channel prior, followed by non-local regularization

method to dehaze the image.

Fattal [20] proposed a new method based on colour-lines.

According to colour-lines, there is a generic regularity in

natural images in which pixels of small image patches

typically exhibit one-dimensional distributions in RGB

colour space. The scene transmission for the hazy images

was derived from the lines’ offset from the origin. A MRF

model was used to resolve ambiguities due to noisy and

scattered estimates for producing complete and regularized

transmission map.

Most of these previousworks andworksbyother researchers

on single imagedehazing are computationally expensive.Tarel

and Hautière [9] proposed a fast visibility restoration mecha-

nism based on a filtering approach. More recently, another fast

mechanism based on colour attenuation prior based on the

difference between the brightness and the saturation of the

pixels within the hazy image was proposed by Zhu et al [21].

They modelled the scene depth with the brightness and the

saturation of the hazy image using a supervised learning

method. The depth estimation was used for transmission

recovery followed by restoring scene radiance.

Accurate estimation of the atmospheric light is another

challenging issue in dehazing, which directly affects the

visual appearance of the dehazed image. Sulami et al [22]

proposed an automatic method to recover atmospheric light

from hazy images. The magnitude of the atmospheric light

was estimated using maximum-brightness transmission

invariance prior. The orientation of the atmospheric light

was recovered using a simplified model that describes

simple geometric configurations of pixels inside small

mono-albedo patches.

Ancuti and Ancuti [23] proposed a fusion-based strategy

that used two hazy image inputs obtained by applying a

white balance and a contrast enhancement. They used

luminance, chromaticity and saliency features for weight

maps. In another work, Ancuti and Ancuti [24] used a

lightness predictor for contrast enhancement for the regions

with less chromatic contrast, while preserving original

colour spatial distribution and the local contrast. Also, they

performed an image matching evaluation for hazy images.

The key limitation of any single image dehazing algo-

rithm is the details that are not captured in RGB spectrum

because of scattering, which cannot be recovered back. To

reduce the computational complexity and also to improve

the overall results of the single-image dehazing algorithms,

algorithms based on the combination of visible and NIR

image have become popular in recent times. The NIR

images retain more details on distant objects than the cor-

responding colour image, since NIR can penetrate through

hazy conditions as opposed to visible band [11, 15, 16].

This simplifies the problem of dehazing as more details are

available due to NIR image.

Feng et al [15] proposed a two-stage dehazing method,

exploiting the dissimilarity between visible and NIR images

for airlight colour estimation, followed by a dehazing

procedure through an optimization framework. Using the

haze model in Eq. (1), they enhanced the details based on

the transmission map and also recovered the colour.

The enhancement process proposed by Zhang et al [12]

uses the Haar wavelet decomposition, and comprises three

major steps: computing the weighted region mask, trans-

ferring contrast and transferring texture. The visible and the

NIR image pair is first decomposed into average and detail

wavelet subbands. The contrast in the average subband and

the texture in the detail subbands are transferred using

weighted region mask from NIR image to the visible image.

An edge-preserving multi-resolution decomposition

based on the Weighted Least Squares (WLS) optimization

framework is presented by Schaul et al [16]. A pixel level

fusion criterion that maximizes contrast was employed to

obtain haze-free image using visible and NIR images.

We propose a three-stage dehazing scheme: first, calcu-

lating weight maps using measures of local entropy, local

contrast and visibility. Second, fusing visible and NIR

images guided by weight maps. Third, a post-processing

step for colour and sharpness correction(CSC). This algo-

rithm does not depend on the haze imaging model, thus

eliminating the need for estimation of haze or airlight. Also,

the algorithm will be applicable in case of images without

sky or indoor images, where the haze imaging model is

invalid.

3. Proposed algorithm

Mertens et al [25] has demonstrated the effectiveness of a

weight-map-guided multi-resolution fusion in the context

of multi-exposure image fusion. In the line of their work,

we propose the algorithm for the fusion of visible and NIR

images. The visible image has three colour channels, viz.,

R, G and B, whereas NIR image is a single-channel image.

Therefore, we cannot combine visible and NIR image

directly. Also, replacing either R, G or B colour channel

with NIR is not a suitable choice [11]. Instead, combining

NIR with luminance component gives more pleasing

results. Luminance–chrominance colour encodings, such as

HSV, YCbCr, YUV or L*a*b*, are the potential candidates

to incorporate NIR information. We choose HSV over other

colour spaces, since HSV has luminance decoupled from

colour information and preserves colour saturation better

than others [11].

To fuse visible and NIR images, we first convert the

visible image from RGB to HSV colour space. The value of

hue and saturation is kept intact and we fuse the luminance

component of the visible image with that of NIR image to

form the fused luminance component. The fused luminance

component along with hue and saturation is then converted

back from HSV colour space to RGB colour space. A post-

Visible and NIR image fusion 1065



processing step of CSC is employed to form the final result.

Figure 2 demonstrates the work flow of our algorithm.

3.1 Weight map generation

The weight maps play a critical role in the outcome of the

final fused result. The weight maps generated should have a

non-negative value and should lie in the range of [0, 1]. The

weight should sum up to 1 at each pixel. One needs to keep

in mind the characteristics of the visible and NIR images

while selecting measures to generate the weight maps. We

use the following measures to generate the weight maps.

3.1a Normalized local entropy: The aim of fusion algorithm

is to transfer maximum information from visible and NIR

image to that of fused image. To ensure this, we introduce a

weight measure of normalized local entropy H calculated

over a local neighbourhood g around a pixel (x, y) as

Hðx; yÞ ¼ �
1

8

X

ði;jÞ�g

pðf ; ði; jÞÞ log pðf ; ði; jÞÞ ð3Þ

where, p(f) is the probability of occurrence of f th grey level.

Since both visible and NIR images have 8 bits per pixel per

channel, a normalization factor of 1
8
is used to ensure that

the value of H lies in the range [0, 1]. In our implemen-

tation, we use a fixed neighbourhood of size 5� 5.

3.1b Local contrast: NIR images exhibit overall higher

contrast than that of visible image. The response of NIR is

saturated (bright) in case of vegetation, clouds, etc. and is

desaturated (dark) for clear sky, water, etc., which makes

the overall contrast of the NIR image high. Also, NIR has

different responses to different colours. This indicates that

just the value of the NIR channel cannot be used as a

measure for the fusion. If used directly, it will produce the

results that are either washed out or too dark instead of

producing the details in such regions. To avoid this sce-

nario, one has to also take into account the local activity

around the pixel. We use a measure of local contrast that

weights the pixels based on the local activity around it.

The local contrast C over a local neighbourhood g around

a pixel (x, y) is calculated as

Cðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

ði;jÞ�g

Iði; jÞ � lðx; yÞð Þ2
s

ð4Þ

where, lðx; yÞ is the local mean given by

lðx; yÞ ¼
1

N

X

ði;jÞ�g

Iði; jÞ ð5Þ

and N is the number of pixels in the local neighbourhood g.

If pixels in the neighbourhood exhibit more deviation from

the local mean, it indicates the presence of activity in that

region and is eventually given a higher weight and vice-

versa. In our implementation, we use a fixed neighbourhood

of size 5� 5.

3.1c Visibility: NIR can be transparent or nontransparent

based on the medium. It can see through haze and fog

where visible spectrum cannot. At the same time, it is

opaque through water where visible spectrum can see

through up to a certain extent. Hence, it is quite obvious

that one should assign weights to visible and NIR images

based on their capacity in capturing details underneath a

particular medium. We define a visibility metric using a

local blur estimation method. First, we blur the image using

a Gaussian function with known standard deviation. Then

root square blurred difference between image and its

blurred version is used as a visibility measure V as follows:

Iblurðx; yÞ ¼ Iðx; yÞ � gMðx; y; r1Þ ð6Þ

and

Vðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðx; yÞ � Iblurðx; yÞð Þ2�gMðx; y; r2Þ

q

: ð7Þ

Here, gMðx; y; rÞ is a 2D circularly symmetric Gaussian

weighting function with a M �M window and standard

deviation r. The operator � indicates 2D convolution
Figure 2. Work flow of our algorithm.
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operation. In our implementation, we use M ¼ 5 and

r1 ¼ r2 ¼ 2.

For each pixel, we combine these three weights to form a

single weight as

Wiðx; yÞ ¼ Hiðx; yÞ
a1 � Ciðx; yÞ

a2 � Viðx; yÞ
a3 ð8Þ

The subscript i indicates channel, either visible or NIR. The

product is used to combine these measures over a linear

combination. The product acts as an AND operation instead

of OR operation as in the case of linear combination. The

weighting exponents a1, a2 and a3 take values in [0, 1] and

control the contribution of each weight measure in the final

fused result. For more details on weight map generation,

readers can refer to the work of Mertens et al [25]. We set

a1 ¼ a2 ¼ a3 ¼ 1, so that each measure contributes equally

to the final fused result. The weights are then normalized so

that they sum to 1 at each pixel as

WVN
ðx; yÞ ¼

WVðx; yÞ

WVðx; yÞ þWNIRðx; yÞ
ð9Þ

WNIRN
ðx; yÞ ¼

WNIRðx; yÞ

WVðx; yÞ þWNIRðx; yÞ
ð10Þ

Figure 3 demonstrates an example of weight maps

generation and their effect on the final fused result. For

the visible image, the details underneath water are visi-

ble; at the same time the top background is desaturated

in colour. For NIR image, the details underneath water

are not visible, but the waves on the water surface are

seen. The vegetation in the top background is bright in

the NIR image. When we employ only normalized local

entropy as a measure, it will try to put all the information

from both the images to the final fused result. This

increases saturation of the background, but also gives a

wash-out effect to water details. Local contrast shows the

improvement in texture for the background with a slight

improvement in the water details. Visibility shows the

details of the water best preserved compared with local

entropy and local contrast, but suffers a degradation in

detail transfer for vegetation compared with local con-

trast. The combination of three weights together gives

advantages of all three combined together, thus exhibit-

ing details of both water and background well preserved

with increase in saturation.

3.2 Multi-resolution fusion

The weight maps generated for visible and NIR images are

not smooth. Hence, one cannot fuse visible and NIR images

simply by taking a weighted sum using these weight maps.

We use the combination of Laplacian and Gaussian pyra-

mids as used by Mertens et al [25] to accomplish the fusion.

The visible and NIR images are decomposed using a

Laplacian pyramid, and the normalized weight maps are

decomposed using a Gaussian pyramid.

Mathematically the lth level of Gaussian pyramid is

represented as

G Iðx; yÞf gl¼ gðx; yÞ � GfIðx; yÞgl�1½ �#2 ð11Þ

where, g(x, y) is the Gaussian kernel, GfIðx; yÞgl�1 is the

approximation at the previous level and # 2 is down-sam-

pling operation by 2. Similarly, the Laplacian pyramid

decomposition can be represented as

L Iðx;yÞf gl¼GfIðx;yÞgl�1�Rðx;yÞ� GfIðx;yÞgl½ �"2 ð12Þ

where, LfIðx; yÞgl is the Laplacian decomposition at level l,

R(x, y) is the interpolation filter and " 2 is upsampling

operation by 2.

The fused Laplacian pyramid is then obtained by com-

bining the Laplacian pyramids at each level of decompo-

sition weighted by corresponding Gaussian pyramids as

L IFðx; yÞf gl ¼ G WVN
ðx; yÞf glL IVðx; yÞf gl

þ G WNIRN
ðx; yÞf glL INIRðx; yÞf gl:

ð13Þ

The fused pyramid L IFðx; yÞf gl is then collapsed to obtain

IFðx; yÞ, which is the fused image of the luminance com-

ponent of the visible image with that of NIR image. For

smooth blending, the pyramidal decomposition is carried

out up to the level of 1 pixel.

3.3 CSC

The fused luminance component along with hue and satu-

ration are then converted back from HSV colour space to

RGB colour space to form the fused colour image

IF;RGBðx; yÞ. Since, the original luminance component

IVðx; yÞ is replaced by fused luminance component IFðx; yÞ,
it also alters the overall colour composition of the image

when converted back to RGB colour space from HSV

colour space. Also, the images with saturated colour are

more vivid. Hence, we introduce a colour correction

mechanism that operates like a tone mapping operator for

the fused colour image. The result is a colour image that

has increased saturation and looks vibrant in colour. The

colour correction is described as

IcT ;RGBðx;yÞ¼
IcF;RGBðx;yÞ

IFðx;yÞ

� �b
IVðx;yÞþINIRðx;yÞ

2

� �

ð14Þ

for c ¼ R; G and B colour components. The exponent b is

the tone control parameter and is greater than or equal to

one. It controls the colour saturation of the resultant

image. Larger the value of b, larger the saturation. In our
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implementation, we use a fixed b ¼ 1:5. User can tune

this parameter to obtain the desired level of colour

saturation.

The multi-resolution fusion, as described earlier, results

in smoothing of the fused image. Hence, we employ a

sharpening mechanism [26] to improve the visual quality of

the fused image. The colour-corrected image IT ;RGBðx; yÞ is
again transformed to HSV colour space. The luminance

component ITðx; yÞ is first filtered by a high-pass filter,

which extracts the high-frequency components, and then a

scaled version of this high-pass filter output is added back

to ITðx; yÞ:

Figure 3. Demonstration of weight maps and their effect on the final fused result. (Images courtesy: EPFL database EPFL [4].)

(a) Columns-wise from left to right: input visible–NIR image pair, normalized local entropy, local contrast, visibility and final weight

maps. (b) Fusion results. From left to right: using only normalized local entropy, using only local contrast, using only visibility and using

final weight maps. (c) Cropped portions showing vegetation part of fusion results. From left to right: using only normalized local entropy,

using only local contrast, using only visibility and using final weight maps. (d) Cropped portions showing water part of fusion results.

From left to right: using only normalized local entropy, using only local contrast, using only visibility and using final weight maps.

1068 Ashish V Vanmali and Vikram M Gadre



IOutðx; yÞ ¼ ITðx; yÞ þ k ITðx; yÞ � Fðx; yÞ½ � ð15Þ

The image is again converted back to RGB colour space to

form the final result IOut;RGBðx; yÞ. Here, F(x, y) indicates a
high-pass filter, and k is a sharpening control parameter

greater than or equal to zero. We set k ¼ 0:4 in our work.

Linear high-pass filters can lead to unacceptable results if

the original image is noisy. Instead, weighted median

(WM) filters produce sharpening with better noise immu-

nity. We use the following WM filter mask for high-pass

filter commonly found in the literature [26]:

WM ¼
1

3

�1 � 1 � 1

�1 8 � 1

�1 � 1 � 1

2

6

4

3

7

5
: ð16Þ

The CSC does not improve the visibility of the output

image, but enhances the visual quality. The output with

CSC is more vivid as it has less blur and the colours are

more saturated. If required, the user can treat this step of

CSC as optional. We demonstrate our results without CSC

as well as with CSC.

4. Results and discussion

To demonstrate the effectiveness of the proposed method,

we used EPFL database EPFL [4], which consists of more

than 450 images with nine different scene categories. All

visible and NIR images used are of 1024� 680 resolution

and are spatially registered. In the experiments, we per-

formed algorithms by executing the MATLAB code on a

laptop with 2.4 GHz Intel i5 Processor and 4 GB RAM. The

experiments are performed with and without CSC. The

average execution time for the proposed algorithm is

approximately 3.19 s without CSC and it takes approxi-

mately 3.77 s with CSC when tested for 360 runs (72

datasets, each executed five times).

The results of the proposed algorithm are compared with

the state-of-the-art single/multiple image-dehazing algo-

rithms. For single-image dehazing, results of He et al [7],

Tarel and Hautiére [9], Ancuti and Ancuti [23] and Zhu

et al [21] are used for comparison. For visible–NIR-based

dehazing, results of Zhang et al [12] and Schaul et al [16]

are used for comparison. The results are demonstrated in

figures 4, 5, 6, 7, 8 and 9. We have used the MATLAB

codes of these algorithms available online with their pre-

defined settings. The average execution times for these

algorithms were also recorded for 360 runs (72 datasets,

each executed 5 times). Comparisons of these execution

times with our algorithm are presented in table 1. It indi-

cates that our algorithm with or without CSC is faster

compared with all the algorithms used in the comparison.

For the brevity of space, we demonstrate the results for

12 datasets with different conditions and incorporating all

nine categories of the database. The first 4 datasets repre-

sent images with hazy condition. Datasets 1 and 2 are of

category ‘country’, first indicating white clouds and second

with dark clouds with overcast conditions. Dataset 3 is of

the category ‘mountain’ representing a natural scene.

Dataset 4 is of ‘urban’ category. Datasets 5–8 represent

haze-free images with clear sky. Dataset 5 is of ‘field’

category whereas dataset 6 is from the ‘old building’ cat-

egory. Dataset 7 is of form ‘street’ category and dataset 8 is

from the ‘water’ category. Datasets 9 and 10 are haze-free

images without sky. Here, dataset 9 is again from the ‘old

building’ category and dataset 10 is from the ‘forest’ cat-

egory. Dataset 11 exhibits transparent and non-transparent

behaviour of visible and NIR through water and is from the

category ‘water’. Dataset 12 exhibits an indoor image from

category ‘indoor’. For datasets 1–8, the haze imaging

model holds true; however, it is invalid for datasets 9–12.

The results of He et al [7] and Tarel and Hautière [9]

increase the contrast in the hazy images. In case of haze-

free images, He et al do not add any significant improve-

ment, whereas in images where the sky is not visible or in

indoor image, it gives a dark appearance to the results. In

many cases, He et al produce over-saturated colour, making

the results look artificial. Tarel and Hautière, on the other

hand, shows significant improvement in the appearance

with well-saturated colours. Tarel and Hautière [9] yield

more details than those of He et al [7]. One needs to tune

the processing parameters for these algorithms based on the

images to obtain a good appearance.

The results of Ancuti and Ancuti [23] show similar per-

formance to that of Tarel and Hautière [9] for hazy images,

but lack in colour reproduction. In other cases, their results

have bright appearance, which leads to loss of details in

certain areas when compared with other results. For indoor

images, Ancuti and Ancuti have better contrast and good

colour reproduction compared with other algorithms. Zhu

et al [21] give consistent performance similar to that of Tarel

and Hautière [9] for hazy as well as haze-free images with

good amount of details and colour output. For distant

objects, Zhu et al [21] have more details compared with He

et al [7], Tarel and Hautière [9] and Ancuti and Ancuti [23].

For the images without sky and indoor images, Zhu et al [21]

show a dark appearance to the output.

Zhang et al [12] and Schaul et al [16] show an increment

in detail transfer compared with those with He et al [7],

Tarel and Hautière [9], Ancuti and Ancuti [23] and Zhu

et al [21], which are mainly contributed by NIR images.

The results of Schaul et al [16] exhibit better detail transfer

in hazy conditions as opposed to haze-free conditions,

while exactly opposite behaviour is seen in case of results

of Zhang et al [12], when compared with each other. The

performance in Schaul et al [16] is inferior in case of indoor

image and that without sky. Zhang et al [12] show better

colour saturation as compared with that of Schaul et al [16],

but it is less compared with that of He et al [7], Tarel and

Hautière [9] and Zhu et al [21].
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Figure 4. Demonstration of results for hazy conditions. For each dataset, 1st row left to right: visible–NIR image pair, results of He

et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al [21] and results

of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC. (Images courtesy:

EPFL database EPFL [4].) (a) Dataset 1, (b) Dataset 2.
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Figure 5. Demonstration of results for hazy conditions. For each dataset, 1st row left to right: visible–NIR image pair, results of He

et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al [21] and results

of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC. (Images courtesy:

EPFL database EPFL [4].) (a) Dataset 3, (b) Dataset 4.
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Figure 6. Demonstration of results for haze-free conditions with sky. For each dataset, 1st row left to right: visible–NIR image pair,

results of He et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al

[21] and results of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC.

(Images courtesy: EPFL database [4].) (a) Dataset 5, (b) Dataset 6.
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Figure 7. Demonstration of results for haze-free conditions with sky. For each dataset, 1st row left to right: visible–NIR image pair,

results of He et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23] and results of Zhu et al

[21] and results of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC.

(Images courtesy: EPFL database EPFL [4].) (a) Dataset 7, (b) Dataset 8.
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Figure 8. Demonstration of results for haze-free conditions without sky. For each dataset, 1st row left to right: visible–NIR image pair,

results of He et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al

[21] and results of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC.

(Images courtesy: EPFL database [4].) (a) Dataset 9, (b) Dataset 10.
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Figure 9. Demonstration of results for presence water body and indoor image. For each dataset, 1st row left to right: visible–NIR image

pair, results of He et al [7], results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al

[21], results of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC.

(Images courtesy: EPFL database [4].) (a) Dataset 11, (b) Dataset 12.

Visible and NIR image fusion 1075



When compared with these algorithms, the visibility is

considerably improved in our results, both with and without

CSC. The results of the proposed algorithm contain maxi-

mum details and texture in the hazy conditions compared

with all the other results. Figure 10 shows cropped portions

of the results of different algorithms for distant hazy objects

for datasets 1 and 4. One can clearly see that our results,

both with and without CSC, exhibit maximum visibility for

the hazy regions. This improved visibility is due to the

nature of the weight maps generated by our algorithm.

Figure 11 shows the corresponding weight maps for data-

sets 1 and 4. Here, one can clearly observe that, for visible

images, our algorithm gives very less weight for the haze-

affected areas and at the same time gives significant weight

for the areas in foreground, which are not affected by haze.

For NIR images, a significant weight is given to the hazy

areas, which are captured better in NIR spectrum because

of less scattering. This ensures that the maximum details

are transferred from NIR image to the fused image. The

final output images are vivid in colour and sharpness as a

result of post-processing procedure, which enhances the

perceptual quality of the final results. The performance is

equally good for all the categories of the images, making it

suitable for both indoor and outdoor applications. Further-

more, in our results, no halo artifacts are observed. The

code and full-resolution results can be viewed at https://

drive.google.com/file/d/0B-hGkOHjv3gzVnU5Slg2YWZR

WVE/view?usp=sharing. All the results are with the same

Figure 10. Cropped portions of the results for distant hazy objects. For each dataset, 1st row left to right: visible image, results of He

et al [7] and results of Tarel and Hautière [9]; 2nd row left to right: results of Ancuti and Ancuti [23], results of Zhu et al [21] and results

of Zhang et al [12]; 3rd row left to right: results of Schaul et al [16], our result without CSC and our results with CSC. (Images courtesy:

EPFL database [4].) (a) Dataset 1, (b) Dataset 4.

Table 1. Average execution time for different algorithms.

Algorithm Average execution time (s)

He et al [7] 870.3138

Tarel and Hautière [9] 6.5883

Ancuti and Ancuti [23] 4.1832

Zhu et al [21] 25.1972

Zhang et al [12] 9.5045

Schaul et al [16] 162.4391

Our algorithm without CSC 3.1906

Our algorithm with CSC 3.7667
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fixed parameters as defined in each section and do not

require modification to obtain good appearance as in the

case with the other algorithms.

5. Quantitative performance

To validate the visual observations, we perform a quanti-

tative analysis of these results with a variety of quantitative

performance indicators. Since, no ground truth is available,

no reference image quality indicators are used for quanti-

tative analysis.

The first indicator is the average local entropy. Local

entropy of each colour channel is calculated using Eq. (3),

and is then averaged to quantify the information content

of the image. The results for this assessment are given in

table 2. The second indicator is the quality assessment

model proposed by Wang et al [27]. Their model calcu-

lates the quality of the image by calculating horizontal

and vertical features. The results for this assessment are

given in table 3. The third indicator is Anisotropic Quality

Index (AQI) proposed by Gabarda and Cristóbal [28].

Their method is based on measuring the variance of the

pixel-wise directional entropy of the image upon a set of

predefined directions. The results for this assessment are

given in table 4. The fourth indicator proposed by Xue

et al [29] is based on quality-aware clustering (QAC).

They used the QAC method to learn a set of quality-aware

centroids and use them as the codebook to infer the

quality of an image patch so that the quality of the whole

image can be determined. The results for this assessment

are given in table 5.

The entries in tables 2, 4 and 5 indicate that our algo-

rithm without CSC performs moderately compared with

other algorithms. This is mainly because of the fact that

these quality indicators depends on entropy/variance in a

certain way. The multi-resolution fusion employed by us

has inherent smoothing effect, which results in reduction of

entropy/variance of the fused image. The sharpening pro-

cess introduced overcomes this drawback, improving the

output quality significantly. The results with CSC score are

maximum in most of the datasets for these indicators. The

Figure 11. Final weight maps. For each dataset, left to right: weight map for visible image and weight map for NIR image. (Images

courtesy: EPFL database [4].) (a) Dataset 1, (b) Dataset 4.
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average score of our algorithm with CSC is the best in all

these three indicators.

The scores of quality assessment model proposed by

Wang et al [27] in table 3 indicate that our algorithm

without CSC has either superior or at par performance for

all the datasets compared with other outputs. The average

score is also substantially better than that from other

methods. This is mainly due to the fact that this indicator

gives the quality score based on the perceptual quality,

which is very much similar to human visual system. After

CSC, the performance scores of our algorithm are further

improved, outperforming the other algorithms with a sub-

stantial margin.

We have treated the dehazing problem as an image

fusion of visible and NIR images. Hence, we use two

indicators that quantify the quality of the fusion based on

the input images that are used for fusion. Accordingly, the

fifth indicator used is for amount of edge information

proposed by Xydeas and Petrovic [30]. It calculates the

amount of edge information transferred from input images

to the final fused output. The results for this assessment are

given in table 6. The last indicator proposed by Han et al

[31] is based on visual information fidelity (VIFF). The

results for this assessment are given in table 7. Last two

indicators cannot be used for the results of He et al [7],

Tarel and Hautière [9], Ancuti and Ancuti [23] and Zhu

et al [21] since their methods are based on single-image

dehazing.

In table 6, our algorithm without CSC scores the best

almost in all the datasets, indicating that it has maximum

amount of edges and in turn details transferred from input

images to the output. After CSC, these edges might get

modified, and hence, there is a slight decrease in the

scores, which are still better than those from the other

algorithms. Also, for the VIFF indicator in table 7, our

algorithm without CSC has the best scores in almost all

the datasets. These scores are improved for the results

with CSC.

The scores in tables 2, 3, 4, 5, 6 and 7 clearly indicate

that the proposed method performs superior in most of the

cases, yielding the highest scores as an individual dataset.

When averaged, our results either with or without CSC

obtain the highest average score for all the six indicators.

This validates the subjective analysis indicating superior

performance of our results.

6. Conclusion

We have proposed a visible and NIR image fusion algo-

rithm for improved scene visibility. The proposed algo-

rithm does not depend on the haze imaging model. The

algorithm is driven by weight maps, calculated on the basis

of local entropy, local contrast and visibility. A Laplacian–

Gaussian pyramid based multi-resolution fusion mecha-

nism is used for seamless fusion. A post-processingT
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mechanism is added to overcome the shortcomings of the

fusion mechanism. The results of our algorithm exhibit

excellent details, contrast and colour perception with less

computational time. The experimental results clearly indi-

cate that our algorithm performs better than single as well

as multi-image dehazing algorithms, in subjective as well

as quantitative analysis. The proposed algorithm is fully

automatic and does not require any human intervention.

Also, our algorithm is not restricted only for haze removal,

and can be applied to any images, indoor/outdoor and/or

hazy/haze-free situations for improving the scene visibility.
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