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Abstract: This paper describes the chemical engineering aspects for the preparation of highly active
and stable nanocomposite photocatalysts based on N-doped TiO2. The synthesis is performed using
titanium oxysulfate as a low-cost inorganic precursor and ammonia as a precipitating agent, as well
as a source of nitrogen. Mixing the reagents under a control of pH leads to an amorphous titanium
oxide hydrate, which can be further successfully converted to nanocrystalline anatase TiO2 through
calcination in air at an increased temperature. The as-prepared N-doped TiO2 provides the complete
oxidation of volatile organic compounds both under UV and visible light, and the action spectrum of
N-doped TiO2 correlates to its absorption spectrum. The key role of paramagnetic nitrogen species
in the absorption of visible light and in the visible-light-activity of N-doped TiO2 is shown using
the EPR technique. Surface modification of N-doped TiO2 with copper species prevents its intense
deactivation under highly powerful radiation and results in a nanocomposite photocatalyst with
enhanced activity and stability. The photocatalysts prepared under different conditions are discussed
regarding the effects of their characteristics on photocatalytic activity under UV and visible light.

Keywords: photocatalytic oxidation; visible light; N-doped TiO2; copper (Cu); nanocomposite; action
spectrum; EPR; stability

1. Introduction

Currently, heterogeneous photocatalysis using semiconducting nanomaterials is one of
the key research areas worldwide, because it is regarded as an efficient method for utilizing
solar radiation to carry out useful chemical transformations and store energy [1,2]. Since
1972, when Fujishima and Honda published their study on electrochemical water splitting
using a semiconductor electrode [3], titanium dioxide has been a focus of attention as an
active and stable material for various photocatalytic reactions [4–6]. The great importance
of TiO2 as a photocatalyst is also due to the large reserves of titanium minerals in the Earth’s
interior and the relatively low cost of its manufacturing.

In an oxygen-containing medium, photocatalytically-active TiO2 can decompose haz-
ardous molecular pollutants under UV light [7,8]. This behavior enables the application
of TiO2-mediated photocatalytic oxidation as an efficient and environmentally friendly
method for the purification of air and water [9–11]. At the same time, a substantial hin-
drance for the application of TiO2 photocatalysts is that titanium dioxide has a wide
band gap (e.g., 3.2 eV for anatase) and can only absorb UV light. The control of mercury,
especially in light sources, the high cost of UV light-emitting diodes (UV LEDs) as an
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alternative to mercury lamps, and the low content (<5%) of UV light in solar radiation
requires the development of efficient photocatalysts to carry out photocatalytic reactions
under wide-range radiation, including visible light.

Narrow-band semiconductors (e.g., graphitic carbon nitride, silver phosphate, bismuth
vanadate, ternary sulfides) exhibit photocatalytic activity under visible light but quantum
efficiencies in oxidation reactions over these single-phase materials are commonly not
high enough due to surface properties, nonoptimal positions of energy bands, and a
high recombination rate of photogenerated charge carriers [12]. For these reasons, the
modification of TiO2 to extend its action spectrum to the visible region is still the main way
to develop an efficient photocatalyst for the degradation of pollutants [13,14].

The absorption of visible light and photoexcitation of electrons in TiO2-based pho-
tocatalysts can be achieved by the sensitization of TiO2 with organic dyes or plasmonic
metals; the combination of TiO2 with narrow-band semiconductors can be used to form
heterojunctions, as well as TiO2 doping with metals and nonmetals for the creation of addi-
tional energy levels in its band gap [15–19]. Creating bulk/surface defects (e.g., reduced
states, oxygen vacancies) in semiconducting materials, including TiO2, and tuning their
concentrations are also strategies that allow an increase in the absorption of visible light
and an enhancement of the photocatalytic activity [20].

Concerning the approaches mentioned above, TiO2 doped with nitrogen can exhibit
great activity in the photodegradation of pollutants both under UV and visible light. In 1986,
Sato et al. [21] first described an N-doped TiO2 photocatalyst prepared via the precipitation
of titanium hydroxide using ammonia solution, which was able to oxidize ethane and CO
under visible radiation (λmax = 434 nm). In 2001, Asahi et al. [22] reported the photocatalytic
activity of N-doped TiO2 in the degradation of methylene blue and acetaldehyde vapor
under similar radiation (436 nm). The authors suggested that nitrogen substitutes oxygen
in lattice sites of TiO2, and N 2p orbitals are mixed with O 2p orbitals from the valence
band (VB) of TiO2 that narrows its band gap and results in the ability for absorption of
visible light. On the other hand, Di Valentin et al. [23–25] have shown in a series of studies
using computer simulation and EPR techniques that no narrowing of the band gap occurs
during TiO2 doping with nitrogen, whereas discrete energy levels appear above the VB
of TiO2. The authors reported that nitrogen can substitute O atoms in the lattice sites (i.e.,
substitutional position) with the formation of N 2p discrete levels located 0.14 eV above the
VB or can occupy the interstitial sites (i.e., interstitial position) with the formation of π *
NO discrete levels located 0.73 eV above the VB.

The position occupied by nitrogen depends on the preparation method of N-doped
TiO2. Various chemical compounds were used as a source of nitrogen during the precipita-
tion of TiO2: ammonium hydroxide [26,27], ammonium chloride [24,28,29], ammonium
nitrate [25], nitric acid [25,30], hydrazine [25,31], urea [32,33], diethanolamine [32], and
triethylamine [31,32]. A shift of light absorption edge to the visible region compared to
pristine TiO2 was observed for all photocatalysts synthesized using the mentioned pre-
cursors. The photocatalytic activity of N-doped TiO2 has been commonly investigated
in the degradation of organic contaminants in air or water using batch reactors. Data on
the visible-light-driven degradation of formic acid [34], acetaldehyde [22], phenol [27],
2-chlorophenol [32], 2,4-dichlorophenol [35], stearic acid [36], methylene blue [28,37–40],
rhodamine B [35], eriochrome black-T [40], phenanthrene [41], dibenzothiophene [42],
ethylparaben [43], lindane [44], atrazine [45], mecoprop and clopyralid herbicides [46]
have been reported. The ability to decompose organic contaminants under irradiation
was demonstrated, but many studies did not provide the data, which can be used for
comparison of the results between each other (e.g., quantum efficiencies or data for bench-
marks). Additionally, it is difficult to evaluate the steady-state photocatalytic activity in a
batch reactor because the concentration of oxidizing contaminant is decreased monotoni-
cally during the experiment and, consequently, affects the reaction rate. Experiments in
a continuous-flow reactor are preferable to receive valid information on the efficiency of
light utilization and the stability of photocatalysts.
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Despite the superiority of titanium alkoxide precursors in scientific papers, one of
the two main methods for the production of TiO2 in industry is sulfate technology using
ilmenite mineral (FeTiO3), which results in the formation of titanium (IV) oxysulfate
(TiOSO4) followed by its hydrolysis to titanium (IV) oxide hydrate (TiO2 × nH2O). Little
information on the application of inorganic titanium precursors for the preparation of
N-doped TiO2 photocatalysts can be found in the literature. It was our motivation to study
the preparation of N-doped TiO2 photocatalysts using titanium oxysulfate as a titanium
precursor and ammonia as a nitrogen source. In contrast to titanium alkoxide precursors,
titanium oxysulfate can be easily dissolved and hydrolyzed in aqueous solutions without
organic solvents.

In this study, the preparation of highly active N-doped TiO2 photocatalyst was per-
formed via precipitation from an aqueous solution of titanium oxysulfate using ammonium
hydroxide followed by thermal treatment in air. Despite doubts about TiO2 doping with
nitrogen during wet synthetic processes [47], we show experimental data that clearly con-
firm this mechanism of modification in the case of photocatalysts prepared from TiOSO4
using ammonia. The effect of preparation conditions on the characteristics and photocat-
alytic activity of N-doped TiO2 is discussed. A comparison with commercially available
photocatalysts is also made. An approach via the surface modification of N-doped TiO2
with copper species is proposed for the preparation of nanocomposite photocatalysts with
an enhanced stability under long-term exposure to power radiation.

2. Materials and Methods
2.1. Chemicals

Ammonium hydroxide solution (NH4OH, 25%) and sodium hydroxide (NaOH, reagent
grade) from AO Reachem Inc. (Moscow, Russia), titanium(IV) oxysulfate dihydrate
(TiOSO4 × 2H2O, reagent grade) and copper(II) acetate monohydrate
(Cu(CH3COO)2 × H2O, 99%) from AO Vekton Inc. (Moscow, Russia), and iron(III) ni-
trate nonahydrate (Fe(NO3)3 × 9H2O, 98%) from Sigma–Aldrich (St. Louis, MO, USA)
were used for the preparation of photocatalysts. Reagent grade acetone (CH3COCH3)
from Mosreaktiv LLC (Moscow, Russia) was used as a test organic compound for oxi-
dation during the photocatalytic experiments. Two commercially available powdered
TiO2 photocatalysts, namely, TiO2 P25 from Evonik Ind. AG (Essen, Germany) and TiO2
KRONOClean 7000 from KRONOS Worldwide Inc. (Dallas, TX, USA), were employed as
the references for benchmarking. These photocatalysts are referred to in this paper as P25
and KC, respectively. All chemicals and materials were used as received from suppliers
without further purification.

2.2. Preparation of Photocatalysts

The samples of N-doped TiO2 (TiO2-N) were prepared via the precipitation method
using TiOSO4 as a titanium precursor and ammonium hydroxide as a precipitating agent,
as well as a source of nitrogen. Before the synthesis, titanium oxysulfate dihydrate (83 g)
was suspended in deionized water (600 mL) and stirred for several days. A small amount
of undissolved precursor was removed from the reaction solution using a 0.20 µm PTFE
membrane filter. A commercial solution of ammonium hydroxide was diluted 10 times
with deionized water. In a typical synthesis, prepared solutions of TiOSO4 (ca. 200 mL)
and ammonia were simultaneously added dropwise to deionized water (1000 mL) under
vigorous stirring. A pH electrode was immersed into the reaction solution to adjust the
pH during the precipitation to 7 by tuning the flows of solutions. The white precipitate
formed after mixing the reagents was aged in mother liquor for several days. Then, the
precipitate was separated by centrifugation at 8000 rpm for 10 min and washed with
deionized water. The centrifugation and washing procedures were repeated up to 15 times
until the conductivity of washouts became similar to that of pure water. Finally, the
precipitate was dried and further calcined in air for 3 h at a certain temperature in the range
of 250–600 ◦C. In addition to TiO2-N, blank TiO2 without added nitrogen was prepared by
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similar technique but using sodium hydroxide as a precipitating agent. The precipitation
was performed at pH = 7 followed by aging and calcination at 350 ◦C.

One of the prepared TiO2-N samples (350 ◦C) was further modified with iron or copper
species by impregnation with an aqueous solution of iron nitrate (0.15 M) or copper acetate
(0.15 M). Typically, an aliquot of iron or copper precursor was added to the suspension of
TiO2-N (1 g) in deionized water (10 mL). After vigorous stirring for 1–2 h, the sample was
separated by centrifugation at 8000 rpm for 10 min and washed 3 times with deionized
water. Finally, it was dried in air at 70 ◦C. The iron and copper contents were 0.1 and 1% of
the mass of TiO2, respectively.

2.3. Characterization Techniques

The phase composition of the photocatalysts was determined by powder X-ray diffrac-
tion (XRD) using a D8 Advance diffractometer (Bruker, Billerica, MA, USA) equipped
with a CuKα radiation source and a LynxEye position sensitive detector. The data were
collected in the 2θ range of 5–75◦ with a step size of 0.05◦ and a collection time of 3 s. The
average size of TiO2 crystallites and strain values were estimated from the peak profile
parameters (i.e., weight and width of Gauss and Lorentz peak components) determined
by double-Voigt analysis in the Le Bail fitting method realized in TOPAS software (Bruker,
4.2 version). Lattice constants were also refined with the mentioned TOPAS software. The
morphology of the photocatalysts was studied by SEM using an ultrahigh resolution Field-
Emission SEM (FE-SEM) Regulus 8230 (Hitachi, Tokyo, Japan) at an accelerating voltage of
30 kV. The surface composition was investigated by X-ray photoelectron spectroscopy (XPS)
using an ES300 spectrometer (Kratos Analytical, Manchester, UK) equipped with a MgKα
(hν = 1253.6 eV, 170 W) radiation source. The photoelectron lines of Au 4f7/2 (84.0 eV) and
Cu 2p3/2 (932.7 eV) from metallic gold and copper foils were used to calibrate the scale
of binding energy (BE). The C 1s line (284.8 eV) from carbon deposits was used as an
internal reference. Pretreatment of samples was performed for 1 h before the acquisition of
survey and precision spectra. The surface composition was also investigated using diffuse
reflectance infrared Fourier-transform spectroscopy (DRIFTS). The spectra were collected
at room temperature under air exposure using a Vector 22 FTIR spectrometer (Bruker)
equipped with an EasiDiffTM accessory from PIKE Technologies Inc. (Madison, WI, USA).
No pretreatment of the samples was performed before the analysis.

The textural properties were investigated by adsorption of nitrogen at 77 K using an
ASAP 2400 instrument (Micromeritics, Norcross, GA, USA). Before the experiments, the
samples were thermally treated in vacuum at 150 ◦C for 16–24 h. The surface area and
average pore diameter were calculated by BET analysis of the measured isotherms, and
the pore volume was determined as the total pore volume at P/P0~1. The total content of
nitrogen and sulfur in the prepared photocatalysts was measured by CHNS analysis using a
Vario EL Cube elemental analyzer from Elementar Analysensysteme GmbH (Langenselbold,
Germany). Five independent measurements were made for each sample, and an averaged
value of N and S content was calculated.

UV–vis diffuse reflectance spectra (DRS) were recorded at room temperature in the
range of 250–850 nm with 1 nm of resolution using a Cary 300 UV–vis spectrophotometer
from Agilent (Santa Clara, CA, USA) equipped with a DRA-30I diffuse reflectance accessory
and special prepacked polytetrafluoroethylene (PTFE) reflectance standard. The optical
band gap was estimated using the Tauc method based on the assumption of indirect

allowed transitions by plotting (F(R)hϑ)
1
2 versus hϑ and a linear fitting [48]. To analyze

the effect of calcination temperature on light absorption in a series of TiO2-N samples, the
UV–vis spectrum of the TiO2 sample was subtracted from the spectra of synthesized TiO2-N
samples. The received difference spectra were integrated in the region of 380–550 nm, and
the integral values were plotted versus the values of calcination temperature used during
the synthesis.

Electron paramagnetic resonance (EPR) spectra were recorded using an X-band
EleXsys 500 spectrometer (Bruker) equipped with a digital temperature control system ER
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4131 VT. The samples for study were placed in a quartz tube at the center of a rectangular
TE102 resonator with a magnetic component of the UHF field perpendicular to the direc-
tion of the external magnetic field. The blue light (450 nm) was supplied directly to the
microwave cavity in the process of spectra registration. The spectra simulation was carried
out using the EasySpin software (an open-source software package, 5.2 version) [49].

The samples for photoelectrochemical measurements were prepared via the deposition
of TiO2-N on a fluorinated tin oxide (FTO) glass from an aqueous suspension containing
NafionTM followed by drying at 50 ◦C overnight and at 150 ◦C for 30 min. After that, the
sample with a spot area of 2 cm2 was placed in a photoelectrochemical cell and irradiated
with UV light (λmax = 365 nm, 10 mW cm−2) or blue light (λmax = 450 nm, 160 mW cm−2)
provided by light-emitting diodes (LEDs) through the back side of FTO glass and served
as a working electrode. A mercury-sulfate electrode and platinum foil served as reference
and counter electrodes, respectively. Before the photoelectrochemical tests, the potential of
the mercury-sulfate electrode was measured relative to the reversible hydrogen electrode
(RHE). The experiments were carried out at room temperature in 1 M Na2SO4 or 1 M
Na2SO4 + 0.82 M CH3OH solution as an electrolyte using an Autolab PGStat 300N po-
tentiostat (Metrohm AG, Herisau, Switzerland). The photocurrent was determined under
corresponding radiation by chronoamperometry at a potential of 0.585 V RHE in three
light-off cycles.

2.4. Photocatalytic Experiments

The synthesized and reference photocatalysts were tested in the oxidation of acetone
vapor in a continuous-flow setup designed for the evaluation of steady-state oxidation rates
and stability of photocatalytic performance. The details on the experimental setup and
evaluation of photocatalytic activity can be found in our previously published paper [50].
Highly powerful UV (λmax = 371 nm) and blue (λmax = 450 nm) LEDs were used for
the irradiation of photocatalysts and evaluation of their activity in the UV and visible
regions, respectively. The emission spectra of the LEDs used in this work are shown in
Figure S1a,b in the Supplementary Materials. According to the measurements using an
ILT 950 spectroradiometer (International Light Technologies Inc., Peabody, MA, USA), the
specific irradiance was 9.7 and 164 mW cm−2 for UV and blue light, respectively. The
experiments were performed under optimized operational conditions: the area density of
the photocatalyst was 19 mg cm−2, the irradiation area was 9.1 cm2, the inlet concentration
of acetone was ca. 32 µmol L−1, the reactor temperature was 40 ± 0.1 ◦C, the relative
humidity was 19 ± 1%, and the volume flow rate was 67 ± 1 cm3 min−1.

The setup had a special valve system for the alternate analysis of the inlet and outlet
reaction mixtures using an FTIR spectrometer FT-801 (Simex LLC, Novosibirsk, Russia)
equipped with an IR long-path gas cell (Infrared Analysis Inc., Anaheim, CA, USA).
The quantitative analysis of acetone and CO2 was performed using the Beer–Lambert
law by the integration of collected IR spectra in corresponding regions [50]. Figure S1c
in the Supplementary Materials shows a typical CO2 concentration profile during the
photocatalytic experiment. The photocatalytic activity of the samples was evaluated as the
rate of CO2 evolution, resulting from the oxidation of acetone. The CO2 rate was estimated
in continuous-flow experiments as the difference in the outlet and inlet CO2 concentrations
multiplied by the volume flow rate. After the achievement of a steady-state regime, the
CO2 rate was averaged for 30 min. Based on the statistics of many experiments, the total
error in measuring the CO2 formation rate using the setup did not exceed 10%. In the tests
on stability, the photocatalytic activity of the samples was evaluated for 30 h.

Additionally, the action spectrum of TiO2-N obtained as the dependence of photonic
efficiency on the wavelength of excited radiation was also investigated using the mentioned
setup. Eighteen LEDs with different basic wavelengths from 365 to 730 nm were used for
irradiation of the photocatalyst during the measurement of the action spectrum. The photon
flux for each LED was adjusted to the value of ca. 7 × 1017 s−1 for correct evaluation of
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efficiency. The photonic efficiency of the photocatalytic reaction can be expressed according
to IUPAC recommendations as follows [51]:

ξ =
Wr

q0
p
=

16
3

×
WCO2 × 1016

7 × 1017 × 100% (1)

where ξ is the photonic efficiency (%), Wr is the reaction rate (s−1), q0
p is the incident

photon flux (s−1), WCO2 is the steady-state rate of CO2 formation measured in the setup
(µmol min−1), 7 × 1017 is the photon flux (s−1), and 16

3 is the conversional factor (16 charge
pairs and, consequently, at least 16 photons are required to oxidize 1 molecule of acetone;
3 molecules of CO2 are formed from 1 molecule of acetone during 1 act of reaction).
The details on the measurement of action spectra can be found in recently published
papers [52,53].

3. Results and Discussion

In this study, we investigated N-doped TiO2 photocatalysts synthesized using titanyl
sulfate as the titanium precursor and ammonium hydroxide as a precipitating agent, as
well as a source of nitrogen. The results on the state of nitrogen in doped TiO2 and the effect
of preparation conditions on the characteristics and photocatalytic activity of materials
are discussed first. Then, the effect of Fe and Cu modifiers on the stability of composite
photocatalysts is shown.

3.1. Effect of Preparation Conditions on the Characteristics and Photocatalytic Activity of N-Doped TiO2

pH-controlled hydrolysis of TiOSO4 using an aqueous solution of ammonia leads to
the precipitation of titanium oxide hydrate. According to the results of XRD analysis, this
precipitate was completely amorphous and had no photocatalytic activity under visible
light. The corresponding XRD patterns of the samples calcined at different temperatures
are shown in Figure 1a.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 24 
 

 

Additionally, the action spectrum of TiO2-N obtained as the dependence of photonic 
efficiency on the wavelength of excited radiation was also investigated using the men-
tioned setup. Eighteen LEDs with different basic wavelengths from 365 to 730 nm were 
used for irradiation of the photocatalyst during the measurement of the action spectrum. 
The photon flux for each LED was adjusted to the value of ca. 7 × 1017 s−1 for correct eval-
uation of efficiency. The photonic efficiency of the photocatalytic reaction can be ex-
pressed according to IUPAC recommendations as follows [51]: 𝜉 = = × ×× × 100%, (1) 

where 𝜉 is the photonic efficiency (%), 𝑊  is the reaction rate (s−1), 𝑞  is the incident pho-
ton flux (s−1), 𝑊  is the steady-state rate of CO2 formation measured in the setup (µmol 
min−1), 7 × 1017 is the photon flux (s−1), and  is the conversional factor (16 charge pairs 
and, consequently, at least 16 photons are required to oxidize 1 molecule of acetone; 3 
molecules of CO2 are formed from 1 molecule of acetone during 1 act of reaction). The 
details on the measurement of action spectra can be found in recently published papers 
[52,53]. 

3. Results and Discussion 
In this study, we investigated N-doped TiO2 photocatalysts synthesized using titanyl 

sulfate as the titanium precursor and ammonium hydroxide as a precipitating agent, as 
well as a source of nitrogen. The results on the state of nitrogen in doped TiO2 and the 
effect of preparation conditions on the characteristics and photocatalytic activity of mate-
rials are discussed first. Then, the effect of Fe and Cu modifiers on the stability of compo-
site photocatalysts is shown. 

3.1. Effect of Preparation Conditions on the Characteristics and Photocatalytic Activity of  
N-doped TiO2 

pH-controlled hydrolysis of TiOSO4 using an aqueous solution of ammonia leads to 
the precipitation of titanium oxide hydrate. According to the results of XRD analysis, this 
precipitate was completely amorphous and had no photocatalytic activity under visible 
light. The corresponding XRD patterns of the samples calcined at different temperatures 
are shown in Figure 1a. 

 
Figure 1. XRD patterns of TiO2-N samples calcined at different temperatures (a) and SEM micro-
graphs of the sample calcined at 350 °C (b,c). 
Figure 1. XRD patterns of TiO2-N samples calcined at different temperatures (a) and SEM micro-
graphs of the sample calcined at 350 ◦C (b,c).

The peaks, which can be attributed to the crystal phase of anatase, were detected in
the patterns only at 250 ◦C, but the size of crystallites in the corresponding sample was
extremely low for quantitative evaluation. The main peaks at 2θ of 25.3◦, 37.8◦, 48.1◦, 53.9◦,
55.1◦, and 62.8◦ attributed to the (101), (004), (200), (105), (211), and (204) planes of anatase
TiO2 clearly indicate the formation of the anatase phase at an increased temperature (350 ◦C
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and higher). The average crystallite size in the sample calcined at 350 ◦C was estimated
to be 16 nm. The SEM micrographs in Figure 1b and c illustrate this statement and show
that large particles of synthesized TiO2-N consist of agglomerated nanocrystallites of an
oval form.

It should be noted that the consideration of only the size effect during the analysis
of XRD patterns did not give accurate fitting of the experimental patterns of synthesized
samples (see Figure S2 in the Supplementary Materials). Therefore, the estimation of
crystallite size was performed considering the effect of strains according to the Le Bail
fitting method. Table 1 shows the estimated strain values that are high enough (ε > 0.001)
for all synthesized samples. This fact indicates the presence of microdeformations in the
structure of TiO2 nanocrystals that can be associated with impurities. According to CHNS
analysis, the synthesized TiO2-N contains nitrogen and sulfur as the main impurities.
The content of both elements depended on the preparation conditions (Table 1). The
lattice constants (a and c) and, consequently, the volume of the unit cell for this TiO2-
N sample substantially differ from the corresponding parameters for the TiO2 sample
synthesized without the addition of ammonia (Table S1), which also confirms a key effect
of nitrogen impurities.

Table 1. Characteristics of the samples calcined at different temperatures.

Calcination
Temperature, ◦C

Crystal
Size, nm

Stain
Values (ε)

Surface
Area, m2 g−1

Pore
Volume,
cm3 g−1

Pore
Diameter,

Å

Nitrogen
Content,

wt.%

Sulfur
Content,

wt.%
Band

Gap, eV
MEE **,

eV

250 n.d. * n.d. 344 0.59 69 0.8 ± 0.1 0.14 ± 0.04 3.22 2.22
300 0.6 ± 0.2 0.16 ± 0.06 3.20 2.27
350 16 0.0031 151 0.43 115 0.5 ± 0.1 0.16 ± 0.04 3.19 2.32
400 0.4 ± 0.1 0.16 ± 0.06 3.17 2.30
450 20 0.0020 113 0.38 136 0.36 ± 0.03 0.11 ± 0.03 3.18 2.27
500 23 0.0017 0.27 ± 0.03 0.08 ± 0.01 3.19 2.24
550 73 0.31 172 0.14 ± 0.01 0.14 ± 0.04 3.19 n.d.
600 25 0.0010 n.d. 0.11 ± 0.03 3.18 n.d.

* n.d. = non-detectable. ** MEE = minimum energy required for the photoexcitation of electron.

An increase in the calcination temperature led to an increase in the size of crystallites
and the extent of crystallinity because of a decrease in the value of strains (Table 1). A
monotonic decrease in the stain values confirms reducing microdeformations in the struc-
ture of TiO2 nanocrystals during calcination at higher temperatures. It should be noted
that even calcination at the highest temperature (600 ◦C) did not lead to the transformation
of anatase to the rutile phase because no peaks attributed to rutile were detected in the
corresponding XRD pattern (Figure 1a). This is a common case for photocatalysts pre-
pared from the TiOSO4 precursor due to the stabilization of the TiO2 surface by strongly
bonded sulfates [54]. Typically, much higher temperatures are required for anatase–rutile
transformation in this system.

The calcination temperature strongly affected the textural properties of the materials.
Table 1 shows that the specific surface area and pore volume of the samples decrease as
the calcination temperature increases. In contrast, the average diameter of pores increases
as the temperature increases, which agrees with the growth of crystallite sizes. Sintering
TiO2 nanoparticles occurs during calcination, which results in the formation of large
agglomerates with a lower specific surface area. Table 1 also shows that an increase in the
calcination temperature leads to a monotonic decrease in the content of nitrogen estimated
using CHNS analysis. This confirms the degradation of nitrogen species due to their
oxidation at increased temperatures followed by their removal from the material. At
the same time, the sulfur content has a similar value over the whole temperature range
(Table 1). Sulfur species are commonly more stable on the surface of TiO2 than nitrogen
species due to a higher affinity [55], and much higher temperatures are required for their
complete removal.

The synthesized samples had a yellow color, which confirms their ability to absorb
light in the visible region of the spectrum. The UV–vis spectrum of TiO2-N shows a
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shoulder of additional absorption in the region of 400–540 nm compared to the fundamental
absorption of TiO2 (Figure 2a). This behavior can be attributed to nitrogen impurities in
TiO2 rather than sulfur impurities because the TiO2 sample, prepared similarly from
the TiOSO4 precursor using NaOH as a precipitating agent, has no absorption in the
corresponding region. As expected, the TiO2 sample is white in color, in contrast to TiO2-N
(see photographs in Figure 2a).
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UV–vis spectra of commercially available TiO2 P25 and TiO2 KC photocatalysts are
also shown in Figure 2a for comparison. TiO2 P25 consists of both anatase and rutile crystal
phases, and it can absorb radiation with wavelengths up to 410 nm. At the same time, TiO2
KC can absorb light in the visible region up to 750 nm, but its absorption spectrum differs
from that of TiO2-N due to another type of modification [56].

The optical band gaps of synthesized and commercial photocatalysts, estimated using
the Tauc method, were in the range of 3.2–3.3 eV (Figure 2b, Table 1), which can be attributed
to the anatase phase of TiO2. A value of 3.05 eV can also be estimated from the Tauc plot
for the TiO2 P25 photocatalyst. This value can be attributed to the rutile phase in the P25
composition. The inset in Figure 2b shows that in the case of TiO2-N we can also estimate
the minimum energy required for the photoexcitation of electrons to the CB of TiO2. A
linear approximation of the additional absorption shoulder gives a value of 2.3 eV that
corresponds to 540 nm. As mentioned above, the absorption of light in the visible region is
due to nitrogen impurities, which create additional energy levels in the band gap of TiO2
and, consequently, decrease the minimum energy required for the excitation of electrons.

Figure 3a shows that the calcination temperature strongly affects the UV–vis spectra
of synthesized TiO2-N samples. This effect was considered by the integration of difference
spectrum between TiO2-N and TiO2. The amount of light absorbed by the TiO2-N samples
in the region of 380–550 nm had a dome-shaped dependence on the calcination temperature
with a maximum at 400 ◦C (Figure 3b). This indicates that at low calcination temperatures,
the samples absorb a small amount of light, but very high temperatures (550–600 ◦C) also
result in weak light absorption. The samples are to be calcined at an optimal temperature
(350–450 ◦C) to absorb the highest amount of light.

At the same time, Table 1 shows that the band gap and the minimum energy required
for photoexcitation of TiO2-N samples have similar values over the whole range of tem-
peratures. This means that the temperature of sample calcination in air has a low impact
on the type of doping, but it strongly affects the amount of nitrogen impurities that are
responsible for the absorption of visible light.

According to a previously published study [25], the mentioned absorption can result
from the nitrogen species, which occupy the interstitial positions in the TiO2 lattice. To
verify this hypothesis, X-ray photoelectron spectroscopy was used for the analysis of the
nitrogen state in TiO2-N.
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Figure 4a shows a typical photoelectron N 1s spectral region for the synthesized TiO2-N
photocatalyst. This N 1s spectrum can be fitted into two components with binding energies
(BEs) of 397.7 eV (N1 state) and 399.5 eV (N2 state). The N2 state gives a contribution
higher than 90%. Commonly, the BE (N 1s) in the range of 396–398 eV can be attributed to
negatively charged forms of nitrogen, which substitute lattice oxygen in the TiO2 structure
(i.e., located in the substitutional positions) [57–60]. A variation in BE for this type of
nitrogen can be attributed to the localization of nitrogen (on the surface/in the bulk) [61]
and its additional bonding with oxygen [62]. The N2 state with a BE (N 1s) of 399.5 eV
might be attributed to weakly charged nitrogen species, which result from the interactions
of nitrogen with C, H, O atoms [36,63,64], or to partially oxidized nitrogen located in
the interstitial positions of the TiO2 lattice [65–67]. According to a computer simulation
study [24], the difference between the BE values for nitrogen in substitutional and interstitial
positions is 1.6 eV, which is close to the difference between the maximums of N 1s peaks
attributed to the N1 and N2 components in our case (∆E = 1.8 eV). This also supports the
interpretation of the detected N1 and N2 states. Notably, the chemical state of nitrogen in
nitrites (NO−

2 ) and nitrates (NO−
3 ) is characterized by a BE (N 1s) value higher than 403 eV.

In our case, no bands in this region were detected in the N 1s spectrum of TiO2-N, which
indicates the absence of nitrites and nitrates on the surface of the studied sample after
vacuum treatment. Therefore, XPS analysis of the synthesized TiO2-N photocatalyst shows
that nitrogen incorporated into interstitial positions of TiO2 gives the major contribution. It
is important to note that a small peak at 399.6 eV was also observed in the N 1s spectral
region of the TiO2 sample synthesized without the addition of ammonia (Figure 4c), but
this low-intensity signal can appear due to nitrogen species in a support used for fixation
of the sample in the spectrometer chamber.

Concerning the chemical state of titanium, the position of the Ti 2p3/2 peak in the pho-
toelectron Ti 2p spectral region (Figure 4b) is characterized by a BE value of 458.3 eV, which
corresponds well to the Ti4+ state in TiO2. The Ti 2p spectrum has a doublet structure due
to spin-orbit splitting (∆E = 5.7 eV), and corresponding shake-up satellites with ∆E ~ 13 eV
are also observed. An additional component with a BE value of 456.5 eV appeared during
the curve fitting of the Ti 2p spectrum and was attributed to traces of reduced Ti species
(first, Ti3+) stabilized near structural defects [68,69]. The surface concentration of these Ti3+

species was no more than 4%. The TiO2 sample synthesized using NaOH as the precipi-
tating agent had similar peaks in the Ti 2p spectral region and the same concentration of
reduced Ti species (Figure 4d).
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In addition to XPS analysis, the prepared photocatalysts were studied using the EPR
technique. An EPR signal with a g-factor of 1.99 and dH = 3 mT was observed for the
synthesized TiO2 sample, which had no nitrogen impurities. This signal was insensitive
to irradiation of the sample with light. Kumar et al. [70] attributed the signal with similar
parameters to localized electron centers (such as Ti3+) in the TiO2 lattice. The synthesized
TiO2-N sample had the same signal under dark conditions. At the same time, exposure of
this sample to blue light in situ during the registration of spectra led to a change in the form
of the signal because three narrow lines appeared. This indicates the presence of additional
types of paramagnetic centers in TiO2-N. Light allows an increase in the concentration of
these centers up to saturation.

Figure 5a shows the EPR spectra of TiO2-N in the dark and under blue light. A
difference spectrum, obtained via the subtraction of the dark spectrum from the spectrum
under light, represents three lines with a hyperfine splitting of 3.22 mT that corresponds
well to the nucleus of nitrogen. The parameters of the spectrum simulation are shown in
Table 2. They agree with the literature data and can be attributed to N-based light-induced
paramagnetic species.

It is important to note that the intensity of signals for these paramagnetic species
decreased monotonically when the sample was kept in the dark. Figure 5b shows that the
rate of decay increases as the temperature of the sample increases. The decay curves were
analyzed using the stretched exponential function:

ξ I(t) = I0 + A·exp
(
−(t/τ)β

)
(2)

where τ is the average decay time and β is the decay exponent, derived from the fact that
the signal decay of photoinduced defects can be characterized by the distribution of time
constants rather than a single constant, which is common for amorphous materials [71].
The value of the decay exponent β used in the estimation was 0.5. In this assumption, the
lifetime has an activated behavior and can be described as τ(T) ∼ exp(∆E/T) [72]. A
linearization in the Arrhenius coordinates gives an activation energy of 0.42 eV.
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Table 2. Parameters of individual components in EPR spectra.

Paramagnetic Center g-Factor ± g-Strain Hyperfine Splitting, MHz

Ti3+ 1.99

N
{2.003 ± 0.001;
2.004 ± 0.008;
2.002 ± 0.006}

{2.3; 12.3; 88.9}

Summarizing the data of UV–vis, CHNS, XPS, and EPR techniques, the N-doped TiO2
synthesized from the TiOSO4 precursor using ammonia can absorb visible light due to the
oxidized nitrogen species, which are localized in the interstitial positions in the TiO2 lattice.

Figure 6a shows that under UV and blue light irradiation, the synthesized TiO2-
N can generate a current with a density up to 15 µA cm−2. These data indicate that
photogeneration and interface transfer of charge carriers occur in TiO2-N under exposure
to radiation of both spectral regions corresponding to intrinsic and extrinsic absorptions of
light. In addition, the visible-light induced photocurrent of TiO2-N doubled when methanol
was added to the electrolyte. An increased photocurrent in the presence of methanol can
be attributed to an improved pathway of photogenerated holes due to their transfer from
TiO2-N to the organic donor of electrons (i.e., methanol), which enhances the separation of
charge carriers. The results of photoelectrochemical measurements confirm the formation
of charge carriers that can participate in the redox transformations of organic compounds.
It is important to note that in addition to an oxidative ability, the synthesized TiO2-N
photocatalyst, supported with noble metals, can provide the photocatalytic evolution of
molecular hydrogen from water. Details and kinetic curves of hydrogen evolution for TiO2-
N supported with several metals are shown in Figure S3 in the Supplementary Materials.

Figure 6b shows the action spectra of TiO2 and TiO2-N samples as a function of
photonic efficiency in the reaction of acetone oxidation on the basic wavelength of the
LED source used for irradiation of photocatalysts. The spectra obtained correlate well to
the absorption spectra of the studied samples (Figure 2a). The TiO2 sample synthesized
without ammonia exhibits photocatalytic activity under UV light, while it only slightly
utilizes visible light in the region up to 424 nm with extremely low efficiency. The TiO2-
N sample exhibits a similar trend in the UV region, but the corresponding values of
photonic efficiency are substantially higher than those for the TiO2 sample. For example,
the photonic efficiencies of acetone oxidation under an LED with a basic wavelength of
367 nm were 69 and 33% for TiO2-N and TiO2, respectively. The lower activity of the TiO2
sample is probably due to strongly adsorbed Na+ ions, which can remain on the TiO2
surface after synthesis with NaOH. Sodium ions are well known to play the role of sites for
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the recombination of photogenerated charge carriers. In contrast to TiO2, N-doped TiO2
exhibits activity under visible light with wavelengths up to 525 nm. A local maximum
of the activity of TiO2-N is observed at ca. 450 nm. It corresponds to the maximum in its
absorption spectrum (Figure 2a). The value of photonic efficiency corresponding to this
wavelength is found to be 3.8%.
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Therefore, the formation of reactive oxygen species occurs on the irradiated surface of
TiO2-N, and the formed species can oxidize adsorbed organic contaminants. Both types
of data in Figure 6 show that the efficiency of light utilization by TiO2-N in the visible
region is lower than that in the UV region, which is attributed to the region of fundamental
absorption in TiO2. As mentioned in the Introduction, the content of UV light in the
total solar radiation is low due to many photons corresponding to the visible region. The
electricity-to-light efficiency of visible LEDs (e.g., blue LEDs) is substantially higher than
the efficiency of UV LEDs. As a result, blue LEDs provide a substantially higher photon
flux than UV LEDs at the same electric power. Thus, in the cases of both natural and
artificial light sources, a higher number of photons in the visible region compared to the
UV region would provide an increased rate of photocatalytic reaction that can minimize
the difference in the photocatalytic ability of TiO2-N under UV and visible light despite
different values of efficiency. This indicates the potential of TiO2-N for application in
visible-light-driven processes.

Before considering the effect of preparation conditions, it should be noted that one of
the key steps during the synthesis of TiO2-N from the TiOSO4 precursor is washing titanium
oxide hydrate after its precipitation due to a high amount of sulfur species in the precursor.
For instance, Figure 7a shows the DRIFT spectra of two synthesized TiO2-N samples, which
differ in washing procedure, and Figure 7b shows the steady-state photocatalytic activity of
these samples in the oxidation of acetone vapor under blue light. Three intense absorption
bands in the region of 1000–1300 cm−1 are clearly observed in the DRIFT spectrum of the
sample prepared without washing (Figure 7a). These bands can be attributed to sulfates
bonded to the surface of TiO2 [73]. This indicates that a high number of sulfates remain
on the surface of photocatalysts prepared without or with poor washing because of a high
affinity of the SO4

2−-group for Ti4+ sites [55]. An extremely low activity under visible light
was observed for the sample prepared without intermediate washing of the precipitate
(Figure 7b).
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Otherwise, multiple washes of the precipitate before its calcination at a high tem-
perature resulted in the removal of sulfates from the surface of the sample because the
mentioned bands in the DRIFT spectrum vanished (Figure 7a). As shown in Figure 7b, this
procedure led to a 3-fold increase in the visible-light activity of this sample. Thus, removing
sulfur species after hydrolysis of the TiOSO4 precursor is important for the preparation
of highly active photocatalysts using the proposed technique. At the same time, even
multiple washed photocatalysts can have a high amount of residual sulfur. According to
CHNS analysis, the S content in the final sample can be up to 4 wt.% depending on other
preparation conditions, as will be discussed below. This is a reason that the photocatalytic
activity of materials prepared from titanium oxysulfate of various suppliers can differ
substantially from each other.

The temperature used for the calcination of precipitate formed after hydrolysis of
TiOSO4 strongly affects the functional properties of synthesized TiO2-N. As shown in
Figure 8a, the photocatalytic activity of TiO2-N samples under UV light increases mono-
tonically as the calcination temperature increases. This behavior can be attributed to an
enhancement in the crystallinity of samples that has a strong positive effect. An intense
crystallization of TiO2 during the increase in the calcination temperature of samples from
250–300 ◦C to 350 ◦C would be a reason for the substantial increase in their activities. As
mentioned above, a further increase in the calcination temperature increased the extent of
crystallinity, which means a lower number of defects in the crystal lattice of TiO2. Defects
in TiO2 are sites where the recombination of electrons and holes occurs. Therefore, a lower
number of defects provides a lower rate of recombination and, consequently, a higher rate
of photocatalytic reaction [74]. Comparing the best activity of TiO2-N samples under UV
light (2.8 µmol min−1) with corresponding data for commercial photocatalysts TiO2 P25
(1.3 µmol min−1) and KC (2.3 µmol min−1) under similar conditions, TiO2-N provides the
highest oxidation rate in the studied test reaction. This suggests that the proposed prepa-
ration technique facilitates the production of highly active photocatalysts for processes
driven under UV light (e.g., for conventional photocatalytic air purifiers equipped with UV
light sources).
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A different pattern was observed in the case of acetone oxidation under blue light.
Figure 8a shows that the visible-light activity of TiO2-N samples has a dome-shaped
dependence on the calcination temperature. Similar to UV light, a substantial increase in the
activity of samples was observed at a change in calcination temperature from 250–300 ◦C
to 350 ◦C. This fact correlates with the crystal data of the samples (Figure 1a) and can be
attributed to an intense crystallization of TiO2 in the mentioned range of temperatures. The
visible-light activity slightly decreased in the temperature range of 350–500 ◦C, but it finally
dropped down at the calcination temperature of 600 ◦C.

The visible-light activity of TiO2 photocatalysts prepared under reducing conditions
is commonly attributed to the reduced states of titanium in the TiO2 lattice (e.g., Ti3+)
because the energy levels corresponding to these states are located lower than the CB of
TiO2 [75–77]. According to the results of XPS and EPR analyses (Figures 4 and 5), the
prepared TiO2-N samples contain similar centers. We checked the effect of calcination
temperature on the concentration of these centers using the EPR technique. Figure 8b
shows a change in the intensity of the EPR signal with a g-factor of 1.99, attributed to Ti3+

centers, when the calcination temperature is changed from 250 ◦C to 600 ◦C. This plot
clearly indicates that the photocatalytic activity of TiO2-N under visible light does not
correlate with the concentration of localized electron centers Ti3+ because the intensity of
the mentioned signal after 350 ◦C has a similar level and does not decrease even at 600 ◦C.
This confirms that the visible-light activity of TiO2-N cannot be attributed completely to
the Ti3+ states.

However, the visible-light activity does not also correlate with the total content of
nitrogen in the prepared samples. As shown in Table 1, the nitrogen content decreases
monotonically from 0.8 wt.% to the limit of detection as the calcination temperature in-
creases from 250 ◦C to 600 ◦C. This means that not all nitrogen species in TiO2-N respond
to visible-light activity. According to the analysis of DRIFT spectra, the uncalcined TiO2-N
sample formed after mixing the reagents contains a large amount of ammonia adsorbed on
the surface of TiO2, which results in a high value of nitrogen content as estimated using
CHNS analysis. Calcination of the TiO2-N sample leads to the oxidation of ammonia.
Various oxidized forms of nitrogen were detected on the surface of samples calcined at a
low temperature. A discussion of nitrogen species on the surface of the photocatalyst based
on the results of DRIFT analysis is provided in the Supplementary Materials (Figure S4).
Therefore, it can be assumed that calcination leads to the transformation of some nitrogen
species into a state that can provide a visible-light response and photocatalytic activity
under visible light. The actual value of temperature affects the amount of target nitrogen
species. This result agrees with the temperature dependence of light absorption shown in
Figure 3b.
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The EPR technique allows us to identify the paramagnetic nitrogen species. Figure 8b
shows that the intensity of the EPR signal, attributed to the N-based light-induced para-
magnetic species (see Table 2), also has a dome-shaped dependence on the calcination
temperature with a maximum at 350–400 ◦C, which is similar to the plots of light absorption
and visible-light activity mentioned above. A further increase in the calcination temper-
ature leads to a monotonic decrease in the intensity of the EPR signal. For the sample
calcined at 600 ◦C, the intensity decreases by almost two orders of magnitude compared to
the maximum value. These data confirm that the nitrogen paramagnetic species respond to
the activity of TiO-N photocatalysts under visible light.

Therefore, based on the results of characterization techniques, the existence of an
optimum calcination temperature can be attributed to the incorporation of nitrogen in the
TiO2 lattice at an increased temperature. This results in the creation of impurity energy
levels in the TiO2 band gap and provides the absorption of light in the visible region of the
spectrum. When the calcination temperature is too high, nitrogen is oxidized and removed
from the structure. This leads to a decrease in the photocatalytic activity under visible light.
It can be assumed that Ti3+ centers contribute to the photocatalytic activity under visible
light, especially for the samples calcined at high temperatures.

Considering the highest activity of TiO2-N under blue light (1.2 µmol min−1) with
the corresponding data for the commercial photocatalysts TiO2 P25 (0.03 µmol min−1)
and TiO2 KC (0.07 µmol min−1) under similar conditions, TiO2-N provides the highest
oxidation rate in the studied test reaction. This proves that the proposed preparation
technique allows the production of highly active N-doped TiO2, which is able to perform
photocatalytic processes under both UV and visible light. As additional benchmarks, Table
S2 in the Supplementary Materials shows a comparison of the visible-light photocatalytic
activity of synthesized TiO2-N with other TiO2-N photocatalysts described in previously
published papers.

3.2. Enhancement of Stability Via Surface Modification

The stability of photocatalysts under long-term irradiation is an important require-
ment for practical applications. One of the drawbacks of pristine TiO2-N is that its initial
activity decreases gradually under long-term exposure to high power radiation. Under
the conditions of this study (blue light, 164 mW cm−2), the rate of acetone oxidation over
TiO2-N decreased by 40% after irradiation for 6 h and by 5% more after irradiation for an
additional 24 h (Figure 9).
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According to a previously published study [78], this deactivation occurs due to the
degradation of nitrogen species by photogenerated holes, which do not migrate to the
surface of the photocatalyst. In our case, this was confirmed by a decrease in the intensity of
nitrogen signals in XPS and EPR spectra for the sample studied after the stability test. The
intensity of the EPR signal attributed to nitrogen decreased by 66% after the experiment on
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stability, which indicates a partial degradation of visible-light responsive nitrogen species
by the photogenerated holes. However, after the period mentioned above (i.e., 30 h), the
visible-light activity of TiO2-N reached a permanent level and did not change substantially
under further irradiation.

Recently, we have shown [79] that the combination of TiO2-N with a Bi2WO6 semicon-
ductor can provide a nanocomposite photocatalyst, which maintains a high level of activity
even under high power radiation. Herein, we show another example of the modification of
TiO2-N to enhance its stability under long-term exposure to power radiation. It is a simple
modification of TiO2-N with copper species.

Copper species were deposited on the surface of TiO2-N via the impregnation method.
A Cu loading of 1 wt.% was selected as an optimum value based on the results of a
preliminary study concerning the effect of Cu content on the activity [80]. Cu-modified TiO2-
N was studied using XRD, XPS and EPR techniques. There was no substantial difference
between the XRD patterns of the pristine and Cu-modified TiO2-N samples probably due
to the low Cu content. Figure 10a,b shows the Cu 2p and Cu LMM spectral regions of
the synthesized Cu/TiO2-N sample. The absence of noticeable shake-up satellites in the
region of 938–945 eV in the Cu 2p spectrum indicates a reduced state of copper, excluding
Cu2+ [81]. The position of the Cu 2p3/2 peak near 932.5 eV indicates the possibility for the
presence of copper in the form of Cu0 or Cu1+ [82]. For accurate identification, the modified
Auger parameter of copper (α’-Cu) was determined as the sum of the binding energy of
the Cu 2p3/2 peak maximum and the kinetic energy of the Cu L3M45M45 maximum. The
estimated value of the α’-Cu parameter was 1847.8 eV, which corresponds well to the Cu1+

state [83]. However, the EPR spectra of Cu/TiO2-N in Figure 10c,d show a prominent signal
at g = 2.1 corresponding to Cu2+ ions in octahedral coordination [84,85].
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A contradiction in the XPS and EPR data may be due to the reduction of copper
species under X-ray radiation and the high stability of the Cu1+ state on the surface of
TiO2 [86]. The pretreatment of the sample with X-ray radiation for 1 h was necessary to
obtain high-quality XPS spectra. This pretreatment could reduce all copper species on
the TiO2-N surface to the Cu1+ state, while the vacuum conditions did not allow Cu to be
oxidized back to the Cu2+ state. On the other hand, Cu1+ species cannot be detected using
the EPR technique because they are diamagnetic. As a result, only the Cu2+ state is detected
in the EPR spectra. According to a previously published study [87], many different states
of copper (Cu0, CuxO, Cu2+) can be found on the surface of TiO2, and the ratio between
these states can be substantially changed under radiation. This confirms the possibility of
various copper species on the surface of TiO2-N.

Iron species were used as a counterexample to copper species because it is well known
that the energy levels of Fe3+/Fe2+ species grafted at the TiO2 surface are located slightly
lower than the CB minimum of TiO2 and, consequently, can participate in the transfer of
photogenerated electrons only [88,89]. Fe content of 0.1 wt.% was selected as an optimum
value based on the results of a preliminary study concerning the effect of Fe content on the
activity (see Figure S5 in the Supplementary Materials). Reversible transfer between the
charge states of Fe3+ and Fe2+ commonly occurs in photocatalytic reactions catalyzed by
Fe/TiO2 in the presence of oxygen. In our case, XPS analysis of the synthesized Fe/TiO2-N
sample shows only the Fe2+ state (see Figure S6 in the Supplementary Materials). This
situation is similar to the case of the copper species discussed above. A partial reduction of
iron species until the Fe2+ state occurs under X-ray irradiation under vacuum conditions
during the analysis. The absence of oxygen prevents the reoxidation of Fe2+ to Fe3+.

Figure 9a shows the effect of TiO2-N modification with iron and copper species on the
visible-light activity and stability of the photocatalyst. The surface modification of TiO2-N
with iron increased its initial activity by 30%. This effect is commonly attributed to an
enhanced separation of charge carriers due to the localization of electrons in Fe species
on the surface of the photocatalyst. However, the time dependence of the activity for Fe-
modified TiO2-N is similar to that for pristine TiO2-N. The activity of Fe/TiO2-N decreased
by 39% after irradiation for 19 h, which is close to the data for TiO2-N (Figure 9b). This
behavior can be explained by the fact that iron species can capture electrons from TiO2-N,
but they have a low effect on the transfer of photogenerated holes [90]. Therefore, no
enhancement in the stability of TiO2-N is observed upon its modification with iron species.

A similar increase in the initial activity of TiO2-N (~30%) was also observed upon
modification with copper species. However, in contrast to iron, the visible light activity
of Cu-modified TiO2-N did not change substantially during long-term irradiation. The
total decrease in the activity after 30 h of irradiation was lower than 10% (Figure 9b).
According to the XPS data, no changes in the states of nitrogen and copper were found.
According to the EPR data, no changes are also observed for the state of nitrogen param-
agnetic species, but the intensity of the corresponding signal decreased compared to the
initial value. However, the decrease in the signal intensity was only 33%, which is much
lower than the corresponding value (66%) for pristine TiO2-N. The data discussed above
allow us to assume that copper species affect the pathway of holes. As a confirmation of
this statement, we have previously studied the action spectrum of Cu-grafted TiO2 and
showed that this photocatalyst exhibits activity in the region up to 500 nm only, which
may indicate interfacial charge transfer from TiO2 to CuxO clusters as the major pathway
of photoexcitation in the concerned system under visible light [80]. This means that the
energy levels of copper species are located above the VB of TiO2, and they can participate
in the interfacial charge transfer from the nitrogen levels in TiO2.

Based on the experimental results and literature data, it can be assumed that copper
species enhance the transfer of photogenerated holes and their localization on the surface
of TiO2-N, as well as further interfacial transfer to electron donors. If the transfer of
holes is considered as the bottleneck of oxidation processes [6], an enhanced hole transfer
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would improve the rate of the whole process and, consequently, decrease the probability of
degradation of the nitrogen species in TiO2.

Figure 11 shows the proposed energy diagram, which illustrates the pathways of
photogenerated charge carriers for all considered systems. Irradiation of TiO2-N results in
excitation of electrons to the CB. These photogenerated electrons can further interact with
an acceptor (A), resulting in its reduction (A−). In the case of the Fe/TiO2-N system, the
electrons can first transfer to the energy levels of Fe species and further interact with the
acceptor. The photogenerated holes in both TiO2-N and Fe/TiO2-N systems can interact
with a donor (D), resulting in its oxidation (D+). Localization of photogenerated holes in
the energy levels of nitrogen species (NO) leads to their partial degradation and conversion
to a non-paramagnetic form (NO+). However, in the case of the Cu/TiO2-N system, the
photogenerated holes can first transfer to the energy levels of Cu species, thus reducing the
degradation of nitrogen species (NO), and further interact with the donor (D), resulting in
its oxidation (D+).
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Highly active N-doped TiO2 photocatalysts with a visible-light response have poten-
tial in the design of nanocomposite materials with other semiconductors, which have a
narrower band gap, for better utilization of visible light due to excitation of electrons in
both components and realization of interfacial charge transfer according to the heterojunc-
tions of favorable types. In this paper, we proposed a preparation technique that can be
applied for the large-scale production of highly active and stable N-doped TiO2 for use in
visible-light-driven processes.

4. Conclusions

Titanium oxysulfate (TiOSO4) can be successfully used as a low-cost inorganic pre-
cursor for the preparation of highly active photocatalysts sensitive to visible light. A
pH-controlled precipitation of TiO2 from an aqueous solution of TiOSO4 using ammonia
followed by the calcination of precipitate in air at an increased temperature results in the
formation of nanocrystalline anatase, which can absorb radiation in the region up to 540 nm
due to the presence of nitrogen impurities in TiO2. The as-prepared N-doped TiO2 photo-
catalyst can completely oxidize volatile organic compounds under UV and visible light in
the corresponding region. The UV-light activity of N-doped TiO2 monotonically increases
as the calcination temperature increases, which is attributed to an improvement in the crys-
tallinity of TiO2. Otherwise, the visible-light activity has a dome-shaped dependence on the
temperature with a maximum at 350–400 ◦C due to the removal of nitrogen species from
TiO2 at higher temperatures. The absorption of visible light and visible-light activity of the
prepared N-doped TiO2 correlate with the concentration of paramagnetic nitrogen species



Nanomaterials 2022, 12, 4146 19 of 23

detected using the EPR technique. Residual sulfates on the surface of the photocatalyst can
substantially decrease its visible-light activity; therefore, washing the precipitate is a key
step during the synthesis of N-doped TiO2 from the TiOSO4 precursor. Copper species on
the surface of N-doped TiO2 oppositely increase its activity under visible light and prevent
intense deactivation under radiation of a high power that can be attributed to an enhanced
transfer of charge carriers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12234146/s1, Figure S1: emission spectra of the diodes used
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experiment (c); Figure S2: experimental and fitted XRD patterns of the TiO2-N sample synthesized at
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solution (b) over TiO2-N and TiO2 P25 modified with noble metals; Figure S4: DRIFT spectra of
TiO2-N samples calcined at different temperatures in reflectance (a) and Kubelka-Munk (b) modes;
Figure S5: effect of Fe content on the visible-light activity of Fe/TiO2-N; Figure S6: photoelectron Fe2p
spectral region for 0.3% Fe/TiO2-N sample; Table S1: average crystallite sizes (D), strain values (ε),
lattice constants (a and c), volumes of unit cell (V) for TiO2 and TiO2-N samples calcined at different
temperatures; Table S2: visible-light activity of TiO2-N toward Aeroxide P25. References [91–109] are
cited in the supplementary materials.
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