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ABSTRACT We propose two types of intelligent reflecting systems based on programmable metasurfaces
and mirrors to focus the incident optical power towards a visible light communication receiver. We derive
the required phase gradients for the metasurface array reflector and the required orientations of each
mirror in the mirrors array reflector to achieve power focusing. Based on which, we derive the irradiance
expressions for the two systems in the detector plane to characterize their performance in terms of
aiming and focusing capabilities. We show analytically that the number of reflecting elements along
with the relative source - reflector dimensions determine the system power focusing capability. Moreover,
we quantify analytically the received power gain compared with reflector-free systems. In addition, we
introduce a new simple metric to assess the relative reflectors’ performance for a given source, detector,
reflector layout. Finally, we verify the analytical findings regarding absolute and relative reflectors’
performance via numerical simulations.

INDEX TERMS Channel modeling, intelligent reflecting surfaces, metasurfaces, mirror arrays, visible
light communications.

I. INTRODUCTION

IN THE past decade, the wireless communications world
has experienced not only a quantitative growth but also a

qualitative one. As the number of the connected devices
increases exponentially, the network capacity and cover-
age should meet such an expected tremendous growth.
Moreover, communication networks have to deliver enhanced
mobile services with ultra-reliable low latency communica-
tions. Under the 5G umbrella, many research efforts have
been dedicated to realizing these ambitions, which was
successfully translated into the first 5G standard in June
2018. Nevertheless, the rise of new services as extended
reality, holographic communication, connected autonomous
systems, tactile interactions motivates researchers to pro-
pose unconventional communication networks. Recently,
improved thrust research efforts are adopted to formu-
late visions for 6G networks and their enabling candidate
technologies [1], [2].

The main research focus of communications link design
has been on optimizing transmitter and receiver struc-
tures and operations based on imposed channel condi-
tions. Recently, adding design degrees of freedom to the
channels by incorporating tunable intelligent reflecting sur-
faces (IRSs), has received significant research attention
in radio frequency (RF) systems [3]–[5]. Many efforts
have been dedicated to model and study the potential
gains of using such devices in RF networks performance
enhancement [6], [7]. As for the VLC systems, IRSs
are expected to participate effectively in boosting their
performance, especially that most of the VLC systems
rely on the existence of a line of sight (LoS) [8]–[10].
The incorporation of IRSs in indoor VLC systems can
provide significant gains in terms of resilience to LoS
blockages between the transmitter and the receiver, an
improved tradeoff between lighting and communications
quality of service, interference mitigation, more efficient
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energy harvesting capabilities, and enhanced localization
services.
Recently, few efforts are spent on studying intelli-

gent surfaces for optical communication systems [11]–[15].
Najafi and Schober studied using smart mirrors to relax
the LoS requirement for FSO links in [11]. Moreover,
in [12], Valagiannopoulos added programmable directiv-
ity to the transmitter by covering it with a metasurface.
In addition, in [13], Cao et al. proposed a beam-shaping
system at the transmitter to enable non-line of sight VLC
using coherent optical transmitter array. In [14], Deng et al.
proposed and demonstrated a reconfigurable mirco-mirrors
based beam-steering system for FSO inter-rack networks of
data centers. Furthermore, in [15], Zou et al. proposed the
use of tunable metasurfaces for inter/intra optical wireless
chip communications. In the aforementioned studies, IRSs
were realized by either metasurfaces or controllable mir-
rors. Metasurfaces are synthesized materials composed of
arrangements of sub-wavelength metallic or dielectric struc-
tures that are used to manipulate light propagation in unusual
ways compared to classical optical devices. These surfaces
are capable of manipulating wavelength, polarization, and
phase of incident waves. Hence, they can be used to realize
the functionality of many classical optical devices as lenses,
diffraction gratings, polarizers, and beam-splitters [16], [17].
Eventually, metasurfaces can provide combined conventional
optical functions in addition to providing new functionali-
ties as anomalous reflection governed by the generalized
Snell’s law of reflection, which is of particular interest in
this work. A particularly interesting application of metasur-
faces is the realization of flat focusing mirrors that are not
attainable using conventional optics [18], [19]. To the best
of our knowledge, this is the first study to consider utilizing
IRSs for non-coherent VLC systems employing intensity-
modulation/direct detection.
In this article, we propose an analytical framework to study

the capabilities of both the adaptive metasurface and mirror
array-based reflectors in focusing and aiming radiated power
towards a specific detector. Towards this aim, we first derive
the phase gradients to be applied to the metasurface array
and the mirror array elements orientation needed to direct the
incident power towards the detector center. Next, we derive
expressions for the irradiance (power density) in the detector
plane for both types of reflectors. After that, we derive sim-
plified irradiance expressions under some relative locations
and dimensions assumptions in addition corresponding to
some practical special cases. Moreover, we introduce a new
simple metric to judge the reflectors’ relative performance
from a received power perspective. Then, we quantify the
received power gain compared with the power received from
LoS. Finally, we study via simulation examples the impact
of the number of reflecting elements, and detector location
on the received power.
The rest of this article is organized as follows: firstly we

provide a necessary background on light transportation in
Section II. After that, we describe the adopted system model

in Section III. Next, we derive the irradiance expressions for
both setups in Sections IV and V. After that, we derive the
irradiance at the detector center for several common practi-
cal special cases in Section VI. Then, we present analytic
studies and insights in Section VII. Finally, we present sev-
eral simulations in Section VIII followed by the conclusion
in Section IX.
Notation: In this article, vectors are denoted by two

capitalized bold letters such as AB, where it starts from
A and ends at B. A starts at origin and ends at A.
AB = [ABx ABy ABz]T = B − A, where ABx, ABy, and
ABz representing its x, y and z coordinates, respectively, and
(.)T represents the transpose operator. ÂB is the unit vector
of AB. We denote the unit vector representing the direc-
tion of a vector starting at point A and ending at point B
by ÂB. AB represents a line segment between the points
A and B. Moreover, we use J( a,b

c,d
) to denote the deter-

minant of the Jacobian matrix J̄(a, b, c, d), associated with
the mapping of c and d variables into a and b variables,
where J̄ � [[ ∂a

∂c
∂b
∂c

]T [ ∂a
∂d

∂b
∂d

]T ]. Furthermore, we use ‖.‖2

to denote the ℓ2-norm, and I(C) as an indicator function
where I(C) = 1 if the condition C is satisfied and I(C) = 0,
otherwise. As for symbols representing sets and matrices,
the calligraphic and blackboard fonts are used, respectively.
Finally, we use |.| to represent the absolute value of a scalar
and the Lebesgue measure of a set, while ek denotes the k-th
column in the 3 × 3 identity matrix.

II. BACKGROUND

Throughout this work, we consider the non-coherent anal-
ysis of light propagation motivated by several reasons. The
first reason is the random-phase nature of the radiation
source. Also, the insignificance of interference and diffrac-
tion in the considered setups, where such effects need special
arrangements for interference to appear for non-coherent
sources [20, Ch. 7.3.4]. Finally, the mathematical intractabil-
ity incurred in dealing with electromagnetic field expressions
when considering metasurfaces and multi-element reflectors.
In the following, we define light energy-based metrics and
describe the light reflection patterns before delving into the
analysis.

A. FUNDAMENTAL RADIOMETRIC AND

PHOTOMETRIC METRICS

In this section, we explain some fundamental metrics that
describe light energy transportation in space. Radiometry
studies the properties of radiation energy distribution in
space, which is crucial for the communications service
assessment of VLC systems. On the other hand, photom-
etry is concerned with studying the human eye perception
of light, which is crucial for the assessment and design of
lighting systems [21].
Among the radiometric quantities, the following metrics

are of particular relevance [22, Ch. 1.6], [23, Ch. 2.3], and
[24, Ch. 13].
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• Radiant Flux (�) represents the rate of energy flow
(radiated power) from/into a certain spatial region, and
can be expressed as

� =

∫ 740nm

λ=380nm
P(λ)dλ (watt), (1)

where P(λ) represents the power spectral density of the
radiated flux measured in watts per meter and λ denotes
the radiation wavelength.

• Irradiance of a point on aVsurface (E) is the
amount of radiant flux incident on a unit area lying on
that surface from all directions in the half-space above
or below it. In other words, it represents areal radiant
flux density (power density). It is worth noting that E
does not depend on the surface properties, where is
defined as

E =
d�

dA

(
watt/m2

)
, (2)

where dA is a differential area element containing the
point at which irradiance is to be computed. Emittance
follows the same definition of irradiance except that flux
exits the surface of interest. Hence, the total incident
flux on a given surface/detector represented by the set
of points Q can be expressed as

∫

Q

E(P)dAP, (3)

where dAP represents a differential area element tan-
gential to the considered surface at P.

• Radiant intensity of a point source (I) in a given
direction is the amount of radiated flux by a point source
per unit solid angle and is defined as,

I =
d�

dω
(watt/steradian), (4)

where dω is a differential solid angle element around
the desired measurement direction. I represents also the
angular radiant flux density. For a point isotropic source,
I = �

4π
.

• Radiance(L) is defined as the amount of radiant flux
per unit solid angle per unit area perpendicular to
the direction of radiance measurement. Three con-
stituents are needed to specify radiance, namely, a point,
infinitesimal area containing this point, and a solid angle
subtending the direction of measurement. Radiance can
be attributed to any arbitrary point in space, with a
possibly virtual area containing that point, nonetheless,
computing radiance for a point on an extended source
or a reflecting surface is of particular interest. Finally,
it can be evaluated as

L =
d2�

dA⊥dω
=

d2�

dAdω cos(θs)

� lim
	A→0,	ω→0

	�

	A	ω cos(θs)
, (5)

where dA⊥ represents the projection of the differential
area element containing the measurement point onto a

FIGURE 1. Radiance illustration.

plane that is orthogonal to the measurement direction,
and θs is the angle between the normal to the area ele-
ment and the direction around which the solid angle
is defined as can be seen in Fig. 1. Equivalently, radi-
ance can be defined by expressing its relationship with
irradiance through the following integral,

E =

∫




L cos(θs)dω, (6)

where 
 is a hemispherical solid angle. It is worth
noting that radiance is constant for all points lying on
the ray representing direction of radiance measurement.

As for the relevant photometric quantities, they follow
very similar definitions to their radiometric counterparts with
the exception that luminous flux is considered instead of
radiant flux:

• Luminous Flux (�v) represents the optical power
weighted by the eye sensitivity function (V(λ)), and
can be expressed as

�v =

∫ 740nm

λ=380nm
P(λ)V(λ)dλ lumens, (7)

where V(λ) is the spectral efficacy function that spec-
ifies the relative response of human eye to different
wavelengths. Illuminance, luminous intensity and lumi-
nance are the photometric counterparts of irradiance,
radiant intensity, and radiance, respectively [22, Ch 2.2].

B. LIGHT REFLECTION PATTERNS

Reflection response of a surface is highly determined by its
constituting material and its geometric imperfections. Surface
reflection response can be classified into: specular, diffuse, or
glossy based on the roughness degree of the surface (deter-
mined by fluctuation in the height profile). Perfectly smooth
surfaces act as mirrors and reflect light in a specular direction
according to Snell’s law of reflection while rough surfaces
scatter incident light in all directions. Generally, surfaces
have glossy nature where the reflected power consists of a
specular component and a diffuse component. In this work,
we are particularly interested in specular reflections.

III. SYSTEM MODEL

In this work, we consider two different setups for intelligent
reflecting surfaces in the context of VLC systems, namely,
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FIGURE 2. Metasurface-based IRS Model.

FIGURE 3. Mirror Array-based IRS Model.

intelligent metasurface reflector (IMR) and intelligent mir-
ror array (IMA). In both setups, we assume a non-coherent
LED transmitter [25, Ch. 2] that is horizontally-oriented and
mounted to the room ceiling at a vertical clearance hd from
the horizontal plane containing the receiver as depicted in
Fig. 21 and Fig. 3. The x, y, and z axes positive directions
are oriented such that the z-axis is orthogonal to the ceiling
and points towards the floor of the room, while the y-axis
is normal to one of the walls and points at the source side,
and the x-axis is oriented such that the three axes form a
right-handed coordinate system. Moreover, we assume an
extended planar source having uniform radiant emittance
over its area As = wsls with ws and ls being the source
span along the x-direction and y-direction, respectively. Each
point on the transmitter aperture is assumed to have a gen-
eralized Lambertian radiation pattern with Lambertian order
m. Hence, the radiance of a general point on the transmitter
in a direction making an angle θs with the positive z−axis
can be expressed based on [26, eq. (1)] as (for the proof see
Appendix A)

L(θs) =
(m+ 1)p

2πAs
cosm−1(θs), (8)

where m = − ln(cos(φ1/2)), φ1/2 represents the half power
beamwidth, and p is the transmitter optical radiated power.

1. Parallel projection is used to plot all the figures hereafter. (i.e., parallel
lines in the plot are physically parallel).

We denote the set of points representing the source aperture
by S .
Moreover, we assume a horizontally-oriented receiver

(photo detector), where its center (D) is offset from the
source center (S) by xd in the x-direction and by yd from
the reflector in the y-direction. The detector extent along
the x-direction is wd, while its extent along the y-direction
is ld. Furthermore, the detection pattern is assumed to be
Lambertian having a field-of-view of 90◦, which can be real-
ized using a hemispherical lens [27]. As for the reflectors,
we detail their structure in the following subsections.

A. INTELLIGENT METASURFACE REFLECTOR

In the first system setup, we consider an np × np array of
identical rectangular optical metasurface patches, with patch
width wp and patch height hp placed on a vertical surface
with a normal vector parallel to the y-axis as depicted in
Fig. 2. The edge-to-edge inter-patch separation distances are
	hp and 	wp along the z-axis and the x-axis, respectively.
The reflector location is defined by a vertical offset zs, with
a minimum offset along the x-direction of xs and constant
offset along the negative y-direction of ys for all the reflector
points with all offsets being measured from the source center.
Moreover, we assume that the phase discontinuity (�) of
each metasurface patch can be controlled independently of
the other patches. It is further assumed that the phase gradient
is kept constant over each metasurface patch (i.e., ∂�

∂x
= Cxk,ℓ

and ∂�
∂z

= Czk,ℓ ∀(x, z) ∈ RMS
k,l , where RMS

k,l ∀k, l represents
the set of points lying on an arbitrarily chosen metasurface
patch in the k-th row and l-th column of the reflector array).

B. INTELLIGENT MIRROR ARRAY

In the second system, we consider an nm × nm two-
dimensional array of identical rectangular mirrors whose
centers lie in the x−z-plane as depicted in Fig. 3. We assume
that the orientation of each mirror can be adjusted indepen-
dently via two rotational degrees of freedom. In Fig. 4,
we focus on the mirror whose center is positioned in the
k−th row and ℓ−th column of the array, and represent it
mathematically by the set of points RMi

k,ℓ. The final mirror
orientation is set via two successive clockwise rotations; the
first is about the mirror local z-axis with an angle βk,ℓ and the
second is about the negative x′−axis (the mirror local neg-
ative x−axis after the first rotation).2 At the mirrors default
position (αk,ℓ = 0 ∀k, ℓ, βk,ℓ = 0 ∀k, ℓ), they span wm and
hm along the x-direction and the z-direction, respectively.
Finally, the separation distances between adjacent mirrors
centers are wm + 	wm and hm + 	hm along the x-axis and
the z-axis, respectively.

In order to minimize the transmittance for both reflector
types, the reflecting elements are chosen with much larger

2. It should be noticed from Fig. 4 that x′, y′, and z′ axes represent the
x, y, and z axes, respectively, after the first rotation around z, where z, z′

axes coincide. On the other hand, x′′, y′′, and z′′ axes represent the x, y,
z axes, respectively, after the second rotation around x′, where x′, x′′ axes
coincide.
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FIGURE 4. Rotational Degrees of Freedom of each Mirror.

thicknesses than the penetration depths of the employed
metal. The skin depths for different metals are easily com-
putable using the presented tables in [28, Ch. 2]. Unlike
the adopted structure in [29], to avoid polarization sensitiv-
ity, both reflectors are built using neither birefringent nor
dichroic materials.
Before delving into the derivation details presented in

the following sections, it is important to highlight that
the conducted analysis is based on radiometry, which
stands on geometric optics grounds. The validity of this
approach requires that the reflecting element’s dimensions
are much larger than the visible light wavelength [30, 15.2],
[31, Ch. 2]. In this regard, we adopt a macroscopic model
for the metasurface patches to abstract them as anomalous
reflective rectangular blocks, which directs most of the inci-
dent power in a direction imposed by the generalized law
of reflection depending on the incidence direction and the
phase discontinuity profile of the metasurface [32].

IV. IRRADIANCE PERFORMANCE OF INTELLIGENT

METASURFACE REFLECTOR

In this section, we are interested in quantifying the potential
gains of incorporating controllable metasurface-based IRs
in VLC systems from a communication service perspective.
Towards this end, we derive the irradiance generated at a
certain point in the detector plane due to the first-order
reflection from the metasurface-based reflector. Throughout
this derivation, we assume

• the phase discontinuity function of each metasurface
patch is tuned such that the incident ray from the
source’s center hitting the reflector’s center reflects at
the detector’s center.

• the transmitter adjusts the symbol duration to avoid
inter-symbol interference.

• the surfaces of the reflector elements are perfectly
smooth to avoid the intricacies incurred in non-specular
reflection analysis.

• the reflection coefficient magnitude does not depend on
the direction of incidence.

FIGURE 5. Generalized law of reflection.

• the controllable introduced phase-gradient on the meta-
surface is smooth for all directions lying on the
surface.

• the data is carried on a monochromatic light to avoid
reflection spectral dependencies.

A. GENERALIZED LAW OF REFLECTION

Before proceeding with the irradiance derivation details, it is
essential to highlight some properties of the generalized law
of reflection (generalized Snell’s law). In [33], the authors
provided a relativistic description of the reflected ray direc-
tion with respect to the incident ray and the normal to
the surface depending on the introduced phase-discontinuity
on the metasurface. By applying their derived expressions
while assuming the incident ray projection on the metasur-
face (lying in the x− z plane) making an angle φi with the
negative z−axis as shown in Fig. 5, the generalized law of
reflection can be written as

cos
(
θ r
)

sin
(
φr) =

λ

2πni

∂�

∂r′
, (9)

sin
(
θ r
)
− sin

(
θ i
)

=
λ

2πni

∂�

∂i′
, (10)

where θ r is the angle between the reflected ray and its pro-
jection on the plane orthogonal to the incidence plane and
the metasurface, φr is the angle between the normal to the
metasurface and the reflected ray projection on the plane
orthogonal to both the incidence plane and the metasurface,
� represents the reflector phase discontinuity and ni is the
refractive index of the medium of incidence and λ represents
the wavelength, θ i is the angle of incidence (angle between
the incident ray and the normal to the metasurface), i′ and
r′ represent the counter-clockwise rotated version of the z−
and x− axes about the y−axis by an angle φi, respectively,
as can be seen in Fig. 5.
The previous relativistic formulation of the generalized

Snell’s law can be expressed in an absolute representation
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as (for proof see Appendix B)

sin
(
θ ′
)

sin
(
φ′
)
− sin

(
θ i
)

sin

(
φi
)

=
λ

2πni

∂�

∂x
, (11)

sin
(
θ ′
)

cos
(
φ′
)
− sin

(
θ i
)

cos

(
φi
)

=
λ

2πni

∂�

∂z
, (12)

or, equivalently,

θ i = sin−1

⎛
⎝
((

sin
(
θ ′
)

sin
(
φ′
)
−

λ

2πni

∂�

∂x

)2

+

(
sin
(
θ ′
)

cos
(
φ′
)
−

λ

2πni

∂�

∂z

)2
) 1

2

⎞
⎠, (13)

φi = tan−1

(
sin
(
θ ′
)

sin
(
φ′
)
− λ

2πni

∂�
∂x

sin(θ ′) cos(φ′) − λ
2πni

∂�
∂z

)

+ πI

(
sin
(
θ ′
)

cos
(
φ′
)
−

λ

2πni

∂�

∂z
< 0

)
. (14)

where θ ′ represents the angle between the normal to the
metasurface and the reflected ray, and φ′ denotes the angle
between the projection of the reflected ray on the metasurface
and a ray parallel to the z-axis lying in that plane. It can be
noticed that when ∂�

∂x
= 0 and ∂�

∂z
= 0, (13), (14) represent

the ordinary Snell’s law of reflection.
A fundamental consequence of the generalized Snell’s law

is that it prohibits certain regions in the space of reflected
rays directions. One can see clearly from (13) that there is
no feasible θ i corresponding to θ ′ and φ′ values that violates

(
sin
(
θ ′
)

sin
(
φ′
)
−

λ

2πni

∂�

∂x

)2

+

(
sin
(
θ ′
)

cos
(
φ′
)
−

λ

2πni

∂�

∂z

)2

≤ 1. (15)

B. IRRADIANCE DERIVATION

To lay the foundations for deriving the irradiance generated
by the metasurface reflector, we introduce a thorough defi-
nition of the adopted geometry in the upcoming ray-tracing
analysis.
In Fig. 6, we layout a geometric description of the main

contributors to the reflection scene, and in Table 1 we provide
their description.
In the following analysis, Ŵ, γ , and χ will take the

values from the sets {IR,P, IRk,ℓ,P,S}, {D,P}, and {R,Rk,ℓ},
respectively.3

It can be deduced that the overall irradiance generated by
the whole reflector array is the superposition of its individual
elements irradiance contributions. Hence, we focus on the
irradiance generated by the metasurface patch in the k-th row
and the ℓ-th column of the array, where row and column
array indexing directions match the positive z- and x−axes,
respectively, as indicated in Fig. 2. For each reflecting patch,

3. Unless otherwise stated, we use the presented angles definitions
hereafter in the rest of the paper.

FIGURE 6. General ray tracing for metasurface-based IRS.

TABLE 1. Ray tracing parameters definitions.

we study the irradiance contribution (dEMS
P ) of a differential

area element (dAR), then exploit the superposition principle
to find the overall performance. To find the dEMS

P at P due
to dAR, we apply these steps:

• Find the tuned phase gradient, (Cxk,ℓ and Czk,ℓ), of the
considered patch.

• Find the location of IR,P given Cxk,ℓ, C
z
k,ℓ and the

locations of P and R.

We use θSR and φS
R hereafter to specify the position of the

reflector differential area element, and to describe all the
required vectors to compute dEMS

P . Consequently, the vector
definitions of the key five points forming the ray tracing
problem follow as

S =
[
0 ys 0

]T
, (16)
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D =
[
xd yd hd

]T
, (17)

P =
[
xp yp hd

]T
, (18)

Rk,ℓ =

⎡
⎣
xs +

wp

2
+ (ℓ − 1)

(
wp + 	wp

)

0

zs +
hp
2

+ (k − 1)
(
hp + 	hp

)

⎤
⎦, (19)

R =
[
ys cot

(
φS
R

)
0 ys csc

(
φS
R

)
cot

(
θSR

)]T
. (20)

The phase gradient over the metasurface patch can be
expressed using (11) and (12) as

∂�

∂Rx

∣∣∣∣
R∈RMS

k,ℓ

= Cxk,ℓ =
2πni

λ

(
sin

(
θ ′
Rk,ℓ,D

)
sin

(
φ′
Rk,ℓ,D

)

− sin

(
θ iRk,ℓ,S

)
sin

(
φi
Rk,ℓ,S

))

=
2πni

λ

(
Rk,ℓDT

e1

‖Rk,ℓD‖2

−
SRT

k,ℓe1∥∥Rk,ℓS
∥∥

2

)
, (21)

∂�

∂Rz

∣∣∣∣
R∈RMS

k,ℓ

= Czk,ℓ =
2πni

λ

(
sin

(
θ ′
Rk,ℓ,D

)
cos

(
φ′
Rk,ℓ,D

)

− sin

(
θ iRk,ℓ,S

)
cos

(
φi
Rk,ℓ,S

))

=
2πni

λ

(
Rk,ℓDT

e3

‖Rk,ℓD‖2

−
SRT

k,ℓe3∥∥Rk,ℓS
∥∥

2

)
. (22)

The second crucial step of this derivation is to find the loca-
tion of IR, P, which can be done by exploiting the generalized
Snell’s law, (13) and (14), to identify the corresponding
incident ray to the reflected ray RP via θ iR and φi

R as4

θ iR,IR,P = sin−1

⎛
⎜⎝

⎛
⎝
(
xp − ys cot

(
φs
R

)

ℓRP
− cxk,ℓ

)2

+

(
hd − ys csc

(
φS
R

)
cot
(
θSR

)

ℓRP
− czk,ℓ

)2
⎞
⎠

1
2

⎞
⎟⎠,

(23)

φi
R,IR,P = tan−1

⎛
⎝

xp−ys cot(φs
R)

ℓRP
− cxk,ℓ

hd−ys csc
(
φS
R

)
cot
(
θSR

)

ℓRP
− czk,ℓ

⎞
⎠, (24)

where ℓR P = ‖RP‖2, c
x
k,ℓ = λ

2πni
Cxk,ℓ and czk,ℓ = λ

2πni
Czk,ℓ.

Consequently, IR, P can be expressed as

IR, P =

⎡
⎢⎢⎣
ys cot

(
φS
R

)
− ys csc

(
φS
R

)
cot
(
θSR

)
tan

(
θ iR,IR,P

)

ys csc
(
φS
R

)
cot
(
θSR

)
sec

(
φi
R,IR,P

)
cot

(
θ iR,IR,P

)

0

⎤
⎥⎥⎦.

(25)

At this point, we express dEMS
P of dAR using the

differential form of (5) as

dEMS
p = LP←R cos

(
θPR
)
dωp←R, (26)

4. It can be seen that the indicator term in (12) disappears in the φiR
expression, as we do not consider backscattering scenarios in this work,
i.e., the z−component of the incident ray is always positive.

where Lx←y denotes the radiance of the point y measured at
the point x, and dωP←R represents the differential solid angle
subtended by dAR measured at P. Using radiance invariance
along the same ray [22, Ch. 1.6] and the differential solid
angle definition, dEMS

P can be rewritten as

dEMS
p = ρMSLR←IR,P cos

(
θPR
)
dAR cos

(
θ ′
R,P

)
/‖RP‖2

2, (27)

where ρMS represents the reflection efficiency. It is worth
mentioning that LR←IR,P = 0 if IR, P does not lie inside the
source. We express dAR in terms of dθSR and dφS

R as

dAR =

∣∣∣∣∣J
(
Rx,Rz

θSR, φS
R

)∣∣∣∣∣dθ
S
Rdφ

S
R

= y2
s csc2

(
θSR

)∣∣∣csc3
(
φS
R

)∣∣∣dθSRdφS
R. (28)

From the setup geometry, it can be deduced easily that,

cos
(
θPR
)

=
hd − ys csc

(
φS
R

)
cot
(
θSR

)

ℓRP
(
φS
R, θSR

) (29)

and

cos
(
θ ′
R,P

)
=

yp

ℓRP
(
φS
R, θSR

) . (30)

The radiance term LR←IR,P can be expressed as

LR←IR,P =
ρMS(m+ 1)p

2πwsls
cosm−1

(
θ
IR, P
R

)

× I

(∣∣ITR, Pe1

∣∣ ≤
ws

2
,
∣∣ITR, Pe2

∣∣ ≤
ℓs

2

)

× I

((
sin
(
θ ′
R,P

)
sin

(
φ′
R,IR,P

)
− cxk,ℓ

)2

+
(

sin
(
θ ′
R,P

)
cos

(
φ′
R,IR,P

)
− czk,ℓ

)2

≤ 1

)
,

(31)

where

cos

(
θ
IR, P
R

)
=

csc
(
φS
R

)
cot
(
θSR

)
√

tan2

(
θ iR,IR,P

)
+
(

sec

(
φi
R,IR,P

)
cot

(
θ iR,IR,P

))2
,

(32)

and we used the first indicator term to ensure that IR, P does
not contribute to the computed irradiance if it lies outside the
source boundaries. We use the second indicator to ensure a
correct angle of incidence that can result in a reflection from
R to P based on the set phase gradient. Finally, we evaluate
the total irradiance at P due to the first-order reflections by
integrating over the considered metasurface patch area and
summing up all patches contributions as

EMS
P =

ρMS(m+ 1)p

2πwsls

np∑

k=1

np∑

ℓ=1

∫ φmax
k,ℓ

φmin
k,ℓ

∫ θmax
k,ℓ

θmin
k,ℓ

cosm−1
(
θ
IR, P
R

)

× I

(∣∣eT1 IR, P
∣∣ ≤

ws

2
,
∣∣eT2 IR, P

∣∣ ≤
ℓs

2

)
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× I

⎛
⎝
(
ys cot

(
φs
R

)
− xp

ℓRP
− cxk,ℓ

)2

+

(
hd − ys csc

(
φS
R

)
cot
(
θSR

)

ℓRP
− czk,ℓ

)2

≤ 1

⎞
⎠

×
yp
(
hd − ys csc

(
φS
R

)
cot
(
θSR

))

ℓ4
RP

(
φS
R, θSR

) y2
s csc2

(
θSR

)

×

∣∣∣csc3
(
φS
R

)∣∣∣dθSRdφS
R, (33)

where

φmin
k,ℓ = tan−1

(
ys

xs + (ℓ − 1)
(
wp + 	wp

)
)

, (34)

φmax
k,ℓ = tan−1

(
ys

xs + wp + (ℓ − 1)
(
wp + 	wp

)
)

, (35)

θmin
k,ℓ = max

(
tan−1

(
ys csc

(
φS
R

)

zs + hp + (k − 1)
(
hp + 	hp

)
)

, 0

)
,

(36)

θmax
k,ℓ = min

(
tan−1

(
ys csc

(
φS
R

)

zs + (k − 1)
(
hp + 	hp

)
)

,

tan−1

(
ys csc

(
φS
R

)

hd

))
. (37)

One can notice that φmin
k,ℓ and φmax

k,ℓ defines the horizontal

boundaries, and θmin
k,ℓ and θmax

k,ℓ define the vertical boundaries
of the metasurface patch in the k-th row and ℓ-th column.
The values of θmin

k,ℓ and θmax
k,ℓ are set to ensure that only the

active portion of the metasurface patch (the part which is
below the source and above the detector surface) contributes
to the computed irradiance.

V. IRRADIANCE PERFORMANCE OF INTELLIGENT

MIRROR ARRAY REFLECTOR

In this section, we aim at assessing the advantages pro-
vided by mirror array reflectors when employed within VLC
systems by analyzing their power focusing capability. To
this end, we derive an expression for the irradiance at a
general point in the detector plane whilst considering only
first-order reflections from the mirrors array. We assume
that the two rotational degrees of freedom of the reflect-
ing element located at the k-th row and the ℓ-th column in
the array, namely, αk,ℓ and βk,ℓ range within [−π/2, π/2].
The reflecting elements orientation represented by αk,ℓ and
βk,ℓ ∀k, ℓ is set such that the incident ray from the source
center on the reflecting element center hits the detector cen-
ter. In addition, we follow similar assumptions to those of
the intelligent metasurface reflector regarding light rays path
difference delays, surface smoothness, perfect conductance
(negligible effect of incidence angle on the magnitude of
reflection coefficient) besides the monochromaticity of the
light carrying the data stream.

Similar to the metasurface case, we analyze the mirror
centered at the k-th row and ℓ-th column of the array,
then sum up all the contributions for all k, ℓ. Firstly, we
define a local Cartesian coordinate system having its origin
at the mirror center Rk,ℓ and its axes orientation as shown
in Fig. 3. Consequently, the main points vector definitions
are given as5

S =

⎡
⎢⎣

−
(
xs + wm

2
+ (ℓ − 1)(wm + 	wm)

)

ys

−
(
zs + hm

2
+ (k − 1)(hm + 	hm)

)

⎤
⎥⎦, (38)

D =

⎡
⎢⎣
xd −

(
xs + wm

2
+ (ℓ − 1)(wm + 	wm)

)

yd

hd −
(
zs + hm

2
+ (k − 1)(hm + 	hm)

)

⎤
⎥⎦, (39)

P =

⎡
⎢⎣
xp −

(
xs + wm

2
+ (ℓ − 1)(wm + 	wm)

)

yp

hd −
(
zs + hm

2
+ (k − 1)(hm + 	hm)

)

⎤
⎥⎦, (40)

where xp, yp represent the x− and y− coordinates of P as
measured from S̄.

Before proceeding further, the mirror orientation is deter-
mined by finding a unit vector normal to its surface, namely,
N̂k,ℓ. In this setup, the mirror orientation is adjusted such
that ŜRk,ℓ represents the corresponding incidence direc-
tion for the reflection direction R̂k,ℓD. Hence, by the
virtue of Snell’s law of reflection, we solve [23, eq. (2.24)]
for the normal vector direction and express N̂k,ℓ as

(R̂k,ℓS + R̂k,ℓD)/

√
2 + 2R̂k,ℓS

T
R̂k,ℓD. The angles defining

the considered mirror orientation can be expressed in terms
of N̂k,ℓ as

βk,ℓ = sin−1
(
N̂
T
k,ℓe3

)
(41)

and

αk,ℓ = sin−1
(
N̂
T
k,ℓe1/cos

(
βk,ℓ

))
. (42)

We define another Cartesian coordinate system that is local
to the considered mirror having Rk,ℓ as the origin. The axes
of the new system are x′′, y′′, and z′′ represent the rotated
versions of the original x, y, and z axes, respectively, as can
be seen in Fig. 4 and Fig. 7. The switching between the two
coordinate systems can be expressed as follows [34, Ch. 6]

[
Ax′′ Ay′′ Az′′

]T
=
(
Rx′

k,ℓR
z
k,ℓ

)T[
Ax Ay Az

]T
, (43)

where Ax′′,Ay′′ , and Az′′ are the coordinates of an arbitrar-
ily chosen point A with respect to the axes x′′, y′′, and z′′,
respectively, while its coordinates with respect to the axes
x, y, and z are Ax,Ay and Az, respectively, R

x′

k,ℓ represents
a counter-clockwise rotation matrix about the x′ axis with

5. The physical definitions of the six main points in the ray tracing
problem (S, IR, P,D, P,R, and Rk,ℓ) in this section are identical to their coun-
terparts in Section IV. They are only represented with respect to different
coordinate systems.
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FIGURE 7. Ray tracing for mirror array-based IRS.

angle αk,ℓ and expressed as in (44) appearing at the bottom
of the page.
R
z
k,ℓ represents a clockwise rotation matrix about the z

axis with angle βk,ℓ and is expressed as

R
z
k,ℓ =

⎡
⎣

cos
(
βk,ℓ

)
sin
(
βk,ℓ

)
0

− sin
(
βk,ℓ

)
cos
(
βk,ℓ

)
0

0 0 1

⎤
⎦. (45)

At this stage, we divide the considered mirror into
infinitesimally small differential area elements and add up
their irradiance contribution to find the mirror total irradi-
ance. We focus on studying the irradiance contribution dEMi

P
of the differential area element dAR lying on the considered
mirror at R as shown in Fig. 3. We define the location of
R using (43)-(45), as R = Rx′

k,ℓR
z
k,ℓ

[
Rx′′ 0 Rz′′

]T
, where

Rx′′ and Rz′′ , respectively, represent the x and z coordinates
of the point R with respect to the rotated coordinate system
(represented by the x′′, y′′, and z′′ axes).

In similarity to (27), dEMi
p is expressed as

dEMi
p = ρMiLR←IR,P cos

(
θPR
)
dRx′′dRz′′ cos

(
θ ′
R,P

)
/‖RP‖2

2,

(46)

where ρMi represents the mirror reflection efficiency, θ ′
R,P

denotes the angle between N̂k,ℓ and RP, cos(θPR) = e
T
3
P̂R,

and cos(θ ′
R,P) = N̂T

k,ℓR̂P.
To find the location of IR,P, we first express the incidence

direction ÎR,PR corresponding to the reflection direction R̂P

using [23, eq. (2.24)] as ÎR,PR = −(2(N̂T
k,ℓR̂P)N̂k,ℓ − R̂P).

The position vector describing a point ĨR,P lying on the ray
starting from R and pointing towards IR,P can be expressed as
ĨR,P = R + tR̂IR,P, t ≥ 0. It can be deduced easily that ĨR,P
coincides with IR,P when the z component of ĨR,P equals its
counterpart of S. Hence, IR,P can be expressed as

IR,P =

⎡
⎢⎢⎢⎢⎣

e
T
1

(
R +

e
T
3
RS

e
T
3
R̂IR,P

R̂IR,P

)

e
T
2

(
R +

e
T
3
RS

e
T
3
R̂IR,P

R̂IR,P

)

e
T
3
S

⎤
⎥⎥⎥⎥⎦

. (47)

Finally, to evaluate dEMi
p from (46), we need to check

whether the path between R and P and that between R
and IR,P are blocked by any other mirror in the array. We
consider another arbitrarily chosen mirror, represented by
RMi
q,b, (not containing the differential area element being

studied) indexed by row and column indices q and b,
respectively. Then, we study whether RP intersects RMi

q,b

or not. On the one hand, the vector representation of a
point U on the line segment RP can be expressed as
U(γ ) = γR + (1 − γ )P, γ ∈ [0, 1]. On the other hand,
a general point V lying in the plane containing RMi

q,b should
satisfy

N̂
T
q,bV = N̂

T
q,bRq,b = N̂

T
q,b

⎡
⎣

(b− ℓ)(wm + 	wm)

0

(q− k)(hm + 	hm)

⎤
⎦, (48)

where N̂q,b represents a unit vector normal to RMi
q,b. At

the intersection of RP and RMi
q,b, Uq,b � U(γq,b,1) = V.

Rx′

k,ℓ =

⎡
⎣

cos2
(
βk,ℓ

)(
1 − cos

(
αk,ℓ

))
+ cos

(
αk,ℓ

)
− cos

(
βk,ℓ

)
sin
(
βk,ℓ

)(
1 − cos

(
αk,ℓ

))
− sin

(
βk,ℓ

)
sin
(
αk,ℓ

)

− cos
(
βk,ℓ

)
sin
(
βk,ℓ

)(
1 − cos

(
αk,ℓ

))
sin2

(
βk,ℓ

)(
1 − cos

(
αk,ℓ

))
+ cos

(
αk,ℓ

)
− cos

(
βk,ℓ

)
sin
(
αk,ℓ

)

sin
(
βk,ℓ

)
sin
(
αk,ℓ

)
cos
(
βk,ℓ

)
sin
(
αk,ℓ

)
cos
(
αk,ℓ

)

⎤
⎦ (44)
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Hence, γq,b,1 can be expressed as N̂
T
q,bPRq,b/(N̂

T
q,bPR),

which reduces to

γq,b,1 = N̂
T
q,b

⎛
⎝
⎡
⎣

(b− ℓ)(wm + 	wm)

0

(q− k)(hm + 	hm)

⎤
⎦− P

⎞
⎠/
(
N̂
T
q,bPR

)
.

(49)

It is clear that γq,b,1 > 1, or γq,b,1 < 0 is sufficient to
declare that RMi

q,b does not block the path RP. To assert the

existence of Uq,b within RMi
q,b boundaries, we compute the

vector representation of Uq,b with respect to the local rotated
axes of the RMi

q,b as Ur
q,b,1 = (Rx′

k,ℓR
z
k,ℓ)

TRq,bUq,b,1. In a
similar way to the definitions of γq,b,1,Uq,b,1, and Ur

q,b,1,
we define γq,b,2,Uq,b,2, and Ur

q,b,2 to study the potential
blockage of the path between R and IR,P. Hence, the blockage
event occurs if |eT

1
Ur
q,b,1| ≤ wm/2 and |eT

3
Ur
q,b,1| ≤ hm/2,

or |eT
1
Ur
q,b,2| ≤ wm/2 and |eT

3
Ur
q,b,2| ≤ hm/2. Consequently,

the radiance term LR←IR,P can be expressed as

LR←IR,P

= ρMi
(m+ 1)

2πwsls
p cosm−1

(
θ
IR,P
R

)

×

⎛
⎝1 −

∏

(q,b) �=(k,ℓ)

I

(∣∣∣eT1Ur
q,b,1

∣∣∣ ≤
wm

2
,

∣∣∣eT3Ur
q,b,1

∣∣∣ ≤
hm

2

)

× I
(
0 ≤ γq,b,1 ≤ 1

)
⎞
⎠

× I

(∣∣eT1SIR,P
∣∣ ≤

ws

2
,
∣∣eT2SIR,P

∣∣ ≤
hs

2

)

× I

(
e
T
3S ≤ e

T
3

(
Rx′

k,ℓR
z
k,ℓ

)[
Rx′′ 0 Rz′′

]T
≤ e

T
3P
)
, (50)

where θ
IR,P
R denotes the angle between IR,PR and the positive

z-axis, and cos(θ
IR,P
R ) = e

T
3
ÎR,PR.

Finally, we can express EMi
P on a horizontal surface with

an infinitesimal area around P as in (51) appearing at the
bottom of the page, where T1 nullifies the contributions of
reflector points not lying vertically between S and P, while

T2 voids the effect of reflector portions hit by rays originating
outside the source boundaries. The last term T3 ensures that
self blocked rays are not counted.

VI. IRRADIANCE PERFORMANCE FOR DIFFERENT

SPECIAL CASES

In this section, we derive simplified irradiance expressions
based on different geometrical assumptions. Firstly, neglect-
ing the inter-element blockage effect for the mirror array
reflector, we can express the irradiance at the detector center
for both reflector types as

EtD = ρt

nt∑

k=1

nt∑

ℓ=1

∫∫

Rt
k,ℓ

(m+ 1)p cosm−1

(
θ
ItR,D
R

)

2πAs‖RD‖2
2

× cos
(
θDR
)

cos
(
θ tR,D

)
I
(
ItR, D ∈ S

)
dAtR,

(52)

where we use the t subscript/superscript, hereafter, to asso-
ciate terms with the considered reflector type. Hence,
t ∈ {MS,Mi}, represents metasurface, mirror array reflec-
tors, respectively, for all the variable definitions except for
nt,wt, ht, for which t ∈ {p, m}. Finally, θ tR,D, represents
θ ′
R,D, I

t
R,γ represents IR,γ with the considered reflector rep-

resented by t. Then, we assume, hereafter, a small detector
regime (the detector largest dimension is much smaller than
the minimum distance between a point on the reflector and
a point on the detector). Hence, the irradiance variations
over the detector surface are negligible and we can focus on
the irradiance at the detector center. In the following sub-
sections, we consider two major special cases, namely, the
point source case and the large source small reflector case.

A. POINT SOURCE CASE

In this case, the source dimensions are considered negligi-
ble compared with the distances between the reflector points
and the source. Thus, any observation point on the reflec-
tor surface will perceive all source points with the same
location, which allows us to deal with the source as a point.

EMi
P =

(m+ 1)p

2πwsls

nm∑

k=1

nm∑

ℓ=1

∫ hm/2

−hm/2

∫ wm/2

−wm/2

(
e
T
3 ÎR,PR

)m−1

(
e
T
3
R̂P
)(
N̂T
k,ℓR̂P

)

‖RP‖2
2

I

⎛
⎝eT3S ≤ e

T
3

(
Rx′

k,ℓR
z
k,ℓ

)
⎡
⎣
Rx′′
0

Rz′′

⎤
⎦ ≤ e

T
3P

⎞
⎠

︸ ︷︷ ︸
T1

× I

(∣∣eT1SIR,P
∣∣ ≤

ws

2
,
∣∣eT2SIR,P

∣∣ ≤
hs

2

)

︸ ︷︷ ︸
T2

2∏

j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
∏

(q, b)

�=

(k, ℓ)

I

(∣∣∣eT1Ur
q,b,j

∣∣∣ ≤
wm

2
,

∣∣∣eT3Ur
q,b,j

∣∣∣ ≤
hm

2
, 0 ≤ γq,b,j ≤ 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
T3

dRx′′dRz′′

(51)
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Consequently, the irradiance expression can be expressed
based on (52) as

EtD,PS = lim
ws→0,
ℓs→0

nt∑

k=1

nt∑

ℓ=1

∫∫

Rt
k,ℓ

ρt(m+ 1)p cosm−1

(
θ
ItR,D
R

)

2πAs‖RD‖2
2

× cos
(
θDR
)

cos
(
θ tR,D

)
I
(
ItR, D ∈ S

)
dAtR.

(53)

By exploiting the infinitesimally small source area, all the
quantities depending on R can be considered constant and
replaced by their corresponding values at Rk,ℓ. Hence, the
irradiance expression reduces to

EtD,PS =

nt∑

k=1

nt∑

ℓ=1

ρt(m+ 1)p

2π
∥∥Rk,ℓD

∥∥2

2

cosm
(
θSRk,ℓ

)
cos

(
θDRk,ℓ

)

×
cos

(
θ tRk,ℓ,D

)

cos

(
θSRk,ℓ

) lim
ws→0,ℓs→0

Ātk,ℓ

As
, (54)

where Ātk,ℓ is the area of the portion of Rt
k,ℓ that have a

non-zero contribution to the irradiance at D. The limit term
appearing at the end of the previous expression can be re-

written as limws→0,ℓs→0

Ātk,ℓ
As

= dAR
dAItR,D

|R=Rk,ℓ , where dAItR,D

represents the differential area around ItR,D from which the
incident rays hit dAR and get reflected to D as can be seen
in Fig. 8(a) and Fig. 8(b). In the following subsections, we
derive more particular expressions for the metasurface and
mirror array based reflectors.

1) MIRROR ARRAY REFLECTOR

We first evaluate .
dAMi

R
dA

IMi
R,D

|R=Rk,ℓ as

dAMi
R

dAIMi
R,D

∣∣∣∣∣
R=Rk,ℓ

=
dRx′′dRz′′

dIMi
R,D,xdI

Mi
R,D,y

∣∣∣∣∣
R=Rk,ℓ

=

∣∣∣∣∣∣
J

(
IMi
R,D,x, I

Mi
R,D,y

Rx′′,Rz′′

)∣∣∣∣∣
R=Rk,ℓ

∣∣∣∣∣∣

−1

, (55)

where IMi
R,D,x = e

T
1
IMi
R,D and IMi

R,D,y = e
T
2
IMi
R,D. Using the chain

rule of Jacobians, the previous equation can be re-written as

dAMi
R

dAIMi
R,D

∣∣∣∣∣
R=Rk,ℓ

=

(
dAMi

R

dĀR

dĀR

dAIMi
R,D

)∣∣∣∣∣
R=Rk,ℓ

=

∣∣∣∣∣∣
J

(
IMi
R,D,x, I

Mi
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,ℓ

/

J

(
Rx′′ ,Rz′′

Rx,Rz

)∣∣∣∣
R=Rk,ℓ

∣∣∣∣∣

−1

, (56)

FIGURE 8. Ratio between differential area elements in reflector and source planes.

where dĀR represents the projection of dAMi
R onto a plane

parallel to the x − z plane as depicted in Fig. 8(a). The
second Jacobian appearing in the previous expression rep-
resents a projection onto the x − z plane. Hence, it can be
expressed as

J

(
Rx′′ ,Rz′′

Rx,Rz

)
=

1

N̂T
k,ℓe2

. (57)

Using (47), IMi
R,D,x and IMi

R,D,y are expressed as

IMi
R,D,x = Rx +

Sz − Rz

e
T
3

((
2N̂T

k,ℓR̂D
)
N̂k,ℓ − R̂D

)

× e
T
1

((
2N̂T

k,ℓR̂D
)
N̂k,ℓ − R̂D

)
, (58)
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IMi
R,D,y = Ry +

Sz − Rz

e
T
3

((
2N̂T

k,ℓR̂D
)
N̂k,ℓ − R̂D

)

× e
T
2

((
2N̂T

k,ℓR̂D
)
N̂k,ℓ − R̂D

)
. (59)

Therefore, we can write the Jacobian as

J

(
IMi
R,D,x, I

Mi
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,ℓ

= −
N̂T
k,ℓRD

(
2N̂T

k,ℓe3N̂
T
k,ℓRD + Sz − Dz

)2

N̂T
k,ℓe2

(
2N̂T

k,ℓe3N̂
T
k,ℓRD + Rz − Dz

)3

∣∣∣∣∣∣∣
R=Rk,ℓ

= −
N̂T
k,ℓRk,ℓD

(∥∥Rk,ℓD
∥∥

2
+
∥∥Rk,ℓS

∥∥
2

)2∥∥Rk,ℓS
∥∥

2

N̂T
k,ℓe2

∥∥Rk,ℓD
∥∥3

2

(
Sz − Rk,ℓ,z

) , (60)

where Rk,ℓ,z = Rk,ℓTe3.
To simplify (54), the ratio cos(θMi

Rk,ℓ,D
)/cos(θSRk,ℓ) is eval-

uated as follows

cos

(
θMi
Rk,ℓ,D

)

cos

(
θSRk,ℓ

) =
N̂T
k,ℓRk,ℓD

‖Rk,ℓD‖2

∥∥Rk,ℓS
∥∥

2∣∣Sz − Rk,ℓ,z
∣∣ , (61)

By substituting (57), (60), and (61) in (54), the mirror
array irradiance at D due to point source can be upper
bounded by

ĒMi
D,PS =

nm∑

k=1

nm∑

ℓ=1

ρMi(m+ 1)p cosm
(
θSRk,ℓ

)

2π
(∥∥Rk,ℓD

∥∥
2
+
∥∥Rk,ℓS

∥∥
2

)2 cos

(
θDRk,ℓ

)
.

(62)

Now, we impose small reflector assumptions, where the
reflector surface has relatively small solid angles measured
at S and D, i.e., Rk,ℓ ∀k, ℓ is almost constant; thus, ĒMi

D,PS

can be approximated by ẼMi
D,PS as

ẼMi
D = n2

m

ρMi(m+ 1)p cosm
(
θS
R̄Mi

)

2π
(
‖R̄MiD‖2 + ‖R̄MiS‖2

)2 cos

(
θD
R̄Mi

)
, (63)

where R̄Mi is the centroid of mirror array reflecting elements
centers, and R̄Mi =

∑nm
k=1

∑nm
ℓ=1

Rk,ℓ/n2
m.

2) METASURFACE REFLECTOR

In a similar approach to the irradiance derivation for the

mirror array setup, we first evaluate
dAMS

R

dAMS
IR,D

|R=Rk,ℓ as

dAMS
R

dAMS
IR,D

∣∣∣∣∣
R=Rk,ℓ

=

∣∣∣∣∣∣
J

(
IMS
R,D,x, I

MS
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,ℓ

∣∣∣∣∣∣

−1

, (64)

where

IMS
R,D,y = −Dy+

(hd−	z)

√
ℓ2
RD−

(
	x−c

x
k,ℓℓRD

)2

−
(
	z−c

z
k,ℓℓRD

)2

	z−c
z
k,ℓℓRD

,

IMS
R,D,x = 	x+

(hd−	z)

(
	x−c

x
k,ℓℓRD

)

	z−c
z
k,ℓℓRD

,

such that 	x = Rx − Dx, 	z = Rz − Dz, and ℓRD =√
(Rx − Dx)2 + D2

y + (Rz − Dz)2. Finally, the irradiance of
the metasurface reflector at D due to point source is found
to be

EMS
D,PS =

np∑

k=1

np∑

ℓ=1

ρMS(m+ 1)p cosm−1
(
θSRk,ℓ

)

2π‖Rk,ℓD‖2
2

cos

(
θMS
Rk,ℓ,D

)

× cos

(
θDRk,ℓ

)/∣∣∣∣∣J
(
IMS
R,D,x, I

MS
R,D,y

Rx,Rz

)
|R=Rk,ℓ

∣∣∣∣∣. (65)

By approximating the Jacobian term in (65) with its mirror
array counter part, EMS

D,PS can be approximated by ĒMS
D,PS

given by

ĒMS
D,PS =

np∑

k=1

np∑

ℓ=1

ρMS(m+ 1)p cosm
(
θSRk,ℓ

)

2π
(∥∥Rk,ℓD

∥∥
2
+
∥∥Rk,ℓS

∥∥
2

)2

×
cos

(
θDRk,ℓ

)
cos

(
θMS
Rk,ℓ,D

)

N̂T
k,ℓR̂k,ℓD

. (66)

Using the small reflector assumption brings a further sim-
plification by approximating ĒMS

D,PS with ẼMS
D,PS expressed as

ẼMS
D,PS =

ρMS(m+ 1)p cosm
(
θS
R̄MS

)

2π
(
‖R̄MSD‖2 + ‖R̄MSS‖2

)2

×
cos

(
θD
R̄MS

)
cos

(
θMS
R̄MS,D

)

N̄T̂̄RMSD

np
2, (67)

where R̄MS represents the centroid of the metasurface reflec-

tor, R̄MS =
∑np

k=1

∑np
ℓ=1

Rk,ℓ/n2
p, and N̄ = (

R̄MSS
‖R̄MSS‖2

+

R̄MSD
‖R̄MSD‖2

)/

√
2 + 2

R̄MSDTR̄MSS
‖R̄MSD‖2‖R̄MSS‖2

.

B. LARGE SOURCE SMALL REFLECTOR CASE

In this case, we assume the reflector largest dimension to be
much smaller than the minimum distance between a point
on the reflector and a point on the source, and the minimum
distance between a point on the reflector and D. Also, we
presume a large enough source such that all the incident rays
on the reflector reaching D originate within S . Based on the

previous assumptions, θ
ItR,D
R , θDR , and θ tR,D ∀R ∈ Rt

k,ℓ can

be approximated by θSRk,ℓ , θ
P
Rk,ℓ

, and θ tRk,ℓ,D, respectively, and
RD ∀R ∈ Rt

k,ℓ can be approximated by Rk,ℓD. Furthermore,

12 VOLUME 2, 2021



∫∫
Rt
k,ℓ

I(IR,D ∈ S)dAR = wtht. Consequently, EtD in (52)

reduces to

EtD,LSSR = ρtwtht

nt∑

k=1

nt∑

ℓ=1

(m+ 1)p cosm−1
(
θSRk,ℓ

)

2πAs‖Rk,ℓD‖2
2

× cos

(
θPRk,ℓ

)
cos

(
θ tRk,ℓ,D

)
. (68)

If the setup geometry strongly satisfies the small reflec-
tor assumption, EtD,LSSR can be further approximated by

ĒtD,LSSR, expressed as

ĒtD,LSSR = ρtwthtn
2
t

(m+ 1)p cosm−1
(
θS
R̄t

)

2πAs‖R̄tD‖2
2

× cos

(
θP
R̄t

)
cos

(
θ t
R̄t,D

)
. (69)

VII. ANALYTICAL INSIGHTS

In this section, we consider the small reflector regime and
manifest the power focusing capability for both reflectors.
Moreover, we provide design guidelines regarding the proper
selection of reflector type based on the setup geometry.

A. POWER CONCENTRATION CAPABILITY ANALYSIS

The small reflector regime allows us to express ED in (52)
at the detector center as

ĒtD,SR = ρtn
2
t

(m+ 1)p cosm−1
(
θS
R̄t

)

2πAs‖R̄tD‖2
2

× cos

(
θP
R̄t

)
cos

(
θ t
R̄t,D

)
AR̄t , (70)

where R̄t represents the set of points of a virtual reflect-
ing element centered at R̄, where |R̄t| = wtht, and AR̄t =∫∫

R̄t I(IR,D ∈ S)dAR represents the effective reflection area
contributing to the irradiance at D. By assuming tightly
packed reflectors (	wp = 	wm = 	hp = 	hm = 0), the
total width and height become, respectively, WT = ntwt
and HT = ntht. By defining the set SR̄t,D

as {R : R ∈

the plane containing R̄t, ItR,D ∈ S}, it is evident that AR̄t =

|SR̄,D ∩ R̄t|. It is clear that for a fixed detector location, nt,
As, and AR̄t are the main controllers of ĒD,SR. By consider-
ing a relatively small source, where |SR̄,D| << |

⋃
k,ℓR

t
k,ℓ|,

|SR̄,D| ≈ As/
dAItR,D
dAtR

|R=R̄t
. The following can be deduced:

• For small enough nt, SR̄,D ⊆ R̄t, AR̄t = |SR̄,D| ≈

As/
dAItR,D
dAtR

|R=R̄t
(independent on nt), and hence ĒD,SR

increases linearly with n2
t . (Similar results are deduced

for very small As)
• For asymptotically large nt, R̄t ⊆ SR̄,D, hence, AR̄t =

|R̄t| = WTHT/n2
t and ĒD,SR becomes independent on

nt. (Similar results are deduced for very large As)

The irradiance increase at D confirms the power focusing
capability of the proposed reflectors. This owes to the con-
stancy of the total reflected power, as the reflectors areas

are kept constant when nt increases. Based on the previous
discussion, the smaller the source area with respect to the
total reflector area, the better power focusing performance,
i.e., if the source area is large enough, regardless of the
number of reflecting elements, the received power will be
almost the same. It is worth mentioning that only in the
point source regime, the power can be focused without lim-
its; in this case, the irradiance at D becomes infinite, and
zero everywhere else such that the received power equals
the total reflected power.

B. POWER ANALYSIS

The source radiates a total of p watts, pinc of which is
incident on the reflector. Then only ρtpinc is reflected towards
the detection plane. Finally, the total received power by the
detector denoted by ptrx can be expressed using (3) as

ptrx =

∫ xd+
wd
2

xd−
wd
2

∫ yd+
ℓd
2

yd−
ℓd
2

Et
P

(
xp, yp

)
dxpdyp. (71)

If the detector area is small with respect to the source
image in the detector plane S ′ = {P : eT

3
P = hd, ∃R ∈⋃

k,ℓ

Rt
k,ℓ where IR,P ∈ S}, ptrx can be approximated by

p̃trx = Et
P(xd, yd)wdℓd. (72)

For a small source, small reflector scenario pinc can be
approximated as

p̃inc =

(m+ 1)p cosm
(
θS
R̄t

)
n2
t wtht cos

(
θ i
R̄t,I

t
R̄t ,D

)

2π‖SR̄t‖2
2

. (73)

The received power from the direct LoS path assuming point
source, can be approximated by

pLoS =
(m+ 1)p cosm+1(θD)

2π‖SD‖2
2

wdℓd, (74)

where θD represents the angle between e2 and SD. In the very
ideal asymptotic case, where a point source is considered and
nt → ∞, the total reflected power is focused at D and the
total received power from reflection ptrx, PS = ρtpinc.

C. REFLECTORS RELATIVE PERFORMANCE ANALYSIS

The fundamental difference between metasurfaces and ordi-
nary mirrors is the relationship between the reflected rays
and their corresponding incident rays directions. For ordinary
mirrors, the volume occupied in the space of directions by a
bundle of rays incident at the same point, is the same as that
occupied by their corresponding reflected rays. Nonetheless,
the non-linear relationship between the polar and the azimuth
angles of reflection θ ′, φ′ and their corresponding incidence
angles θ i, φi, respectively, enforced by the generalized law of
reflection governing metasurfaces response, alters this fact.
To account for this effect, we define the beam spread ratio
(BSR) metric as

BSR �
dω′

dωi
, (75)
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where dω′ is the differential solid angle occupied by the
reflected ray bundle at the reflection direction defined by θ ′,
φ′ and their corresponding incident ray bundle occupying dωi

at the direction defined by θ i,φi. So, we write the metasurface
reflector as (for proof see Appendix C)

BSRMS =
cos
(
θ i
)

cos(θ ′)
. (76)

One can show easily that dω′

dωi
= 1 for all reflector points

of the mirror array. Intuitively, the irradiance and thus the
received power at the detector (for a small detector) are pro-
portional to the reflected beam intensity (RBI), defined as the
amount of reflected power per-solid angle measured along
the line connecting the reflector and the detector centers,
which is expressed as

RBIt =
ptref
ω′
t

= ρtp
t
inc

AR̄t
wtht

ω′
t

≈

ρt(m+ 1)p cosm
(
θS
R̄t

)
n2
t cos

(
θ i
It
R̄t ,D

)

2π‖SR̄t‖2
2

AR̄t
ω′
t

, (77)

where ω′
t represents the solid angle subtended by the detector

measured at R̄t. To assess the relative systems performance,
we consider two reflectors having the same area, number of
reflecting elements, and reflection efficiency and compute
the RBI ratio (RBIR) of the two systems as

RBIR =
pMS
ref

ω′
MS

/
pMi
ref

ω′
Mi

≈

cos

(
θ i
R̄MS,I

MS
R̄MS,D

)

cos

(
θ i
R̄Mi,I

Mi
R̄Mi,D

)
AR̄MS

AR̄Mi

ω′
Mi

ωi
MS

ωi
MS

ω′
MS

=

cos

(
θ i
R̄MS,I

MS
R̄MS,D

)

cos

(
θ i
R̄Mi,I

Mi
R̄Mi,D

)
AR̄MS

AR̄Mi

1

BSRMS
. (78)

For large np, nm the RBIR reduces to

RBIR =

cos

(
θ i
R̄MS,I

MS
R̄MS,D

)

cos

(
θ i
R̄Mi,I

Mi
R̄Mi,D

) 1

BSRMS
=

cos

(
θMS
R̄MS,D

)

cos

(
θ i
R̄Mi,I

Mi
R̄Mi,D

) .

(79)

As for the performance merit of employing the proposed
reflectors, we define GMS � p̃MS

rx /pLoS and GMi � p̃Mi
rx /pLoS

to represent the received power gain of metasurface and
mirror array, respectively, compared with an IRS-free system
depending on the received LoS power. For the small reflector
regime, the gain can be expressed as

Gt =
ρtn

2
t cosm−1

(
θS
R̄t

)
cos

(
θP
R̄t

)
cos

(
θ t
R̄t,D

)
‖SD‖2

2AR̄t

As cosm+1(θD)
∥∥R̄tD

∥∥2

2

.

(80)

For large nt, Gt can be approximated by G̃t as

G̃t = ρtn
2
t

cosm−1
(
θS
R̄t

)
cos

(
θP
R̄t

)
cos

(
θ t
R̄t,D

)
‖SD‖2

2

As cosm+1(θD)‖R̄tD‖2
2

wtht

= ρtn
2
t

cosm−1
(
θS
R̄t

)(
hd − R̄z

)
cos

(
θ t
R̄t,D

)
‖SD‖m+3

2

As
∥∥R̄tD

∥∥3

2
hm+1
d

wtht.

(81)

It can be noticed that,

θ i
R̄MS,IMS

R̄MS,D

2
≤ θMi

R̄Mi,D
≤ π

4
+

θ i
R̄MS,IMS

R̄MS,D

2
.

Moreover, hd ≤ ‖SD‖2 ≤ ‖R̄tD‖2 + ‖R̄tS‖2. Hence,
the achievable gain using the proposed reflectors can be
bounded as

ρtn
2
t wtht cosm−1

(
θS
R̄t

)(
hd−R̄z

)
cos

(
θ t
R̄t,D

)
h2
d

As
∥∥R̄tD

∥∥3

2

≤ G̃t

≤
ρtn

2
t wtht cosm−1

(
θS
R̄t

)(
hd−R̄z

)
cos

(
θ t
R̄t,D

)(∥∥R̄tD
∥∥

2
+
∥∥R̄tS

∥∥
2

)m+3

As
∥∥R̄tD

∥∥3

2
hm+1
d

.

The upper bound in the previous inequality becomes exact
as rtd increases asymptotically. In such regime, that upper
bound reduces to

G̃t ≈

(
ρtn

2
t wtht cosm−1

(
θS
R̄t

)(
hd − R̄z

)
cos

(
θ t
R̄t,D

)

×
((
rtd
)2

+
(
hd − R̄z

))m
2

)
/

(
Ash

m+1
d

)
. (82)

Based on the previous equation, it can be deduced that G̃Mi

grows unboundedly with rMi
d . This attributes to the indepen-

dence of the θMi
R̄Mi,D

bounds on rMi
d . As for the metasurface

reflector, G̃MS can be expressed for large rMS
d as

G̃MS ≈

(
ρMSn

2
pwphp cosm−1

(
θS
R̄MS

)(
hd − R̄z

)
rMS
d sin

(
φMS
d

)

×

((
rMS
d

)2

+
(
hd − R̄z

))m−1
2

)
/

(
Ash

m+1
d

)
. (83)

Consequently, G̃MS grows unboundedly as rMS
d increases

asymptotically.
Before moving to the simulations discussion, it is worth

highlighting some possible challenges that might arise as
a result of incorporating IRSs in VLC setups and pre-
senting some possible solutions. For instance, the focused
power reaching the photodetector might lead to saturation,
and the communication link failure consequently. Two ways
can address this issue; pre-deployment and post-deployment
solutions. The former involves selecting the IRS location
and dimensions properly; thus, the maximum level received
power at the points of interest does not exceed the pho-
todetector saturation level. In the post-deployment solution,
the reflecting elements are divided into two complementary
sets, namely, the active set and the inactive set. The former
represents the reflecting elements participating in focusing
the incident power towards the photodetector. On the other
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TABLE 2. Default simulation parameters.

hand, the inactive set represents the rest of the reflecting
elements that are tuned to direct the incident power away
from the photodetector. By proper selection of elements of
the two sets, photodetector saturation can be avoided easily.
Moreover, the unintentionally received power in an indoor
IRS-aided VLC scenario at the detector from the ceiling (out-
side the source boundaries) diffused reflections through the
IRS might result in inter-symbol interference. Nonetheless,
this portion of power is negligible for small IRSs where the
area of the set of ceiling points contributing to the uninten-
tionally received power is small. Also, these points distribute
the reflected power evenly over all the directions. Hence, the
photodetector share of this reflected power is minimal.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the two
proposed reflectors through several simulations. Specifically,
we study the impact of the detector location and the number
of reflecting elements (metasurface patches/mirrors) on the
total received optical power. We use the global coordinate
system assumed in Section IV-B (where S̄ represents the
origin as shown in Fig. 6), and assume the system parame-
ter values provided in Table 2; unless otherwise stated. We
assume a small detector regime for most of the presented
received optical power results. Hence, (72) is the default
equation used in evaluating the received power.
In the first simulation, we study the impact of detector

location on the received optical power by comparing the
reflectors’ gain performance with the LoS link. To this end,
we focus on small reflectors with a large number of elements
(nm = np = 25) scenario and plot G̃MS, G̃Mi, respectively,
computed using (81) in Fig. 9(a), Fig. 9(b). In this sim-
ulation, we set ys = 0.5 to highlight the setup geometry
effect on the RBIR. Moreover, we set wp = wm = 1cm
and hp = hm = 0.6 cm to keep the total compact reflec-
tor width and height 25 cm and 15 cm, respectively. In
addition, 	wm = 2wm, and 	hm = 2hm to reduce the inter-
element blockage effect. One can see from Fig. 9(a) that
G̃MS is very small for the detector locations that are very
close to the reflector plane, i.e., rMS

d ≈ 0. This attributes to
the large θMS

R̄MS,D
, leading to large BSRMS and consequently

small irradiance at the detector, which can be also seen
in the cos(θMS

R̄MS,D
) term appearing in (81). Moreover, the

proved unbounded received power gains for large rMS
d and

rMi
d are numerically verified for both reflectors in Fig. 9(a)

FIGURE 9. Received power distribution vs detector location.

and Fig. 9(b). Interestingly, in contrast to the metasurface
reflector, G̃Mi does not vanish as rMi

d becomes very small.
This owes to the principle of operation of the mirror array
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FIGURE 10. The relative reflectors performance vs detector location.

reflector which prohibits θ ′
R̄,Mi

from getting close to π/2,
when the source is not very close to the x − z plane, and
keeps it bounded as mentioned previously in Section VII-
C. Another important study is to investigate an assessment
for the simple analytic formula of (81). Hence, we assess
the gain accuracy by studying the relative error metric,

G̃t,error � |G̃t −
p̃trx
pLoS

|/
p̃trx
pLoS

, depicted in Fig. 9(d), Fig. 9(c).

The relatively small G̃MS, error and G̃Mi, error values, supports
the use of G̃t as a good representative for the more compu-

tationally expensive p̃trx
pLoS

in the assumed regime. To measure
the mirror array inter-element blockage effect, in Fig. 9(e)
we plot p̃Mi

rx,error � (p̃Mi
rx,U − p̃Mi

rx )/p̃Mi
rx . It can be seen that,

the inter-element blockage effect is significant only when
|π/2 − φMi

d |, or/and rMi
d is small.

In the second example, we visualize the relative
performance of the two reflectors in Fig. 10(a), where we
plot the RBIR computed by (79), which we use to understand
p̃rx,MS

p̃Mi
rx,U

. Firstly, we observe from Fig. 10(a), that the mirror

array reflector outperforms the metasurface reflector as the
projections of R̄

Mi
D, and SR̄

Mi
in the detector plane deviates

angularly from each other. Moreover, the superiority of the
mirror array over the metasurface reflector degrades as rMi

d
increases. These findings are in agreement with the analyt-
ical predictions of the RBIR expression (79). Secondly, the
validity of the adopted approximation is highly contingent
on the small reflector, large nt assumptions. In Fig. 10(b),
we plot the relative discrepancy between the RBIR and
p̃rx,MS

p̃Mi
rx,U

, represented by RBIRerror � |RBIR −
p̃rx,MS

p̃Mi
rx,U

|/(
p̃rx,MS

p̃Mi
rx,U

).

The exhibited relatively small RBIRerror values in Fig. 10(b),
justifies using RBIR as a substitute for

p̃rx,MS

p̃Mi
rx

for small

reflector regime and large nm and np, when mirror array
inter-element blockage is negligible.
In the rest of simulations, we study the performance

of the exact receievd power computed using (71), (33)
and (51), approximated received power based on small
detector assumption, using (72), (33) and (51), for As =

10.125 cm2 and 36.125 cm2. Moreover, we plot the received
power from a point source computed using (72), (65), (62).
In addition, we plot the point source approximated Jacobian
received power expression for the metasurface reflector com-
puted using (72), (66), and its small reflector simplified
counterpart (PSSR) using (72), (67). Also, we plot the
received power from point source assuming small mirror
array reflector using (72), (63). And finally, we plot the
received power for a large source small reflector regime
using (72), (69).
In the third simulation, we study the impact of the detec-

tor position on the received power from both reflector types.
We consider a detector located along the line containing R̃t
and making a counter-clockwise angle φtd with the positive
x− axis as shown in Fig. 2 and Fig. 3. We observe that
the received power from the metasurface reflector follows
a unimodal trend, as shown in Fig. 11(a). This unimodal
behavior is well explained by the dominant large BSRMS for
small rMS

d and the dominant small solid angle subtended by
the detector for large rMS

d . Also, it matches the analytical
results presented in (70), for large np (proof is omitted for
brevity). The asymptotic decreasing received power from
the mirror array reflector versus rMi

d can be seen clearly
from (70) by bounding θMi

R̄Mi,D
, and considering large nm,

where all the remaining terms are inversely proportional
to rMi

d and ĀR̄Mi
= wmhm. Moreover, It can be seen in

both Fig. 11(a) and Fig. 11(b) that the received power when
small and large sources are considered, approach the received
powers in the point source and the large source regimes,
respectively. Furthermore, it can be seen that the approxi-
mated Jacobian point source expression matches the point
source curve asymptotically. It is worth mentioning that at
rMS
d = rMi

d = ys, φ
MS
d = φMi

d = 90◦, the received power
from both reflectors is almost the same due to the highly
symmetric, source, detector, reflector layout. On this occa-
sion, the reflector becomes centered vertically with respect
to both the source and the detector and their centers have
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FIGURE 11. Received power vs horizontal distance from the reflector center.

the same x− coordinate. Also, the detector lies right beneath
the source; hence, the required phase gradient/tilting angles
are approximately zero for all the reflecting elements, and
both reflectors perform almost identically.
Finally, we study the impact of the number of reflecting

elements on the received power for different source areas,
considering a relatively small reflector. Hence, we plot the
received power from the metasurface, and the mirror array
reflector, respectively, in Fig. 12(a), Fig. 12(b). One can
observe that the received power from both reflector types
increases with nm and np until a saturation limit. By design,
the chief rays hitting the reflectors centers are reflected at
the detector center. The coverage area of the source in the
detector plane is determined by the set of points in the detec-
tor plane intersecting with the reflected rays. This area is the
union of the individual reflecting elements coverage areas.
For a small reflector, this union can be approximated with
any individual coverage area. Individual coverage areas are

FIGURE 12. Number of reflecting elements impact.

monotonically increasing with the reflecting elements areas
and the source area. As nm and np increase, the reflect-
ing elements areas become smaller, decreasing coverage
area and increasing irradiance around the detector center.
Consequently, in the asymptotically large nm, np regime,
the coverage area is determined by As. The saturation of the
received power for large nt complies with the received power
in the LSSR regime where n2

t wtht represent the total reflec-
tor area (assumed constant). It is observed that the received
power from both reflectors in the LSSR regime decreases
with As, which can be noticed from (69). Moreover, the
received power from the point source is observed to be
monotonically increasing, this is true under the assumption
that nt is not large enough to have significant irradiance vari-
ations over the detector surface ((72) will be invalid then). In
summary, the received power from both reflectors behaves
similar to the point source regime counterpart for small nt
values, and matches its LSSR counterpart for large nt values.
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IX. CONCLUSION

In this article, we proposed intelligent reflecting surfaces-
based VLC systems built using metasurface and mirror
array-based reflectors. Throughout our study, we derived
irradiance expressions for both reflectors under general rel-
ative source, reflectors, detector dimensions, and locations
assumptions. Moreover, we derived tractable simplified irra-
diance expressions for practical special cases, namely, point
source, small reflectors, large source small reflector setups
at the detector center. Besides, we defined the RBIR metric
to evaluate the relative performance of reflectors in terms
of received optical power. The proposed metric is a reliable
design guide that determines the superior reflector for a par-
ticular source, detector, and geometric setup. Furthermore,
we derived the received power gain of the reflector-based
to the reflector-free LoS based setup, and provided simple
upper and lower bound for this gain. As for the focusing
capability, we showed analytically it is proportional to the
number of the constituting elements till a specific limit; for
the small reflector regime. Finally, we quantified the benefits
of intelligent surfaces through several numerical examples.
Specifically, we found that a 25 cm × 15 cm reflector can
increase the power to five folds or even more than LoS on
average.

APPENDIX A

RADIANCE OF UNIFORM GENERALIZED LAMBERTIAN

EXTENDED SOURCE

Each point on the considered extended source can be thought
of as a point source having total radiated power of d�

dAs
. By the

virtue of the source uniformity assumption, d�
dAs

= p/As. We
assume generalized Lambertian radiation pattern for all the
source points with Lambertian order m. Hence, the radiated
power by each point in a direction defined by a differential
solid angle dω making an angle θs with the normal to the
source can be expressed using [26, eq. (1)] as d2�

dAsdω
=

(m + 1)
p

2πAs
cosm(θs). Using (5) the required radiance can

be expressed as d2�
dAsdω cos(θs)

= (m+1)
p

2πAs
cosm−1(θs), which

completes the proof.

APPENDIX B

ABSOLUTE REPRESENTATION OF GENERALIZED

SNELL’S LAW PROOF

The relation between i′, r′ and x, z can be deduced from the
geometry presented in Fig. 5 as

z = i′ cos

(
φi
)

− r′ sin

(
φi
)
, (84)

x = i′ sin

(
φi
)

+ r′ cos

(
φi
)
. (85)

Hence, ∂�
∂i′

and ∂�
∂r′

can be expressed in terms of ∂�
∂z

and ∂�
∂x

as

∂�

∂r′
= − sin

(
φi
)∂�

∂z
+ cos

(
φi
)∂�

∂x
, (86)

∂�

∂i′
= cos

(
φi
)∂�

∂z
+ sin

(
φi
)∂�

∂x
. (87)

It can be shown with some geometric and trigonometric
manipulations that:

sin
(
θ r
)

= sin
(
θ ′
)

cos
(
φ′′
)
, (88)

cos
(
θ r
)

= cos
(
θ ′
)√

1 + tan2(θ ′) sin2(φ′′), (89)

sin
(
φr) = tan

(
θ ′
)

sin
(
φ′′
)
/

√
1 + tan2(θ ′) sin2(φ′′), (90)

where φ′′ = φ′ − φi. By substituting (86), (87), (88) , (89)
and (90) in (9) and (10), the generalized law of reflection
can be re-written as

sin
(
θ ′
)

sin
(
φ′′
)

=
λ

2πni

(
− sin

(
φi
)∂�

∂z
+ cos

(
φi
)∂�

∂x

)
, (91)

sin
(
θ ′
)

cos
(
φ′′
)
− sin

(
θ i
)

=
λ

2πni

(
cos

(
φi
)∂�

∂z
+ sin

(
φi
)∂�

∂x

)
. (92)

By multiplying (91) by cos
(
φi
)
, (92) by sin

(
φi
)
, then

adding them, we get

sin
(
θ ′
)

sin
(
φ′′
)

cos

(
φi
)

+ sin
(
θ ′
)

cos
(
φ′′
)

sin

(
φi
)

− sin

(
θ i
)

sin

(
φi
)

=
λ

2πni

∂�

∂x
, (93)

which can be re-written as sin(θ ′) sin(φ′)− sin(θ i) sin(φi) =
λ

2πni

∂�
∂x

. Similarly, by multiplying (91) by − sin(φi), (92) by

cos(φi) then adding them, we obtain

− sin
(
θ ′
)

sin
(
φ′′
)

sin

(
φi
)

+ sin
(
θ ′
)

cos
(
φ′′
)

cos

(
φi
)

− sin

(
θ i
)

cos

(
φi
)

=
λ

2πni

∂�

∂z
, (94)

which reduces to sin(θ ′) cos(φ′)− sin(θ i) cos(φi) = λ
2πni

∂�
∂z
,

which completes the proof.

APPENDIX C

METASURFACE BSR PROOF

The considered differential solid angles elements in
the spherical coordinate system can be expressed as
dω′ = sin(θ ′)dθ ′dφ′, dωi = sin(θi)dθidφi. By con-
sidering the reflection process as a transformation of
variables, the differential area element in the θ ′ − φ′ plane
(dθ ′dφ′) can be expressed as dθ ′dφ′ = |J(

θ ′,φ′

θi,φi
)|dθidφi.

Therefore, BSRMS at the center of the reflecting ele-
ment can be expressed as BSRMS = dω′

dωi
|R=R̄MS

=
cos(θi)√

1−((sin(θi) sin(φi)+
λ

2πni
∂�
∂x )2+(sin(θi) cos(φi)+

λ
2πni

∂�
∂z )2)

where

IR̄MS,D
= S. Substituting (11), (12) in the previous equation

completes the proof.
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