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ABSTRACT: Olefin metathesis is now one of the most
efficient ways to create new carbon—carbon bonds. While
most efforts focused on the development of ever-more
efficient catalysts, a particular attention has recently been
devoted to developing latent metathesis catalysts, inactive
species that need an external stimulus to become active.
This furnishes an increased control over the reaction
which is crucial for applications in materials science. Here,
we report our work on the development of a new system
to achieve visible-light-controlled metathesis by merging
olefin metathesis and photoredox catalysis. The combina-
tion of a ruthenium metathesis catalyst bearing two N-
heterocyclic carbenes with an oxidizing pyrylium photo-
catalyst affords excellent temporal and spatial resolution
using only visible light as stimulus. Applications of this
system in synthesis, as well as in polymer patterning and
photolithography with spatially resolved ring-opening
metathesis polymerization, are described.

lefin metathesis is one of the most attractive and

powerful tools for the creation of carbon—carbon 7z
bonds, finding numerous applications in synthetic chemistry,
fine chemical synthesis and materials science."”” While most
synthetic efforts have been devoted to the development of
ever-more efficient catalysts, increased attention has been paid
to the development of catalysts that can be activated/
deactivated on demand.” Such latent catalysts are dormant
species under ambient conditions and require an external
stimulus to become active. Increased control on reactions is
crucial not only from an understanding viewpoint but also for
applications in materials science for the production of new
well-defined materials.” Various stimuli have been exploited to
achieve such control in metathesis reactions, including heat,
light, ultrasound, acid and redox switches.® Light is arguably
the most convenient and attractive stimulus since it is non-
invasive (as in Figure 1), can be easily manipulated and
provides the opportumty for high temporal and spatial
resolution (Figure 1a).° As a consequence, several recent
reports have described light-promoted olefin metathesis.”"”
While these have been important developments, they are
dominated by UV light with most reports describing activation
rather than gating control of alkene metathesis.

We considered that the merger of olefin metathesis with
photoredox catalysis® could lead to visible-light control of
alkene metathesis. Visible-light photoredox catalysis has
already proven successful for metal-free olefin metathesis
polymerization via a radical mechanism.” In particular,
excitation of the appropriate photocatalyst by visible-light
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Figure 1. (a) Temporal and spatial control in catalysis. (b)
Bis(NHC)-ruthenium complexes as latent catalysts using visible
light (this work).

irradiation should permit the activation of a latent metathesis
catalyst, most probably by inducing ligand dissociation,'* and
therefore lead to the development of an on-demand metathesis
system. Importantly, the use of visible light is more convenient
than UV light while still providing high levels of temporal and
spatial resolution. Overall, the development of such a system
would open new perspectives in photollthography11 '* and in
materials science for the design of new materials,”” as already
illustrated by the impact of recent work reported for
photocontrolled, living radical polymerizations.'*

At the outset of these studies, we needed a ruthenium-based
complex that is inactive at ambient temperature, and identified
bis-NHC ligated Ru complexes first introduced by Herr-
mann.'> When substituted with aromatic groups on the
nitrogen atoms, these catalysts lack activity for metathesis at
room temperature, most probably because of the difficult
dissociation of one NHC ligand to generate the corresponding
14-electron active catalyst. ~'® At higher temperatures, the
activity of these catalysts is restored. In this regard, we
surmised that the NHC dissociation event could be promoted

Received: January 7, 2019
Published: April 22, 2019

DOI: 10.1021/jacs.8b13663
J. Am. Chem. Soc. 2019, 141, 6791-6796


pubs.acs.org/JACS
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.8b13663
http://dx.doi.org/10.1021/jacs.8b13663

Journal of the American Chemical Society

Communication

at room temperature by using photoredox catalysis. A carefully
chosen photocatalyst should be capable, after excitation upon
irradiation with visible light, of activating these catalysts and
therefore toggling them into their corresponding active species
after dissociation of one NHC (Figure 1b).

To test our hypothesis, we first evaluated the benchmark
ring closing metathesis (RCM) of diethyl diallylmalonate using
RuCl,(CHPh)(IMes), and RuCl,(CHPh)(SIMes),, previously
reported by Fogg'” and Grubbs,'® in the presence of different
photocatalysts under visible-light irradiation. After screening
several photocatalysts and reaction conditions (see Supporting
Information for further details), we found that a combination
of RuCL,(CHPh)(IMes), (Ru;) and 2,4,6-triphenylpyrylium
tetrafluoroborate (TPPT) as photocatalyst gives the desired
product in 87% vyield after 4 h of irradiation under blue LEDs
at room temperature (Table 1, entry 9). While screening
photocatalysts, we observed that only highly oxidizing ones
such as acridinium and pyrylium derivatives provide some
reactivity (entries 6—8), while no product is observed when
switching to less oxidizing photocatalysts (entries 1—S5). This is
consistent with an activation mode involving oxidation of the
Ru catalyst followed by dissociation of one NHC to generate
the catalytically active species, in the process forming the IMes
radical cation.'”® We indeed note that Ru, has two distinct
oxidation events as identified by cyclic voltammetry, with the
first occurring at +0.44 V, likely corresponding to the
generation of the radical cation by a metal-centered oxidation
(see SI). While all photoredox catalysts should allow oxidation
to the radical cation, the dissociation event might be caused by
a second oxidation occurring at one NHC ligand that would
only be promoted by highly oxidizing photocatalysts and
explain that traditional Ir and Ru photocatalysts are not
effective (see Table 1, entries 1—5)."” Importantly, no reaction
is observed in the absence of ruthenium, light or photocatalyst
(entries 10—12). The lack of reactivity under light without
photocatalyst also rules out a mechanism solely based on
photoinduced dissociation of one NHC ligand and highlights
the importance of the photoredox system. Finally, the use of
RuCL,(CHPh)(SIMes), (Ru,) delivers similar reactivity (entry
13). However, background reactivity is observed in the absence
of light and photocatalyst (entry 14), indicating that
dissociation of one NHC happens slowly at ambient
temperature. RuCl,(CHPh)(IMes), (Ru;) was chosen as it
displays optimal latent behavior.

With an efficient system in hand, we first explored its ability
to promote different types of metathesis reactions. While
standard metathesis reactions can be readily promoted using
this photoredox catalytic system, as illustrated with representa-
tive examples in Table 1 and SI, we were more interested in
interrogating ring-opening metathesis polymerization (ROMP)
applications. To this end, several monomers such as
norbornene derivatives 1—8, 11, norbornadiene 9, 1,5-
cyclooctadiene 10 and dicyclopentadiene 12 could be readily
polymerized within 1 h under blue LED irradiation in the
presence of RuClL,(CHPh)(IMes), and TPPT (Table 2).
Molecular weights (M,) obtained after polymerization of
monomers 1—4 are significantly higher than the expected
values which suggests that polymerization is faster than catalyst
initiation. Dispersities were found in the range of 1.63 to 1.88.
Monomers 5—10 are also smoothly polymerized within an
hour of irradiation but lead to insoluble polymers, which
precludes GPC analysis. Finally, cross-linking monomers 11
and 12 could also be efficiently polymerized to afford complete
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Table 1. Reaction Optimization and Scope of RCM, CM,
and ROCM Reactions

(a) Reaction optimization

Ruy (5 mol%)
photocatalyst (5 mol%)

e

CH,Cl, (0.2 M), tt, 24h

EtO,CCO,Et EtO,C_CO,Et

7 N blue LEDs
Mes— N\ N~Mes Mes— N\ N~Mes Ph Mes
Tn\m \(,.\\CI ﬁ
Ru:\ Ru:\ 5
a7 | Pn | bn Ph” N0 Ph N*
Mes~y~Sy-Mes  Mes~y~ >y -Mes BF, BF, R
RUCl,(CHPh)(IMes), RuCl,(CHPh)(SIMes), TPPT MesAcrPh (R=Ph)
(Ruy) (Ruy) MesAcrMe (R=Me)
. Egx Yield[®!
Entry Conditions (V vs SCE) %)
1 Ir(ppy)s 0.31 0
2 [Ir(ppy)2(dtbbpy)]PFg 0.66 0
3 Ru(bpy)sCl, 0.77 0
4 [Ir(dF-CF 3ppy),(dtbbpy)]PFg 1.21 0
5 Ru(bpz);Cl, 1.45 0
6 MesAcrPh 212 33
7 MesAcrMe 2.18 16
8 TPPT 2.55 84
9 Ru, (2 mol%), TPPT (3 mol%), 4h 87
10 no Ruy - 0
11 no light - 0
12 no photocatalyst - 0
13 Ru,; instead of Ruy 75
14 Ru,, no light, no photocatalyst 15
(b) Scope of RCM reactions!®l
Et0,C CO,Et EtO,C_CO,Et T Ils Ph. O

O

86% 84% 90% 89% 2%

(c) Scope of CM and ROCM reactions!®!

Phaxx + O CoMe Ph._-~_CO,Me 60%!%!

N
Bzo/\/\ + ACOUOAC BZO/\/\/\OAC 70%Idel
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“All optimization reactions were conducted on a 0.1 mmol scale.
“Determined by '"H NMR spectroscopy using 1,2-dibromoethane as
an internal standard. “Conditions: substrate (0.2 mmol),
RuCl,(CHPh)(IMes), (2 mol %), TPPT (3 mol %), CH,CI,
(0.2M), t, blue LEDs, 4 h. %4 mol % of TPPT. “Left substrate (0.2
mmol), right substrate (0.4 mmol). fLeft substrate (0.2 mmol), right
substrate (0.6 mmol). For additional samples, see SL

gelation within an hour, the latter only requiring 0.01 mol % of
Ru;, 0.05 mol % of TPPT and 15 min of irradiation.
Importantly, the latency is successfully maintained with
dicyclopentadiene 12 since, in the absence of light, less than
5% polymerization is observed after 24 h (5% after 3 days, 9%
after a week). When stopped after 90 s under light, 16%
polymerization is observed. The rate of polymerization under
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Table 2. Scope of ROMP Reactions

Conversion®  Theo. M, Exp. M, <]

lc]
Monomer %) (kDa) (kDa) b
1 ib =85 18.8 996 1.88
2 ibCOan >95 66.9 2152 166
/ CO2Bn
o
3 OAC >95 48.0 3274 163
OAc
4 Ai >95 a7 4248 183
oTBS
7 © 0
OCsHy, lb/COzMe N Aé,ccwe
OC5H|1 A CO;Me “Bn h CO:Me
6 70 8

A?@A?»A?

“Conditions: monomer (0.2 mmol), RuCl,(CHPh)(IMes), (0.5 mol
%), TPPT (1 mol %), CD,Cl, (02 M), rt, blue LEDs, 1 h.

“Determined by 'H NMR spectroscopy using mesitylene as internal
standard. “Determined by GPC. “Using RuCl,(CHPh)(IMes), (0.01
mol %), TPPT (0.05 mol %) for 15 min under blue LEDs.

visible light can therefore be estimated to be 12000 times
faster than in the dark.

Further experiments were conducted to examine the
influence of light and to probe our ability to exert temporal
and spatial control over the reaction. First, temporal control
was evaluated by conducting on/off experiments with
alternating periods of irradiation and darkness for the ring
closing metathesis of diethyl diallylmalonate. The ability to
exert temporal control over a reaction is of great interest for
the design of orthogonal multicomponent reactions, as well as
for the development of new systems designed to produce new
highly functionalized materials. As can be seen in Figure 2,
temporal control can be achieved since maximal reactivity was
obtained during irradiation whereas darkness only afforded
minimal increases in yields (from 0 to 3%).

A series of experiments (described in the SI) lead us to
suggest the following mechanism for the on/off behavior
enabled by photoredox catalysis and light irradiation.” Tt is
commonly accepted that Ru catalysts mediate olefin metathesis
via a coordinatively unsaturated Ru(II) intermediate such as II
(Figure 2). Given that only highly oxidizing excited state
photocatalysts provide appreciable yield (Table 1), we propose
that ligand loss occurs at ambient temperature from an
oxidized Ru intermediate, potentially at the IMes moiety to
give active metathesis catalyst II and reduced pyrylium V as
well as VI. The latter two can combine to form VII, analogous
to adducts reported lacking substitution at the 4 position.”
Release of the IMes provides a pool of free ligand which can
coordinate IV and arrest catalysis.”"

We also interrogated our ability to exert spatial control over
metathesis with this system, due to the potential applications in
materials science with polymer patterning, 3D printing and
photolithography. In this regard, the development of a system
controlled by visible light appears especially attractive and

6793

(a) On-Off study
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Figure 2. Temporal control over the RCM of diethyl diallylmalonate
and corresponding proposed mechanism.

convenient. To this end, dicyclopentadiene 12, and some other
monomers,”” were first irradiated with visible light (blue Kessil
lamp, 40 W) in the presence of RuCl,(CHPh)(IMes), and
TPPT through different photomasks in order to produce
macroscopic polymers with controlled geometric patterns.
Removal of the masks and unreacted monomers nicely affords
the corresponding patterned polymers in short irradiation
times (15—60 min) and w1th minimal bleeding in the
unexposed areas (Figure 3a—c).”” Interestingly, the thickness
of these patterned polymers can be easily controlled by tuning
the irradiation time (see SI). Finally, an important feature of
this system is its practicality and user-friendliness. While the
excited state TPPT* is modestly sensitive to oxygen, the
photomask patterning experiments can be performed with
minimal precautions of placing the monomer/catalyst mixture
under a blanket of inert gas.

Higher resolutions are required in order to extend this
visible-light-controlled system for applications in photolitho-
graphic olefin metathesis polymerization (PLOMP). While
most photolithographic techniques are based on the use of
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Macroscopic patterning of poly(dicyclopentadiene)
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Figure 3. Polymer patterning and photolithographic olefin metathesis
polymerization (PLOMP) using visible light.

high resolution photomasks, an attractive alternative is the use
of high resolution light sources, such as lasers, which should
provide a straightforward way to reach pinpoint resolution and
find new applications in photolithography.”* As proof of
concept, we could successfully induce similar patterning from
dicyclopentadiene solutions using a simple blue laser pointer
(200 mV). In these cases, the patterns are directly and
conveniently “drawn” from the bulk solution in a few minutes,
either manually (Figure 3d,e) or using an orbital shaker
providing constant movement (Figure 3f).

The two afore-described techniques allow the convenient
fabrication of macroscopic patterned polymers through
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spatially resolved ROMP promoted by visible light and
without the need for grafting of the monomers. As for
microscopic patterning, we also demonstrate the efficiency of
our system for PLOMP applications.'” Although photo-
lithography is now a commonly used technique in micro-
fabrication, such systems based on olefin metathesis are still
rare. To this end, 1 cm X 1 cm silicon wafers were first
prefunctionalized with a norbornene unit to ensure grafting of
the growing polymer onto the surface.'”* Those prefunction-
alized silicon wafers were then used as support to perform the
spatially resolved polymerization of norbornadiene on a
microscale by simply irradiating a solution of the monomer,
RuCL(CHPh)(IMes), and TPPT in dichloromethane with a
regular blue LED light bulb (blue Kessil lamp, 40 W) through
high resolution photomasks (Figure 3g).

After developing in dichloromethane, patterns of poly-
(norbornadiene) with resolutions down to 30—40 um could be
successfully printed over silicon wafers within 10 min of
irradiation (Figure 3h,i). These results are accomplished using
readily available visible-light sources, and are complementary
to Fourkas’ positive 2}zhotoresist,12a as well as Grubbs’ negative
photoresist system,'”” both of which use UV light, while giving
access to similar resolutions.

In conclusion, we have reported the development of an
efficient and user-friendly system for olefin metathesis
controlled by visible light. The combination of a latent
bis(NHC)-ruthenium complex and an oxidizing pyrylium
photocatalyst efficiently promotes olefin metathesis under
visible light, providing high levels of temporal and spatial
resolution. In particular, applications in polymer patterning
and photolithographic olefin metathesis polymerization are
also demonstrated. Further studies to broaden the scope and
applications of this system, as well as to gain more insights into
its mechanism, are currently ongoing in our group.
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