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Abstract: A general visible light-induced sulfonylation/cyclization to produce quinoline-2,4-diones
was achieved under photocatalyst-free conditions. The reactions were performed at room tempera-
ture, and various substituents (halogen, alkyl, aryl) and substituted products were obtained with
29 examples within 2 h. Large-scale synthesis and derivatization study via carbonyl reduction to
produce easily modified hydroxyl groups and convenient N-Ts deprotection showed the potential
utility of this strategy.
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1. Introduction

The derivatives of quinoline-2,4-diones have shown unique biological activities in
natural products and medicine [1,2]. They can be used as crucial precursors for constructing
novel biomolecules [3,4]. Over the past few decades, many studies have been devoted
to these molecular skeletons [5–7]. However, most of these conditions are relatively com-
plicated or unfavorable for product purification. Therefore, there is an urgent need to
develop a simple, efficient, and straightforward strategy to construct quinoline-2,4-diones.
Intramolecular cyclization based on N-(2-cyanophenyl)-N-methyl-methacrylamide is a
very practical idea [8]. According to different mechanisms of the addition to nitriles, it
mainly involves two types: (i) nucleophilic addition of metal nucleophiles, such as Grignard
reagents [9], lithium reagents [10], and transition metal complexes [11,12] to the cyano group
and (ii) radical addition. After continuous research and reports, the cascade/cyclization
reaction initiated by radicals has become one of the most effective strategies for constructing
the derivatives of quinoline-2,4-diones. Radical addition to highly polar cyano groups
are generally not well controlled, due to the generation of unstable imino radicals [13,14].
However, this pathway can become feasible once the unstable imino radical intermediate
can be efficiently trapped [15,16]. Usually, such radical reaction conditions still require
transition metal catalysts/additives [17,18], such as copper-mediated radical oxidation
addition [19,20] and Ag-catalyzed oxidative radical decarboxylation cycloaddition [21].

Visible light-promoted reactions, which typically proceed under mild reaction con-
ditions and offer high efficiency and selectivity, are increasingly gaining enormous at-
tention [22,23]. Light can be considered an ideal reagent for environmentally friendly
“green” chemical synthesis; unlike many conventional reagents, light is non-toxic and can
be obtained from renewable resources. Generally, visible light-mediated radical addition
usually requires the presence of both metal catalysts/additives and photocatalysts [24].
Such reactions require at least one metal catalyst or photocatalyst [25–28]. Up until now,
there is only one report on the cascade cyclization reaction of radical addition under metal-
free and photocatalyst-free conditions for the addition to nitriles, and a high temperature
(up to 130 ◦C) was required to generate methyl radicals [29]. Therefore, it is very attrac-
tive to develop a transition metal-free and photocatalyst-free photocatalytic method for
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cascade/cyclization reactions at room temperature, which can simplify the reaction condi-
tions and facilitate subsequent product purification. Based on previous reports [30], we
developed a new method to achieve the synthesis of quinoline-2,4-dione derivatives. The
general process is that TsSePh generates a sulfonyl-centered radical after light irradiation,
which attacks the double bond of N-(2-cyanophenyl)-N-methyl-methacrylamide to obtain
a carbon-centered radical intermediate, and the subsequent cyclization through the in-
tramolecular addition of carbon radicals to nitriles deliver the final quinoline-2,4-diones.
When it comes to the synthesis of bioactive molecules, this synthetic strategy can effectively
avoid the toxic effects of adding transition metals.

2. Results and Discussion

As shown in Table 1, the reaction of N-(2-cyanophenyl)-N-methylmethacrylamide (1a)
and TsSePh (2a), as the model substrates, was used to optimize the reaction conditions.
In the initial reactions, Product 3a was obtained with a yield of 56% after 2 hours under
blue LED irradiation with 10 mmol% Eosin Y as the photocatalysts of CH3CN (Entry 1,
Table 1). Further optimization showed that with other photocatalysts such as Acid Red,
Ru(bpy)2Cl2·6H2O, and 4CZIPN, the corresponding yields for 3a (Entries 2–4) decreased
respectively. As a contrast, when the reaction was conducted without the participation of
photocatalysts, the yield of 3a was about 50% (Entry 5), indicating that the photocatalysts
were not integral to this process. When DMSO, DCM, and THF were used as reaction
solvents, the corresponding yields for 3a were not as efficient as those with CH3CN (En-
tries 6–8). Considering the necessity of water to produce carbonyl groups in 3a, mixed
solvents were tested. To our delight, mixed solvents with water such as CH3CN/H2O
and DMSO/H2O effectively increased the yield of the reaction, and CH3CN/H2O (2/1)
was found to be the best, wherein the yield of 3a unexpectedly reached up to 80%, which
indicates that the addition of water can effectively increase the reaction yield (Entries 9–11).
If the reaction was only carried out for one hour, the results showed that it had obviously
not completed with a low yield of 3a obtained (55%) (Entry 12).

Table 1. Optimization of reaction conditions a.
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With optimal conditions in hand, we subsequently investigated the substrate scope
of anthranilonitrile derivatives 1 under the conditions of this photocatalytic system for
cascade sulfonylation/cyclization reactions. As shown in Table 2, moderate yields (3b–3d)
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were obtained when substrate 1 contained an electron-withdrawing group on the benzene
ring ortho to the cyano group. The meta-position of the cyano group on the benzene
ring showed good tolerance, regardless of the introduction of electron-donating groups or
electron-withdrawing groups, and the corresponding products 3e–3i were also obtained
with moderate to good yields (61–79%). Similarly, more diverse electron-donating and
electron-withdrawing groups at the related para-positions produced the corresponding
products 3j–3q in satisfactory yields (61–81%). Moreover, for substrate 1r (both the meta-
position and the para-position contain -OMe groups) and substrate 1s (a benzyl group
attached to the N atom), the corresponding products for 3r and 3s were obtained as 58% and
55%, respectively. These results indicate that the mild reaction conditions are compatible
with a wide range of functional groups.

Table 2. Substrate scope of 1 a,b.
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reaction system as the radical sources. As shown in Table 3, the corresponding target mol-
ecules 3t–3y were obtained in good yields (51%–81%), indicating a wide functional group 
tolerance. Specifically, for the p-toluenesulfonyl part of 2, when methyl was replaced by -
H, -OMe or halogen atom (-F, -Cl, -Br), the reaction proceeded smoothly in good yields 
(74%–81%). Notably, derivatives of 2 bearing cyclopropyl or naphthalene were also com-
patible with this cascade reaction, affording the desired products 3w and 3x with 71% and 
75% yields, respectively. 
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In view of the previous report on the visible light-induced tandem reaction of allene
and selensulfonate24, the process is mainly due to photoinduced radical addition through
energy transfer. Therefore, we tried to introduce different derivatives of TsSePh into our
reaction system as the radical sources. As shown in Table 3, the corresponding target
molecules 3t–3y were obtained in good yields (51–81%), indicating a wide functional group
tolerance. Specifically, for the p-toluenesulfonyl part of 2, when methyl was replaced
by -H, -OMe or halogen atom (-F, -Cl, -Br), the reaction proceeded smoothly in good
yields (74–81%). Notably, derivatives of 2 bearing cyclopropyl or naphthalene were also
compatible with this cascade reaction, affording the desired products 3w and 3x with 71%
and 75% yields, respectively.
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Table 3. Synthesis of sulfone-containing quinoline-2,4(1H,3H)-diones a,b.
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In addition, we also expanded the reaction from 1a to 3a on the gram level, and
the reaction time was extended to 5 h, which still maintained a high yield of 3a (76%)
(Scheme 1a). By using 3a as a starting material, the target product 4 could be obtained
after sodium borohydride reduction (Scheme 1b) [31]. By using the Cu/NFSI system [32],
efficient conversion of 3a from the tertiary amine to the secondary amine 5 was achieved
(Scheme 1c). Both 4 with -OH and 5 with -NH can be used as very useful intermediates, as
then other different functionalized molecules can be synthesized from 4 and 5.

In the radical-trapping experiment, by adding the radical scavenger 2,2,6,6-
tetramethylpiperidinyl-1-oxyl (TEMPO) to the cascade reaction, the target product 3a
was only detected in trace amounts, and the adduct 6 was detected by NMR analysis
(Scheme 2a). Likewise, this cascade was also inhibited when two other radical inhibitors
3,5-di-tert-butyl-4-hydroxytoluene (BHT) or 1,1-diphenylethylene were used, with the
adducts 7 and 8 detected by NMR analysis (Scheme 2b,c). All these results indicate that this
photocatalytic reaction had undergone a radical pathway, and sulfonyl-centered radical
was involved during the transformation.

Based on the above results and previous reports [11], a plausible mechanism was
proposed. As described in Scheme 3, Ts and SePh radicals were generated initially under
visible irradiation. Subsequently, the addition of sulfonyl-centered radical to the double
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bond of 1a yielded the alkyl radical intermediate A, which then underwent intramolecular
addition to polar cyano groups and gave the imino radical intermediate B. The intermediate
imine C was obtained after the H-absorption of radical B. Finally, imine C was hydrolyzed
by H2O to yield the target product 3a. Therefore, this mechanism shows that mixed solvent
with water can significantly increase the yield.
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3. Materials and Methods
3.1. Materials and Instruments

All reagents were purchased from commercial sources and used without further pu-
rification. 1H-NMR, 13C-NMR, and 19F-NMR spectra were recorded on a Bruker Ascend™
500 spectrometer in deuterated solvents containing TMS as an internal reference standard.
All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by using
electrospray ionization orthogonal acceleration time-of-flight (ESI-OA-TOF), and the purity
of all samples used for HRMS (>95%) was confirmed by 1H-NMR and 13C-NMR spectro-
scopic analysis. Melting points were measured on a melting point apparatus equipped
with a thermometer and were uncorrected.

In these photochemical experiments, we used a 30-W blue LED (455–460 nm), with the
reaction bottle 2 cm from the light source. All the reactions were monitored by thin-layer
chromatography (TLC) using GF254 silica gel-coated TLC plates. Purification by flash
column chromatography was performed over SiO2 (silica gel 200–300 mesh).

3.2. The General Procedure for the Synthesis of 3

In a reaction tube, acrylamides 1 (0.5 mmol) and PhSeSO2R 2 (1.2 equiv, 0.6 mmol)
were mixed in CH3CN/H2O (2:1, 3 mL) and irradiated for 2 h until complete consumption
of starting material, as monitored by TLC analysis. After the completion of the reaction, the
mixture was quenched by NaHCO3 (sat. aq. 10 mL) and extracted with CH2Cl2 (3 × 10 mL).
Then the organic solvent was concentrated in vacuo. The residue was purified by flash
column chromatography with ethyl acetate and petroleum ether as eluent to product 3.

1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3a). The product was puri-
fied by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, Rf = 0.25),
white solid (95 mg, 89%): mp: 161–162 ◦C. 1H-NMR (500 MHz, CDCl3) δ 8.09 (dd, J = 7.7,
1.5 Hz, 1H), 7.84–7.61 (m, 3H), 7.41–7.18 (m, 4H), 4.22 (s, 2H), 3.54 (s, 3H), 2.43 (s, 3H), 1.41
(s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.28, 171.69, 144.52, 143.15, 138.64, 136.50, 129.63,
128.66, 127.83, 123.29, 119.23, 115.16, 62.40, 55.25, 30.14, 25.91, 21.65. HRMS (ESI) calculated
for C19H20NO4S [M+H]+: 358.1108, found: 358.1103.

5-fluoro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3b). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), white solid (52 mg, 49%): mp: 206–207 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.74
(d, J = 8.3 Hz, 2H), 7.61 (td, J = 8.4, 5.8 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 8.5 Hz,
1H), 6.91 (dd, J = 9.9, 8.7 Hz, 1H), 4.19 (d, J = 17.0 Hz, 2H), 3.55 (s, 3H), 2.44 (s, 3H), 1.43
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(s, 3H). 13C-NMR (126 MHz, CDCl3) δ 191.50, 171.31, 162.74 (d, J = 267.2 Hz), 144.53,
144.29 (d, J = 2.8 Hz), 138.79, 136.69 (d, J = 11.9 Hz), 129.68, 127.83, 111.46 (d, J = 21.3 Hz),
111.02 (d, J = 3.5 Hz), 109.09 (d, J = 9.0 Hz), 61.93, 56.31, 30.97, 25.43, 21.65. 19F-NMR
(471 MHz, CDCl3) δ -109.25. HRMS (ESI) calculated for C19H19FNO4S [M+H]+: 376.1013,
found: 376.1009.

5-chloro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3c). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.30), white solid (62 mg, 53%): mp: 182–183 ◦C. 1H-NMR (500 MHz, CDCl3) δ
7.79–7.67 (m, 2H), 7.46–7.41 (m, 1H), 7.32–7.25 (m, 2H), 7.20–7.17 (m, 1H), 7.12 (t, J = 9.1 Hz,
1H), 4.11 (d, J = 7.7 Hz, 2H), 3.49 (s, 3H), 2.37 (s, 3H), 1.34 (s, 3H). 13C-NMR (126 MHz,
CDCl3) δ 190.97, 169.97, 143.88, 143.43, 138.00, 135.40, 133.79, 128.61, 126.86, 125.75, 116.13,
113.02, 60.77, 55.72, 30.06, 23.67, 20.62. HRMS (ESI) calculated for C19H19ClNO4S [M+H]+:
392.0718, found: 392.0710.

5-bromo-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3d). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.30), white solid (67 mg, 51%): mp: 140–141 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.76
(d, J = 8.2 Hz, 2H), 7.48–7.40 (m, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.25–7.22 (m, 1H), 4.19 (d,
J = 4.7 Hz, 2H), 3.55 (s, 3H), 2.44 (s, 3H), 1.40 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 192.19,
170.87, 145.01, 144.47, 139.04, 135.07, 130.43, 129.84, 129.65, 127.88, 123.89, 114.84, 61.80,
56.52, 31.03, 24.57, 21.66. HRMS (ESI) calculated for C19H19BrNO4S [M+H]+: 436.0213,
found: 436.0200.

5-fluoro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3e). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), white solid (87 mg, 77%): mp: 135–136 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.69
(dd, J = 8.0, 3.1 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.31 (ddd, J = 9.2, 7.5, 3.1 Hz, 1H), 7.25 (d,
J = 8.1 Hz, 2H), 7.15 (dd, J = 9.1, 4.0 Hz, 1H), 4.14 (d, J = 5.7 Hz, 2H), 3.46 (s, 3H), 2.36 (s,
3H), 1.34 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 193.60 (d, J = 1.6 Hz), 171.27, 158.58 (d,
J = 245.4 Hz), 144.65, 139.61 (d, J = 1.9 Hz), 138.50, 129.69, 127.80, 123.49 (d, J = 23.3 Hz),
120.40 (d, J = 6.4 Hz), 117.06 (d, J = 7.2 Hz), 114.28 (d, J = 23.4 Hz), 62.54, 55.05, 30.41, 25.78,
21.65. 19F-NMR (471 MHz, CDCl3) δ −119.37. HRMS (ESI) calculated for C19H19FNO4S
[M+H]+: 376.1013, found: 376.1009.

6-chloro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3f). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), white solid (93 mg, 79%): mp: 139–140 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.76
(d, J = 8.2 Hz, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.1 Hz,
2H), 7.23 (d, J = 8.3 Hz, 1H), 4.19 (d, J = 4.8 Hz, 2H), 3.56 (s, 3H), 2.44 (s, 3H), 1.41 (s, 3H).
13C-NMR (126 MHz, CDCl3) δ 193.25, 171.76, 144.67, 142.85, 138.42, 130.05, 129.70, 127.77,
126.41, 123.59, 117.60, 115.53, 62.42, 55.21, 30.29, 25.82, 21.66. HRMS (ESI) calculated for
C19H19ClNO4S [M+H]+: 392.0718, found: 392.0710.

5-bromo-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3g). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.21), white solid (80 mg, 61%): mp: 148–149 ◦C. 1H-NMR (500 MHz, CDCl3) δ 8.00
(dd, J = 43.4, 8.3 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.44–7.20 (m, 4H), 4.20 (s, 2H), 3.53 (s,
3H), 2.44 (s, 3H), 1.41 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 193.22, 171.76, 144.63, 142.85,
138.49, 130.09, 129.69, 127.80, 126.55, 123.59, 118.42, 115.48, 62.51, 55.23, 30.28, 25.84, 21.66.
HRMS (ESI) calculated for C19H19BrNO4S [M+H]+: 436.0213, found: 436.0200.

1,3,6-trimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3h). The product was
purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, Rf
= 0.23), white solid (80 mg, 72%): mp: 174–175 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.89 (d,
J = 1.7 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.47 (dd, J = 8.4, 2.1 Hz, 1H), 7.31 (d, J = 8.2 Hz,
2H), 7.13 (d, J = 8.5 Hz, 1H), 4.21 (s, 2H), 3.51 (s, 3H), 2.43 (s, 3H), 2.38 (s, 3H), 1.40 (s, 3H).
13C-NMR (126 MHz, CDCl3) δ 194.48, 171.49, 144.45, 141.00, 138.68, 137.31, 133.01, 129.60,
128.53, 127.83, 119.02, 115.17, 62.42, 55.10, 30.09, 25.96, 21.65, 20.35. HRMS (ESI) calculated
for C20H22NO4S [M+H]+: 372.1264, found: 372.1261.
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6-methoxy-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3i). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.24), yellow solid (82 mg, 71%): mp: 87–88 ◦C. 1H-NMR (500 MHz, CDCl3)
δ 7.72 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 3.1 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.28–7.24 (m, 1H),
7.17 (d, J = 9.0 Hz, 1H), 4.21 (d, J = 2.5 Hz, 2H), 3.87 (s, 3H), 3.52 (s, 3H), 2.44 (s, 3H), 1.41
(s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.39, 171.18, 155.59, 144.48, 138.63, 137.34, 129.62,
127.85, 124.52, 119.86, 116.70, 110.19, 62.50, 55.83, 54.94, 30.21, 26.05, 21.65. HRMS (ESI)
calculated for C20H22NO5S [M+H]+: 383.1213, found: 383.1234.

7-fluoro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3j). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.21), yellow solid (86 mg, 76%): mp: 114–115 ◦C. 1H-NMR (500 MHz, CDCl3) δ
8.24–8.08 (m, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.92 (d, J = 9.2 Hz, 2H),
4.20 (s, 2H), 3.52 (s, 3H), 2.44 (s, 3H), 1.41 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 192.79,
171.87, 167.81 (d, J = 256.5 Hz), 145.48 (d, J = 11.8 Hz), 144.62, 138.50, 131.67 (d, J = 11.4 Hz),
129.68, 127.79, 115.88 (d, J = 2.5 Hz), 110.75 (d, J = 22.4 Hz), 102.79 (d, J = 27.6 Hz), 62.44,
55.07, 30.32, 25.91, 21.66. 19F-NMR (471 MHz, CDCl3) δ −98.47. HRMS (ESI) calculated for
C19H19FNO4S [M+H]+: 376.1013, found: 376.1008.

7-chloro-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3k). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), yellow solid (84 mg, 71%): mp: 132–133 ◦C. 1H-NMR (500 MHz, CDCl3) δ 8.03
(d, J = 2.5 Hz, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.60 (dd, J = 8.8, 2.6 Hz, 1H), 7.33 (d, J = 8.3 Hz,
2H), 7.20 (d, J = 8.9 Hz, 1H), 4.21 (d, J = 2.3 Hz, 2H), 3.52 (s, 3H), 2.44 (s, 3H), 1.41 (s, 3H).
13C-NMR (126 MHz, CDCl3) δ 193.36, 171.35, 144.68, 141.69, 138.45, 136.11, 129.70, 129.06,
127.96, 127.77, 120.19, 116.96, 62.51, 55.21, 30.32, 25.73, 21.66. HRMS (ESI) calculated for
C19H19ClNO4S [M+H]+: 392.0718, found: 392.0712.

7-bromo-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3l). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), white solid (95 mg, 81%): mp: 174–175 ◦C. 1H-NMR (500 MHz, CDCl3) δ 7.95 (d,
J = 8.3 Hz, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 0.8 Hz, 1H), 7.32 (d, J = 8.1 Hz, 3H), 4.20
(s, 2H), 3.53 (s, 3H), 2.43 (s, 3H), 1.40 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 193.42, 171.69,
144.63, 143.97, 138.48, 131.60, 129.97, 129.68, 127.79, 126.53, 118.43, 117.97, 62.49, 55.23, 30.28,
25.80, 21.66. HRMS (ESI) calculated for C19H19BrNO4S [M+H]+: 392.0718, found: 392.0710.

1,3,7-trimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3m). The product was
purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.22), white solid (83 mg, 74%): mp: 137–138 ◦C. 1H-NMR (500 MHz, CDCl3) δ
8.03–7.95 (m, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.03 (s, 2H), 4.20 (s, 2H),
3.53 (s, 3H), 2.47 (s, 3H), 2.43 (s, 3H), 1.40 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 193.80,
171.94, 147.98, 144.44, 143.21, 138.68, 129.60, 128.71, 127.84, 124.34, 117.11, 115.60, 62.43,
54.98, 30.07, 26.08, 22.49, 21.65. HRMS (ESI) calculated for C20H22NO4S [M+H]+: 372.1264,
found: 372.1261.

7-methoxy-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3n). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.23), yellow solid (83 mg, 71%): mp: 192–193 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 3.1 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.29–7.24
(m, 1H), 7.17 (d, J = 9.0 Hz, 1H), 4.21 (d, J = 2.4 Hz, 2H), 3.87 (s, 3H), 3.52 (s, 3H), 2.43 (s, 3H),
1.41 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.39, 171.17, 155.58, 144.48, 138.62, 137.33,
129.62, 127.85, 124.51, 119.85, 116.72, 110.20, 62.49, 55.83, 54.94, 30.20, 26.04, 21.65. HRMS
(ESI) calculated for C20H22NO4S [M+H]+: 388.1213, found: 383.1235.

1,3-dimethyl-7-phenyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3o). The product
was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.23), white solid (83 mg, 64%): mp: 100–101 ◦C. 1H-NMR (500 MHz, CDCl3) δ 8.16
(d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 7.54–7.38 (m, 5H), 7.32
(d, J = 8.1 Hz, 2H), 4.23 (s, 2H), 3.62 (s, 3H), 2.44 (s, 3H), 1.45 (s, 3H). 13C-NMR (126 MHz,
CDCl3) δ 193.94, 171.94, 149.61, 144.53, 143.54, 139.81, 138.63, 129.66, 129.28, 129.13, 128.92,
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127.85, 127.44, 126.46, 122.34, 118.00, 113.87, 62.50, 55.16, 30.23, 26.04, 21.67. HRMS (ESI)
calculated for C25H24NO4S [M+H]+: 434.1421, found: 434.1410.

7-(4-acetylphenyl)-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3p). The
product was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.23), yellow solid (101 mg, 88%): mp: 192–193 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.19 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.3 Hz, 2H), 7.73 (t, J = 8.0 Hz, 4H), 7.48–7.41 (m,
2H), 7.33 (d, J = 8.1 Hz, 2H), 4.24 (s, 2H), 3.63 (s, 3H), 2.66 (s, 3H), 2.44 (s, 3H), 1.45 (s, 3H).
13C-NMR (126 MHz, CDCl3) δ 197.54, 193.88, 171.85, 148.08, 144.59, 144.15, 143.62, 138.60,
137.06, 129.68, 129.42, 129.11, 127.81, 127.68, 122.35, 118.56, 114.03, 62.55, 55.22, 30.27, 26.77,
25.94, 21.67. HRMS (ESI) calculated for C27H26NO5S [M+H]+: 476.1526, found: 476.1520.

7-cyclopropyl-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3q). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.22), white solid (73 mg, 61%): mp: 151–152 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 7.97 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.29 (t, J = 10.3 Hz, 2H), 6.93 (d,
J = 0.7 Hz, 1H), 6.82 (dd, J = 8.1, 1.1 Hz, 1H), 4.19 (s, 2H), 3.54 (s, 3H), 2.43 (s, 3H), 2.04–1.95
(m, 1H), 1.40 (s, 3H), 1.19–1.10 (m, 2H), 0.91–0.82 (m, 2H). 13C-NMR (126 MHz, CDCl3) δ
193.58, 172.02, 154.61, 144.43, 143.24, 138.67, 129.59, 128.82, 127.84, 119.83, 116.96, 112.53,
62.42, 54.90, 30.05, 26.12, 21.65, 16.62, 10.77, 10.75. HRMS (ESI) calculated for C22H24NO4S
[M+H]+: 398.1421, found: 398.1420.

1-benzyl-3-methyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3r). The product was
purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1,
Rf = 0.21), white solid (72 mg, 55%): mp: 166–167 ◦C. 1H-NMR (500 MHz, CDCl3) δ 8.11
(dd, J = 7.8, 1.6 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.49 (s, 1H), 7.33 (ddd, J = 18.7, 10.8, 7.7 Hz,
6H), 7.25 (d, J = 4.6 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 5.53–5.23 (m,
2H), 4.30 (s, 2H), 2.42 (s, 3H), 1.50 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.15, 172.30,
144.47, 142.28, 138.94, 136.33, 135.88, 129.65, 128.99, 128.81, 127.84, 127.41, 126.38, 123.37,
119.43, 116.15, 62.28, 55.78, 46.44, 25.92, 21.66. HRMS (ESI) calculated for C25H24NO4S
[M+H]+: 434.1421, found: 434.1414.

6,7-dimethoxy-1,3-dimethyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (3s). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.23), yellow liquid (73 mg, 58%): mp: 180–181 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.53 (s, 1H), 7.31 (d, J = 8.1 Hz, 2H), 6.67 (s, 1H), 4.19 (d,
J = 6.5 Hz, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 3.55 (s, 3H), 2.43 (s, 3H), 1.41 (s, 3H). 13C-NMR
(126 MHz, CDCl3) δ 192.79, 172.08, 156.01, 145.42, 144.45, 139.45, 138.57, 129.61, 127.82,
111.92, 109.19, 98.39, 62.52, 56.41, 56.25, 54.40, 30.17, 26.49, 21.64. HRMS (ESI) calculated
for C21H24NO6S [M+H]+: 418.1319, found: 418.1315.

1,3-dimethyl-3-((phenylsulfonyl)methyl)quinoline-2,4(1H,3H)-dione (3t). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.23), white solid (77 mg, 75%): mp: 118–119 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.10 (dd, J = 7.7, 1.4 Hz, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.71–7.51 (m, 4H), 7.24 (dt,
J = 9.8, 8.9 Hz, 2H), 4.24 (s, 2H), 3.55 (s, 3H), 1.43 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ
194.26, 171.67, 143.15, 141.55, 136.53, 133.58, 129.03, 128.70, 127.81, 123.34, 119.23, 115.17,
62.21, 55.32, 30.16, 25.91. HRMS (ESI) calculated for C18H18NO4S [M+H]+: 344.0951,
found: 344.0947.

3-(((4-bromophenyl)sulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3u).
The product was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate = 5:1, Rf = 0.23), white solid (102 mg, 81%): mp: 174–175 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.09 (dd, J = 7.7, 1.5 Hz, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H),
7.70 (s, 1H), 7.26 (dd, J = 8.0, 2.6 Hz, 2H), 4.27 (s, 2H), 3.56 (s, 3H), 1.43 (s, 3H). 13C-NMR
(126 MHz, CDCl3) δ 194.26, 171.63, 145.11, 143.05, 136.68, 128.69, 128.54, 126.18, 126.15,
123.49, 119.13, 115.24, 61.82, 55.78, 30.20, 25.75. HRMS (ESI) calculated for C18H17BrNO4S
[M+H]+: 422.0056, found: 422.0051.

3-(((4-chlorophenyl)sulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3v). The
product was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
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etate = 5:1, Rf = 0.23), white solid (86 mg, 76%): mp: 180–181 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.08 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.68 (s, 1H), 7.50 (d, J = 8.5 Hz,
2H), 7.32–7.18 (m, 2H), 4.24 (s, 2H), 3.54 (s, 3H), 1.42 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ
194.26, 171.63, 143.07, 140.25, 140.13, 136.64, 129.40, 129.31, 128.64, 123.41, 119.13, 115.24,
62.10, 55.60, 30.18, 25.82. HRMS (ESI) calculated for C18H16ClNNaO4S [M+H]+: 400.0381,
found: 400.0411.

3-((cyclopropylsulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3w). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.25), yellow liquid (66 mg, 71%): mp: 153–155 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.08 (dd, J = 8.1, 1.7 Hz, 1H), 7.72–7.62 (m, 1H), 7.28–7.17 (m, 2H), 4.21 (d,
J = 1.3 Hz, 2H), 3.53 (s, 3H), 2.70–2.58 (m, 1H), 1.46 (s, 3H), 1.24–1.15 (m, 2H), 1.00 (dd,
J = 8.0, 2.0 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 194.82, 172.13, 143.04, 136.48, 128.63,
123.33, 119.14, 115.14, 59.87, 55.72, 33.32, 30.14, 25.64, 5.13, 5.02. HRMS (ESI) calculated for
C15H18NO4S [M+H]+: 308.0951, found: 308.0947.

1,3-dimethyl-3-((naphthalen-2-ylsulfonyl)methyl)quinoline-2,4(1H,3H)-dione (3x). The
product was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate = 5:1, Rf = 0.24), white solid (89 mg, 75%): mp: 135–136 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.35 (s, 1H), 8.08 (d, J = 7.3 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.91 (t, J = 7.3 Hz,
2H), 7.85 (dd, J = 8.6, 1.4 Hz, 1H), 7.72–7.53 (m, 3H), 7.21 (dd, J = 12.2, 5.4 Hz, 2H), 4.30 (s,
2H), 3.51 (s, 3H), 1.43 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.19, 171.61, 143.14, 138.20,
136.58, 135.30, 131.99, 129.66, 129.53, 129.42, 129.21, 128.67, 127.98, 127.53, 123.34, 122.63,
119.25, 115.20, 62.30, 55.17, 30.14, 26.09. HRMS (ESI) calculated for C22H20NO4S [M+H]+:
394.1180, found: 394.1094.

3-(((4-(tert-butyl)phenyl)sulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3y).
The product was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate = 5:1, Rf = 0.25), white liquid (61 mg, 51%): mp: 95–96 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.11 (dd, J = 7.7, 1.6 Hz, 1H), 7.80–7.75 (m, 2H), 7.76–7.68 (m, 1H), 7.56–7.50
(m, 2H), 7.27–7.21 (m, 2H), 4.23 (s, 2H), 3.55 (s, 3H), 1.42 (s, 3H), 1.35 (s, 9H). 13C-NMR
(126 MHz, CDCl3) δ 194.31, 171.73, 157.40, 143.17, 138.50, 136.47, 128.70, 127.69, 126.05,
123.29, 119.26, 115.15, 62.36, 55.26, 35.24, 31.09, 30.16, 25.89. HRMS (ESI) calculated for
C22H26NO4S [M+H]+: 400.1577, found: 400.1572.

3-(((4-methoxyphenyl)sulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3z).
The product was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate = 5:1, Rf = 0.25), white solid (83 mg, 74%): mp: 145–146 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 7.99 (dd, J = 7.7, 1.4 Hz, 1H), 7.66 (d, J = 8.9 Hz, 2H), 7.58 (s, 1H), 7.18–7.09
(m, 2H), 6.89 (d, J = 8.9 Hz, 2H), 4.13 (s, 2H), 3.77 (s, 3H), 3.44 (s, 3H), 1.33 (s, 3H). 13C-
NMR (126 MHz, CDCl3) δ 194.33, 171.73, 163.63, 143.16, 136.49, 133.15, 130.05, 128.66,
123.28, 119.25, 115.15, 114.16, 62.63, 55.67, 55.26, 30.14, 25.92. HRMS (ESI) calculated for
C19H19NO5S [M+H]+: 374.1057, found: 374.1052.

3-(((4-fluorophenyl)sulfonyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3aa).
The product was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate = 5:1, Rf = 0.21), white solid (83 mg, 76%): mp: 147-148 ◦C. 1H-NMR (500 MHz,
CDCl3) δ 8.09 (dd, J = 7.7, 1.5 Hz, 1H), 7.92–7.79 (m, 2H), 7.72–7.64 (m, 1H), 7.29–7.16 (m,
4H), 4.25 (s, 2H), 3.55 (s, 3H), 1.42 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.30, 171.67,
165.73 (d, J = 255.8 Hz), 143.09, 137.69, 136.61, 130.78, 128.65, 123.40, 119.16, 116.27, 115.22,
62.21, 55.56, 30.17, 25.82. 19F-NMR (471 MHz, CDCl3) δ -103.92. HRMS (ESI) calculated for
C18H17FNO5S [M+H]+: 362.0857, found: 362.0852.

4-hydroxy-1,3-dimethyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1H)-one (4). The prod-
uct was purified by column chromatography on silica gel (petroleum ether/ethyl ac-
etate = 5:1, Rf = 0.23), white solid (55 mg, 51%): mp: 96–97 ◦C. 1H-NMR (500 MHz, CDCl3)
δ 7.85 (d, J = 8.3 Hz, 2H), 7.40 (ddd, J = 14.9, 7.3, 1.4 Hz, 4H), 7.14 (td, J = 7.5, 0.7 Hz,
1H), 7.02 (d, J = 8.1 Hz, 1H), 5.20 (d, J = 3.0 Hz, 1H), 3.79 (dd, J = 14.4, 9.6 Hz, 1H), 3.66
(d, J = 14.5 Hz, 2H), 3.35 (s, 3H), 2.47 (s, 3H), 1.41 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ
171.34, 145.14, 138.50, 137.84, 130.04, 130.00, 129.82, 127.70, 124.55, 123.75, 114.70, 72.01,
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58.52, 47.95, 30.14, 21.69, 20.59. HRMS (ESI) calculated for C19H22NO4S [M+H]+: 360.1264,
found: 360.1259.

3-methyl-3-(tosylmethyl)quinoline-2,4(1H,3H)-dione (5). The product was purified
by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, Rf = 0.24),
white solid (51 mg, 49%): mp: 141–142 ◦C. 1H-NMR (500 MHz, CDCl3) δ 9.70 (s, 1H),
8.04–7.99 (m, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.56–7.52 (m, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.18 (t,
J = 7.5 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 4.26 (dd, J = 29.7, 14.1 Hz, 2H), 2.36 (s, 3H), 1.48
(s, 3H). 13C-NMR (126 MHz, CDCl3) δ 194.31, 173.37, 144.65, 140.74, 138.52, 136.36, 129.72,
128.23, 127.84, 123.70, 117.99, 116.82, 61.91, 55.07, 25.58, 21.59. HRMS (ESI) calculated for
C18H18NO4S [M+H]+: 344.0951, found: 344.0947.

4. Conclusions

In summary, we achieved a visible light-promoted cascade sulfonylation/cyclization
reaction by using selenosulfonates as sulfonyl-centered radical sources. Various structurally
diverse N-heterocycles quinoline-2,4-diones were obtained under metal-free/photocatalyst-
free conditions. Large-scale synthesis and derivatization study via carbonyl reduction
to produce easily modified hydroxyl groups and convenient N-Ts deprotection showed
the potential utility of this strategy. Through radical-trapping experiments, the rational
mechanism is proposed. It is envisaged that this reaction may be useful for the synthesis of
more complicated sulfone-containing heterocyclic compounds.

Supplementary Materials: The following supporting information can be downloaded at:
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