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Abstract: The increasing interest in two-dimensional materials with unique crystal structures and
novel band characteristics has provided numerous new strategies and paradigms in the field of
photodetection. However, as the demand for wide-spectrum detection increases, the size of integrated
systems and the limitations of mission modules pose significant challenges to existing devices. In this
paper, we present a van der Waals heterostructure photodetector based on Ta2NiSe5/WSe2, leveraging
the inherent characteristics of heterostructures. Our results demonstrate that this detector exhibits
excellent broad-spectrum detection ability from the visible to the infrared bands at room temperature,
achieving an extremely high on/off ratio, without the need for an external bias voltage. Furthermore,
compared to a pure material detector, it exhibits a fast response and low dark currents (~3.6 pA),
with rise and fall times of 278 µs and 283 µs for the response rate, respectively. Our findings provide
a promising method for wide-spectrum detection and enrich the diversity of room-temperature
photoelectric detection.

Keywords: Ta2NiSe5; WSe2; heterostructure; Schottky barrier; photodetection; imaging

1. Introduction

The photoelectric industry has been experiencing continuous development over the
past few decades and photoelectric devices have become ubiquitous in our daily lives. As
the core of photoelectric devices, the photo-detector is a type of application equipment that
converts optical signals into electrical signals. It is a key component of equipment that is
frequently used in various fields such as medical diagnosis, optical communication, security
monitoring, and military applications [1–5]. Conventional photodetectors, including Si, SiC,
GaN, and ZnO [6,7], exhibit excellent single-band optical responses due to their band gaps.
Silicon-based materials are generally used in visible light detectors, which have a wide
range of applications in color imaging for realistic everyday scenes, while wide-bandgap
semiconductor materials such as SiC, GaN, and ZnO are more suitable for UV detectors and
have a wide range of application scenarios for anti-missile and tracking in the solar blind
range of ultraviolet light [8,9]. However, as the application of photodetectors expands, the
need to identify complex working environmental information is increasing. In the face
of wide-spectrum detection, multiple detectors of different bands are often required to
perform together; however, there has been a gradual failure to meet the current needs of
the actual photoelectric application field. Therefore, the research on and development of
broadband photodetectors that can cover multi-band response is particularly urgent at
present [10–12].

Over the past decade, two-dimensional (2D) materials have gradually attracted consid-
erable attention due to their atomic thin thickness, bandgap tunability, and easy integration
of van der Waals (vdWs) heterostructures [13–17]. In particular, graphene possesses a zero
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bandgap and high carrier mobility, making it an attractive material for broadband response
research. However, its natural spectrum absorption is only 2.3% and its zero bandgap re-
sults in relatively low response performance and limitations in photodetection research [18].
While single-layer MoS2 has demonstrated superior performance in the visible spectrum
range, its application in the infrared spectrum of equal width is significantly restricted by its
large bandgap [19–22]. Although black phosphorus (BP) exhibits a tunable narrow-bandgap
(0.3–1.5 eV) and high carrier mobility, its poor stability currently impedes its widespread
utilization in photoelectric detection research [23–26]. Recently, terephthalic thiocompound
(Ta2NiSe5), a layered material with weak van der Waals force interactions, has shown
significant potential in wide-band photodetection [27,28]. Unlike other two-dimensional
materials, Ta2NiSe5 is a ternary chalcogenide compound that possesses a direct narrow
bandgap (Eg ~ 0.33 eV) [29–32]. However, the Ta2NiSe5 photodetector suffers from the
drawbacks of excessive dark current and high power consumption, which restrict its wide
application in the field of photodetection [33]. The fabrication of heterogeneous devices
may offer a potential solution to these problems associated with Ta2NiSe5. Heterojunctions
based on two-dimensional materials can achieve self-powered, high photo response and
a good signal ratio, which is determined by the mechanism of photocurrent generation.
Moreover, in some structures, the appearance of heterogeneous interface Schottky barriers
generates a built-in electric field that separates the electron-hole pairs generated by light,
thereby inhibiting the rapid recombination of photocarriers [34–36].

In this work, we fabricated a photodetector by constructing a Ta2NiSe5/WSe2 van
der Waals heterostructure on a metal electrode. A series of experimental data showed that
Ta2NiSe5/WSe2 heterojunctions not only reduce the dark current and power consumption
of single-material photodetectors by utilizing the Schottky barrier formed but also address
the issue of limited detection bands in single-material photodetectors, thereby enabling
wide-spectral detection from visible to infrared light. They also show good application
potential in the field of visible light imaging. Our experimental results confirm the feasibility
of Ta2NiSe5/WSe2 heterojunction photodetectors for wide-spectrum detection, low power
consumption, and fast response.

2. Device Design and Fabrication

We obtained bulk Ta2NiSe5 and WSe2 single crystals from Shanghai Onway Tech-
nology Co., Ltd. (Shanghai, China). Few-layer Ta2NiSe5 and WSe2 were exfoliated using
scotch tape and then assembled using the all-dry transfer method to form van der Waals
heterojunctions. As illustrated in Figure 1, the Ta2NiSe5/WSe2 heterostructure was con-
structed using the all-dry transfer method, which shows the process of heterojunction
fabrication. Initially, we mechanically peeled off Ta2NiSe5 sheets of appropriate size using
tape, followed by placing polydimethylsiloxane (PDMS) as an intermediate carrier onto the
tape with the materials during the transfer process. Subsequently, we oriented the other
side of the PDMS towards the substrate, with the material side facing down, to transfer
the Ta2NiSe5 sheet onto the substrate. To transfer the WSe2 sheets, a similar technique was
employed, but with the added requirement of operating and observing the specific position
under a microscope in real-time to ensure the successful stacking of the WSe2 sheet onto
the Ta2NiSe5 sheet to obtain a complete Ta2NiSe5/WSe2 heterojunction.

In this study, we investigated the photoelectric performance of the Ta2NiSe5/WSe2
heterojunction device under various environmental conditions in real-time, as illustrated
in Figure 2a. Initially, Cr/Au (10 nm/50 nm) metal electrodes were deposited onto a low-
resistance silicon substrate coated with SiO2 (300 nm) using UV lithography technology.
Next, the Ta2NiSe5 sheet, prepared by mechanical exfoliation, was placed on the substrate
via the standard PDMS pressing method, with the same preparation transfer process for the
WSe2 sheet, to create a Ta2NiSe5/WSe2 heterostructure. The experimental materials were
characterized using optical microscopy (Olympus BX51M), scanning electron microscopy
with X-ray energy dispersive spectroscopy (SEM-EDS) (Zeiss/GEMINISEM 360), and
microscopic laser confocal Raman spectroscopy (Dugout/LABRAM ODYSSEY). Figure 2b
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presents the optical image of the Ta2NiSe5/WSe2 heterostructure-based photodetector, with
A–D denoting the four electrode directions. Different electrodes were connected to apply
voltage for the performance testing of various devices. The scanning electron microscopy
(SEM) image and corresponding energy dispersive spectra (EDS) mappings are shown in
Figure 2c. The Raman spectra of the Ta2NiSe5, WSe2, and Ta2NiSe5/WSe2 heterojunction
are represented in Figure 2d. For pure Ta2NiSe5 [37], three characteristic peaks located at
97.7, 121.8, and 288.8 cm−1, attributed to the Ag vibration mode, can be clearly observed
and are denoted by the orange line. For pure WSe2 [38], the Raman spectrum exhibited
two distinct diffraction peaks at 247.3 and 257.6 cm−1, corresponding to the E2g and
A1g lattice vibrational modes in WSe2, respectively (red line). It has been reported that
monolayers of WSe2 do not produce the characteristic peak at 308.3 cm−1 under 532 nm
laser excitation [39], and the presence of this peak suggests that the exfoliated WSe2
flakes were less laminated. All the vibration modes of the Ta2NiSe5/WSe2 heterojunction,
regardless of whether Ta2NiSe5 or WSe2 was used (blue line), were clearly observed
in the overlapping region, indicating the effective preparation of the Ta2NiSe5/WSe2
heterojunction. According to previous reports, the conductance band (Ec) and valence band
(Ev) of Ta2NiSe5 (WSe2) are located at −4.6 eV (−4.2 eV) and −5.28 eV (−4.93 eV) [40–44],
respectively, forming the type I band alignment of the heterostructure. Figure 2e shows
the band structure before and after contact. When the two materials came into contact to
form the heterojunction, electrons flowed from Ta2NiSe5 to the latter due to a higher Fermi
energy level than that for Ta2NiSe5, resulting in a depletion layer near Ta2NiSe5 and an
accumulation layer on the other side, gradually forming an internal electric field [45,46].
The direction of the electric field went from Ta2NiSe5 to WSe2. Applying a forward bias
reduced the barrier, facilitating the flow of electrons from Ta2NiSe5 to WSe2, resulting in
an increase in current. Conversely, under reverse bias, the barrier increased, impeding the
movement of electrons and causing a decrease in current, as illustrated in Figure 2f.
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Figure 2. (a) Device structure of the photodetector based on the Ta2NiSe5/WSe2 heterostructure.
(b) The optical image of the photodetector based on the Ta2NiSe5/WSe2 heterostructure. (c) SEM
image of the Ta2NiSe5/WSe2 heterostructure on the Si/SiO2 substrate, with a scale bar of 10 µm.
Corresponding EDS mappings of the device are marked by a yellow square. (d) Raman spec-
tra of the Ta2NiSe5, WSe2, and Ta2NiSe5/WSe2 overlapped regions. (e) Energy band diagram of
Ta2NiSe5/WSe2 before and after heterostructure formation. (f) Schematic of the band diagram of the
heterostructure under forward and reverse bias conditions.

3. Results and Discussion

Before discussing the photoelectric performance of the Ta2NiSe5/WSe2 heterojunction
detectors, certain photoelectric properties of the individual detector unit are examined to
emphasize the advantages of heterojunction detectors. The external circuit was connected
to electrodes B and D to conduct the photoelectric performance test of the few-layered
WSe2 detector. Figure 3a displays the current–voltage (I–V) curve of the few-layered WSe2
photodetector in the dark, which exhibited Schottky characteristics at room temperature
and provided a built-in electric field in the device (Mstarter 200). The optoelectronic
properties of the few-layered WSe2 photodetector were evaluated by varying the incident
power (P) of 638 nm visible radiation, as shown in Figure 3b. Additionally, Figure 3c depicts
the time-resolved photo responses of the various incident powers collected by high-speed
oscilloscopes at room temperature without any bias voltage, where the photocurrent Iph
and the current density J are obtained using Equations (1) and (2):

Iph = Ids − Idark (1)

J = Ids/S (2)

where Ids represents the source-drain current under illumination, Idark represents the
source-drain current in the dark, and S represents the effective area of the device. To
elucidate the photocurrent generation mechanism of the few-layered WSe2 photodetector,
scanning photocurrent microscopy mapping was performed without bias voltage under
638 nm laser irradiation at room temperature. As observed in Figure 3d, the area of the
device was mainly distributed between the material and the metal electrode, and there was
clear carrier movement within the device, displaying excellent photo response performance.
The intrinsic Schottky junction facilitated the rapid separation and collection of electron-
hole pairs, producing a photovoltaic current at visible radiation. However, due to the
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large bandgap limitation of WSe2, the detector failed to detect the photo response in the
infrared band.
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Figure 3. (a) Current–voltage characteristics of the WSe2 device (inset shows an optical microscopy
image of the WSe2 device). (b) Current–voltage characteristics of the device under the 638 nm
laser illumination with different incident powers. (c) Time-resolved photo response under different
incident powers under 638 nm laser illumination (J denotes the current density). (d) Photocurrent
mapping of the WSe2 device under biases of 0 V with an incident power of 72.81 µW at 638 nm.

To unveil the photo response of the few-layered Ta2NiSe5 device in the infrared band,
we characterized its optical image by switching on electrodes A and C, as shown in the
inset of Figure 4a. In contrast to the WSe2 device, the current–voltage (I–V) curve of the
Ta2NiSe5 device exhibited excellent linearity in the dark, as depicted in Figure 4a. Here, the
dark current was measured to be 126 uA at a bias voltage of −0.1 V. Figure 4b presents the
linear current–voltage output curve of the Ta2NiSe5 device under illumination of 1550 nm.
However, due to a large dark current, the photocurrent was not very apparent, even after
applying the bias voltage. To further assess the photo response at 1550 nm, we measured the
time-resolution photo response under periodic illumination with a fixed bias (Vds = 0.1 V)
by switching to different optical powers (see Figure 4c, which shows a significant power
dependency). In the near-infrared band, since the energy of the incident photon exceeded
the bandgap of Ta2NiSe5 (hv > Eg), the photoinduced electron-hole pairs were separated
by an external electric field and collected by the electrodes. The scanning photocurrent
microscopy mapping revealed that the photocurrent region was far from the contact region
of the electrode and Ta2NiSe5 material. It is noteworthy that, although the Ta2NiSe5
material is capable of realizing near-infrared photodetection, it is uncompetitive for future
applications due to the large dark current caused by bias in photoconductivity mode.
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Figure 4. (a) Current–voltage characteristics of the Ta2NiSe5 device (inset shows an optical microscopy
image of the Ta2NiSe5 device). (b) Current–voltage characteristics of the device under the 1550 nm
laser illumination with different incident powers (inset shows local diagram). (c) Time-resolved
photo response under different incident powers under 1550 nm laser illumination (Vds = 0.1 V).
(d) Photocurrent mapping of Ta2NiSe5 photodetector under biases of 0.1 V with an incident power of
1.405 mW at 1550 nm.

The experimental results of the detectors based on the two individual materials men-
tioned above led to the proposal of a novel Ta2NiSe5/WSe2 vdWs heterogeneous structure
that achieves low dark current levels from visible to infrared detection. During the testing
process, we varied the wiring configuration by connecting the source and drain electrodes
at terminals C and D. The current–voltage (I–V) output curve of the vdWs heterogeneous
device at room temperature with and without laser illuminations of 638 nm and 1550 nm,
respectively, is presented in Figure 5a. By increasing the light incident power of 638 nm
and 1550 nm, the Ta2NiSe5/WSe2 heterojunction device exhibited excellent photo response
performance, as shown in Figure 5b,c, where a heterojunction is clearly visible. The phe-
nomenon of negative short-circuit current (~4.3 pA) and positive open-circuit voltage
(~0.1 V), as revealed in Figure 5a–c, is indicative of a photovoltaic-type mode. At a bias
voltage of −1 V, the dark current of the proposed device was measured to be 3.6 pA, which
is eight orders of magnitude lower than that of the Ta2NiSe5 device. The presence of the
heterojunction not only reduced the dark current and improved the signal-to-noise ratio but
also enhanced the light on/off ratio of the photocurrent. Figure 5d,e demonstrate the time-
resolved photo response without any external electric field and with increasing incident
power at 638 nm and 1550 nm, respectively, showing a fast photo-switching process. To
further confirm the photo response mechanism, the location of the scanning photocurrent
mapping focused on the junction area (see Figure 5f), which confirmed the origin of the
photocurrent at the heterojunction. In the heterojunction region, electrons in Ta2NiSe5 were
excited to the conduction band by IR radiation, generating electron-hole pairs, which were
separated by the built-in electric field and flowed towards WSe2, being ultimately collected
by electrodes. Conversely, holes flowed in the opposite direction, forming a circuit and
producing photocurrent.
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Figure 5. (a) Current–voltage characteristics curve in the dark and under 638 and 1550 nm wavelength
laser illumination (inset shows local diagram). (b,c) Current–voltage characteristics of the device
under different incident powers under 638 (b) and 1550 (c) nm laser illumination. (d,e) Time-resolved
photo response under different incident powers under 638 (d) and 1550 (e) nm laser illumination.
(f) Photocurrent mapping of Ta2NiSe5/WSe2 photodetector under biases of 0 V with an incident
power of 1.405 mW at 1550 nm.

As illustrated in Figure 6a,b, photocurrent was observed in both the visible and
infrared bands of the Ta2NiSe5/WSe2 heterojunction device, without applying any bias.
Laser irradiation of the Ta2NiSe5/WSe2 heterojunction device generated photogenerated
electrons, which then moved directionally to form photocurrent under the influence of
the built-in electric field within the device. To evaluate the crucial parameters of the
Ta2NiSe5/WSe2 heterojunction photodetector, responsivity R, characterized as the value of
the photocurrent generated per unit of optical power, is defined as follows [47]:

R = Iph/Pin (3)

Specific detectivity D* is another important parameter of the photodetector and repre-
sents the sensitivity of the photodetector; it is defined as follows [48]:

D* = R/(2qIdark/S)0.5 (4)

where Iph is the photocurrent, Pin is incident light power, q is the elementary charge, and
S is the illumination active area on the device. For the visible/IR band, the extracted
power-dependent responsivity and detectivity are plotted in Figure 6c,d. The responsivity
of the heterojunction device was ~0.04 mA/W (P = 11.12 µW) at 638 nm and ~0.82 nA/W
(P = 231.8 µW) at 1550 nm. The detectivity of the heterojunction device was approximately
3.6 × 105 Jones (P = 11.12 µW) at 638 nm and approximately 90 Jones (P = 231.8 µW) at
1550 nm. Figure 6e presents the time-resolved optical response at 638 nm in the absence of
any external electric field, revealing a rapid optical switching process. During this period,
the photocurrent response of the device remained relatively stable, indicating good stability
of the heterojunction device.

Response time, another key parameter, which is routinely defined as the time re-
quired by the photo response to rise from 10% to 90% or fall from 90% to 10% in a single
impulse, is retrieved directly from the high-speed sampling oscilloscope (Tektronix/Afg
3100 series) [49]. The rise and fall times of the heterojunction device were 278 µs and
283 µs, respectively, as shown in Figure 6f. We also compared the performance test results
with other van der Waals heterojunction photodetectors, as shown in Table 1 [50–54]. The
comparison revealed that the Ta2NiSe5/WSe2 heterojunction detectors prepared in our
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experiment exhibit superior performance in terms of dark current and response times,
surpassing previously reported photodetectors.
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Figure 6. (a,b) The photocurrent density dependence of the incident power of the Ta2NiSe5/WSe2
photodetector under 638 (a) and 1550 (b) nm laser illumination (Vds = 0 V). (c,d) Dependence of
responsivity and detectivity on incident power under 638 (c) and 1550 (d) nm laser illumination
(Vds = 0 V). (e) Time-resolved photo response of the heterostructure under 638 nm laser illumination
(P = 72.81 µW, Vds = 0 V). (f) Characteristic response times at rise (left) and fall (right) edges.

Table 1. Comparison of the performance of photodetectors based on heterojunctions examined in
this work and in previous work.

Materials Wavelength
Range (nm) Dark Current Rise/Decay Time On/Off Reference

Ta2NiSe5/WSe2 638/1550 ~3.6 pA 278/283 µs ~104 This work
Ta2NiSe5/GaSe 520/1550 ~4 pA 340/32 ms 5 × 103 [50]
Ta2NiSe5/MoS2 532/1064 ~11 pA 7.4/31.1 s 1.9 × 102 [51]

WSe2/Si 670 - 75/125 ms 3.2 [52]
WSe2/MoSe2 532 ~0.078 nA 4.3/22.6 ms ~103 [53]

PdSe2/Si 532/1550 ~10 pA 49/90 ms ~103 [54]

In addition, in order to explore the potential application of the Ta2NiSe5/WSe2 het-
erojunction photodetectors in the imaging field, we carried out imaging experiments
on the detectors. Imaging was conducted using the visible spectrum (638 nm) on the
Ta2NiSe5/WSe2 heterojunction photoelectric device, as illustrated in Figure 7a (equipment
type: THORLABS CM401). Figure 7b depicts a schematic diagram of the overall device
used in the imaging system. Prior to testing, two pieces of white paper with a certain thick-
ness were prepared, upon which letter graphics (ZJUT, HIAS) were cut out for presentation.
During the test, visible light emitted directly at the paper was reflected, while visible light
shining on the letter spaces penetrated.
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4. Conclusions

In conclusion, we prepared a van der Waals heterostructure device based on Ta2NiSe5/
WSe2 material by stacking thin sheets of Ta2NiSe5 and WSe2 on a SiO2 substrate. The
resulting heterojunction photodetector exhibited wide-spectrum detection from visible
to infrared light, with a response rate of 0.04 mA/W at 638 nm (0.82 nA/W at 1550 nm),
utilizing the photoelectric response characteristics of the Ta2NiSe5/WSe2 heterojunction.
Furthermore, the device demonstrated extremely low dark current (~3.6 pA) due to the
built-in electric field within the van der Waals heterojunction structure, effectively inhibit-
ing dark current generation and promoting the separation of photogenerated electron-hole
pairs, resulting in reduced power loss. In addition, the rapid transport and separation of
photogenerated carriers under an electric field enabled the Ta2NiSe5/WSe2 heterojunction
device to respond quickly, with an up time of approximately 278 µs and a down time
of approximately 283 µs. Our results suggest that the van der Waals heterojunction pho-
todetector based on Ta2NiSe5/WSe2 has immense potential for achieving high detection
performance, such as broadening the detection band and improving response times.
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