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Abstract

Cross-modality person re-identification between
the thermal and visible domains is extremely im-
portant for night-time surveillance application-
s. Existing works in this filed mainly focus on
learning sharable feature representations to han-
dle the cross-modality discrepancies. However,
besides the cross-modality discrepancy caused by
different camera spectrums, visible thermal per-
son re-identification also suffers from large cross-
modality and intra-modality variations caused by
different camera views and human poses. In this
paper, we propose a dual-path network with a nov-
el bi-directional dual-constrained top-ranking loss
to learn discriminative feature representations. It
is advantageous in two aspects: 1) end-to-end fea-
ture learning directly from the data without extra
metric learning steps, 2) it simultaneously handles
the cross-modality and intra-modality variations to
ensure the discriminability of the learnt represen-
tations. Meanwhile, identity loss is further incor-
porated to model the identity-specific information
to handle large intra-class variations. Extensive ex-
periments on two datasets demonstrate the superior
performance compared to the state-of-the-arts.

1 Introduction
Person re-identification (REID) aims at searching a specific
person from a gallery of images captured by disjoint surveil-
lance cameras [Zheng et al., 2017; Ye et al., 2016]. It has
gained increasing attention in the research community due to
its importance in various video surveillance and intelligent
applications. Recent progresses mainly focus on visible cam-
eras module, i.e., given a query image/video of a person and
search it out from a gallery set of images/videos captured by
other non-overlapping cameras [Zhu et al., 2018; Wang et al.,
2017]. However, the visible cameras cannot capture valid ap-
pearance information under poor illumination environments
(e.g. during the night), which limits the applicability in
practical surveillance applications [Lan et al., 2015; 2018;
Jiang et al., 2017]. Therefore, we address a cross-modality
problem named visible thermal person re-identification (VT-

Visible Camera
in the day

Thermal Camera
at night

Figure 1: Visible thermal person re-identification (VT-REID). Per-
son images captured by different spectrum cameras should be
matched. Note that the cross-modality discrepancy make the visual
characteristic of images from two modalities are entirely different.

REID) in this paper. It provides a good supplement for night-
time surveillance applications.

Given a visible (thermal) image of a specific person, VT-
REID1 tries to search out the corresponding thermal (visible)
images from a gallery set captured by other spectrum cam-
eras as illustrated in Figure 1. To our best knowledge, two
pioneer works exist in the literature. Wu et al. [Wu et al.,
2017b] proposed a one-stream deep zero-padding network for
shared feature learning where only identity information is u-
tilized, which limits the discriminability of the learnt repre-
sentation. Contemporarily, a two-stage framework containing
feature learning and metric learning steps is introduced in [Ye
et al., 2018]. However, the two-stage training needs human
intervention which is unsuitable for practical large-scale ap-
plications [Wu et al., 2018b]. Therefore, we try to investigate
an end-to-end learning framework to learn invariant shared
features while preserving high discriminability for VT-REID.

In this paper, we propose a dual-path network to learn the
feature representations for VT-REID, which contains a visi-
ble path and a thermal path. Specifically, the parameters of
the shallow layers are independent to extract the modality-
specific information, which addresses the cross-modality
discrepancy problem caused by different sensor spectrums.
Then a shared fully connected layer is further leveraged to
learn the embedding space. Thus the multi-modality sharable
feature is learnt by simultaneously considering the modality

1It’s also called RGB-infrared person re-id in [Wu et al., 2017b].
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Figure 2: Intra-class distance might be even larger than the inter-
class distance caused by (a) Cross-modality variation and (b) Intra-
modality variation. The box color represents the identity.

commonality and discrepancy. However, besides the cross-
modality discrepancy issue, VT-REID also suffers from 1)
large cross-modality variations caused by the different cross-
camera views and hard negatives (D(A, a)>D(A, b) in Figure
2) and 2) large intra-modality variations caused by differen-
t human poses and viewpoints(D(a, a′)>D(a, b) in Figure2).
Consequently, large amount of intra-class distances might be
even larger than that of inter-class distances [Wang et al.,
2016b]. Existing methods in visible re-ID cannot simultane-
ously handle the cross- and intra- modality variations, which
limit the discriminability of the learnt feature representation.

To address the aforementioned issues, we design a novel
bi-directional dual-constrained top-ranking loss to guide the
training process. The designed loss simultaneously consid-
ers the following two aspects: 1) cross-modality top-ranking
constraint, which aims at addressing the large cross-modality
variations. The main idea is that the distance of anchor to it-
s furthest cross-modality positive should be smaller than the
anchor to its nearest cross-modality negative by a predefined
margin. 2) intra-modality top-ranking constraint, which fo-
cuses on handling the intra-modality variations. Under the
same framework of cross-modality top-ranking constraint,
the intra-modality constraint ensures that distance between
the anchor’s furthest-positive and its nearest-negative within
the same modality should also be distinguishable. Further-
more, a bi-directional training strategy (visible to thermal and
thermal to visible) is employed to enhance the robustness.

In addition, since the large intra-class variations also ex-
ist in VT-REID as shown in Figure 3, it’s hard to ensure
the discriminability by simply exploiting the relationships a-
mong persons with the ranking loss. In light of early suc-
cess of human annotated labels of each person image, we
further aggregate the identity loss into the dual-constrained
top-ranking framework to extract the identity-specific infor-
mation. It treats the same person identity across heterogenous
modalities as the same class. It guarantees the learnt feature
representation is identity invariant to address the large intra-
class variations. Meanwhile, it also helps to stabilize the over-
all training process since two paths of the network may have
totally different parameters caused by heterogenous modali-
ties.

The main contributions can be summarized as follows:
• We present an end-to-end dual-path feature and metric

learning framework, which is the first attempt for VT-
REID. It provides a superior baseline in this research
field for future improvements.

Figure 3: Intra-class variations. Images represent the same person.

• We introduce a novel bi-directional dual-constrained
top-ranking loss to simultaneously consider the cross-
modality and intra-modality variations, which provide
new insights to enhance the discriminability of the learnt
representation. Meanwhile, identity loss is incorporated
to model the identity-specific information.

2 Related Work
Multi-Modality Person Re-identification. A detailed
overview about person re-identification in visible domains
can be found in [Zheng et al., 2016]. Here we mainly dis-
cuss the multi-modality person re-identification.

Previously, several multi-modal fusion models have been
proposed for person re-identification in visible-thermal mod-
ules [Nguyen et al., 2017] and RGB-D modules [Barbosa et
al., 2012; Wu et al., 2017a], where additional modality in-
formation captured by other spectral cameras (depth camer-
a, thermal camera) is integrated with standard RGB images
to improve the person re-identification performance [Mogel-
mose et al., 2013]. Meanwhile, Lin et al. [Lin et al., 2017b]
aggregated semantic attributes information with visible im-
ages for person re-identification. In comparison, we focus on
cross-modality person re-identification problem in this paper.

For cross-modality person re-identification, some text-to-
image person retrieval methods [Li et al., 2017a; 2017b;
Ye et al., 2015] have been proposed, but their approaches
cannot be directly adopted for VT-REID. In VT-REID, a two-
stage framework with feature learning and metric learning is
introduced in [Ye et al., 2018]. Additionally, Wu et al. [Wu
et al., 2017b] presented a deep zero-padding network [Chen
et al., 2018] to learn the invariant feature representations. In
contrast, we present an end-to-end dual-path learning frame-
work for feature and metric learning.

Deep Cross-modality Matching. Cross-modality match-
ing has been widely investigated in the literature, especially
in heterogenous face recognition and text-to-image retrieval.
Here, we mainly discuss the deep learning based techniques
due to their superior performances in various vision tasks
[Zhou et al., 2018; Song et al., 2018; Ye et al., 2017].

For heterogenous face recognition, deep invariant feature
representation learning has been investigated in [He et al.,
2017; Wu et al., 2018c] for NIR-VIS face recognition, and
Sarfra et al. [Sarfraz and Stiefelhagen, 2017] presented a
deep matching method via a two-layer non-linear function
with hand-crafted features. In comparison, the VT-REID
task also suffers from large intra-class variations besides the
cross-modality variations compared with the face recogni-
tion, which makes their methods unsuitable for VT-REID.

For text-to-image matching, several dual-path based net-
works have been proposed to bridge the gap between the vi-
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Figure 4: The proposed dual-path end-to-end learning framework for VT-REID. N represents the batch size, while totally 2*N images are fed
into the network for training. It comprises two main components: dual-path network for feature extraction (one path for visible images and
the other for thermal images) and bi-directional dual-constrained top-ranking loss for feature learning. Note that the weights of the shallow
layers (feature extractor) are different to extract the modality-specific information while the weights of the embedding FC layer (feature
embedding) are shared for multi-modality sharable feature learning. After L2 normalization, we introduce a bi-directional dual-constrained
top-ranking loss for network training. Meanwhile, the identity loss is further integrated with the ranking loss to improve the performance.

sual images and text descriptions [Cao et al., 2017; Liu et al.,
2017; Liong et al., 2017]. Typically, the network contain-
s one text CNN path and one image CNN path. Under this
pipeline, we design a dual-path learning framework for our
cross-modality person re-identification. Specifically, to ad-
dress the cross-modality variations and intra-modality vari-
ations existing in VT-REID, a novel dual-constrained top-
ranking loss on top of the ranking loss is introduced.

3 Proposed Method
This paper proposes a dual-path end-to-end feature learning
framework for VT-REID as shown in Figure 4. The frame-
work learns the feature representations and distance metrics
in an end-to-end manner while preserving high discriminabil-
ity. It comprises two main components: dual-path network
for feature extraction and bi-directional dual-constrained top-
ranking loss for feature learning. Specifically, the dual-path
network utilizes partially shared structures to learn the multi-
modality sharable features by simultaneously modeling the
modality specific and modality shared information. The dual-
constrained top-ranking loss ensures the learnt feature repre-
sentations are discriminative enough to distinguish different
persons from two heterogenous modalities. Identity loss is
integrated to facilitate the feature learning process.

3.1 Dual-path Network
We propose a dual-path network to extract the features for
visible and thermal domains. Specifically, the dual-path fea-
ture learning network contains two parts: feature extractor
and feature embedding. The former feature extractor aims at
capturing modality specific information for different image
modalities. The latter feature embedding focuses on learning
a multi-modality sharable space to bridge the gap between
two heterogenous modalities.

Feature extractor. We adopt the off-the-shelf image fea-
ture extractors to extract the features from two heterogenous
modalities. Due to the limited training data, the general image
classification networks pre-trained on ImageNet are adopted
for initialization to boost the training procedure for fast con-
vergence. Note that both thermal-path and visible-path share
similar network structures in our cross-modality person re-
identification task. The main reason is that we assume the
low-level visual patterns (eg. texture, corner) of thermal im-
ages are similar to general visible images. However, the pa-
rameters of two streams are optimized separately to capture
the modality-specific information.

In our model, we adopt the AlexNet [Krizhevsky et al.,
2012] as the baseline network2 for both visible and thermal
paths. Specifically, we adopt the pre-trained five convolu-
tional layers (conv1 ∼ conv5) and one fully connected lay-
er (with size of 4096) as the initialized feature representa-
tion. The main reason is that the shallow convolutional layers
mainly capture the low-level visual patterns which might be
shared among all images. Meanwhile, we add another batch
normalization layer after the FC layer.

Feature embedding. To learn a discriminative embed-
ding space of two heterogenous modalities, we introduce a
shared fully connected layer on top of the dual-path fea-
ture extractors. Note that the weights of the fully connect-
ed layer are shared to model the modality shared informa-
tion. If not, the learnt visible and thermal image features
may lie in totally different subspaces [Wang et al., 2016a;
Wu et al., 2018a]. Experimental results in the following sec-
tion show that shared structure could achieve better perfor-
mance for VT-REID, where it acts as a projection function to

2Other networks such as the VggNet, GoogLeNet and ResNet
architectures can also be configured without any limitation.
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Figure 5: Illustration of the bi-directional dual-constrained top-
ranking loss. Rectangles represent the thermal domain while circles
represent the visible domain. Color demonstrates the identity. Left:
visible-thermal top-ranking loss. Right: thermal-visible top-ranking
loss.

project two different modalities into the common space. For
simplicity in presentation, we denote the embedded function
together with the feature extractor as Fv(·) for visible images
while Ft(·) for thermal images. Given a visible image Iv and
a thermal image It, the extracted features (x and z) are repre-
sented by

x = Fv(Iv), z = Ft(It) (1)

3.2 Dual-Constrained Top-Ranking
After transforming the visible and thermal images into a
shared embedding space, we propose a novel bi-directional
dual-constrained top-ranking loss to guide the feature learn-
ing objectives. The learning objective mainly contains the
cross-modality and intra-modality constraints as shown in
Figure 5. Firstly, we will revisit the general ranking loss.

Ranking Loss Revisit. Given a mini-batch, it contains N
visible images and N thermal images. For an anchor visible
image xi with its label denoted by yi, we want the distance
of its positive thermal image zj should be smaller than the
distance between xi and the negative thermal image zk by a
pre-defined margin ρ1:

D(xi, zj) < D(xi, zk)− ρ1, ∀yi 6= yk, ∀yi = yj , (2)

Note that all the input feature vectors x and z are l2 nor-
malized for stable convergence. In our proposed method,
Euclidean distance is utilized as the similarity measuremen-
t, in which we empirically find that it achieves slightly better
performance than other measurements for VT-REID. Further-
more, we further employ a bi-directional ranking loss strategy
to constrain the overall learning for the cross-modality per-
son re-identification problem. The bi-directional ranking loss
contains two kinds of relationships: visible to thermal triplet
(one anchor visible image, two thermal images) and thermal
to visible triplet (one anchor thermal image, two visible im-
ages). The bi-directional ranking loss is formulated by
Lbi rank =

∑
∀yi=yj ,yi 6=yk

max[ρ1 +D(xi, zj)−D(xi, zk), 0]

+
∑

∀yi=yj ,yi 6=yk

max[ρ1 +D(zi, xj)−D(zi, xk), 0]

(3)

where the subscripts i and j represent the same identity, while
i and k are different identities.

Cross-modality Top-Ranking Constraint. To address the
issue that large amounts of intra-class distances might be
even larger than the inter-class distances caused by cross-
modality variations, we employ a top-ranking constraint fol-
lowing [Hermans et al., 2017] to enhance the discriminabili-
ty. The underlying idea is that we compare the distance of a
positive visible-thermal pair and the minimum distance of all
related negative visible-thermal pairs, rather than each of the
negative pairs. The cross-modality constrained top-ranking
loss is further developed as:
Lcross =

∑
∀yi=yj

max[ρ1 +D(xi, zj)− min
∀yi 6=yk

D(xi, zk), 0]

+
∑

∀yi=yj

max[ρ1 +D(zi, xj)− min
∀yi 6=yk

D(zi, xk), 0]

(4)
The bi-directional cross-modality top-ranking loss has two
main advantages: (1) The top-ranking constraint ensures that
the closest cross-modality negative sample is far from the far-
thest cross-modality positive sample, thus helps to reduce the
cross-modality variations while preserve high discriminabil-
ity. (2) The bi-directional training strategy makes sure that
the learnt feature representation is modality invariant. It im-
proves the robustness for different query settings ( i.e., visible
to thermal and thermal to visible) as illustrated in Sec. 4.3.

Intra-modality Top-Ranking Constraint. As discussed
in the Section 1, VT-REID also suffers from the intra-class
intra-modality variations due to different poses, viewpoints
and etc. To address this issue, we introduce another intra-
modality similarity constraint to enhance the robustness of the
learnt feature representation to intra-modality variations. On
top of the cross-modality top-ranking loss, the intra-modality
constrained loss is computed by

Lintra =
∑

max[ρ2 −D(zj , zk), 0]

+
∑

max[ρ2 −D(xj , xk), 0]
(5)

where ρ2 is a pre-defined margin. j and k represent the
same index as in the cross-modality top-ranking within the
mini-batch for each anchor i. This intra-modality top-ranking
constraint ensures that the hardest cross-modality negative
sample should also be far from to its corresponding cross-
modality positive samples. It guarantees that the images of
different persons within each modality should also be distin-
guished with additional constraint, especially when the cross-
modality equality Eq. 2 does not hold for large-scale training.

Overall Embedding Loss. Since above ranking loss con-
strains the feature learning process with their underlying re-
lationships among persons, it’s hard to learn a robust feature
representation to reduce the intra-class variations by simply
exploiting the relationship cues. Meanwhile, the visible and
thermal image features may exist in totally different feature s-
paces, the ranking loss may also be trapped into convergence
problem due to incorrect relationship measurements. There-
fore, we integrate the identity information to the overall loss
function. For the sake of feasibility and effectiveness in clas-
sification, the general softmax loss is utilized by treating each
person identity as a class. In this manner, the identity specific
information is integrated to enhance the robustness.
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The final loss function is a weighted summation three com-
ponents, the bi-directional cross-modality and intra-modality
top-ranking constraints and identity loss, defined by

L = Lcross + λ1Lintra + λ2Lid (6)

where λ1 and λ2 are predefined weighting parameters.
Batch Sampling. Since our dual-constrained ranking

loss is slightly different with general person re-identification
tasks, it’s essential to introduce the mini-batch sampling s-
trategy. Specifically, N person identities are firstly randomly
selected at each iteration, where N is the batch size. Then
we randomly select one visible image and one thermal im-
age of the selected identity from two different modalities to
construct the mini-batch, in which totally 2*N images are
fed into the network for training. In this manner, within the
mini-batch, we can select N anchor visible images to calcu-
late the visible-thermal top-ranking loss, and N correspond-
ing anchor thermal images for the thermal-visible top-ranking
loss. Due to the randomly sampling mechanism, all the pos-
sible assemblies will be traversed to get the global optimum.

4 Experimental Results
4.1 Experimental Settings
Datasets and settings. Two publicly available RegDB
dataset [Nguyen et al., 2017] and SYSU-MM01 [Wu et al.,
2017b] are adopted for evaluation. RegDB is collected by d-
ual camera systems, and contains 412 persons. For each per-
son, 10 different visible light images are captured by a visible
camera, and 10 different thermal images are obtained by a
thermal camera. We follow the evaluation protocol in [Ye et
al., 2018], where the dataset is randomly split into two halves,
one for training and one for testing. For testing, the images
from one modality were used as the gallery set while the ones
from the other modality as the probe set. The procedure is
repeated for 10 trials to achieve statistically stable results.

SYSU-MM01 [Wu et al., 2017b] is a large-scale dataset
collected by 6 cameras, including four visible and two ther-
mal cameras. This dataset is challenging since some of the
person images are captured in the indoor environments and
some are in outdoor environments. It contains 491 person-
s, each person is captured by at least two different cameras.
We adopt the single-shot all-search mode evaluation proto-
col, since it’s the most challenging case as mentioned in [Wu
et al., 2017b]. The training set contains 395 persons, with
22258 visible images and 11909 thermal images. The testing
set contains 96 persons, with 3803 thermal images for query
and 301 randomly selected visible images as gallery set.

Evaluation metrics. To indicate the performance, the s-
tandard cumulated matching characteristics (CMC) curve and
mean average precision (mAP) are adopted, since one person
has multiple groundtruths in the gallery set.

Implementation details.3 We implement our algorithm
with Tensorflow. The size of the embedding fully connected
layer is set as 1024 and the batch size is set as 64 for both
datasets. Dropout rate is set as 0.5. Random cropping is uti-
lized for data argumentation, where images are firstly resized
to 256 × 256, and then a random cropped 227 × 227 image

3Code is available on the first author’s website

Baseline CTR (V-T) CTR (T-V) BCTR BDTR

Rank-1 (%) 27.81 30.07 31.41 32.67 33.47

mAP (%) 27.65 29.08 28.95 30.99 32.56

Baseline CTR (V-T) CTR (T-V) BCTR BDTR

mAP (%) 27.65 29.08 28.95 30.99 31.83
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Figure 6: Evaluation of different variants of proposed method on the
RegDB dataset. Re-identification rates (%) at rank r and mAP (%).

is fed into the network. We set the trade-off parameters as
λ1 = 0.1 and λ2 = 1. Momentum optimizer is utilized for
optimization, and the momentum is set to 0.9. The prede-
fined cross-modality margin ρ1 is set to 0.5 while the intra-
modality margin ρ2 is set to 0.1. The initial learning rate is
set as 0.001. The training step for RegDB dataset is 5000 and
SYSU-MM01 dataset is 50000.

4.2 Ablation Study
Variants evaluation. This subsection evaluates the pro-
posed end-to-end learning framework with different variants,
where the results on the RegDB dataset are shown in Fig-
ure 6. “Baseline” means the results when general rank-
ing loss integrated with the identity loss is used. “CTR (V-
T)” and “CTR (T-V)” denote a cross-modality top-ranking
constraint is further incorporated in the ranking loss. T-
wo kinds of ranking strategies are evaluated, i.e., visible to
thermal and thermal to visible. “BCTR” represents the re-
sults when bi-directional training strategy is employed. “B-
DTR” expresses the performance with a further aggregated
intra-modality constraint, which demonstrates the overall bi-
directional dual-constrained top-ranking loss.

Results shown in Figure 6 illustrate that a cross-modality
top-ranking constraint could consistently improve the per-
formance of ranking loss by 2-3%. It verifies the idea
that top-rank constraint helps to handle large intra-class
cross-modality variations, which ensures the discriminabil-
ity of the learnt feature representation. After employing
the bi-directional training strategy (BCTR), the overall per-
formances of rank-1 and mAP are enhanced further with
about 2%. Improvements show that bi-directional relation-
ship training helps to improve the robustness of the learnt fea-
ture representation for two heterogenous modalities. Further-
more, both the rank-1 matching rates and mAP are further im-
proved by integrating an intra-modality similarity constraint,
which addresses the intra-modality variations caused by dif-
ferent poses or viewpoints. Overall, the proposed BDTR im-
proves the rank-1 matching rate from 27.81% to 33.47%, and
mAP from 27.65% to 31.83% on the RegDB dataset.
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Datasets RegDB SYSU-MM01
Methods r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP
HOG 13.49 33.22 43.66 10.31 2.76 18.25 31.91 4.24
MLBP 2.02 7.33 10.90 6.77 2.12 16.23 28.32 3.86
LOMO 0.85 2.47 4.10 2.28 1.75 14.14 26.63 3.48
GSM 17.28 34.47 45.26 15.06 5.29 33.71 52.95 8.00
One-stream 13.11 32.98 42.51 14.02 12.04 49.68 66.74 13.67
Two-stream 12.43 30.36 40.96 13.42 11.65 47.99 65.50 12.85
Zero-Padding 17.75 34.21 44.35 18.90 14.80 54.12 71.33 15.95
TONE 16.87 34.03 44.10 14.92 12.52 50.72 68.60 14.42
TONE + XQDA 21.94 45.05 55.73 21.80 14.01 52.78 69.06 15.97
TONE + MLAPG 17.82 40.29 49.73 18.03 12.43 50.64 68.72 14.61
TONE + SCDL 8.06 22.09 28.89 10.03 6.58 35.62 56.32 10.32
TONE + rCDL 9.47 22.96 29.42 10.26 7.02 37.31 57.64 10.46
TONE + HCML 24.44 47.53 56.78 20.80 14.32 53.16 69.17 16.16
Ours (Baseline) 27.81 51.41 60.99 27.65 12.96 51.80 71.00 16.11
Ours (BCTR) 32.67 57.64 66.58 30.99 16.12 54.90 71.47 19.15
Ours (BDTR) 33.47 58.42 67.52 31.83 17.01 55.43 71.96 19.66

Table 2: Comparison with the state-of-the arts on the RegDB and SYSU-MM01 datasets. Re-identification rates (%) at rank r and mAP (%).

SYSU-MM01 r = 1 r = 10 r=20 mAP
Only ranking loss 7.99 36.31 53.17 10.11
Only identity loss 13.52 47.62 65.08 15.86
Full model 17.01 55.43 71.96 19.66
RegDB r = 1 r = 10 r=20 mAP
Only ranking loss 32.46 58.65 66.86 31.23
Only identity loss 18.60 49.35 65.08 17.68
Full model 33.47 58.42 67.52 31.83

Table 1: Effectiveness of identity loss on the RegDB and SYSU-
MM01 datasets. Re-identification rates (%) at rank r and mAP (%).

Effectiveness of identity loss. We also conduct the exper-
iments to verify the effectiveness of the identity loss and the
ranking loss on both the RegDB and the large-scale SYSU-
MM01 datasets. We report the results with only ranking loss,
only identity loss and our full model as shown in Table 1.

As demonstrated in Table 1, the rank-1 matching rate is
about 7.99% for the ranking loss while the mAP is about
10.11% on the SYSU-MM01 dataset. After integrating the
identity loss, our final full model could achieve rank-1 =
17.01%, and mAP = 19.66%. The results illustrate that the
integration could improve the performance by aggregating
the identity-specific information (identity loss) to the ranking
loss. Meanwhile, for the results on the small scale RegDB
dataset, we could observe that ranking loss achieves rank-
1 accuracy about 32.46%, 18.60% for the identity loss and
the overall model is 33.47%. Although the improvement is
not that significant, the combination still improves the per-
formance of raking loss. It verifies that the fusion of two
different losses work well for the cross-modality person re-
identification. Another observation is that the ranking loss
performs much better on small RegDB dataset while identity
loss could achieve better performance with abundant training
samples on the SYSU-MM01 dataset. This phenomenon has
also been verified in cross-view re-ID [Xiao et al., 2017].

4.3 Comparison with the State-of-the-arts
Competing methods. Since only two published works have
investigated the visible thermal person re-identification, and
they only evaluate their method on one dataset.
• Zero-Padding [Wu et al., 2017b]. A deep zero-padding

method to utilizes a one-stream network to capture the
domain specific information. We re-implement it their
method to evaluate on the RegDB dataset.
• TONE + HCML [Ye et al., 2018]. A two-stage frame-

work for feature learning (TONE) and metric learning
(HCML) is proposed. Previous method has only been
evaluated on RegDB dataset. We adopt the authors’ re-
leased code to evaluate on SYSU-MM01 dataset.

In addition, several other cross-modality learning meth-
ods are also included for comparison. Most of the results
are originated from [Ye et al., 2018] on the RegDB dataset
and [Wu et al., 2017b] on the SYSU-MM01 dataset. The
competing methods contain some feature learning method-
s (HOG, LOMO [Liao et al., 2015], one-stream and two-
stream networks). Note that one-stream and two-stream net-
works are the modifications of the IDE method [Zheng et al.,
2016] under our cross-modality re-identification settings, de-
tailed description can be found in [Wu et al., 2017b].In addi-
tion, some matching model learning methods (XQDA [Liao
et al., 2015], MLAPG [Liao and Li, 2015], GSM [Lin et al.,
2017a] SCDL [Wang et al., 2012] and rCDL [Huang and
Frank Wang, 2013]) are also included for comparison. The
results are shown in Table 2.

The results shown in Table 2 demonstrate that the proposed
end-to-end learning framework outperforms existing state-
of-the-art methods usually by a large margin on the RegDB
dataset. Compared to the two-stage feature learning and met-
ric learning method (TONE + HCML), we consistently out-
perform them with nearly 10% for both rank-1 matching rate
and mAP. For the large-scale SYSU-MM01 dataset, the pro-
posed method also achieves the best performance compared
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Method r = 1 r = 10 r = 20 mAP
Setting Visible to Thermal
TONE 16.87 34.03 44.10 14.92
TONE + HCML 24.44 47.53 56.78 20.08
Zero-Padding 17.75 34.21 44.35 18.90
Ours (BDTR) 33.47 58.42 67.52 31.83
Setting Thermal to Visible
TONE 13.86 30.08 40.05 16.98
TONE + HCML 21.70 45.02 55.58 22.24
Zero-Padding 16.63 34.68 44.25 17.82
Ours (BDTR) 32.72 57.96 68.86 31.10

Table 3: Evaluation of different query settings on the RegDB dataset.
Re-identification rates (%) at rank r and mAP (%).

to the competing methods. Specifically, we achieve rank-1 =
33.47% and mAP = 31.83% on the RegDB dataset, and rank-
1 = 17.01% and mAP = 19.66% on the SYSU-MM01 dataset.
The advantages of our proposed method can be summarized
as two folds: 1) End-to-end learning could learn discrimina-
tive features without any human intervention. 2) The pro-
posed dual-constrained top-ranking loss with the dual-path
network provides a good solution to address the large cross-
modality and intra-modality variations for VT-REID.

Different query settings. We also evaluate the perfor-
mance of different query settings on the RegDB dataset as
done in [Ye et al., 2018]. Results shown in Table 3 illustrate
that the proposed method is robust to different query settings,
the performance of visible-to-thermal matching is close to the
results of thermal-to-visible matching with less than 1% dif-
ference. We could achieve about 33% rank-1 matching ac-
curacy and 31% for mAP on both settings. Moreover, the
proposed method outperforms the competing methods consis-
tently by a large margin on both settings. The results demon-
strate the flexibility and applicability of the proposed method
in real applications. The superiority of the proposed method
is attributed to the designed bi-directional training strategy.

5 Conclusion
In this paper, a well-designed end-to-end learning frame-
work via dual-constrained top-ranking loss is proposed for
visible thermal cross-modality person re-identification. To
address the large cross-modality variations, a bi-directional
cross-modality constrained top-ranking loss is employed to
enhance the discriminability of the learnt feature represen-
tation. Meanwhile, to address the large intra-class intra-
modality variations, an intra-modality constraint is incorpo-
rated to train the network. Additionally, identity loss is fur-
ther integrated to learn identity-specific information. Exten-
sive experiments illustrate the superiority of the proposed
method when compared with the state-of-the-arts.
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