
Visibly Pushdown Automata for Streaming XML

Viraj Kumar∗ P. Madhusudan Mahesh Viswanathan†

University of Illinois at Urbana-Champaign
Urbana, IL, USA

{kumar, madhu, vmahesh}@cs.uiuc.edu

ABSTRACT
We propose the study of visibly pushdown automata (Vpa)
for processing XML documents. Vpas are pushdown au-
tomata where the input determines the stack operation, and
XML documents are naturally visibly pushdown with the
Vpa pushing onto the stack on open-tags and popping the
stack on close-tags. In this paper we demonstrate the power
and ease visibly pushdown automata give in the design of
streaming algorithms for XML documents.

We study the problems of type-checking streaming XML
documents against SDTD schemas, and the problem of typ-
ing tags in a streaming XML document according to an
SDTD schema. For the latter problem, we consider both
pre-order typing and post-order typing of a document, which
dynamically determines types at open-tags and close-tags
respectively as soon as they are met. We also generalize the
problems of pre-order and post-order typing to prefix query-
ing. We show that a deterministic Vpa yields an algorithm
to the problem of answering in one pass the set of all answers
to any query that has the property that a node satisfying the
query is determined solely by the prefix leading to the node.
All the streaming algorithms we develop in this paper are
based on the construction of deterministic Vpas, and hence,
for any fixed problem, the algorithms process each element
of the input in constant time, and use space O(d), where d
is the depth of the document.

Categories and Subject Descriptors
H.2.1 [Information Systems]: Logical Design—schema
and subschema; H.2.3 [Information Systems]: Lanuages—
data description languages (DDL), query languages; F.1.1
[Theory of Computation]: Models of Computation—au-
tomata

General Terms
Algorithms, Theory

Keywords
XML, streaming algorithms, schema, typing, query, push-
down automata
∗Supported by NSF CCF 04-29639
†Supported by NSF CCF 04-48178

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

1. INTRODUCTION
The eXtensible Markup Language (XML) has become the

standard for data exchange, particularly on the web [26, 1].
An XML document is a linear representation of hierarchi-
cally structured data. The latter is best viewed as a tree,
with the edges of the tree encoding the hierarchy. Hierarchi-
cally structured data can be encoded into linear structures
in different ways; XML is the popular way, where the tree is
represented using open-tags and close-tags, and the paran-
thesis structure defined by the tags encodes the hierarchical
information. Naturally, the study of XML has concentrated
on the tree it represents; for example, document types are
represented using the parse-trees generated by specialized
DTDs [22], XML query languages have modalities like “par-
ent” and “child” that refer to the tree edges, and tree au-
tomata (over unranked trees) have been used to model and
solve decision problems for XML [25, 20, 9, 11, 16].

An XML document is a linear word structure, and though
formalisms based on the tree representation of the document
are useful, they are awkward when designing algorithms for
processing XML. While one could take an XML document,
convert it into a tree, and then apply algorithms for the tree,
there are several settings where such changes of representa-
tion is not feasible.

One class of applications for which building the tree rep-
resentation of a document is infeasible is in the processing
of streams of large XML documents. Streaming algorithms
process input data as and when they arrive (for example,
streaming stock market data), and have to process them
with as little time and space as possible. Building trees rep-
resenting the document would make little sense. Not sur-
prisingly, streaming algorithms proposed for XML do not
build the tree [7, 13], and in fact theoretical algorithms for
streaming XML are often based on pushdown automata (not
tree automata) [13, 24, 11]. However, there are no standard
automata models for streaming XML; pushdown automata
are not appealing as they do not define a robust tractable
class of languages: they are not closed under complement,
inclusion is undecidable, etc.

The main thesis of this paper is that visibly pushdown au-
tomata (Vpa [4]) are the right model for processing stream-
ing XML. A Vpa is a pushdown automaton whose stack
operations are determined by the input letter it reads. An
XML document is best seen as a nested word: a linear struc-
ture (word) with a nesting relation formed by associating
open-tags with their matching close-tags. A visibly push-
down automaton can reconstruct the nesting relation by
pushing onto the stack on open-tags and popping from it on

close-tags. Visibly pushdown automata, unlike pushdown
automata, define a robust class of languages. The class is
closed under all boolean operations, admits decidable pro-
cedures for problems such as inclusion and emptiness, and
we can show that it is precisely as powerful as regular tree
languages accepting the tree representation of the data [4].
The most important feature is that these automata are de-
terminizable, which will help us in building streaming algo-
rithms. Furthermore, recent work on visibly pushdown lan-
guages have exposed several interesting results including a
congruence based characterization and minimization results
that use a modular notion of these automata. These results
affirm the view that this class is very similar in tractability
and robustness to that of regular word languages.

In this paper, we argue that visibly pushdown automata
are an apt model for XML by studying algorithms for stream-
ing XML documents. We demonstrate the use of VPAs
in solving two main problems: (a) type-checking streaming
XML documents against SDTDs (specialized data-type def-
initions) [22], and of assigning types to tags while streaming
the document, and (b) in querying prefix -based queries on
XML streams, where the problem is to anwer the set of all
positions satisfying queries that are determined by the prefix
leading to a position.

An SDTD (which extends the notion of DTDs) defines
a class of XML documents using an extended context-free
grammar. The first result in this paper is a visibly pushdown
automaton model tailored for XML: we define a notion of
modular Vpa called XVPA (X for XML!) that exactly cor-
responds to schema defined by SDTDs. This gives a natural
machine characterization of SDTDs. By applying results in
the literature on visibly pushdown automata to XVPAs, in
particular (a) determinability of VPAs [4], (b) the expres-
sive power of deterministic single-entry modular VPAs [3],
and (c) congruence-based minimization results for complete
multi-entry modular VPAs [14], we derive (minimal) stream-
ing machines.

We first study the problem of type-checking streaming
XML documents against SDTDs. Using the fact that Vpas
can be determinized to get single-entry modular Vpas (Sevpas),
we show that these automata type-check streaming XML
documents against SDTD-defined types. Further, by com-
bining the set of single-entry modules into a single module
with multiple entries, Sevpas can be interpreted as com-
plete multi-entry modular Vpas, for which we have recently
obtained a minimization result [14]. Unlike the pushdown
machines constructed in [24], we obtain provably minimal
recognizers that optimize the number of states in two ways:
they combine strucural conditions shared both between spe-
cializations of the same tag, and across different tags.

We then turn to the problem of typing a document. For a
document that conforms to an SDTD, the types associated
with a tag are the specializations that admit a parsing of the
document with respect to the SDTD. Typing a document
facilitates querying (for example, a query asking for all tags
that have a particular specialization can be answered using
such a typing). We study the problem of assigning types to
tags while reading a streaming XML document.

A tag is said to be pre-order typed if its type is unique and
can be assigned as soon as meeting its open-tag; similarly,
a tag is said to be post-order typed if its unique type is de-
termined at the close-tag. An SDTD is said to be pre-order
typed if all its tags are pre-order typed in all documents

that accord with the SDTD. Pre-order typed SDTDs cor-
respond to restrained competition grammars and have been
syntactically and semantically characterized [18, 17]. We
show automata-theoretic characterizations of pre- and post-
order typed schemas 1. The characterization of pre-order
typed schemas is beautifully simple in terms of XVPAs: a
schema is pre-order typed if and only if it can be accepted
by a deterministic XVPA. This is a very natural and intu-
itive characterization– when reading an open-tag, the XVPA
must be able to determine the type of the tag and hence call
the appropriate module deterministically.

We then turn to dynamically typing streaming documents.
Even though a schema may not be pre-order typed, some or
all of its tags may be pre-order typed in a particular docu-
ment. We show that for any SDTD, we can build a deter-
ministic VPA that reads streaming XML documents, and
dynamically pre-order types the open-tags whenever possi-
ble. More precisely, if in the current document read, the
type of a tag is determined by the prefix of the document
read thus far, then the automaton will determine its type
when reading the open-tag. We also prove a similar result
for partially post-order typing documents at close-tags for
streaming documents. We also show that checking if a tag
is pre-order typed in an SDTD (across all documents) is
decidable in polynomial time.

Finally, we generalize the results on pre-order and post-
order typing to prefix querying. We consider monadic queries
expressed in a sub-logic of monadic second order logic (MSO),
which we call Pre-MSO. Queries here are MSO formulas with
one free variable, where all quantified positions are required
to occur before the position denoted by the free variable.
We show that for such queries, determining if a position in
a document satisfies a query depends solely on the tags seen
before the position. Furthermore, for any such query we
can build a deterministic VPA that can answer such queries
while processing an XML document in a streaming fashion.
Since the problems of dynamically typing (pre-order and
post-order) can be expressed in our logic Pre-MSO, our ob-
servations on pre-order and post-order typing can be seen as
a consequence of these results. However, our direct construc-
tions for the pre-order and post-order typing are more effi-
cient in terms of the resources used by the resulting stream-
ing algorithm. There has been a previous characterization
of queries that can be answered by a 1-pass streaming algo-
rithm (see [19]) in terms of constraint systems and pushdown
forest automata; our results in terms of Pre-MSO and VPAs
can be seen a reformulation of the Neumann-Seidl result in
terms of logic and pushdown machines on words.

In summary, VPAs emerge as a simple apt model for pro-
cessing XML, particularly in the design of streaming algo-
rithms. The rich set of results obtained for visibly pushdown
languages, including determinization and minimization of
modular machines, find immediate use in designing stream-
ing algorithms for XML.

We have already several other results which we have not
reported here (including results on typability, improved com-
plexity of static type-checking, etc.) that we have proved
using the VPA model; these and proofs of the theorems in
this paper can be found in the technical report [15].

Related work in automata theory: Viewing XML doc-

1By “schemas”, we mean a collection of documents defined
by an SDTD. We do not mean the language “XML Schema”.

uments as trees, visibly pushdown automata correspond to
automata that process trees by reading them on an infix
traversal, using a stack to push whenever they go down a
left branch, and popping it when they return to process
the right branch. The notion of visibly pushdown automata
have been used implicitly in processing XML streams in the
literature (in [24, 9, 19, 10] and as XPush machines in [11]).
Note that there is only one copy of the automaton process-
ing the tree (in contrast to tree automata). An alternate
model defined in the literature is tree-walking automata [2,
21], which essentially has only one copy of the automaton
but can walk up and down the input tree. However these au-
tomata do not have access to a stack and are strictly weaker
than tree automata in expressive power [6]. In contrast, vis-
ibly pushdown automata capture the entire class of regular
tree languages [4].

2. PRELIMINARIES
Let Σ be a fixed finite alphabet of “open tags”, and let

Σ = {c | c ∈ Σ} be the corresponding alphabet of “close

tags”. Let bΣ = (Σ∪Σ). XML documents will be treated as

words over the input alphabet bΣ.
A well-matched word is any word generated by the gram-

mar: W → cWc, W → WW , W → ǫ, where we have a rule
W → cWc for every c ∈ Σ. The grammars and automata
we consider in this paper will always accept only languages
of well-matched words. The set of all well-matched words
over bΣ will be denoted by WM (bΣ). A word u ∈ bΣ∗ is said to

have matched closing tags if there is some w ∈ WM (bΣ) such
that u is a prefix of w. The set of all words with matched

returns (closing tags) will be denoted by MR(bΣ).
Document-type definitions (DTDs) define restrictions on

the structure of documents. These definitions hence describe
languages over bΣ, that correspond to the documents that ac-
cord with the document type. Since DTDs are not powerful
enough, we use in this paper an extended version of DTDs
called specialized document-type definitions (SDTDs) [22].
We give pushdown automata based descriptions of these lan-
guages, which are a subclass of context-free languages.

An SDTD is essentially a context-free grammar; however,
each non-terminal of the SDTD is associated with a tag, and
the idea is that every non-terminal implicitly generates the
open-tag (c) and close-tag (c) whenever the non-terminal is
expanded. Non-terminals are called “specializations” in the
XML context, and we will also call them “modules” in this
paper.

Let M be a finite set of specializations or modules and let
µ : M → Σ be a surjective mapping. Elements of µ−1(c) cor-
respond to specializations of symbol c, and µ is the mapping
between the specialized alphabet M and the unspecialized
alphabet Σ.

SDTDs will be specified using extended context-free gram-
mars. An extended context-free grammar d is a set of rules
that map each m ∈ M to a regular expression over M . We
now define its semantics. Let us denote M = {m | m ∈ M}.

For every m ∈ M , we define Lspl
d (m) ⊂ (M ∪ M)∗ as the

smallest sets such that

Lspl
d (m) ⊇ {m.x.m | x ∈ Rd(w), w ∈ d(m)}

where: (1) Rd(ǫ) = {ǫ}, and (2) Rd(m.w) = Lspl
d (m).Rd(w).

The language over unspecialized symbols that m defines
is then Ld(m) = {µ(w) | w ∈ Lspl

d (m)}, where µ is extended

to words over (M ∪ M)∗ in the obvious way: µ(m) = µ(m)
and µ(m.w) = µ(m).µ(w).

Definition 1 (SDTD). An SDTD over (Σ, M, µ) is a
tuple (d, m0), where d is a mapping from M to regular ex-
pressions over M , and m0 is the start symbol. The language
of an SDTD (d,m0) is defined as Ld(m0). The size of an
SDTD (d, m0) is defined as the sum of the lengths of the
regular expressions defined by d.

Example 1. Let Σ = {movie, vhs , dvd , title, lang , subtitle},
and let the specialized alphabet be

M = {Movie,VHS ,DVD ,Title,Lang ,Unisub, Multsub}

where µ : M → Σ is defined so that Unisub and Multsub are
specializations of subtitle, and capitalized names are special-
izations of their uncapitalized counterparts. Finally, let d be
defined as follows:

d(Movie) = VHS + DVD
d(VHS) = Title.Unisub
d(DVD) = Title.(Unisub + Multsub)
d(Title) = ǫ

d(Unisub) = Lang
d(Multsub) = Lang .Lang+

d(Lang) = ǫ

Then (d,Movie) is an SDTD over (Σ, M, µ) accepting words
like:

movie.dvd.title.title.subtitle.lang.lang.lang.lang .subtitle.dvd.movie

Type-checking and typing XML documents
The two problems we consider in this paper are type-checking
streaming XML documents, and pre- and post-order typing
of XML documents. We define these notions now.

The type-checking problem is to check, given an SDTD,
whether an input document belongs to the language of the
SDTD. In the streaming context, we assume that the docu-
ment is presented as a word, and the type-checking must be
accomplished reading the word only once, left to right, and
using as little time and space as possible.

Given an SDTD, and a document that accords to the type
defined by the SDTD, a tag c in the document can get dif-
ferent types depending on how the document parses. More

precisely, if w ∈ bΣ∗ belongs to the language of an SDTD
(d, m0), and w[i] = c ∈ Σ, then we say that (w, i) has type

m (where m is a specialization), if there exists x ∈ Lspl
d (m0)

such that µ(x) = w and x[i] = m. In general, (w, i) can
have many types with respect to an SDTD.

An occurrence of an open (or close) tag in a document
is prefix typed (with respect to a schema) if the tag’s type
is determined by the prefix of the document till that point.
Pre-order typing refers to open tags being prefix typed while
post-order typing refers to close tags being prefix typed.

Definition 2. For an open or close tag a ∈ Σ∪Σ, we say

a is prefix typed at position i in w ∈ WM (bΣ), if w = uav,
|ua| = i, and if there is a unique m ∈ µ−1(a) such that

for all v′ ∈ bΣ∗, whenever uav′ ∈ Ld(m0) and (uav′, |ua|)
has type m′, then m′ = m. In this case, we say that a has
prefix-type m at position i in w.

A tag c ∈ Σ is pre-order typed (post-order typed) in an
SDTD (d, m0) if for every document w ∈ Ld(m0) and every

position i ≤ |w| such that w[i] = c (resp. w[i] = c), c (resp.
c) is prefix-typed at position i in w.

An SDTD (d, m0) is pre-order typed (post-order typed) if
every tag is pre-order typed (resp. post-order typed).

Said in other words, a position i is prefix-typed in w
if a streaming algorithm that reads w can determine the
(unique) type of (w, i) at position i.

We study three problems related to typing:

• Automata characterization: which kind of Vpas cap-
ture SDTDs that are pre-order and post-order typed.

• Dynamic pre-order typing: Can we build an automa-
ton that streams input and determines the type of
open-tags (or close-tags) as soon as it meets them, pro-
vided the type has been determined by the prefix read
till that point.

• Given an SDTD and a tag c, can we effectively de-
cide if in all documents conforming to the SDTD, the
type of every occurrence of the open-tag (or close-tag)
corresponding to c is prefix-typed?

Visibly pushdown automata
The languages defined by SDTDs do not encompass all context-
free languages. Viewing an SDTD as a normal grammar, a
rule in the SDTD of the form ma → mb.mc, where µ(ma) =
a, µ(mb) = b and µ(mc) = c, translates to a rule ma →
a.mb.mc.a. In other words, each non-terminal is “guarded”
by a tag that occurs before and after the expansion of the
non-terminal. The usual translation of this grammar into a
pushdown automaton will result in a machine that pushes at
the open-tags and pops at the close-tags. Visibly pushdown
automata are precisely these kind of restricted machines [4].
Since Vpas were first motivated in the program analysis con-
text, the symbols on which the automaton pushes and pops
are called calls and returns, instead of open-tags and close-
tags.

Definition 3 (VPA). A visibly pushdown automaton
(Vpa) over (Σ, Σ) is a tuple A = (Q, q0, Q

F , Γ, δ), where Q
is a finite set of states, q0 ∈ Q is the initial state, QF ⊆ Q
is the set of final states, Γ is a finite stack alphabet, and
δ = δcall ∪ δret is the transition relation, where:

• δcall ⊆ ((Q × Σ) × (Q × Γ));

• δret ⊆ ((Q × Σ × Γ) × Q).

We denote a transition (q, c, q′, γ) ∈ δcall as q
c/γ
−−→ q′,

and a transition (q, c, γ, q′) ∈ δret as q
c/γ
−−→ q′. A transition

q
c/γ
−−→ q′ is a push-transition, where the automaton read-

ing c changes state from q to q′, pushing γ onto the stack.

Similarly, a transition q
c/γ
−−→ q′ is a pop-transition, where

on reading c with γ on the top of the stack, the automaton
pops γ off the stack and changes state from q to q′.

A configuration of a Vpa A is a pair (q, s) ∈ Q × (Γ∗.⊥),
where ⊥ is a special bottom-of-stack symbol (⊥ /∈ Γ). If

a ∈ bΣ, we say that (q1, s1)
a
−→A (q2, s2) if and only if one of

the following conditions are true:

• a = c ∈ Σ, s2 = γ.s1 and (q1, c, q2, γ) ∈ δcall, or

• a = c ∈ Σ, s1 = γ.s2 and (q1, c, γ, q2) ∈ δret.

We extend the definition of
a
−→A to words over bΣ∗ in the

natural manner. The language L(A) accepted by Vpa A is

the set of words w ∈ bΣ∗ such that (q0,⊥)
w
−→A (q,⊥) for

some q ∈ QF . A language L is called a visibly pushdown
language (Vpl) if there some Vpa A such that L = L(A).

We now review some of the basic properties of visibly
pushdown automata and their languages which we will ap-
peal to later in the paper. To begin with, Vpls define a
robust class of languages closed under boolean operations.

Proposition 1. [4] If L1 and L2 are Vpls over a com-
mon alphabet (Σ, Σ), then L1 ∪L2, L1 ∩L2 and L1 are also
Vpls with respect to (Σ, Σ).

In addition, Vpls have a logical characterization using the
monadic second order theory over words augmented with a
binary matching predicate ν, denoted MSOν .

Proposition 2. [4] A language L over (Σ, Σ) is a Vpl
iff there is an MSOν sentence ϕ over (Σ, Σ) that defines L.

Unlike pushdown automata, Vpas can be determinized
without any loss in expressive power. We state this formally:

Proposition 3. [4] For any n-state Vpa M over (Σ, Σ),

there is a deterministic Vpa M ′ over (Σ, Σ) with O(2n2

)

states and with stack alphabet of size O(2n2

· |Σ|) such that
L(M ′) = L(M).

Finally, the inclusion problem (which is undecidable for
pushdown automata) is decidable for Vpas.

Proposition 4. [4] Given Vpas A1 and A2, the inclu-
sion problem L(A1) ⊆ L(A2) is decidable in Exptime. Fur-
thermore, if A2 is deterministic, then the problem is decid-
able in Ptime.

Modular visibly pushdown automata
We now introduce modular Vpas. Given an SDTD (or in
fact, any context-free grammar), one can associate a ma-
chine (module) with every non-terminal, which essentially
checks whether the word it reads belongs to a derivation of
the non-terminal. While doing so, such a module may need
to expand other non-terminals, and can do so by “calling”
the modules corresponding to these non-terminals. This in-
tuition will lead us to capturing SDTDs precisely using a
modular notion of Vpas. We have studied modular Vpas in
an earlier paper [3], where we were motivated by their nat-
ural use in program modeling: the various modules corre-
spond to procedures of a program which can call each other.

We first define a notion of a modular Vpa, and then define
restricted versions of it called Xvpa (XML Vpa) and Sevpa
(single-entry Vpa). The former will turn out to be the exact
machine analog of SDTDs, while the latter has been studied
earlier by us, and will help in proving various constructions
in this paper. Modular Vpas have states partitioned into
modules, demand that the symbol pushed onto the stack is
always the current state, and ensure that if a module calls
another, then upon return the control returns to a state of
the calling module.

Definition 4 (Modular VPA (µ-VPA) ; SEVPA).
Fix Σ, M and µ : M → Σ. A modular Vpa (or µ-Vpa)
over (Σ, M, µ) is a tuple A = ({(Qm, em, δm)}m∈M , m0, F),
where for each m ∈ M ,

• Qm is a finite set of states of module m 2

• em is a distinguished entry state of module m 3

• δm = δcall
m ∪ δret

m , where

δcall
m ⊆ {qm

c/qm

−−−→ en | n ∈ µ−1(c)}

δret
m ⊆ {qm

c/pn

−−−→ qn | n ∈ µ−1(c)} and is determinis-

tic, i.e. qn = q′n whenever qm
c/pn

−−−→ qn and qm
c/pn

−−−→
q′n

• m0 ∈ M is a distinguished start module

• F ⊆ Qm0
is the set of final states.

A single-entry Vpa (Sevpa) over (Σ, M, µ) is a µ-Vpa such
that the mapping µ : M → Σ is a bijection.

Note that we have defined µ-Vpas such that the return tran-
sitions are always deterministic; this is for technical conve-
nience. A µ-Vpa A is said to be deterministic if δcall

m is deter-
ministic as well, i.e. if (qm, c, en, qm), (qm, c, en′ , qm) ∈ δm,
then en = en′ . An Sevpa is a µ-Vpa that has exactly one
module for each tag.
Semantics. The semantics of a µ-Vpa is defined by its
corresponding Vpa. Let A = ({(Qm, em, δm)}m∈M , m0, F)
be a µ-Vpa over (Σ, M, µ). Then A′ = (Q, q0, {qf}, Γ, δ)
is the Vpa over (Σ, Σ) where Q = {q0, qf} ∪ (

S
m∈M Qm),

Γ = Q and

δ = (
[

m∈M

δm) ∪ {q0
µ(m0)/q0
−−−−−−→ em0

} ∪ {q
µ(m0)/q0
−−−−−−→ qf | q ∈ F}

We define L(A), the language accepted by µ-Vpa A, as
L(A′). Note that a µ-Vpa always accepts well-matched
words which are of the form µ(m0)wµ(m0).

A µ-Vpa module m intuitively accepts many well-matched
word languages. For example, a single module can distin-
guish two languages L1 and L2, and use return edges (“ex-
its”) to convey the difference to the calling module. A spe-
cialization (non-terminal) of an SDTD, however, is more re-
stricted: it can be utilized to capture only one language.
We will define Xvpas as essentially automata that have this
restriction, and the concept of exit below will be useful.

Definition 5 (Exit). Let A = ({(Qm, em, δm)}m∈M , m0, F)
be a µ-Vpa over (Σ, M, µ). A non-empty set Xm ⊆ Qm is

a (pn, qn)-exit for module m in A if ∀qm. qm
c/pn

−−−→ qn iff
qm ∈ Xm. In other words, a non-empty set Xm is a (pn, qn)-
exit if it is the exact set of states of module m from which
popping pn from the stack leads to state qn. A non-empty set
Xm is an exit of module m in A if there exist states pn, qn

such that Xm is a (pn, qn)-exit.

Remark 1. Note that for every pn, qn, m, there is at most
one (pn, qn)-exit for module m in a µ-Vpa A. If such an exit
exists, we denote it by Xm(pn, qn).

2Unless otherwise specified, m, n, etc. will range over mod-
ules, and pm, qm, q′m, etc. will range over states in Qm.
3Modular Vpas can be defined in a more general way where
every module can have multiple entries e1

m, . . . ek
m. In this

paper, we will largely focus on modular Vpas that have only
a single entry per module.

Intuitively, the language of well-matched words that will
take the automaton from pn to qn is the language defined
by the module m with final states Xm(pn, qn).

Definition 6 (XVPA). An Xvpa over (Σ, M, µ) is
a tuple A = ({(Qm, em, Xm, δm)}m∈M , m0, F) such that
({(Qm, em, δm)}m∈M , m0, F) is a µ-Vpa over (Σ, M, µ), and
the following single-exit property holds:

for every m ∈ M , Xm is the unique exit of module m

An Xvpa is intuitively a µ-Vpa where each module defines
only one language, no matter which state it is called from.
Recall that we require µ-Vpas to be deterministic on returns;
hence single-exit ensures that if we call a module m from
state pn, then exiting from m we end in a unique state qn

no matter which state in m we exit from.

Example 2. An Xvpa that defines the same language as
the SDTD in Example 1 is given in Figure 1, and for exam-
ple, {xmultlang} is the unique exit for module “multlang”.

Equivalence of SDTD and XVPA
We now show that Xvpas are an appropriate automaton
model for SDTDs, by demonstrating their equivalence. More
specifically, we will show that for every SDTD there exists an
equivalent Xvpa where the modules of the Xvpa exactly cor-
respond to the specializations in the SDTD, and vice versa.
Intuitively, given an SDTD, we can construct an XVPA in
which each module corresponds to a specialization in the
SDTD, and the module checks whether a word belongs to
the language of the specialization.

Theorem 1. For every SDTD (d, m0) over (Σ, M, µ), there
is an Xvpa A over (Σ, M, µ) such that L(A) = Ld(m0).
Furthermore, for every Xvpa A over (Σ, M, µ), there is an
SDTD (d, m0) over (Σ, M, µ) such that L(d, m0) = L(A).

Proof. Let (d, m0) be an SDTD over (Σ, M, µ). For ev-
ery m ∈ M , let Dm be the deterministic (but perhaps incom-
plete) finite automaton (DFA) obtained from the minimized
automaton for the regular expression d(m) after discarding
all “dead” states, i.e. states from which no final states can
be reached. Specifically, let Dm = (Qm, em, QF

m, δm), where

• Qm is a finite set of states, em ∈ Qm is the initial state

• QF
m ⊆ Qm is the set of final states

• δm is a (partial) function from Qm × M to Qm

• for every q ∈ Qm, ∃x ∈ M∗ such that δm(q, x) ∈ QF
m

(no dead states)

Let A = ({(Qm, em, Xm, δ′m)}m∈M , m0, F) be the XVPA,
where

• Xm = QF
m for every m ∈ M , F = QF

m0

• for every m ∈ M , δ′m = δ′
call
m ∪ δ′

ret
m , where:

δ′
call
m = {(qm, µ(n), en, qm) | δm(qm, n) = pm}

δ′
ret
m = {(q, µ(m), qn, pn) | δn(qn, m) = pn and q ∈ QF

m}

Note that δ′
ret
m is deterministic, since δn is a (partial) func-

tion. Also, by definition of δ′
ret
m , Xm is the unique exit of

module m. Hence, A is indeed an Xvpa.

emovie

xmovieeunilang xunilang

etitle

xmultlang emultlang

ealtlang

lang/emovie

title/eunilang

lang/emovie

title/emultlang

lang/emovie

title/eunilang

lang/emovie

lang/xmultlang lang/xmultlang

title/emultlang

Figure 1: XVPA for the given SDTD

Further, for every well-matched word w ∈ (M ∪ M)∗,
it is easy to show by induction on the length of w, that

mwm ∈ Lspl
d (m) if and only if (em,⊥)

µ(w)
−−−→A (q,⊥) for

some q ∈ Xm. Since Xm0
= F , it follows that L(A) =

Ld(m0).
Conversely, let A = ({(Qm, em, Xm, δm)}m∈M , m0, F) be

an Xvpa. Define an SDTD (d,m0) where, for every m ∈ M ,
d(m) is the regular expression corresponding to the DFA
Dm = (Qm, em, QF

m, δ′m), where QF
m = Xm and δ′m is defined

as follows: for every qm ∈ Qm and n ∈ M , if (q, µ(n), qm, pm) ∈
δm for some q ∈ Xn, then δ′m(qm, n) = pm. Note that this
is well-defined because A has the single-exit property.

Once again, for every well-matched word w ∈ (M ∪ M)∗,
it is easy to show by induction on the length of w, that

mwm ∈ Lspl
d (m) if and only if (em,⊥)

µ(w)
−−−→A (q,⊥) for

some q ∈ Xm. Hence, L(A) = Ld(m0).

Remark 2. We will use the translation from SDTDs to
XVPAs in the sequel. For this purpose we will assume that
the XVPA is trimmed: for every state q in any module m,
we will assume that there is a well-matched word w that leads
from q to some state in Xm. If this wasn’t the case, we can
remove q and the transitions incident on q without changing
the language of the XVPA.

Now observe that in such an XVPA, for every run on uc ∈
MR(bΣ) there exists a v such that the run can be extended
on v such that it is accepting (showing ucv ∈ L(A)). This
property will simplify many of our constructions.

In Section 4, we will prove that deterministic Xvpas cor-
respond exactly to pre-order typed SDTDs. Hence, by The-
orem 1, we have:

Remark 3. If the regular expressions in SDTD1 and SDTD2

are given as deterministic finite automata (DFA), and SDTD2

is pre-order typed, then the sub-typing problem SDTD1 ⊆
SDTD2 is decidable in Ptime.

Note that a similar result was obtained in [17], for the case
when both SDTD1 and SDTD2 are pre-order typed.

The sub-typing problem was also studied in [24], in the
context of streaming algorithms for validating XML docu-
ments using a finite amount of memory, under the assump-
tion that the XML document is well-matched. If A1 and A2

are DFAs over bΣ, then an Exptime upper bound for deciding

whether L(A1) ∩ WM (bΣ) ⊆ L(A2) ∩ WM (bΣ) was obtained
by a reduction to the inclusion problem for tree automata.
It was left as an open problem whether this bound could be
improved. By Proposition 4, however, we immediately have
a Ptime upper bound for this problem, even when A1 and
A2 are deterministic Vpas:

Theorem 2. If A1 and A2 are DFAs (or even determin-

istic Vpas) over (Σ, Σ), then checking if L(A1)∩WM (bΣ) ⊆

L(A2) ∩ WM (bΣ) is decidable in Ptime.

3. TYPE-CHECKING
In this section, we present several results (some of which

are new) pertaining to SDTDs, that follow immediately from
existing results for Vpas. We begin with results in the
streaming context, where one is required to determine whether
or not an XML document belongs to the language defined
by an SDTD.

Streaming
Deterministic automata working on strings are the most nat-
ural model for processing streams of data. Since Vpls al-
ways have deterministic acceptors [4], Vpas are a convenient
abstraction for studying streaming problems. In this section
we look at some known results for Vpas and examine their
consequences for type checking XML documents.

The following Proposition shows that deterministic Sevpas
capture the class of SDTDs.

Proposition 5. [3] For every SDTD (d,m0) over (Σ, M, µ),
there is a deterministic Sevpa A over (Σ, Σ, id) 4 such that
L(A) = L(d, m0).

The above proposition is true since an SDTD is always
captured by an Xvpa, and results in [3] show that any lan-
guage accepted by a Vpa can be accepted by a deterministic
Sevpa.

Hence, deterministic Sevpas give a streaming algorithm
to recognize SDTDs. The streaming algorithm simply sim-
ulates the deterministic Sevpa on the input and checks if it
4id denotes the identity function

is accepting. Note that the algorithm will use only constant
space in addition to a stack of symbols over a fixed alpha-
bet, where the stack height is bounded by the depth of the
nesting of tags in the document (which is typically not very
large when compared to the size of the document).

Such an algorithm was already observed in [24] using push-
down automata; in fact the pushdown automaton they con-
struct is essentially an Sevpa! By combining the set of
single-entry modules into a common module, any such Sevpa
can be reinterpreted as a complete multi-entry µ-Vpa. We
can now appeal to the following Proposition to prove that
there is a minimal streaming automaton recognizing a given
SDTD.

Proposition 6. [14] For every complete multi-entry µ-
Vpa A, there is a unique (up to isomorphism) minimum-
state deterministic multi-entry µ-Vpa A′ such that L(A′) =
L(A).

Hence, the minimization construction outlined in [14] gives
a way to minimize the space used by a streaming type-
checking algorithm that is based on pushdown automata.
Thus, unlike the result in [24], we are able to construct a
provably minimal streaming recognizer for an SDTD.

4. PRE-ORDER TYPING
In this section, we study the class of XML schema that are

pre-order typed, give an automata theoretic characterization
of them, develop a streaming algorithm that determines the
types of open-tags whenever possible, and also show that
checking whether a tag can be pre-order typed is solvable in
polynomial time.

4.1 Automata Theoretic Characterization
Pre-order typing has a very simple characterization in

terms of the structure of Xvpa defining the XML schema.
An SDTD is pre-order typed exactly when its Xvpa trans-
lation is deterministic:

Lemma 1. An SDTD (d, m0) is pre-order typed if and
only if there is a deterministic XVPA A over the same mod-
ules such that L(A) = Ld(m0).

Proof. Let (d,m0) over (Σ, M, µ) be a pre-order typed
SDTD and let A = ({(Qm, em, Xm, δm)}m∈M , m0, F) be the
corresponding Xvpa as defined in Theorem 1. Recall that by
definition of Xvpa δret

m is deterministic for each m. Consider
some state q of A and let u be a string such that A has
some computation on u that ends up in state q. Now since
(d, m0) is pre-order typed, there is a unique specialization
m associated with c in the string uc. Thus, the state q must
have only the transition to em on the symbol c. Hence, δcall

m

is deterministic for every module m.
Conversely, suppose A = ({(Qm, em, Xm, δm)}m∈M , m0, F)

is a deterministic Xvpa and let (d, m0) be the SDTD corre-
sponding to it (as defined in Theorem 1). Consider a string
u, and let q be the state reached by A on the string u. Since
A is deterministic, for any c ∈ Σ there is at most one m
such that q has a transition to em on symbol c. Thus, m is
the unique specialization associated with c in the string uc.
Hence, (d, m0) is pre-order typed.

4.2 Dynamic pre-order typing
We now study the problem of dynamic pre-order typ-

ing. Recall that this problem asks for an automaton that
streams input and determines the type of open-tags as soon
as it meets them, provided the type has been determined
by the prefix read till that point. Consider the XVPA A′ =
({(Qm, em, Xm, δm)}m∈M , m0, F) corresponding to (d, m0)
as defined in Theorem 1. This XVPA is deterministic on
return transitions but, in general, is non-deterministic on
call symbols. We construct a deterministic automaton A
that simulates the behaviour of A′ on all applicable special-
izations of call symbols. After reading prefix u, if there is
only one applicable specialization m of call symbol c, then A
outputs m as the uniquely determined prefix-type of c at po-
sition |uc|. For every c ∈ Σ, let Qc = {q ∈ Qm | µ(m) = c}.
Let A = (Q, q0, Q, δ) be a VPA without final states, where
Q = {P ⊆ Qc | P 6= ∅, c ∈ Σ}, q0 = {em0

} and δ is defined
as follows:

P
c/P
−−→ P ′, where

P ′ = {em | µ(m) = c and ∃p ∈ P. p
c/p
−−→A′ em} 6= ∅

P
c/P ′′

−−−→ P ′, where

P ′ = {p′ | ∃p ∈ P, p′′ ∈ P ′′. p
c/p′′

−−−→A′ p′} 6= ∅

Further, A outputs m on transition P
c/P
−−→ P ′ if and only

if P ′ = {em} for some m ∈ µ−1(c). We claim that for
every open tag c that has prefix-type m at position |uc|
in |ucv|, the Vpa A outputs m after reading the input uc.
First observe that by construction of A and by Remark 2, if
q0

uc
−→A P and |P | > 1, then there are two distinct m, m′ ∈

µ−1(c) and strings v, v′ ∈ bΣ∗ such that ucv, ucv′ ∈ Ld(m0)
and (ucv, |uc|) has type m whereas (ucv′, |uc|) has type m′.
Hence, c is not prefix-typed at |uc| and the automaton A
does not output anything on reading c after input u. How-
ever, if P = {em}, then by construction of A, for every

v′ ∈ bΣ∗ such that ucv′ ∈ Ld(m0), (ucv′, |uc|) has type m.
Therefore, c has prefix-type m at position |uc| in ucv, and
A in fact outputs m on reading uc.

Theorem 3. For any SDTD, we can effectively construct
an algorithm that dynamically pre-order types the tags in a
streaming XML document. Further, this algorithm uses only
space O(s.d), where s is the size of the SDTD and d is the
depth of the document.

4.3 Checking partial pre-order typing of schema
We now consider the following problem: Given an SDTD

(d, m0), which open tags are pre-order typed in every docu-
ment defined by (d, m0)?

In the procedure for converting an SDTD into an XVPA
defined in Theorem 1, we chose a deterministic finite state
automaton Dm corresponding to every regular expression
d(m). This results in an automaton that may be exponen-
tial in the size of the SDTD (d, m0). Instead, for every
m, let Dm be a non-deterministic finite state automaton
(one that is linear in the size of d(m) can be constructed
efficiently). We therefore obtain a non-deterministic VPA
A = (Q, q0, F, Q, δ) such that L(A) = Ld(m0), and further,
|Q| = O(n), where n is the size of (d, m0). To efficiently
determine whether an open tag c is pre-order typed or not,
we search for a witness to the fact that c is not pre-order
typed at some position. Such a witness consists of words

ucv, ucv′ ∈ Ld(m0) such that (ucv, |uc|) has type m whereas
(ucv′, |uc|) has type m′ for some m 6= m′. Searching for
such witnesses reduces to performing reachability in a VPA
A′ without final states defined as follows: A′ = (Q′, q′0, Q ×
Q, δ′) where Q′ = Q × Q × (Σ ∪ {∗}), q′0 = (q0, q0, ∗) and δ′

is defined as follows:

T1 : (q, q′, ∗)
c/(q,q′)
−−−−−→A′ (p, p′, ∗) if q

c/q
−−→A p

and q′
c/q′

−−→A p′

T2 : (q, q′, ∗)
c/(q1,q2)
−−−−−−→A′ (p, p′, ∗) if q

c/q1
−−−→A p

and q′
c/q2−−−→A p′

T3 : (q, q′, ∗)
c/(q,q′)
−−−−−→A′ (p, p′, c) if q

c/q
−−→A p,

q′
c/q′

−−→A p′ and p 6= p′

Lemma 2. For every open tag c ∈ Σ, c is pre-order typed
in (d, m0) if and only if no state (p, p′, c) is reachable from
the initial state in A′.

Intuitively, a state of the form (p, p′, c) is reachable in A′

whenever there are states q, q′ reachable on some common
input u in A, and there are distinct specializations m, m′ of
c such that module m (resp. m′) can be called from state
q (resp. q′). Then by Remark 2, there are strings v, v′ such
that ucv, ucv′ witness the fact that c not pre-order typable
at position |uc|. Since A′ has size O(n2) and reachability in
a Vpa can be determined in cubic time, we have:

Theorem 4. Given an SDTD (of size n), the problem of
checking whether c is pre-order typed in the SDTD is solvable
in time polynomial in n.

5. POST-ORDER TYPING
In this section, we give an automata theoretic charac-

terization of the class of XML schema that can be post-
order typed. Given a post-order typed SDTD, consider the
Xvpa corresponding to it. After reading a word u, if the
Xvpa meets an open-tag c, then c need not be prefix-typed
at position |uc|. Hence, the Xvpa may call several mod-
ules m1, . . . , mk. However, since the SDTD is post-order
typed, the type of c will get determined at the closing tag
c, i.e. at the time of exit from these modules. Hence it is
clear that the languages accepted by these modules must be
disjoint. More formally, we say that an Xvpa A has dis-
joint calls if for all states q in A and open tags c ∈ Σ, if
q

c
−→A em and q

c
−→A em′ for distinct m, m′ ∈ µ−1(c), then

Ld(m) ∩ Ld(m′) = ∅. We therefore have:

Lemma 3. An SDTD (d, m0) is post-order typed if and
only if there is an Xvpa A with disjoint calls over the same
modules such that L(A) = Ld(m0).

5.1 Dynamic post-order typing
We now turn to the problem of dynamically post-order

typing a streaming XML document. Our construction of
the deterministic Vpa A = (Q, q0, Q, δ) is as in Section 4.2
with the only modification that A outputs m on a return

transition P
c/P ′′

−−−→ P ′ if and only if P ⊆ Qm for some
m ∈ µ−1(c). Using a similar argument as before, we can
show that on any input, the above Vpa outputs the type
of every closing tag c at position |uc| whenever this can be
uniquely determined by reading the prefix u.

Hence an algorithm analogous to that reported in Theo-
rem dynpre follows.

5.2 Checking partial post-order typing of schema
We now consider the problem: Given an SDTD (d, m0),

which open tags are post-order typed in every document
defined by (d, m0)?

Once again we can express this as a reachability prob-
lem on an appropriately defined Vpa A′. Our construction
is identical to the construction defined in Section 4.3 ex-
cept that the condition T3 in the defintion of the transition
function δ′ is replaced with:

T3′ : (q, q′, ∗)
c/(q1,q2)
−−−−−−→A′ (p, p′, c) if

q
c/q1−−−→A p, q′

c/q2−−−→A p′

and q ∈ Qm, q′ ∈ Qm′

with m 6= m′

Similar to Lemma 2, we can show that a tag c is post-order
typed if and only if no state (p, p′, c) is reachable. Hence:

Theorem 5. Given an SDTD (of size n), the problem
of checking whether c is post-order typed in the SDTD is
solvable in time polynomial in n.

6. PREFIX QUERYING
The problem of pre-order (respectively post-order) typing

can be viewed abstractly as answering which open-tags (re-
spectively close-tags) satisfy the property of being uniquely
parsed as a particular specialized tag in an SDTD, provided
the property of whether a tag has this property is deter-
minable by reading the prefix of the document up till the
open-tag (respectively close-tag).

In this section, we generalize this idea, by defining a generic
class of queries (formalized using monadic second-order logic)
that have the property that a position in a document sat-
isfying the query is solely determined by the prefix of the
document till that point. This class of queries is indepen-
dent of the document-type definitions used to describe input
documents, and pre-order and post-order typing are simply
special instances of this class of queries.

The monadic second-order logic structures that we con-
sider will be over the nested structure [5] defined by a doc-

ument. More precisely, given any document w ∈ bΣ, let us

view the word as a linear bΣ labeled structure ([1, |w|],≤
, {Qa}a∈Σ, ν), where there are |w| elements corresponding
to each letter in w, ≤ is the linear order on this set of po-
sitions, each Qa is a unary predicate that is true on exactly
the positions labeled a (i.e. Qa = {i | w[i] = a), and ν is the
matching binary relation that associates each open-tag with
the corresponding close-tag (i.e. ν(x, y) holds iff w[x] ∈ Σ,
w[y] ∈ Σ, and w[x] . . . w[y] is well-matched).

Monadic second-order logic can be now defined as the
canonical logic over this structure with interpreted relations
≤, Qa’s and ν. Since we are interested in properties that
are determined by the prefix in a document, we define a re-
stricted version of MSO, called Pre-MSO, which allows only
quantification over positions that occur before the query po-
sition.

Formally, fix a first-order variable x. Then the set of all
Pre-MSO(x) formulas ϕ(x) (with x being the only free vari-
able) is defined as:

ϕ ::= y ∈ X | Qi(y) | y ≤ y′ | ν(y, y′) | ϕ ∧ ϕ | ¬ϕ

| ∃z(z ≤ x ∧ ϕ) | ∃X(ϕ)

where y, y′, z ∈ FV, z 6= x, X ∈ SV.

The logic Pre-MSO is a restriction that forces any query
written in the logic to depend only on the prefix of the word
till the particular point of query. Formally, for any word

w ∈ bΣ∗, let Answers(w,ϕ) be the set of of all positions i,
1 ≤ i ≤ w, such that ϕ(x) holds in w when x is interpreted
to be i.

Proposition 7. Let ϕ(x) be any Pre-MSO(x) formula
and let i ∈ Answers(w,ϕ). Then, for any word w′, |w′| ≥ i,
with w[1, i] = w′[1, i], i ∈ Answers(w′, ϕ) as well.

Consequently the set of answers to a query ϕ(x) in a word
w, which is the set of all positions i such that ϕ(x) is sat-
isfied when x is interpreted to be i, is determined when the
prefix up till i has been read. Hence, technically, we should
be able to output the answer positions i as soon as we read
the i’th letter in a document. We show that indeed this
is true, and there is a deterministic visibly pushdown au-
tomaton that can perform this task. From this we obtain a
streaming algorithm that uses space only linear in the depth
of a document, and can output the set of all answers to any
Pre-MSO(x) query.

Let us first define VPA with output.

Definition 7 (VPA with output). A marking visi-
bly pushdown automaton (Vpa) over (Σ, Σ) is a tuple A =
(Q, q0, Q

F , Γ, δ,M), where (Q, q0, Q
F , Γ, δ) is a VPA and

M ⊆ Q is a subset of marked states.

We say such a marking VPA A working on a word w ∈ bΣ
marks position i (1 ≤ i ≤ |w|) if there is some run of A on
w which reaches a marked state in M just after reading the
i’th letter in w. (Note that the set of final states play no
role in this definition.)

We can now show:

Theorem 6. Let ϕ be a Pre-MSO(x) formula over bΣ.
Then there is a deterministic marking VPA Aϕ that on any

word w ∈ bΣ∗ marks exactly the set of positions Answers(w,ϕ).

Proof. Let ϕ(x) be a Pre-MSO(x) formula. Now, con-
sider the set PrefixLang(ϕ), which is the set of all words u,
not necessarily well-matched, such that |u| ∈ Answers(u,ϕ),
i.e. the set of all words u such that ϕ(x) holds in u when x
is interpreted to be the last letter of u. It can be seen that
PrefixLang(ϕ) is expressible in (full) MSO.

Using the correspondence between monadic second-order
logic on nested structures and visibly pushdown automata [4,
5], it follows that the set Prefix − Lang(ϕ) can be (effec-
tively) recognized by a VPA. Let Bϕ = (Q, q0, Q

F , Γ, δ) be
an automaton accepting this language. Then the automaton
which will answer the queries will be Aϕ = (Q, q0, Q

F , Γ, δ, M),
where M = QF .

Intuitively, when reading a word w and when at position
i, the automaton B will mark i iff the prefix u uptil position
i already satisfies ϕ, when i is interpreted for x. Since we
know that w satisfies ϕ when x is interpreted to be i iff
u satisfies ϕ when x is interpreted to be i, the correctness
follows.

We can also show the converse, namely that every mark-
ing VPA (deterministic or nondeterministic) defines a query
that is expressible by a Pre-MSO formula ϕ(x). The proof of
this relies on the translation from VPAs to MSO, alongwith
observations similar to the ones made in the above proof;
we skip further details:

Theorem 7. For every query captured by a marking VPA,
there is an equivalent Pre-MSO formula ϕ(x) that defines the
same query.

As a corollary to Theorem 6 we have:

Corollary 1. For any Pre-MSO formula ϕ(x), there is
a streaming algorithm (which is effectively constructible) that
processes documents and outputs the set of all answers to the
query defined by ϕ(x). Moreover, this algorithm processes
each letter of the document in constant time, and utilizes
space at most O(d), where d is the depth of the document.

The algorithm simply simulates the deterministic VPA
constructed in Theorem 6; processing a letter can be done in
constant time (for a fixed formula ϕ) and the space required
is to store the state and the stack, which is O(d).

Sequential XPath is a restricted version of XPath that has
the property that a position satisfying a query is determined
by the prefix till the node [8] (it however has further restric-
tions aimed at limiting buffering input). Sequential XPath
has been defined and studied precisely to facilitate one-pass
querying with minimal buffering of input. Our result can
be seen as a generalization of this idea to the much larger
class of MSO-definable queries. A similar precise character-
ization of queries that can be answered by 1-pass streaming
algorithms is provided in [19]. There the characterization
is in terms of constraint systems and pushdown forest au-
tomata. Our results here can be seen as a reformulation of
those results in terms of logic and word automata.

We conclude this section by observing that our results
on dynamic pre-order and post-order typing can be seen as
special cases of Theorem 6.

Proposition 8. For any SDTD (d, m0) and specializa-
tion m, there is a Pre-MSO formula Preorderm

(d,m0)(x) such
that for any document w, Answers(w,Preorderm

(d,m0)) is ex-
actly the set of positions that can be pre-order typed with
specialization m. Analogously, there is a Postorderm

(d,m0)(x)
that exactly describes the positions that can be post-order
typed with specialization m.

Proof. The construction of the VPA in Section 4.2, when
restricted to only answering the positions getting type m,
can be seen as a VPA with output. Thus, the proposition
follows from Theorem 7. The proof for post-order typing is
similar.

Proposition 8 can be used obtain a streaming algorithm
for dynamic pre-order (and post-order) typing. The stream-
ing algorithm simulates the deterministic marking VPA from
Theorem 6 for Preorderm

(d,m0)(x) (or Postorderm
(d,m0)(x)) for

each specialization m simultaneously on the document w,
and outputs m whenever the marking VPA for m enters a
marking state.

While the results of Section 4.2 can thus be seen as a corol-
lary to the results presented in this section, the algorithm
described in the previous paragraph is likely to be more in-
efficient when compared to that presented in Section 4.2.
Thus, in practice it will be more useful to use the direct
construction presented earlier for determining types.

7. CONCLUSIONS
We have shown that visibly pushdown automata is a con-

venient and powerful model for studying problems for XML

that intrinsically involve processing documents from left to
right. Modular Vpas emerge as an elegant model to study
problems such as streaming and typing XML documents,
and constructions and algorithms based on modular Vpas
are intuitive and simple, giving clean proofs and efficient
algorithms.

Modular Vpas are useful in the program verification con-
text as well, and hence our results make an unusual connec-
tion between the two fields, which could be mutually bene-
ficial. For instance, the congruence based characterizations
developed in the verification setting have been useful in the
XML setting, and the unique minimal modular Vpa result
presented herein has potential uses in building minimal pro-
gram models.

There are several other problems that can be addressed
using the XVPA model. In particular, checking whether
SDTDs can be transformed into another which is pre-order
(or post-order) typed is decidable and these results can be
proved using XVPAs (we refer the reader to the technical
report [15]). Pre-order typability of SDTDs seems related
to LL[1] grammars [12] and is worth studying. Intuitively,
an LL[1] grammar requires that the rule to be applied is de-
termined when each symbol is read, which greatly resembles
pre-order typing and deterministic Xvpas.

The most interesting future direction we see is in defining
querying automata using the Vpa model. Note that while
we have studied prefix querying in this paper, general query-
ing (like general XPath queries) can select a node depending
on properties of the document that lie in the future of the
node. In work not reported here, we have extended the Vpa
model to a query model where the automaton is powerful
enough to store fragments of the document, and hence an-
swer all XPath/MSO queries. In both this and the work
reported in this paper, the ability to minimize Vpa seems
to reflect the kind of optimizations in memory proposed by
other researchers [7, 11], and we believe that minimization
of visibly pushdown automata will be a formal and perhaps
more effective way to achieve space optimizations. Finally,
we plan to also study transformations of XML documents
in the streaming setting using VPAs (see also [23], where
visibly pushdown expressions have been used to study effect
systems on streaming XML).

8. REFERENCES
[1] Serge Abiteboul, Peter Buneman, and Dan Suciu.

Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, 1999.

[2] A. V. Aho and J. D. Ullman. Translations on a
context free grammar. Information and Control,
19(19):439–475, 1971.

[3] R. Alur, V. Kumar, P. Madhusudan, and
M. Viswanathan. Congruences for visibly pushdown
languages. In ICALP, pages 1102–1114, 2005.

[4] R. Alur and P. Madhusudan. Visibly pushdown
languages. In STOC, pages 202–211. ACM Press,
2004.

[5] R. Alur and P. Madhusudan. Adding nesting structure
to words. In DLT, LNCS 4036, pages 1–13, 2006.

[6] Mikolaj Bojanczyk and Thomas Colcombet.
Tree-walking automata do not recognize all regular
languages. In STOC, pages 234–243, New York, NY,
USA, 2005. ACM Press.

[7] Yi Chen, Susan B. Davidson, and Yifeng Zheng. An
efficient XPath query processor for XML streams. In
ICDE, page 79, 2006.

[8] A. Desai. Introduction to sequential xpath. In Proc. of
IDEAlliance XML Conference, 2001.

[9] Todd J. Green, Gerome Miklau, Makoto Onizuka, and
Dan Suciu. Processing XML streams with
deterministic automata. In ICDT ’03, pages 173–189,
2003. Springer-Verlag.

[10] Martin Grohe and Nicole Schweikardt. Lower bounds
for sorting with few random accesses to external
memory. In PODS ’05, pages 238–249, 2005. ACM
Press.

[11] Ashish Kumar Gupta and Dan Suciu. Stream
processing of XPath queries with predicates. In
SIGMOD, pages 419–430. ACM Press, 2003.

[12] J.E. Hopcroft and J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[13] Christoph Koch and Stefanie Scherzinger. Attribute
grammars for scalable query processing on XML
streams. In DBPL, volume 2921 of LNCS, pages
233–256, 2003.

[14] V. Kumar, P. Madhusudan, and M. Viswanathan.
Minimization, learning, and conformance testing of
boolean programs. In CONCUR, 2006. to appear.

[15] V. Kumar, P. Madhusudan, and M. Viswanathan.
Visibly pushdown languages for xml. Technical Report
UIUCDCS-R-2006-2704, UIUC, 2006.

[16] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A transducer-based XML query
processor. In VLDB, pages 227–238, 2002.

[17] Wim Martens, Frank Neven, and Thomas Schwentick.
Which XML schemas admit 1-pass preorder typing?
In ICDT, pages 68–82, 2005.

[18] M. Murata, D. Lee, and M. Mani. Taxonomy of XML
Schema Languages using Formal Language Theory. In
Extreme Markup Languages, Montreal, Canada, 2001.

[19] Andreas Neumann and Helmut Seidl. Locating
matches of tree patterns in forests. In FSTTCS, pages
134–145, 1998. Springer-Verlag.

[20] Frank Neven. Automata, logic, and XML. In CSL,
pages 2–26, London, UK, 2002. Springer-Verlag.

[21] Frank Neven and Thomas Schwentick. On the power
of tree-walking automata. Information Computing,
183(1):86–103, 2003.

[22] Y. Papakonstantinou and V. Vianu. DTD inference
for views of XML data. In PODS, pages 35–46, New
York, NY, USA, 2000. ACM Press.

[23] Corin Pitcher. Visibly pushdown expression effects for
XML stream processing. In Programming Language
Technologies for XML, pages 1–14, 2005.

[24] Luc Segoufin and Victor Vianu. Validating streaming
XML documents. In PODS, pages 53–64, New York,
NY, USA, 2002. ACM Press.

[25] Victor Vianu. XML: From practice to theory. In
SBBD, pages 11–25, 2003.

[26] World Wide Web Consortium. Extended Markup
Language (XML). http://www.w3.org.

